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Deforestation poses a critical global threat to Earth’s ecosystem and biodiversity,

necessitating effective monitoring and mitigation strategies. The integration

of deep learning with remote sensing offers a promising solution for precise

deforestation segmentation and detection. This paper provides a comprehensive

review of deep learning methodologies applied to deforestation analysis through

satellite imagery. In the face of deforestation’s ecological repercussions, the

need for advanced monitoring and surveillance tools becomes evident. Remote

sensing, with its capacity to capture extensive spatial data, combined with

deep learning’s prowess in recognizing complex patterns to enable precise

deforestation assessment. Integration of these technologies through state-of-

the-art models, including U-Net, DeepLab V3, ResNet, SegNet, and FCN, has

enhanced the accuracy and efficiency in detecting deforestation patterns. The

review underscores the pivotal role of satellite imagery in capturing spatial

information and highlights the strengths of various deep learning architectures

in deforestation analysis. Multiscale feature learning and fusion emerge as

critical strategies enabling deep networks to comprehend contextual nuances

across various scales. Additionally, attention mechanisms combat overfitting,

while group and shuffle convolutions further enhance accuracy by reducing

dominant filters’ contribution. These strategies collectively fortify the robustness

of deep learning models in deforestation analysis. The integration of deep

learning techniques into remote sensing applications serves as an excellent

tool for deforestation identification and monitoring. The synergy between

these fields, exemplified by the reviewed models, presents hope for preserving

invaluable forests. As technology advances, insights from this review will drive

the development of more accurate, efficient, and accessible deforestation

detection methods, contributing to the sustainable management of the planet’s

vital resources.
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1 Introduction

Deforestation is a significant environmental challenge affecting
numerous regions of the world. In this modern era, deforestation
has become one of the biggest, critical, and pressing environmental
challenges with significant negative implications to climate change,
biodiversity, and human wellbeing (Hansen et al., 2020; Bragagnolo
et al., 2021). Monitoring the deforestation rate at a global scale is
a challenging task, as it requires timely and accurate information
about the spatial distribution and extent of forest cover that is
crucial for its control and mitigation (Dostálová et al., 2018).

To effectively monitor and detect deforestation, the utilization
of advanced remote sensing technologies is imperative. Remote
sensing technologies, such as satellite imagery (Wieland et al., 2019;
Pulella et al., 2020; Yu et al., 2020), Light Detection and Ranging
(LiDAR) (Alonso et al., 2020; Hansen et al., 2020; Scepanovic et al.,
2021), and aerial photography using drones or unmanned aerial
vehicle (UAV) (Chen et al., 2021; Li et al., 2021), collectively offer a
powerful tool for efficient and timely deforestation monitoring and
detection. The increasing availability of high-resolution satellite
imagery and LiDAR data has facilitated the monitoring and
detection of deforestation over large areas, capturing detailed
information of forest cover (Hansen et al., 2020) and topography
(Puhm et al., 2020). However, traditional methods for image
analysis such as manual identification of deforestation from maps
can be time-consuming task with low accuracy performance (Li
et al., 2021). Thus, it is impractical to manually identify the
deforestation from large regions by analyzing large amounts of
satellite data, LiDAR data, and aerial imagery.

Therefore, automated approaches, such as image segmentation
through machine learning or deep learning techniques, have
been proposed to establish the deforestation more efficiently and
accurately (Bragagnolo et al., 2021). These automated techniques
utilize advanced algorithms to analyze satellite imagery and other
remote sensing data to enable the automated identification of
deforested areas and the monitoring of deforestation patterns over
time (Puhm et al., 2020). Image segmentation refers to the process
of dividing an image into multiple segments, each representing a
different class or region of interest (Wieland et al., 2019). Image
segmentation plays a crucial role in detecting deforested areas, as it
allows the separation of forest areas from other land-used classes,
whereby the changes can be tracked over a period of time (Yu et al.,
2020).

By utilizing machine learning algorithms, the segmented
images can be further analyzed and classified, enabling
the automated detection of deforestation patterns and the
quantification of deforested areas (Wieland et al., 2019). Machine
learning models can be trained on data to recognize specific
features, indicative to the deforestation patterns, such as changes
in vegetation cover or the presence of clear-cut patches (Alonso
et al., 2020). Machine learning approach provides a scalable and
efficient solution for monitoring deforestation on a large scale,
enabling stakeholders to better understand the extent and spatial
distribution of deforested areas and allows the authorized parties
to make informed decisions for sustainable land management and
conservation. Conventional machine learning algorithms such as
Support Vector Machine (SVM) and Random Forest (RF), while
effective, have limitations compared to deep learning algorithms

in detecting the deforestation (Alonso et al., 2020). Deep learning,
which is a subset of machine learning, leverages deep networks
to automatically learn intricate patterns and representations from
a large set of data. In the context of deforestation detection,
deep learning models can capture complex relationships between
various image features which represent deforestation, leading to
more accurate detection results (Yu et al., 2020).

Deep learning, particularly convolutional neural networks
(CNN), has been shown to be effective in automatically detecting
deforestation based on remote sensing images (Chen et al., 2021).
CNN-based approaches can extract features that are relevant
for the detection of deforestation, such as texture, shape, and
spectral information, enabling accurate segmentation of deforested
areas (Wieland et al., 2019). In recent years, the emergence of
deep learning-based image segmentation methods has provided
a promising solution and demonstrated significant potential in
addressing the challenge of automated deforestation detection and
mapping. These techniques have shown significant promise in
achieving higher accuracy and efficiency in the detection and
segmentation of deforested areas. Deep learning-based image
segmentation is a type of machine learning approach that can
automatically classify each of the pixels in an image based on
their own unique characteristics (Wieland et al., 2019). Deep
learning-based image segmentation involves training a deep neural
network to automatically learn features of interest, which is used
to classify each pixel into different classes (Li et al., 2021). By
training deep learning models on large datasets of satellite imagery,
these methods can accurately and efficiently identify the deforested
regions at a global scale (Chen et al., 2021). This approach has the
potential to accurately detect and map deforested areas, enabling
better monitoring and management of forests. This allows for
precise identification of changes in landscape, such as forest cover
changes.

