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Application of GM (1,1) to predict 
the dynamics of stand carbon 
storage in Pinus Kesiya var. 
langbianensis natural forests
Chunxi Gu , Zhenyan Zhou , Chang Liu *, Wangfei Zhang , 
Zhengdao Yang , Wenwu Zhou  and Guanglong Ou 
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Amid global carbon reduction and climate action, precise forest carbon storage 
estimation is crucial for comprehending the carbon cycle. This study forecasts 
P. kesiya var. langbianensis forests’ 2030 stand carbon storage using data from 
81 permanent plots across three Yunnan Province forest surveys and remote 
sensing. Findings: (1) In 2000, storage ranged from 26 to 38  t·hm−2. Central areas 
had higher values; southwest and southeast exceeded northwest and northeast. 
By 2010, storage grew eastward, receded northward. By 2020, east storage 
declined, southwest rose. (2) GM (1,1) model: posterior difference C 0.001, R2 
power function model 0.945, GM (1,1) p value 0.999, power function model 
p value 0.997. (3) Predictions: Cosivarang border forest’s 2030 carbon stock 
2850.804  t·hm−2, up  103.463  t·hm−2 from 2000. At 2022’s certified Emission 
Reduction carbon price of 60 yuan/ton, 2030’s carbon asset value per unit 
(t·hm−2) approx. 6207.78 Yuan, compared to 2000. Integrating gray system 
theory, especially GM (1,1) model, robustly addresses “small data and uncertainty” 
system challenges. Introducing GM (1,1) gray theory in forestry research offers 
fresh insight into forest carbon sink dynamics.
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1 Introduction

Global climate change has become one of the most significant environmental problems 
and complex challenges faced by human being in the 21st century. Addressing this issue has 
led to the signing of international treaties such as the Kyoto Protocol and the Paris Agreement 
(Wei et al., 2018, 2022; Liang et al., 2022). The commitment to reducing carbon emissions is 
exemplified by China’s pledge to take a leading role. By implementing effective policies, China 
aims to achieve the “two carbon goals” of peaking carbon emissions by 2030 and achieving 
carbon neutrality by 2060 (Wang et al., 2021).

The concept of carbon peaking involves reaching the historical pinnacle of carbon dioxide 
emissions, followed by a period of decline. This signifies a pivotal shift from emission increase 
to decrease. The pursuit of the “two carbon goals” aligns with the aspiration for an improved 
quality of life after fulfilling basic material needs. Moreover, the timing and extent of carbon 
peaking directly influence emission reduction and the duration of the transition to carbon 
neutrality. Among terrestrial ecosystems, forests house the largest carbon reservoir, exceeding 

OPEN ACCESS

EDITED BY

Lingbo Dong,  
Northeast Forestry University, China

REVIEWED BY

Sumit Chakravarty,  
Uttar Banga Krishi Viswavidyalaya, India
Tao Wang,  
Jilin Agricultural University, China

*CORRESPONDENCE

Chang Liu  
 missliu@swfu.edu.cn

RECEIVED 22 September 2023
ACCEPTED 08 July 2024
PUBLISHED 26 July 2024

CITATION

Gu C, Zhou Z, Liu C, Zhang W, Yang Z, 
Zhou W and Ou G (2024) Application of GM 
(1,1) to predict the dynamics of stand carbon 
storage in Pinus Kesiya var. langbianensis 
natural forests.
Front. For. Glob. Change 7:1298804.
doi: 10.3389/ffgc.2024.1298804

COPYRIGHT

© 2024 Gu, Zhou, Liu, Zhang, Yang, Zhou and 
Ou. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 26 July 2024
DOI 10.3389/ffgc.2024.1298804

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2024.1298804&domain=pdf&date_stamp=2024-07-26
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1298804/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1298804/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1298804/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1298804/full
mailto:missliu@swfu.edu.cn
https://doi.org/10.3389/ffgc.2024.1298804
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2024.1298804


Gu et al. 10.3389/ffgc.2024.1298804

Frontiers in Forests and Global Change 02 frontiersin.org

other ecosystems in carbon storage per unit area (Li and Jiang, 2004; 
Kuuluvainen and Gauthier, 2018; Lan et al., 2021). Optimal utilization 
of forest carbon sequestration proves to be a cost-effective approach. 
In comparison to industrial emission reduction, this strategy proves 
more efficient and vital in combating global climate change (Richards 
and Stokes, 2004; Makkonen et al., 2015; Pingoud et al., 2016). As 
global efforts toward carbon reduction and climate action persist, the 
exploration of forest carbon storage has gained substantial scholarly 
attention. Accurately assessing forest carbon stocks has evolved into a 
pivotal facet of research concerning global climate change and the 
carbon cycle (Siddiq et al., 2021).