Several studies have applied image segmentation and deep
learning techniques in deforestation detection (Wieland et al., 2019;
Yu et al., 2020; Bragagnolo et al., 2021). These studies have explored
the potential use of deep learning-based image segmentation
for deforestation detection. These studies have demonstrated the
effectiveness of deep learning-based image segmentation methods
in detecting and mapping deforestation areas. For example,
Bragagnolo et al. (2021) used a deep learning approach to detect
deforestation in the Brazilian Amazon rainforest, achieving high
accuracy rates. Meanwhile, Scepanovic et al. (2021) proposed
a convolutional neural network-based method for detecting
deforestation in Finland, achieving an overall accuracy of 92.78%.
On the other hand, the work in Yu et al. (2020) developed a deep
learning-based framework for detecting deforestation in Greater
Khingan Mountains in northeast China, achieving an overall
accuracy of 93.60% by using direct method, while 93.80% by using
indirect method.

The success of these approaches is due to the ability of deep
learning methods to learn complex representations of features
from large training data, enabling the identification of subtle and
unique patterns in satellite imagery that are difficult to detect using
conventional approaches. These techniques have also benefited
from the availability of large, high-quality annotated datasets,
such as those provided by the United States Geological Survey
(USGS) Landsat Data Continuity Mission (LDCM) platform
(Wieland et al., 2019). The use of deep learning-based image
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segmentation for deforestation detection has several advantages
over conventional methods, primarily on improved accuracy and
efficiency. Furthermore, it has the potential to fully automate the
detection process, making the mapping process easier and faster.
However, there are also challenges associated with this approach,
such as the need for large amounts of training data and the difficulty
of dealing with complex and heterogeneous forest environments.

The application of intelligent technology in forest monitoring
systems has advanced significantly, specifically with the adoption
of modern image processing techniques that include classification
and segmentation methods for deforestation research. The
implementation of the deep learning approach, which is the state-
of-the-art machine learning technique has gained traction among
researchers in the remote sensing field, especially for forestry
applications. Several environmental researchers have shown their
support to the usage of deep learning in deforestation prediction
(Scepanovic et al., 2021). Additionally, many researchers have
applied various classification techniques to remote sensing data to
quantify forest areas, whereby CNN is the most used technique
in image classification (Wieland et al., 2019). Furthermore, many
researchers have also explored various aspects of automated forest
monitoring systems that include pre-processing, feature extraction,
ensemble learning, and classifier techniques. In order to benchmark
the performance of the conventional methods of forest monitoring
to the deep learning methods, several evaluation metrics such as
accuracy, specificity, sensitivity, precision, and F-measure were
used to validate the performance differences between the various
forest monitoring systems.

One of the contemporary challenges in forest monitoring
revolves around the effective utilization of satellite imaging data
for automated deforestation detection across large areas. Despite
advancements in image processing and classification techniques,
this study addresses the existing problems, wherein the manual
identification of forest areas remains a challenging task, even for
experienced silviculturists and forest ecologists that could lead to
potential misauthentication of non-forest areas. To address these
issues, this study aims to contribute to the development of a more
precise and automated approach for deforestation detection using
satellite data through comparative evaluations of the reviewed
models, showcasing the benefits of optimal feature selection and
better class distribution among the training data. Therefore,
this study sought to analyze the state-of-the-art automation
algorithms for sub-modules in deforestation monitoring systems
that include classification, segmentation, and basic image analysis
techniques. Generally, researchers have developed various methods
to tackle the previously mentioned challenges, aiming to improve
the algorithm’s efficiency and accuracy. However, there is one
unique trait that stands out among these algorithms, whereby the
CNN-based method has been applied as the base model, either
for classification or segmentation. Thus, the main objective of
this study is to provide a comprehensive review based on an
advanced search of related works on the classification techniques
for deforestation using deep learning methods. A comprehensive
analysis of the literature, as well as meticulous and advanced search
processes have been executed that lead to the selection of 22 articles
between 2018 and March 2022 for final thorough examination.
Through this final analysis, valuable insights are gained, paving
the way for more effective and precise automated deforestation
monitoring algorithms. At its core, this study seeks to address the

overarching research question: How can automation algorithms,
particularly those leveraging deep learning techniques like CNN,
elevate the efficiency and accuracy of deforestation monitoring,
overcoming challenges associated with manual identification over
large areas using satellite imaging data? The ultimate goal is
to contribute valuable knowledge to the evolving landscape of
deforestation detection methods.

In conclusion, the usage of deep learning-based segmentation
technique, applied to satellite imagery has shown great potential for
deforestation detection. The high accuracy and efficiency of these
approaches make them useful tools for monitoring deforestation
status, which can be used as part of the sustainable forest
management systems. Further research is needed to address the
remaining challenges, so that more robust and accurate models for
deforestation detection.

This paper commences with an Introduction providing
the study’s background, the research’s significance, and its
objectives. Following the Introduction, Section 2 details the
“Materials and methods” that are divided into four subsections:
Identification Stage, Screening Stage, Eligibility Stage, and Data
Abstraction and Analysis. These subsections succinctly discussed
the systematic review process, utilizing the PRISMA method,
and explaining the criteria for selecting relevant articles. Moving
on to Section 3, the study presents “Results and findings,”
structured into five subsections: Deforestation Classification
based on Deep Learning Approach, Associated Impacts of
Excessive Deforestation Activities, Remote Sensing Technology
for Deforestation Detection, Data Construction for Deforestation
Detection, and Deep Learning Architectures for Deforestation
Detection. Each subsection provides concise summaries of the
primary findings from the reviewed articles on the respective
topics. Subsequently, Section 4 engages in a “Discussion” on the
strengths and limitations of the current state-of-the-art methods
for deforestation detection using deep learning and remote sensing.
The paper is concluded in Section 5, providing the “Conclusion
and future work.” This section summarizes the main contributions
and implications of the review while suggesting a few future
research directions.

2 Materials and methods

Presently, there is a strong emphasis on using advanced
evaluation when comparing between various works, which has
driven us to adopt a comprehensive review approach that employ
systematic flow methods (Hiebl, 2023). In this study, a structured
review was conducted, incorporating a set of defined criteria to
strategically discern patterns, trends, and critical evaluations within
the literature concerning deforestation classification using deep
learning techniques (Munn et al., 2018). After a thorough analysis
and integration of the findings, additional literature findings were
also incorporated to provide future research directions.

The full review process encompassed four systematic
steps, following the guidelines of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
methodology (Cho and Shin, 2021), which provides a framework
for systematically managing information during reviews. The
initial step involved identifying the relevant research items
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that are aligned with the selected research questions, followed
by a meticulous screening of the total searched papers, and
subsequently evaluating the eligibility of each paper based on its
abstract. Through this rigorous process, the scientific literature was
comprehensively reviewed and summarized to identify, select, and
evaluate various deforestation classification techniques.

As part of this study’s contribution, a few recommendations
for future research direction are provided to address existing
concerns, as such to align this paper’s findings with the best
practice for conducting a comprehensive literature review. To
ensure the accuracy and reliability of the review process, the
researchers adhered to the publication rules. Furthermore, this
study performed a systematic analysis of various studies considered
within the review by utilizing the highly recognized Web of
Science (WoS) and Scopus databases to examine the methodologies
employed in the reviewed literatures.

2.1 Identification stage

The systematic review process involves four stages aimed
at selecting relevant articles. The initial identification stage
is crucial, focusing on articles relevant to our predetermined
research questions on deforestation segmentation using deep
learning methods. We employed specific keywords (“deforestation,”
“segmentation,” “deep learning”) in search strings on the WoS and
Scopus databases, resulting in the retrieval of 95 articles (70 from
Scopus, 25 from WoS) between 2018 and 2022. These articles form
the foundation for subsequent evaluation.

For transparency in our search strategy, details of search strings
and databases are outlined in Table 1. This systematic approach
ensures a comprehensive and structured search, enhancing the
reliability and validity of our literature review. The meticulous
screening process, particularly the exclusion of duplicates and
refinement based on well-defined inclusion and exclusion criteria,
further contributes to the rigor of our study.

2.2 Screening stage

In the screening stage, the first crucial step is excluding
duplicated papers, resulting in the removal of 15 articles. The
subsequent step involves screening the remaining 80 articles

TABLE 1 The search strings.

Scopus (TITLE-ABS-KEY (deforestation) AND TITLE-ABS-KEY
(segmentation) AND TITLE-ABS-KEY ("deep learning"))
AND (LIMIT-TO (PUBSTAGE, "final")) AND (LIMIT-
TO (DOCTYPE, "ar")) AND (LIMIT-TO (LANGUAGE,
"English")) AND (LIMIT-TO (SRCTYPE, "j")) AND
(LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR,
2021) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO
(PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2018))
Date of access: March 2023

WoS deforestation (Topic) AND segmentation (Topic) AND
"deep learning" (Topic) and Article (Document Types) and
English (Languages) and 2022 or 2021 or 2020 or 2019 or
2018 (Publication Years)
Date of access: March 2023

using well-defined inclusion and exclusion criteria. Specifically,
publication types such as systematic reviews, reviews, meta-
analyses, meta-synthesis, book series, books, chapters, and
conference proceedings were excluded. This review focuses
exclusively on English-language studies within the 2018–2022
timeframe, ensuring relevance and validity, as detailed in Table 2.
The refined selection aligned with our analytical objectives,
resulting in the exclusion of 53 articles that did not meet the
specified criteria. The final set comprises 27 relevant articles for
further analysis and evaluation.

2.3 Eligibility stage

In the third stage, which is also known as the eligibility stage, the
remaining 27 articles will undergo further consideration. During
this critical phase, a thorough examination was conducted on
the titles and their key contents to ensure they precisely met the
inclusion criteria and were aligned with the research objectives
of the present study. Through this meticulous scrutiny, 5 articles
were excluded from the final selection, as they did not qualify
as deforestation segmentation research, backed by the empirical
evidence and they did not employ deep learning techniques.

As a result of this rigorous eligibility assessment, a set of
22 articles emerged as the final candidates for the subsequent
comprehensive review and analysis. These selected articles
demonstrate strong alignment with this study’s focus and have met
the necessary criteria, providing a reliable and representative set
of studies to represent the research on deforestation segmentation
using deep learning techniques. This methodical approach
enhances the credibility and validity of this study, ensuring
that only high-quality and relevant research is included in the
comprehensive review process.

2.4 Data abstraction and analysis

In this study, an integrative analysis served as the main
assessment strategy, encompassing various research designs such
as quantitative, qualitative, and mixed methods. The primary
goal is to identify pertinent topics and subtopics related to
deforestation detection and classification. The data collection stage
marked the initial step in the review article’s theme development.
Figure 1 illustrates the meticulous analysis of 22 articles to
extract relevant assertions and materials in line with the study’s
focus by using PRISMA methodology. Subsequently, the authors
thoroughly evaluated significant studies pertaining to deforestation
classification, investigating the methodologies employed and their
research outcomes.

TABLE 2 The selection criterion for searching.

Criterion Inclusion Exclusion

Language English Non-English

Timeline 5 years (2018–2022) Not Applicable

Literature type Journal (Article) Conference, book, review

Subject Communication Besides communication
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FIGURE 1

The PRISMA flow diagram of the proposed searching study.

The themes were developed based on evidence specific to
this study’s primary goals and context. Throughout the data
analysis process, a comprehensive log was maintained to record

analyses, viewpoints, questions, and other relevant thoughts for
data interpretation. The results were carefully compared to
identify any inconsistencies in the theme design process. In cases
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of conceptual disagreements internal discussions are organized
among the authors to ensure the chosen themes are consistent.

To ensure the validity of the analysis, an expert in satellite
imaging was involved in the analysis selection phase, in which the
expert reviews the full process to ensure the clarity, importance,
and suitability of each subtheme, further establishing the domain
validity. By employing this robust approach, this study reinforced
the reliability and rigor of its findings, providing valuable insights
into deforestation classification.