In recent years, forest carbon storage research has progressed from 
the embryonic stage to rapid development (Ma, 2019). The effects of 
intensive forest management on carbon stocks were analyzed using 
forest growth models (Schroeder, 1991). Nepal et al. (2012) assessed 
the carbon sink potential of the US forest sector by integrating forest 
yield (USFPM/GFPM) with the matter method and WOODCARB2 
model. Estimation of tree biomass and carbon stocks in subtropical 
and temperate forests in the central Himalayas, India, was conducted 
by Vcja et al. (2021). While Chinese scientists initiated forest carbon 
storage and cycle research relatively late, the focus primarily shifted to 
carbon storage and sink measurements since China’s establishment. 
In the 1990s, Chinese scholars began estimating national forest 
biomass, carbon storage, and carbon density, proposing regional and 
national estimation methods. Fang (2004) employed an improved 
biomass conversion factor method based on China’s forest resource 
inventory data to estimate historical dynamic changes in China’s forest 
carbon storage. Zhang and Wu (2021) analyzed the relationship 
between forest biomass and carbon change, and indicated that both 
stand carbon and total carbon storage increased from 1977 to 2018. 
Their studies reveal a clear upward trend, pointing to a substantial 
future carbon sink potential in China. Che (2020) employed regression 
fitting models to predict the total forest carbon pool in Gansu 
Province, China. However, a previous study (Amaro et  al., 2013) 
showcased limitations in traditional forest carbon stock estimation 
methods, including the sample inventory, vorticity correlation, and 
model estimation methods. Prior research summarized various 
techniques for measuring forest carbon stocks, utilizing remote 
sensing technologies such as aerial lidar, satellite observations, GPS 
positioning, and meteorological approaches for precise stand carbon 
storage estimation. Given the diversity in forest carbon storage 
measurement, the selection of key factors and research methods for 
future carbon storage prediction remains non-uniform. While 
influencing factors and research methods for predicting future carbon 
stocks vary, achieving significant breakthroughs in time series carbon 
stock prediction poses challenges (Deng, 1988). Simultaneously, amid 
the global trend toward carbon emission reduction and climate action, 
accurate forest carbon stock estimation assumes paramount 
importance in studying global climate change and the carbon cycle. 
This estimation not only unveils prospective changes in forest carbon 
stocks and anticipates their primary developmental trajectories, but 
also furnishes theoretical guidance for enhancing global climate 
change response and forest management. Moreover, it holds significant 
strategic importance for China to reach peak carbon neutrality under 
the vision of a carbon trading market.

Accurately estimating carbon storage is crucial for assessing the 
carbon sequestration capacity of ecosystems. To predict and estimate 
carbon storage, researchers employ various mathematical models 

and techniques based on ground measurements, remote sensing 
data, climate, and land use data. Traditional forest carbon storage 
predictions typically integrate field data with remote sensing using 
correlation models to back-calculate biomass, but there are relatively 
few instances of future forest carbon storage predictions. Wang 
Fenghua et al. conducted a comparative analysis of multiple stepwise 
regression, partial least square regression, and radial basis function 
neural network models for estimating carbon stocks. The results 
indicated that the radial basis function neural network model 
demonstrated superior performance in estimating forest carbon 
stocks, with a coefficient of determination reaching 0.645 (Wang 
et al., 2019). Cao Cong used ordinary least squares (OLS) model and 
four geographically weighted regression (GWR) models to predict 
the spatial distribution of forest carbon stocks in the Pearl River 
Delta. The research shows that: All the four GWR models have better 
fitting effect and independent sample test results than the OLS 
model, and the MGWR (Gaussian) model has the best fitting effect 
(Cao et al., 2023). Zou Weimin applied the Geographically Weighted 
Regression (GWR) model to estimate forest carbon storage and its 
spatial distribution in Songyang County, achieving an R2 value of 
0.71 (Zou et al., 2023). Wu Wenqi et al. applied the gray GM (1,1) 
model in predicting urban atmospheric pollutant concentrations. 
The model passed residual analysis and posterior difference checks, 
with results falling within acceptable ranges, indicating high 
accuracy (Wu, 2019). Fan Chengjie et al. developed GM (1,1) gray 
prediction models for six types of atmospheric pollutants to 
investigate the future five-year development trends in Linfen City. 
Following residual analysis, the predicted results were found to 
be  feasible (Fan, 2021). Huang Xinyi et  al. effectively forecasted 
carbon emissions in Jiangsu Province from 2022 to 2026 using the 
GM (1,1) prediction model. The predictions demonstrated high 
accuracy and reliability, with calculations being relatively 
straightforward (Huang et al., 2022). It can be concluded that the 
GM (1,1) model has a good estimation ability. Based on this, GM 
(1,1) is used to predict forest carbon storage.

The gray system theory, proposed by Deng Jurong in the 1980s 
(Dong et al., 2022), serves as a valuable tool for predicting system 
behavior through time series datasets. It involves accumulating and 
mining existing data from limited samples, uncovering system 
connections and change rules, leading to objective predictions of 
future data (Deng, 1990; Kayacan et al., 2010; Wang et al., 2020). At 
the heart of the gray prediction model lies the GM (1,1) model (Deng, 
1985; Deng, 2002; Liu and Chi, 2021), which addresses analysis, 
prediction, decision-making, and control for systems characterized by 
“small data and uncertainty.” CM (1,1) effectively fits and predicts 
characteristic values within complex systems, revealing future change 
patterns and developmental trends (Jiang, 2016; Zeng, 2016). GM 
(1,1) has proven its efficacy in various applications such as analyzing 
forest carbon sink potential in Beijing and China (Zhang et  al., 
2022a,b), forest carbon sink prediction under diverse management 
levels in Jiangxi Province (Kang and Fu, 2022), and studying 
influencing factors on forest carbon storage in Hebei Province (Dong 
et al., 2022).

In this study, we collected stand carbon storage data from sample 
plots within P. kesiya var. langbianensis forests. Through integration 
with remote sensing data, we employed the GM (1,1) model to predict 
stand carbon storage for P. kesiya var. langbianensis forests in 2030. 
This allowed us to explore change patterns and quantify carbon 
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storage contributions, aligning with carbon peak and 
neutrality objectives.

2 Site description and data collection

2.1 Study area

The study sites (Figure 1) are situated in the southern region of the 
Yunnan province, encompassing a blend of subtropical and tropical 
zones, exhibiting an average annual temperature spanning from 17°C 
to 22°C. Annual precipitation exceeds 1,500 mm, while relative 
humidity surpasses 80%. The study area comprises expansive valleys, 
as well as low mountains and hills, with altitudes ranging from 600 m 
to 1700 m. P. kesiya var. langbianensis, a distinctive tree species in 
Yunnan, is predominantly distributed across Malipo County, Puer 
City, Mangshi City of Dehongtai, and the Jingpo Autonomous 
Prefecture in western Yunnan. These regions collectively encompass 
11% of Yunnan’s forest-covered expanse. This evergreen tree species 
belongs to the Pinus kesiya family and thrives as a light-demanding 

plant, favoring elevated temperatures and humid environments. 
Conversely, it exhibits intolerance toward cold, arid conditions, and 
infertile soil. Recognized as a fast-growing coniferous species, P. kesiya 
var. langbianensis holds significant economic value alongside its 
ecological roles and services, including carbon sequestration.