3 Results and findings

3.1 Deforestation classification based on
deep learning approach

The field of deforestation detection has witnessed a multitude
of approaches from various researchers. To facilitate comparisons
between these studies, the methodologies and outcomes of their
approaches have been carefully summarized. This comprehensive
summary is presented in Table 3, encompassing the prevailing
works concerning the deforestation classification by utilizing deep
learning techniques.

The findings can also be traced back to the considerable efforts
made by previous researchers in the domain of deforestation
segmentation. Among the top-performing approaches, CNN
approach stands out as one of the most effective methods
for the classification process. Previous studies have investigated
various techniques that are based on CNN methodologies, such as
U-Net, DeepLabV3, ResNet, SegNet, FCN, and others, showcasing
the breadth of various research, which can be baseline for
improving the deforestation detection performance using deep
learning approach.

3.2 Associated impacts of excessive
deforestation activities

Figure 2 illustrates the application of deep learning in
deforestation detection by considering the respective associated
impacts. As a result, deep learning techniques have also been
utilized to detect various aspects such as desertification, mining
sites, forest fires, and deforestation itself.

Desertification refers to the transformation of land into desert-
like conditions, influenced by factors such as climate change,
human activities, and natural disasters. Out of a total of 22 studies
on deforestation detection using deep learning approaches, two
studies (9%) have specifically focused on detecting desertification.
Besides that, mining sites represent the areas where mineral
extraction has occurred. Similarly, only two studies (9%) have
concentrated on detecting mining sites within the realm of
deforestation detection using a deep learning approach.

Furthermore, the detection of forest fires, which are
uncontrolled fires in forested areas, has also been addressed
using deep learning methods. A total of six studies (27%) have
been dedicated to the detection of forest fires within the context
of deforestation detection using a deep learning approach.
Notably, the majority of the studies or 12 studies (55%) have

specifically targeted the detection of deforestation itself using
deep learning techniques. This highlights the significance of
identifying deforestation as a primary concern and emphasizes the
self-perpetuating nature of deforestation.

In conclusion, deforestation detection using deep learning
involves the development of diverse strategies to detect
various causes and impacts of deforestation, including
desertification, mining sites, forest fires, and deforestation itself.
Understanding these different aspects enables the formulation
of effective approaches for mitigating the detrimental effects of
excessive deforestation.

3.3 Remote sensing technology for
deforestation detection

Remote sensing technology plays a vital role in collecting Earth
surface data without the need for physical presence at the respective
locations. In the context of deforestation detection, remote sensing
enables data collection of areas of interest, so that the locations of
the affected areas can be identified.

Figure 3 represents the distribution of deforestation detection
approaches using UAVs and satellites. According to the Figure 3,
UAVs are utilized in 36% of the cases for deforestation detection,
while satellites account for the remaining 64%. One of the
modalities used in remote sensing technology for deforestation
detection is UAVs, which are pilotless aircraft that are employed due
to their ability to fly at low altitudes and capture high-resolution
images of the Earth’s surface. On the other hand, satellite imaging
is the most popular remote sensing data used for deforestation
detection, whereby it offers several advantages over using UAVs.

Firstly, satellites provide a broader coverage area, allowing for
the monitoring of large-scale deforestation across extensive regions.
This is particularly beneficial for tracking deforestation trends on a
global or regional scale. On the other hand, UAVs are limited in
their range and can only capture data over a relatively smaller area
compared to satellites.

Secondly, satellite imagery is readily accessible and can be
obtained at regular intervals, providing a consistent and continuous
monitoring capability. Satellites operate on pre-defined orbits and
capture data systematically, allowing for frequent updates and the
ability to detect changes in deforestation patterns over time. In
contrast, UAV flights need to be scheduled and coordinated, which
can be more time-consuming and logistically challenging.

Furthermore, satellite data offers consistent spatial resolution
and image quality, ensuring uniformity in the detection and
analysis of deforestation. UAV imagery, although capable of
capturing high-resolution images, may vary in terms of image
quality and spatial resolution depending on factors such as flight
altitude and sensor capabilities.

Lastly, satellite-based monitoring systems are often part of
long-term, established programs, providing a wealth of historical
data for deforestation analysis and comparisons. This historical
perspective enhances the understanding of deforestation dynamics
and aids in assessing the effectiveness of conservation efforts
and policies. UAV-based monitoring, on the other hand, may
have limitations in terms of availability and continuity of the
historical data.
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TABLE 3 Summary of prevailing and recent deep learning research works.

Article Dataset Architecture Strength Weakness

A Sentinel-2 based multispectral
convolutional neural network for
detecting artisanal small-scale mining in
Ghana: Applying deep learning to shallow
mining (Gallwey et al., 2020)

– Dataset:
Artisanal scale gold mining (ASGM).

– Study area: Ghana.
– Remote sensing:

ESA’s Sentinel-2 multispectral instrument
(MSI).

– Architecture: Deep convolutional neural
network (CNN) model for ASM (Artisanal
and Small-scale Mining) detection using
open-source Sentinel-2 multispectral
satellite imagery.

– Benchmark against:
1. Spectral Angle Mapping (SAM)
2. Random Forest (RF)
3. Multi-Layer Perceptron (MLP)

– Accuracy:
First assessment–similar test tiles = 93%,
Second assessment–unseen test tiles = 91%
Overall accuracy = 98%

– Cost-effectiveness.
– Shows strong generalization.

– Limited generalizability.
– Reliance on cloud-free imagery.
– Difficulty detecting small-scale ASM.
– Lack of legal vs. illegal mining differentiation.

An attention-based U-Net for detecting
deforestation within satellite sensor
imagery (John and Zhang, 2022)

– Datasets:
1. First dataset:
RGB-converted images and deforestation
masks of the Amazon Rainforest.
2. Second dataset:
Four-band dataset of the Amazon
Rainforest.
3. Third dataset:
Four-band dataset of the Atlantic Forest.

– Remote sensing: Sentinel-2 satellite sensor
imagery database SentinelHub.

– Architecture: Attention U-Net deep
network:
1. Incorporating attention mechanism.
2. Skip connections to enhance feature
extraction.

– Benchmark against:
1. U-Net
2. Residual U-Net
3. ResNet50-SegNet
4. FCN32-VGG16

– Performance of Attention U-Net achieved
the best deforestation masks across all
datasets, with average pixel-wise F1-scores
of 0.9550, 0.9769, and 0.9461 for each
dataset, respectively.

– Accuracy of non-forest detection.
– Reduced complexity and training time.

– Quality of ground truth masks.
– Imperfect classification method.
– Missing deforested polygons.

Automatic segmentation of mauritia
flexuosa in unmanned aerial vehicle
(UAV) imagery using deep learning
(Morales et al., 2018)

– Dataset:
MauFlex.

– Study area: Iquitos City, Maynas Province,
north of Peru.

– Remote sensing: High-resolution aerial
images captured by three different UAVs:
TurboAce, Mavic Pro, and SkyRanger.

– Architecture: Neural Network (CNN)
based on the Deeplab v3 + architecture:
1. Architecture components:
a. An encoder.
b. Atrous Spatial Pyramid Pooling (ASPP)
module applies four parallel atrous
separable convolutions with different
dilation rates and enables analysis of the
extracted features at multiple scales.
c. A decoder.

– High accuracy: Achieved an accuracy of
98.143%

– High specificity of 96.599%
– High Sensitivity of 95.556%
– Similarity to ground truth.
– Capability to handle occlusion.

– Limited dataset generalization.
– High computational requirements.

Classification of landscape affected by
deforestation using high-resolution
remote sensing data and deep-learning
techniques (Lee et al., 2020)

Dataset:
Landscape Affected by Deforestation.

– Study areas:
Mountainous area near Bonghwa-gun,
Gyeongsangbuk-do in Republic of Korea.

– Remote sensing: High-resolution
Komsat-3 images were obtained
from the Korea Aerospace Research
Institute (KARI).

– Architecture:
1. SegNet
2. U-Net

– Higher accuracy: The U-Net model
achieved an overall accuracy of 74.8%,
outperforming the SegNet model by
11.5%.

– Efficient classification of landscape
affected by human-induced deforestation.

– Accurate deep-learning datasets.
– Study areas with diverse characteristics.
– Identification of misclassifications

– Limited generalizability.
– Low accuracy for land use types with few pixels.
– Misclassification among different types of land use

within the forest and non-forest areas (sub-items).

(Continued)
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TABLE 3 (Continued)

Article Dataset Architecture Strength Weakness

Comparative research on forest fire image
segmentation algorithms based on fully
convolutional neural networks (Wang
et al., 2022)

– Dataset: FLAME dataset from Northern
Arizona University’s forest fire dataset.

– Remote sensing:
captured using unmanned aerial vehicles
(UAVs).

– Other source:
Forest fire videos obtained from the
Internet captured by forest surveillance
and firefighting helicopters.

– Architecture:
Four classical fully convolutional semantic
segmentation network models:
1. Fully Convolutional Network (FCN)
2. U-Net
3. PSP-Net
4. DeepLabV3 +

– Benchmark against:
Two backbone networks were chosen for
modeling and testing analysis:
1. VGG16
2. ResNet50

– Accurate segmentation: The U-Net model
with Resnet50 backbone achieves the
highest segmentation accuracy for forest
fires 99.91%

– Suitable for Real-time performance.
– Dataset diversity.

– Limited dataset.
– Lack of comparison.
– Absence of ground-based images.
– Insufficient computational resources information.

Damage-Map estimation using UAV
images and deep learning algorithms for
disaster management system (Tran et al.,
2020)

– Dataset:
Forest fire occurrence.

– Study area:
Andong, the Republic of Korea, in April
2020.

– Remote sensing:
Data consists of aerial imagery captured
using unmanned aerial vehicles (UAVs) or
drones.

– Architecture:
Two-patch-level deep-learning models:
1. First network: A patch-level 1
prediction network was trained using the
UNet + + architecture.
2. Second network: The output of the first
network was used as an input for the
second network, which used the UNet
architecture.

The dice coefficients when testing on
locations 2 and 1 were 0.6924 and 0.7639,
respectively.

– Effective extraction of burnt areas.
– Comparative research on loss functions.
– Model monitoring and checkpointing.
– Well-defined implementation

environment.
6. Detailed information on image sizes.

– Limited training data.
– Potential lack of generalization.
– Manual data pre-processing and augmentation.

Deep learning dataset for estimating
burned areas: case study, Indonesia
(Prabowo et al., 2022)

– Dataset: Manually delineated burned
areas.

– Data source: Various regions in Indonesia.
– Remote sensing: on Landsat-8 satellite

images.

– Architecture:
U-Net

Jaccard index = 0.93 and loss value = 0.07
– New dataset.
– Large dataset.
– Versatile usage.
– Well-organized dataset.

– Manual delineation process.
– Subjectivity and expertise dependence.
– Limited generalizability.

Deep learning for regular change
detection in ukrainian forest ecosystem
with sentinel-2 (Isaienkov et al., 2021)

– Dataset:
Multitemporal images of the forest-steppe
zone dataset.

– Data source: Kharkiv region of Ukraine
(31,400 km2).

– Remote sensing: Copernicus Sentinel-2
satellite.

– Architecture:
1. Baseline model:
a. U-Net50
b. U-Net101
c. FPN_50
d. FPN_101
2. Image segmentation model:
a. UNet-diff
b. UNet-CH
c. UNet2D
d. UNet3D
e. SiamConc
f. SiamDiff
g. UNet-LSTM

– For baseline model:
UNet-50 model has the best Dice score of
0.46 on
the test sample and 0.52 on the validation
one

– For image segmentation model:
1. All Masks:
a. Training = UNet-diff (0.9125)
b. Validation = UNet-CH (0.8085)
c. Testing = UNet-CH (0.8600)
2. Non-Empty Masks:
a. Training = UNet-diff (0.7171)
b. Validation = UNet-LSTM (0.4548)
c. Testing = UNet-diff (0.5534)

– Limitations in spatial sampling, temporal properties of
the tracked changes, and seasonal effects.