2.2 Data collection

Carbon storage data for P. kesiya var. langbianensis forests were 
collected from a total of 89 permanent plots. Over three periods of 
assessment (2007, 2012, and 2017), forest inventories were conducted 
in Yunnan. Following the mitigation of disturbances, 81 plots 
remained, with P. kesiya var. langbianensis emerging as the dominant 
tree species, encompassing all its varieties. Landsat images were 
acquired from the study area via the Google Earth Engine remote 
sensing cloud platform, including Landsat 7 (2000, 2002, 2007, and 
2010) and Landsat 8 OLI (2020), with no identified issues after 
inspection. Figure 1 illustrates the distribution of sample plots, with 
81 forest plots (c) strategically positioned for stand carbon storage 

FIGURE 1

Sample plot distribution. The standard map downloaded from the standard map service website is GS (2019)1823, and the base map is not modified.
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TABLE 2 Remote sensing image data sets.

Year Data set Imaging time Time interpolation Resolution (m)

2000 Landsat 5, Landsat 7 Surface Reflectance Tier 1 May 1st - October 31st Landsat5, Landsat7 30

2002 Landsat 5, Landsat 7 Surface Reflectance Tier 1 Landsat5, Landsat7 30

2010 Landsat 5, Landsat 7 Surface Reflectance Tier 1 Landsat5, Landsat7 30

2020 Landsat 8 Surface Reflectance Tier 1 Landsat 8 30

measurement in Pu’er Prefecture (b), Yunnan Province (a). The carbon 
storage summary for the study area is presented in Table 1, while 
Table 2 provides the remote sensing image dataset.

2.3 Data processing

ENVI 5.3 software was employed to preprocess the Landsat 
images. Remote sensing features provide rich surface information that 
is closely related to vegetation cover, thereby enabling estimation of 
carbon storage. Analyzing these remote sensing features allows for a 
more accurate assessment of terrestrial ecosystem status and carbon 
cycling processes, thereby supporting and providing a basis for carbon 
storage evaluation. A total of 73 remote sensing features (Table 3) were 
extracted from Landsat 7 (2000, 2002, and 2007) and Landsat 8 OLI 
(2020) images, categorizing into four types for constructing the 
carbon storage estimation model for P. kesiya var. langbianensis forests. 
These types encompass single-band factors, information enhancement 
factors (utilizing principal component analysis, PCA), vegetation 
index factors, and texture features. Texture features were extracted 
using 3 × 3, 7 × 7, and 5 × 5 windows, with Pearson correlation analysis 
favoring the 3 × 3 window over 5 × 5 and 7 × 7. Consequently, this 
study adopts the 3 × 3 window. The 73 extracted remote sensing factors 
were loaded into ArcGIS software to establish a connection with field-
collected plots. Pearson correlation coefficient was computed to assess 
the relationship between carbon storage and the extracted features 
(2007). Significant correlations were used for modeling. This approach 
was replicated for images acquired in 2000, 2002, 2010, and 2020.

3 Methodology

3.1 Carbon storage inversion algorithms

In this study, carbon storage was estimated using three algorithms: 
the K-nearest neighbor (K-NN) method, the random forest regression 

model, and the partial least squares regression. Utilizing data from 81 
permanent plots in the Yunnan Forest survey of 2007 and Landsat 
satellite remote sensing images obtained from the Google Earth 
Engine remote sensing cloud platform, regression modeling and 
evaluation occurred over three feature selection stages. The optimal 
remote sensing model for estimating carbon storage in the P. kesiya 
var. langbianensis forest was chosen. Model performance was assessed 
through determination coefficient (R2) and root mean square error 
(RMSE), while predictive capability was measured by prediction 
accuracy (P). Employing the selected model alongside remote sensing 
feature variables for relevant years (2000, 2002, 2010, and 2020), 
carbon storage for P. kesiya var. langbianensis forest in those 
corresponding years was inferred. Using the GM (1,1) model, carbon 
storage for P. kesiya var. langbianensis forest in 2002 and field data 
from 2007 and 2012 were fitted, with subsequent prediction and 
comparison of carbon storage for P. kesiya var. langbianensis forest in 
2017 against measured 2017 data. This process demonstrated the 
viability of the GM (1,1) model. Upon demonstrating the feasibility of 
the GM (1,1) model, the carbon storage model for the P. kesiya var. 
langbianensis forest in 2000, 2010 and 2020 was established, along 
with the prediction of its carbon storage up to 2030. To compare the 
predictive capabilities of the GM (1,1) model, the power function 
model was used as its counterpart. The technical process is shown in 
Figure 2.

3.1.1 K-NN algorithm
The K-NN method algorithm was proposed by COVER et al. in 

1968 (Jiang et al., 2003) and at first it is one of the basic classification 
algorithms. In this study, it is used as a retrieval function, the estimated 
value Mp is a continuous variable such as carbon storage here at pixel 
P, it is calculated as follows (eq. 1):

 
M w mP

i
ip i�

�
�

1

k

 
(1)

where mi is the measured value at reference sample location i of 
variable M; k is the number of neighbors considered when calculating 
the predicted value mp; wip indicates the pixel weight.

3.1.2 RFR algorithm
Partial least squares regression (PLSR) of the random forest 

regression model involves synthesizing the outcomes of multiple 
established decision tree models to derive a single model. The final 
prediction is obtained by averaging the results from these decision 
tree models, resulting in high fitting accuracy. Additionally, it 
exhibits robustness against noise and outliers, effectively preventing 
overfitting. This approach often achieves superior generalization 

TABLE 1 Statistical characteristics of carbon storage at sample sites in 
Pinus kesiya var. langbianensis forests (t.hm−2).

Year N Mean S.D. Minimum Maximum

2007 81 25.26 13.44 0.75 55.13

2012 81 29.71 13.46 6.74 66.79

2017 81 33.10 14.10 0.15 70.44

The value given in Table 1 is 25–33 t.hm−2, but the later results show that the value is higher 
than this (Tables 5, 8, 9), because Table 1 is the carbon storage value of each sample site in 
the natural forest of P. kesiya var. langbianensis, and the values in Tables 5, 8, 9 are the sum of 
the carbon storage value of all sample sites in the natural forest of P. kesiya var. langbianensis 
in the corresponding year.
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performance and accuracy compared to a standalone regression tree 
(Liu et al., 2014).

3.1.3 The PLSR model
PLSR combines various analytical techniques, including principal 

component analysis, canonical correlation analysis, and multiple linear 
regression analysis. PLSR effectively addresses the challenges of multiple 
correlations and variable noise during the process of multiple regression 
analysis. This method serves a predictive role and mitigates the impact 
of parameter structure uncertainty and model non-identification 
(Breiman, 1996). Its basic formula is as follows (eq. 2):

 y k k x k x k x k xn n� � � � � �0 1 1 2 2 3 3   (2)

where k k k k kn0 1 2 3, , , ,  is model parameter, y is dependent variable 
(biomass), x x x xn1 2 3, , ,  is independent variable (remote 
sensing factor).

3.1.4 Model validation
The model performance was validated through R2 (eq. 3), RMSE 

(eq. 4), and P (eq. 5).
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3.2 Carbon storage forecasting model of 
GM (1,1)

The advantages of gray prediction include lower data requirements, 
ease of original operation, high short-term prediction accuracy, and 
testability. A gray differential prediction model can be established with 
limited incomplete information to provide a fuzzy long-term description 
of developmental patterns. The core model of the gray approach is the 
GM (1,1) model, primarily used for sequence prediction. This model 
employs exponential curve fitting following the accumulation of 
original data. The modeling process encompasses original sequence 
accumulation, background value construction, parameter estimation 
for the defined equation, and predicted value calculation using the 
solution of a unary first-order linear differential equation.

For the GM (1,1) model:
Let the original sequence 

be  x x x x x� � �� � � � � � ��� � � � � � � �0 0 0 0
1 2 3, , , n , where X t0� � � � is a 

continuous function, and the sequence is accumulated once to 
generate the sequence X 1� �, (Li, 2007) (eq. 6) then

 
X t x m

m

t
1

1

0� �

�
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(6)

Accumulation can reduce the randomness of the scattered original 
data, thereby showing an approximate exponential growth law. Deng 
proposed to establish the following differential equation form 
according to the sequence generated by one accumulation, which is 
the whitening differential equation of GM (1,1) model:

 
dx t
dt

ax t b
1
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Integrating it over the interval [I, i + 1], the
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(8)

TABLE 3 Feature factor extraction from remote sensing.

Types of remote sensing features Remote sensing feature factor

Single band factor Blue band, red band, green band, NIR band, SWIR 1, SWIR 2

Information enhancement factor PCA 1, PCA 2, PCA 3, PCA 4, PCA 5, PCA 6, PCA 7

Vegetation index factor NDVI, SRI, SAVI, PVI, BVI, GVI, WVI, IIVI, DVI, TVI, MVI 5, MVI 7

Texture feature (3*3)

Mean of Blue band, Variance of Blue band, Homogeneity of Blue band, Contrast of Blue band, Dissimilarity of Blue 

band, Entropy of Blue band, Correlation of Blue band, Second Moment of Blue band.

Mean of red band, Variance of red band, Homogeneity of red band, Contrast of red band, Dissimilarity of red band, 

Entropy of red band, Correlation of red band, Second Moment of red band.

Mean of green band, Variance of green band, Homogeneity of green band, Contrast of green band, Dissimilarity of 

green band, Entropy of green band, Correlation of green band, Second Moment of green band.

Mean of NIR band, Variance of NIR band, Homogeneity of NIR band, Contrast of NIR band, Dissimilarity of NIR 

band, Entropy of NIR band.

Correlation of NIR band, Second Moment of NIR band.

Mean of SWIR 1 band, Variance of SWIR 1 band, Homogeneity of SWIR 1 band, Contrast of SWIR 1 band, 

Dissimilarity of SWIR 1 band, Entropy of SWIR 1 band, Correlation of SWIR 1 band, Second Moment of SWIR 1 

band, Mean of SWIR 2 band, Variance of SWIR 2 band, Homogeneity of SWIR 2 band, Contrast of SWIR 2 band, 

Dissimilarity of SWIR 2 band, Entropy of SWIR 2 band, Correlation of SWIR 2 band, Second Moment of SWIR 2 band
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Of which
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The x t1� � � �in the interval [I, I + 1] on the background value of 
z 1

1
� � �� �i , generally averaged forms, namely
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Then, there is
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(11)

Substituting Equations (9) and (11) into equation (8), the 
discretization equation of Formula (7) of whitening  
differential equation of GM (1,1) model is obtained,  
and it is called the defining equation of GM (1,1)  
model:

FIGURE 2

Technology roadmap.
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 x i az i b i n0 1
1 1 1 2 3 1

� � � ��� � � �� � � � �, , , , ,  (12)

In Equation (12), a is a development coefficient, its size and 
positive or negative can reflect the development trend of the original 
column. b is the gray action.