– Only the type of forests inherent to the forest-steppe
zone.

– Results was not compare with other state-of-the-art
methods for forest change detection in Ukraine or
other regions.

– Does not provide a detailed analysis of the
computational resources.
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Article Dataset Architecture Strength Weakness

Deep learning-based automated forest
health diagnosis from aerial images
(Chiang et al., 2020)

– Dataset: Synthetic dataset from the raw
data extracted over 300 images of dead
trees as foreground objects.

– Study area: Wood of Cree in Scotland.
– Remote sensing: Aerial photography on

May 15th, 2019.

– Architecture:
Re-trained Mask RCNN approach with a
transfer learning scheme by integrating:
1. FASTER RCNN (feature extraction)
2. MASK-RCNN (semantic segmentation)
3. Resnet-FPN (backbone)

– The best model achieved a mean average
precision score (mAP) of 54%.

– Produces images and annotations
efficiently.

– Less complexity reduction during
implementation.

– Rare False Positive detection.

– Not enough data generated as datasets.
– No clear boundaries in synthetic images.
– Accuracy shortcoming of bounding boxes.
– Reliability on synthetic statistics validation.

Deforestation detection in the Amazon
Using DeepLabv3 + Semantic
segmentation model variants (de Andrade
et al., 2022)

– Dataset:
PRODES database.

– Study area:
Pará State, Brazil, within the Brazilian
Legal Amazon (BLA).

– Remote sensing:
Landsat OLI-8 images acquired on 2
August 2016 and 20 July 2017.

– Architecture: DeepLabv3 + @
DeepLab-based Change Detection
(DLCD-14) semantic segmentation.

– Benchmark against:
1. DeepLabv3 + (DLCD-14)
2. Early Fusion (EF)
3. Siamese CNN (S-CNN)

– Achieved an approximately 10%
improvement (from 63% to 73%) in
F1-score when trained with four image
tiles.

– Performance difference in F1-score was
approximately 18% higher (from 49% to
67%) when trained with only one image
tile.

– Performance increase with smaller
training data.

– Limited generalizability to other regions or datasets.
– Performance in different domains or environmental

conditions is uncertain.
– Does not provide insights into the effectiveness outside

the specific region and dataset used.
– Lack of domain adaptation to address the limitation of

domain-specific evaluation.

deforestation detection with fully
convolutional networks in the Amazon
Forest from Landsat-8 and Sentinel-2
Images (Torres et al., 2021)

– Dataset:
PRODES and DETER database, accessible
from the TerraBrasilis portal.

– Study area:
Brazilian Amazon biome in Acre and
Amazonas states, Brazil.

– Remote sensing:
Landsat-8 Collection 1 Tier 1 and
Sentinel-2 L1C data.

– Architectures:
Six state-of-the-art Fully Convolutional
Network (FCN):
1. U-Net
2. ResU-Net
3. SegNet
4. FC-DenseNet
5. DeepLabv3 + (Xception)
6. DeepLabv3 + (Mobilenetv2)

– Landsat-8:
The best
a. Precision: ResU-Net
b. Recall: DeepLabv3 +
c. F1-score: DeepLabv3 +
d. computational load: U-Net

– Sentinel-2:
The best
a. Precision: ResU-Net
b. Recall: DeepLabv3 +
c. F1-score: ResU-Net
d. computational load: U-Net

– Landsat-8:
The worse
a. Precision: SegNet
b. Recall: SegNet
c. F1-score: SegNet
d. computational load: MobileNetV2

– Sentinel-2:
The worse
a. Precision: SegNet
b. Recall: SegNet
c. F1-score: SegNet
d. computational load: MobileNetV2

– U-Net achieved low accuracy.
– Limits the generalizability.
– Does not account for other contributing factors to

deforestation.

Desertification detection using an
improved Variational Autoencoder-based
approach through ETM-landsat satellite
data (Zerrouki et al., 2021)

– Dataset:
Landsat program in Biskra (Algeria) for
19 years (2000–2019).

– Study area: Biskra, Algeria.
– Remote sensing:

Landsat imagery satellite data.

– Architecture:
Variational autoencoder (VAE)-based
model consists of an encoder, a decoder,
and a loss function.

– Benchmark against:
1. K mean
2. Mean Shift
3. BIRCH
4. Agglomerative Clustering
5. Expectation-Maximization (EM)
6. RBM
7. Deep Neural Networks (DNN)
8. One-Class Support Machine (OCSVM)

– VAE method:
1. Highest TPR (0.971)
2. Lowest FPR (0.011)
3. Highest Accuracy (0.98)
4. Highest Precision (0.989)
5. Highest F1 Score (0.98)
6. Highest AUC (0.98)

– Birch method:
1. Lowest TPR (0.246)
2. Highest FPR (0.168)
3. Lowest Accuracy (0.539)
4. Lowest Precision (0.594)
5. Lowest F1Score (0.348)
6. Lowest AUC (0.539) among all the methods.

– Limited:
1. study area and environmental conditions.
2. generalizability of the findings since specific accuracy
result for the VAE-based approach is not provided.
3. Discussion on computational requirements and time
needed to implement the proposed approach.
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TABLE 3 (Continued)

Article Dataset Architecture Strength Weakness

Efficient land desertification detection
using a deep learning-driven generative
adversarial network approach: A case
study (Zerrouki et al., 2022)

– Dataset:
Images were obtained from the
United States Geological Survey (USGS)
database.

– Study area:
City of Biskra, Algeria in 2000, 2006, 2011,
and 2019.

– Remote sensing:
Multi-temporal Landsat optical imagery
satellite data.