The development coefficient an of GM (1,1) is given as follows:
The restricted area is �� �� �� � �� �, ,2 2 ;
The allowable region is �� �2 2, .
Because when a = 2, all the predictions that can be inferred are 

a � �2, when a, all the predictions that can be inferred are going to 
infinity, However, when a > 2 and a � �2, the predicted value is 
positive or negative, and the model is rendered irrelevant. The GM 
(1,1) model feasibility can be judged by the level ratio of the original 
sequence (Li, 2007) (eqs. 13–24).

Let the original sequence 

be x x x x x n� � � � � � � � �� �� � � � � � � �0 0 0 0
1 2 3, , , , , where n is the observed 

values, and let � 0� � � �i  be the level ratio of the original sequence:

 
� 0
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�i
x i

x i
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(13)

It calculates and judges the level ratio of the observed values, with 
the model being established only when all the level ratios fall into the 
calculation range. In this study, the GM (1,1) model accuracy is tested 
by post-residual and post-posterior tests. For the residual test method, 
the residual is the difference between the real and estimated values, 
with the residual test testing the gradual deviation degree between the 
estimated and the real values.

Let the original data and simulated data be:
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Subtract to get the residual, then the residual sequence
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Of which
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Calculating relative error
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�
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1n
i
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n
 has the average relative error.

The smaller was the relative error value, the better. Generally,  
< 20% means good fitting. For posterior difference method, the 
variances of the original data series X (0) and the predicted residual 
series E are shown below:
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Of which
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The posterior difference ratio is
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Small error probability P
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qis the mean of the residual sequence q x x0 0
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When C has a small value, it indicates that s2 is small ands1 is 
large. A large s1 value indicates significant dispersion in observed data 
or large swing amplitude in original data, signifying poor data 
regularity. Conversely, a small s2 indicates low dispersion in prediction 
errors. Thus, effective prediction necessitates minimizings2 while 
considering s1; a smaller comprehensive index C is preferable. Here, 
0.35 < C ≤ 0.65. P denotes error frequency, and a larger P indicates 
better performance. A typical requirement for P is >0.95 and not <0.7.

4 Results

4.1 Correlation analysis

The study employed the Pearson correlation coefficient to assess 
the sensitivity of extracted remote sensing features. The dependent 
variable was the stand carbon storage of the P. kesiya var. langbianensis 
forest plot, while the independent variables consisted of the extracted 
features. A total of 11 remote sensing features were found that were 
significantly correlated (p < 0.001; Figure 3) with the stand carbon 
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storage, which were chosen as potential variables for constructing the 
model. These features encompass PCA2, SRI, TVI, IIVI, SAVI, NDVI, 
MVI7, B7Mean, B3Mean, B2Mean, and B2Coreelation, with B3Mean 
displaying the highest correlation (r = 0.41) and B2Coreelation 
exhibiting the lowest correlation (r = 0.32) among the selected variables.

4.2 Model construction

4.2.1 Model optimization
In 2007, data from 81 permanent sample plots were utilized to fit 

three models (KNN, PLSR, and RF) for stand carbon storage 
estimation. The RF model exhibited the highest determination 
coefficient (R2 = 0.83), minimal root mean square error (RMSE = 5.55), 
and the highest prediction accuracy (p = 83.2%; Table 4). This suggests 
that the RF model is suitable for estimating stand carbon storage in 
natural P. kesiya var. langbianensis forests.

4.2.2 Prediction of carbon stocks based on 
remote sensing

Random forest the application of the RF model extended to 
estimating stand carbon storage in P. kesiya var. langbianensis forests 
for 2000, 2002, 2010, and 2020 (Table 5; Figure 4), as well as generating 
a spatial distribution map of carbon storage (Figure 5).

According to Table 6, the inversion of carbon storage value for 
P. kesiya var. langbianensis plot revealed an upward trend in average 

carbon storage from 2000 to 2020. In 2020, the average carbon storage 
of P. kesiya var. langbianensis plots increased by 1.786 t·hm − 2 
compared to the average carbon storage of P. kesiya var. langbianensis 
plots in 2000. Notably, the standard deviation of carbon storage for 
P. kesiya var. langbianensis plots in 2010 (10.396 t·hm−2) was lower 
than that in 2000, 2002, and 2020. The minimum carbon storage value 
in 2000 was inferior to that in 2002, and the 2010 value was lower than 
the 2002 value, while the 2020 value surpassed the 2010 value. The 
maximum value experienced a decrease followed by an increase from 
2000 to 2020. However, the maximum value in 2020 remained lower 
than the 2000 value.

Figure 4 illustrates that the carbon storage’s maximum value was 
higher in 2000 than in 2002, 2010, and 2020, reaching 63.2 in 2000. 
When examining Table 5 in conjunction, it becomes apparent that 
although a single sample site exhibited greater values in 2000 than the 
other 3 years, the carbon storage in the study area consistently 
increased annually across 2000, 2002, 2010, and 2020.

For a comprehensive analysis of P. kesiya var. langbianensis carbon 
storage distribution, the study area’s corresponding slope, aspect, and 
altitude were evaluated using the ArcGIS 10.8 data analysis module. 
Results are shown in Figure 6. In 2000, carbon storage distribution for 
P. kesiya var. langbianensis indicated lower values at the center and 
higher values around it. Significantly elevated carbon storage was 
observed in the southwest and southeast regions compared to the 
northwest and northeast regions. The primary distribution ranged 
between 26 and 38 t·hm−2. By 2002, the southeastern carbon storage 

FIGURE 3

Correlation analysis diagram.
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for pine decreased relative to 2000, while the southwestern portion 
experienced a notable increase, reaching a peak storage gradient of 38 
to 42 t·hm−2. Shifting to 2010, the eastern carbon storage for P. kesiya 
var. langbianensis expanded compared to 2002, but the northern 
region encountered a substantial decrease. In 2020, a decline in carbon 
storage of P. kesiya var. langbianensis was observed in the eastern study 
area compared to 2010. However, there was a notable increase in 
carbon storage in the southwestern study area. Over the period 2000 
to 2020, fluctuations in carbon storage for P. kesiya var. langbianensis 
were associated with elevation, slope, and aspect within the study area. 
External factors such as land usage changes (deforestation or 
establishment of new sample land), economic conditions, and policy 
also played a role. To analyze elevation, slope, and aspect’s impact on 
forest carbon storage change, DEM elevation data was obtained from 
the geospatial data cloud. Relevant elevation, slope, and aspect 
characteristics were extracted using ARCGIS. Combining this with 

the carbon storage change rate from 2000 to 2020, a linear regression 
model was established. The results are presented in Table 7, revealing 
that slope exerted the most significant influence on P. kesiya var. 
langbianensis forest carbon stock change, followed by elevation.

4.2.3 Carbon storage prediction
 1. Fitting the GM (1,1) model: Programming and related 

predictions of GM (1,1) gray model were implemented in the 
MATLAB software. Using year as the variable data of time term 
(categorization) and carbon storage of P. kesiya var. 
langbianensis in corresponding year as the variable Y of time 
series data (quantitative), a GM (1,1) gray prediction model is 
used to analyze the change in carbon storage within the study 
area from 2002 to 2017. Table 8 shows the initial and predicted 
values for the years 2002, 2007, 2012, and 2017, along with 
calculated P and C values for the predicted results. The 
accuracy of the gray prediction can be verified through the 
posterior difference ratio in the GM (1,1) model fitting 
(Table 8). A smaller posterior difference ratio indicates higher 
prediction accuracy. Generally, a C value <0.35 signifies high 
accuracy, C < 0.5 implies qualified accuracy, C < 0.65 suggests 
basic qualification, and C > 0.65 indicates low accuracy. For 
assessing model fit, a smaller relative error value, ideally less 
than 20%, signifies a good fit. The probability of small error, 
denoted as P, should be  larger, preferably p > 0.95 and not 
p < 0.7. The GM (1,1) model fitting results in Table  8 
demonstrate a posteriori difference ratio of 0.006 and a small 
error frequency P of 0.989, indicating high model accuracy. 
The average relative error is 0.671%, reflecting a good model fit.

 2. Comparison of prediction models: To compare the performance 
of GM (1,1) model, the power function model was taken as the 
comparison model. The parametric equation of the power 
function model is as follows (Zhang, 2022a) (eq. 25):

 C K = 2750 90
0 029

.
.

 (25)

where C  represents the carbon storage of P. kesiya var. 
langbianensis, and the value of K is 1,2,3,4,... n-1,1 means base year 
2000, 2,3,4... and represents the sequence value of the relevant year 
after the base period.

As per the predictions by the gray forecasting model GM (1,1) for 
the results (Table 9), the posterior difference of the GM (1,1) model is 
0.001°C with an R2 value of 0.945. For both the GM (1,1) model and 
the power function model, the p values are 0.999 and 0.996, 
respectively. Generally, the accuracy of the GM (1,1) model surpasses 
that of the power function model. Compared to the power function 
model, the GM (1,1) model better addresses analysis and prediction 
issues within a “small data and uncertainty” system. Based on the GM 
(1,1) model, the projected carbon storage of P. kesiya var. langbianensis 
forest in 2030 is 2850.804 t·hm−2, a rise of 103.463 t·hm−2 from 2000. 
Conversely, using the power function model, the carbon storage is 
estimated to reach 2863.746 t·hm−2 in 2030, indicating an increase of 
116.405 t·hm−2 from 2000. According to the carbon storage increment 
estimation of P. kesiya var. langbianensis natural forest, it is anticipated 
that this natural forest will significantly contribute to China’s target of 
achieving carbon peak and carbon neutral forestry by 2030. These 

TABLE 4 Based on RFR, K-NN, PLSR model fitting.

The model
The model fitting

Testing of 
models

R2 RMSE (t·hm−2) P%

RER 0.83 5.55 83.30

K-NN 0.37 13.20 59.55

PLSR 0.32 13.70 58.36

TABLE 5 Inversion of annual carbon storage.

Year Carbon storage (t·hm−2)

2000 2747.341

2002 2758.331

2010 2816.690

2020 2833.700

The value given in Table 1 is 25–33 t.hm−2, but the later results show that the value is higher 
than this (Tables 5, 8, 9), because Table 1 is the carbon storage value of each sample site in 
the natural forest of P. kesiya var. langbianensis, and the values in Tables 5, 8, 9 are the sum of 
the carbon storage value of all sample sites in the natural forest of P. kesiya var. langbianensis 
in the corresponding year.

FIGURE 4

Carbon storage at the sample site.
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estimates are conservative. If the forest management level can 
be  effectively improved, the natural forests of P. kesiya var. 
langbianensis will have greater potential for carbon sequestration and 
make greater contribution to the strategic goal of carbon peak and 
carbon neutrality.

 3. The GM (1,1) model predicts: Based on the GM (1,1) model, 
the prediction for carbon storage in the natural forest sample 
of P. kesiya var. langbianensis in 2030 was performed. The 
projected GM (1,1) carbon storage values for 2030 are shown 
in Figure 7. Within the prediction for GM (1,1) carbon storage 
in 2030 (Figure 7), the forest’s carbon storage of P. kesiya var. 
langbianensis displays a lower extent in the east and a higher 

extent in the southwest. The eastern region of the forest mainly 
exhibits a carbon storage gradient of 14.34–24.00 t·hm−2, while 
the southwestern part ranges from 47.00–59.00 t·hm−2. 
Conversely, the forest’s carbon storage in the central study area 
exhibits a relatively uniform distribution, ranging between 
24.00–32.00 t·hm−2 and 32.00–40.00 t·hm−2. Additionally, in 
some northern portions of the P. kesiya var. langbianensis 
forest, a carbon storage ranges of 49.00–59.00 t·hm − 2 is 
anticipated. In conclusion, by 2030, there is an upward trend in 
the carbon storage of the P. kesiya var. langbianensis forest 
within the study area. Considering the domestic carbon 
market’s CCER carbon asset trading price (60 yuan/ton) in 
2022, the projected economic value of carbon assets per unit 
(t·hm − 2) for 2030 could amount to about 6207.78 yuan 
compared with that in 2000.