– Architecture:
Generative Adversarial Network (GAN)

– Benchmark against:
State-of-the-art methods
1. Deep Boltzmann Machine (DBM)
2. Deep Belief Network (DBN)
3. Convolutional Neural Network (CNN)
4. Random Forests (RF)
5. AdaBoost

– The GAN-based detector surpasses
state-of-the-art methods:
1. Accuracy of 99.3%

– The GAN-based method demonstrates
superior discrimination performance in
identifying deserted regions:
1. Precision of 98.9%
2. F1 score of 99.3%

– The GAN-based method showcases the
effectiveness and competitiveness:
1. True Positive Rate (TPR) of 99.7%
2. False-Positive Rate (FPR) of 1.1%

– Limited to a specific region.
– Lack of detailed analysis of the computational

complexity of the proposed approach.
– Absence of information on computational

requirements.

Forest fire segmentation from aerial
imagery data using an improved instance
segmentation model (Guan et al., 2022)

– Dataset:
FLAME dataset.

– Study area:
Arizona pine forests heatmaps taken by
infra-red cameras (WhiteHot and
GreenHot).

– Remote sensing:
Drones during the burning of deposits in
Arizona pine forests.

– Architecture:
DSA-ResNet50 Fire instance segmentation
using MaskSU R-CNN based on the MS
R-CNN model with attention mechanism.

– Benchmark against:
State-Of-The-Art Segmentation Models:
1. SegNet
2. U-Net
3. PSP-Net
4. DeepLabv3

– DSA-ResNet50
method achieves a high classification for
fire and no-fire classification:
1. Accuracy of 93.65%.

– DSA-ResNet50 achieves excellent
performance for fire instance
segmentation:
1. Precision of 91.85%
2. Recall of 88.81%
3. F1-score of 90.30%
4. mean Intersection over Union (mIoU)
of 82.31%

– Limited generalizability.

Mapping deforestation in permanent
forest reserve of peninsular Malaysia with
multi-temporal sar imagery and U-net
based semantic segmentation (Wahab
et al., 2021)

– Dataset:
Permanent Forest Reserve (HSK).

– Study area:
Peninsular Malaysia.

– Remote sensing:
Multi-temporal Sentinel-1 Synthetic
Aperture Radar (SAR) data.

– Architecture:
U-Net

– Benchmark against:
1. Random Forest (RF)

– U-Net achieved the intersection over
union (IoU) score of 0.993.

– U-Net overall accuracy (OA) score of
0.9782.

– Limited to the specific region of Permanent Forest
Reserve (HSK) in Peninsular Malaysia.

– The reliance solely on Sentinel-1 SAR data.
– Did not count for external factors such as weather

conditions and seasonal changes.

Monitoring deforestation in Jordan using
deep semantic segmentation with satellite
imagery (Alzu’bi and Alsmadi, 2022)

– Dataset:
Major forests in five regions of Jordan for
a period of ten years, from 2010 to 2020.

– Study area:
Ajloun, Irbid, Jerash, Amman, and
Shoubak in Jordan.

– Remote sensing:
Multitemporal Landsat-8 satellite images.

– Data type:
Cloud-free and high resolution of 4 K
dataset covers.

– Architecture:
Modified U-Net with additional layers and
skip connections.

– Modified U-Net achieved:
1. High accuracy of 94.8%
2. Mean Intersection over Union (MIoU)
of 82.1%

– Inability to accurately handle shadows of trees
or changes caused by scattered trees near forest
boundaries.
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Article Dataset Architecture Strength Weakness

MTL-FFDET: a multi-task learning-based
model for forest fire detection (Lu et al.,
2022)

– Dataset:
6,595 images self-built forest fire data set
(3,987 images represent forest fire
instances, while 2,608 images are non-fire
images depicting forest).

– Data source:
1. VisiFire
2. ForestryImages
3. FiSmo
4. BowFire
5. Firesense
6. EFD-Dataset

– Architecture:
Multi-Task Learning-based Forest Fire
detection model (MTL-FFDet):
1. Consists of three tasks:
a. forest fire object detection.
b. forest fire semantic segmentation.
c. image classification.
2. Shared feature extraction module across
all three tasks.
3. Improved Joint Multi-Task
Non-Maximum Suppression (JM-NMS)
processing algorithm.

– Benchmark against:
1. YOLOv5-s
2. YOLOv3-tiny
3. NanoDet-g

– The MTL-FFDet model achieves better
performance compared to YOLOv5-s in
various metrics.

– MTL-FFDet outperforms YOLOv5-s in
terms of:
1. mAP (mean average precision by 3.2%)
@ 56.3
2. AP S (average precision for small
objects by 4.8%) @ 38.2
3. AR S (average recall for small objects by
4.0%) @ 46.2

– Limited to a self-built data set.
– Manually augmentation data.

Potential of convolutional neural
networks for forest mapping using
sentinel-1 Interferometric short time
series (Dal Molin and Rizzoli, 2022)

– Dataset:
12 stacks of S-1 processed data, covering
large areas of up to 40,000 km2 on the
ground.

– Study area: Amazon River branches,
wetlands, and urban areas.

– Remote sensing: Sentinel-1 (S-1)
interferometric Synthetic Aperture Radar
(SAR) short time series (STS) data.

– Architecture:
U-Net-like convolutional neural network
(CNN) with both multi-temporal
backscatter and interferometric
coherences at different temporal baselines.

– Benchmark against:
State-of-the-art approaches:
1. Random Forest (RF)
2. Exponential Modeling of the Temporal
Decorrelation.

– Overall accuracy 92.89%
– Overall F1-score 92.85%
– Large number of image patches (9980) for

training and validation, providing a robust
training dataset.

– Extensive training, with the network being
trained for 90 epochs.

– Reduced the computational load.

– Limited dataset specific to a particular region.
– Performance and effectiveness of different land cover

types and environmental conditions are unknown.
– Did not include a comparison with other state-of-the-

art deep learning models.

Regional mapping and spatial distribution
analysis of canopy palms in an amazon
forest using deep learning and VHR
images (Wagner et al., 2020)

– Dataset:
Manual delineation resulted in 2407 and
2419 polygons in the respective images,
representing individual palms or clusters
of canopy palms.

– Study area:
3000 km2 of Amazonian Forest.