5 Discussion

The carbon storage data for the natural forest of P. kesiya var. 
langbianensis were utilized in this study. GM (1,1) gray and power 
function models were established to predict its carbon storage of the 

FIGURE 5

Carbon storage distribution at sample sites.

TABLE 6 Inversion of carbon storage value in P. kesiya var. langbianensis 
sample plot (t·hm−2).

Year N Mean S.D. Minimum Maximum

2000 81 33.918 10.396 11.578 63.215

2002 81 34.479 10.789 15.129 62.576

2010 81 34.774 9.020 13.351 57.934

2020 81 34.984 10.344 17.304 62.706
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natural forest of P. kesiya var. langbianensis. To optimize the dependent 
variables for carbon storage inversion, four categories of remote 
sensing variables were extracted, totaling 73. These included single-
band factors, information enhancement factor (principal component 
analysis), vegetation index factor, and texture features. After person 
correlation analysis, 11 factors with significant correlations 
were selected.

In order to better understand to explore the application of GM 
(1,1) gray theory in forestry, this study employed RFR, K-NN, and 
PLSR models to enhance the inversion model for carbon storage in the 
natural forest of Pinus sylvestris. Following model optimization, the 

FIGURE 6

Analysis of elevation, slope and aspect of study area.

TABLE 7 Linear regression model fitting.

Dependent 
variable

Independent 
variable

B (coefficient) R2

Carbon stock 

growth rate

Slope −0.728

0.317Aspect of slope 0

Altitude 0.006

TABLE 8 The GM (1,1) model was used to fit the annual carbon storage of 
P. kesiya var. langbianenis.

Year
Initial 
value

Predicted 
value

Residual
Relative 

(%)

2002 2774.358 2774.358 0 0

2007 2070.591 2806.604 −16.013 0.773

2012 2406.518 2369.537 36.982 1.537

2017 2680.818 2690.833 −10.015 0.374

Mean 

relative 

error

0.671

Post-check 

difference 

C

0.006

P 0.989

The value given in Table 1 is 25–33 t.hm−2, but the later results show that the value is higher 
than this (Tables 5, 8, 9), because Table 1 is the carbon storage value of each sample site in 
the natural forest of P. kesiya var. langbianensis, and the values in Tables 5, 8, 9 are the sum of 
the carbon storage value of all sample sites in the natural forest of P. kesiya var. langbianensis 
in the corresponding year.

TABLE 9 Carbon storage prediction of natural forest of P. kesiya var. 
langbianensis. (t.hm−2).

Year
Measured 
(t·hm−2)

GM (1,1)
Power 

function

Predicted (t·hm−2)

2000 2747.341 2747.341 2750.900

2010 2816.690 2816.681 2806.756

2020 2833.700 2833.691 2839.954

2030 2850.804 2863.746

C 0.001

R2 0.945

P 0.999 0.996

The value given in Table 1 is 25–33 t.hm−2, but the later results show that the value is higher 
than this (Tables 5, 8, 9), because Table 1 is the carbon storage value of each sample site in 
the natural forest of P. kesiya var. langbianensis, and the values in Tables 5, 8, 9 are the sum of 
the carbon storage value of all sample sites in the natural forest of P. kesiya var. langbianensis 
in the corresponding year.
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random forest model exhibited the best fitting effect, serving for 
carbon storage estimation. The random forest model generally 
outperformed methods like multiple linear stepwise regression and 
PLSR (Cai, 2021), demonstrating high prediction and test accuracy. 
Consequently, the random forest model estimated carbon storage in 
the natural forest of P. kesiya var. langbianensis via remote sensing. The 
consistency of these findings with those of previous studies by Zhao 
et al., where remote sensing was employed to estimate the biomass of 
P. kesiya var. langbianensis artificial forests at various growth stages 
using random forest regression, as well as the aboveground biomass 
estimation for natural secondary forests based on bias-corrected 
random forest and multi-source data by Sun et al., is evident (Sun 
et al., 2015; Zhao et al., 2021). Specifically, it is observed that: (1) RF 
exhibits superior fitting ability and model accuracy compared to 
multiple stepwise regression and support vector machine. (2) RF 
demonstrates effective fitting and avoids over-fitting tendencies, 
rendering it suitable for precise forest biomass modeling that reflects 
real-world scenarios. Moreover, RF attains remarkable prediction 
accuracy for extensive forest biomass estimation. Nevertheless, it is 
noteworthy that the model developed in this study and the accuracy 
test data consist of only 81 sample plots, indicating limited generality 
for large-scale generalization. The prevalent saturation phenomenon 
in carbon storage estimation, when training samples lack sufficient 
representation, which can lead to machine learning interpreting 

saturation as a training learning capability, and eventually this 
phenomenon cannot be significantly eliminated (Wang et al., 2022)
This aligns with Gao’s findings (Gao, 2018), signifying that 
non-parametric models like RF exhibit insensitivity to regions with 
either low or high forest carbon storage. To mitigate the saturation 
impact on biomass prediction, future research could incorporate more 
informative indicators unaffected by data saturation, such as texture 
features, vertical structural information, and climatic factors. These 
additions aim to enhance model accuracy, thus yielding improved 
practical prediction results.

The overall increasing trend in carbon storage of P. kesiya var. 
langbianensis plots in the study area during 2000–2020 is evident from 
the carbon storage distribution map (Figure 5) and the altitude, slope, 
and aspect analysis map (Figure 6). Analyzing spatial changes in Pinus 
yunnanensis natural forest from 2000 to 2020 involved acquiring 
DEM elevation data from the geospatial data cloud and extracting 
elevation, slope, and aspect characteristics using ARCGIS software. By 
establishing a linear regression model considering the natural forest 
carbon storage change rate during 2000–2020, the most influential 
factors were identified. Table 7 displays these results, showing that 
slope had the greatest impact on carbon storage change in P. kesiya var. 
langbianensis forest, followed by altitude. Notably, the growth rate and 
magnitude of the 2002–2010 period exceeded those of 2000–2002, 
while the growth rate and magnitude were smaller in the 2020–2010 

FIGURE 7

Projections of GM (1,1) carbon stocks for 2030.

https://doi.org/10.3389/ffgc.2024.1298804
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Gu et al. 10.3389/ffgc.2024.1298804

Frontiers in Forests and Global Change 13 frontiersin.org

period compared to the 2002–2010 period. Our findings suggest a 
continuous increase in carbon storage and forest quality, indicating a 
strengthening forest carbon sink function to a certain extent.

This study utilized the GM (1,1) gray model to predict carbon 
storage in the natural forest of P. kesiya var. langbianensis. To assess the 
predictive performance of the GM (1,1) model, a power function 
model was employed for comparison. The prediction results of the 
GM (1,1) gray prediction model (Table 9) show a marginal difference 
of 0.001 in the posterior difference C of the GM (1,1) model, while the 
power function model exhibits an R2 of 0.945. The GM (1,1) model’s 
p value is 0.999, and the power function model’s p value is 0.997. 
Overall, the precision of the GM (1,1) model surpasses that of the 
power function model, aligning with findings from Zhang on Beijing’s 
forest carbon sink potential under carbon peak and carbon neutrality, 
as well as with Kang and Fu (2022) analysis of forest carbon sink 
contribution in Jiangxi Province across various management levels. 
Disregarding external influences such as sample land clearance or 
newly established lands, economic and policy considerations, the 
carbon storage the natural forest of P. kesiya var. langbianensis is 
projected to reach 2844.287 t·hm − 2 by 2030, signifying an increase of 
103.463 t·hm−2 compared to 2000.

In carbon storage within the P. kesiya var. langbianensis forest is 
closely linked to appropriate management, excellent stand quality, 
favorable climatic conditions, and suitable forest location. Pu′er city, 
a model of China’s green economy, boasts significant forest coverage 
and serves as a substantial carbon sink market, effectively addressing 
the carbon emissions. Furthermore, the study site lies in Yunnan’s 
southwest, on the periphery of the Yunnan-Guizhou Plateau. With a 
mixed subtropical and tropical climate, the area maintains an annual 
average temperature ranging from 17°C to 22°C, receives over 
1,500 mm of annual precipitation, and enjoys a frost-free period of 
315 days with relative humidity exceeding 80%. Utilizing carbon 
storage data from 89 permanent plots across three Yunnan Forest 
surveys (2007, 2012, and 2017), 81 plots remained after disturbance 
removal. These plots were dominated by P. kesiya var. langbianensis, 
accompanied by various Pinus species. Under the influence of the 
subtropical monsoon climate, P. kesiya var. langbianensis exhibited 
robust growth, bolstered by a combination of these factors that 
collectively enhanced plant photosynthesis and indirectly influenced 
the growth and carbon storage of the natural P. kesiya var. 
langbianensis forests.

6 Conclusion

This paper presents an innovative application of GM (1,1) gray 
theory to address forestry challenges. GM (1,1) gray theory, primarily 
utilized in mathematics, proves advantageous due to its minimal sample 
requirements, independence from regular sample distribution, and 
suitability for short- and medium-term predictions. It effectively captures 
data trends. Unlike prior studies on dynamic forest carbon stocks that 
involved complex processing procedures, the GM (1,1) model simplifies 
this task. It eliminates the need for separate model constructions for 
distinct time periods, thus saving time and effort. Our application of the 
GM (1,1) gray theory in forestry research demonstrates its potential to 
predict forest carbon sinks. By introducing this theory, we extend its 
utility into the field of forestry studies, which can be used to predict forest 
carbon sinks. Despite the data limitations preventing an examination of 
change patterns in other species, the potential of GM (1,1) gray theory 

remains promising, demanding further investigation. Given its suitability 
for short- and medium-term predictions, we focus on forecasting the 
carbon storage of the P. kesiya var. langbianensis forest in 2030 to enhance 
accuracy and reduce predictive errors. Notably, our study excludes 
considerations of forest area expansion, increased forest coverage, and 
predictions under future climate change scenarios. Future research 
should encompass these diverse scenarios to yield comprehensive insights.

Estimating carbon storage requires strengthened assessment 
efforts. Ground-based quantitative data provide precise estimations of 
carbon storage, crucial for determining the carbon sequestration 
capabilities of specific regions. This is essential for setting goals to 
reduce carbon emissions and establishing standards for participation 
in carbon markets. Improving forest management practices involves 
understanding carbon storage in forests or specific areas, which 
informs decisions on methods and optimizing vegetation types or 
structures to maximize carbon sequestration benefits. Monitoring and 
verifying the effectiveness of carbon projects through continuous 
updates of field-based quantitative data validate their efficiency 
and compliance.

From the analysis above, it is evident that the southwestern region 
of the study area has the highest carbon storage. Priority should 
be given to conservation efforts in regions abundant in carbon storage 
to achieve optimal carbon sequestration benefits. Generally, carbon 
storage in the western regions is relatively higher compared to the 
eastern regions, which have relatively less. Attention should be focused 
on increasing carbon storage in the east by implementing sustainable 
forest management practices to enhance carbon storage and reduce 
emissions. These measures will effectively manage and increase 
terrestrial ecosystem carbon storage.
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