– Remote sensing:
Very High-Resolution (VHR)
multispectral images (0.5 m) obtained
from the GeoEye satellite.

– Architecture:
Modified U-net

– The overall accuracy for canopy palms
segmentation was 95.5%.

– The F1-score achieved was 0.70.

– Manual delineated borders.
– The small size of the objects.
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Article Dataset Architecture Strength Weakness

Ultrahigh-resolution boreal forest canopy
mapping: Combining UAV imagery and
photogrammetric point clouds in a
deep-learning-based approach (Li et al.,
2022)

– Dataset:
Ultrahigh-resolution boreal forest canopy
mapping.

– Study area:
Saihanba National Forest Park (SNFP),
Chengde, northern China (42.35◦N,
117.32◦E).

– Remote sensing:
1. UAV (Unmanned Aerial Vehicle)
images.
2. Acquired using a DJI Phantom 3 4K
microquadcopter equipped with a stock
RGB camera.

– Architecture:
Self-supervised deep learning method:
1. Automated training set generation.
2. Transfer learning of a CNN model
(AlexNet)
3. Prediction based on orthomosaic or
original images.

– Benchmark against:
Classical image segmentation methods:
1. Maximum likelihood
2. K mean
3. Otsu

– Validated against:
1. UAV LiDAR
2. In situ digital cover photography (DCP)

– Self-Supervised Deep Learning method:
1. F1-score between 0.86 and 0.95
depending on complexity
2. IoU metric between 0.78 and 0.93
depending on complexity.

– The model-predicted crown cover had a
low root mean square error (RMSE) of
0.06 when compared to UAV LiDAR
estimates.

– The proposed method demonstrated
robustness and high accuracy.

– Requires expertise in deep learning and
photogrammetry.

– Focused on a specific boreal forest ecoregion.
– The reliance on UAV imagery and photogrammetric

point clouds may pose a limitation.
– Generalizability to different forest types or regions with

varying data availability.

U-net convolutional networks for mining
land cover classification based on
high-resolution UAV imagery (Giang
et al., 2020)

– Dataset:
Mining
Land Cover.

– Study area: Mining area located in
Daknong province, Vietnam (November
2019).

– Remote sensing:
Multispectral Unmanned aerial vehicle
(UAV) images.

– Architecture:
U-Net with optimizer algorithm:
1. Adam
2. Adamax
3. Nadam
4. Adagrad
5. Adadelta
6. SGD
7. RMSprop

– Benchmark against:
1. Random Forest (RF)
2. Support Vector Machine (SVM)

– U-Net with two different models trained
with Nadam (84.0%) and Adadelta
(84.8%) optimizer functions demonstrate
accuracy levels higher than 83%.

– U-Net model successfully interprets six
land cover types, including open-case
mining lands, old and young permanent
croplands, grasslands, bare soils, and
water bodies.

– Limited to a specific mining area in Daknong province,
Vietnam.

– The lack of comparison with other state-of-the-art
models for land-cover classification.

Uni-temporal multispectral imagery for
burned area mapping with deep learning
(Hu et al., 2021)

– Dataset:
Copernicus Emergency Management
Service (EMS).
-Study area:
1. Portugal
2. Spain
3. British Columbia
in Canada
4. Sweden
5. Greece

– Remote sensing:
Sentinel-2 imagery and Landsat-8 imagery
datasets from the European Space Agency
(ESA) for mapping burned areas.

– Architectures:
Deep Learning Algorithms:
1. U-Net
2. HRNet
3. Fast-SCNN
4. DeepLabv3 +

– Benchmark against:
1. Machine Learning Algorithms:
a. LigthGBM
b. Random Forest (RF)
c. K-Nearest Neighbors (KNN)
2. Normalized Burn Ratio (NBR)-based
thresholding approaches:
a. NBR empirical
b. NBR OTSU

– The DL models showed superior
performance compared to ML methods.

– U-Net and HRNet exhibited similar and
high performance (kappa around 0.9) in
mapping burned areas in Greece.

– Fast-SCNN performed the best among the
DL models, achieving a kappa over 0.79 in
mapping burned areas in Sweden.

– HRNet demonstrated the highest accuracy
among the DL models in all three test sites
and maintained high performance.

– Limited number of test sites.
– Uni-temporal multispectral imagery may not provide

sufficient information for accurate mapping of burned
areas in all cases.
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FIGURE 2

Related impacts on the deforestation detection using deep learning approach.

Overall, while UAVs have their merits in specific applications,
such as local-scale or targeted monitoring, satellite imaging offers
a more practical and comprehensive solution for large-scale
deforestation detection, thanks to their wide coverage, consistent
data acquisition, and historical data availability.

3.4 Data construction for deforestation
detection

The process of constructing a high-quality dataset for
deforestation detection involves a meticulous approach to data
construction, as highlighted by Lee et al. (2020). Developing
robust datasets for deforestation detection encompasses both data
acquisition and preprocessing methodologies. In the preceding
sections, there is a delve into the intricacies of data acquisition,
exploring the pivotal role of remote sensing technologies, including
satellite and Unmanned Aerial Vehicle (UAV) imagery. Open
access and publicly available databases, along with private sources,
were examined, shedding light on the diverse strategies researchers
employ to obtain critical imagery data.

Following this, the focus shifts to the critical phase of
data preprocessing, emphasizing the intermediary steps crucial
for molding raw data into a format conducive to training
accurate and resilient deforestation detection models. From
meticulous data annotation, which involves labeling acquired
imagery to distinguish deforested areas, to the use of Geographic
Information System (GIS) tools, manual and assisted annotation
techniques, the groundwork for supervised learning is established.

Additionally, data augmentation plays a pivotal role in diversifying
datasets, mitigating overfitting risks, and enhancing model
generalization through geometric transformations and adjustments
in color spaces. Data partitioning further ensures a systematic
division of the dataset into training, validation, and testing sets,
facilitating robust model evaluation. While no standard ratio
exists, studies showcased diverse approaches, underscoring the
importance of strategic dataset subdivision for effective model
training and evaluation.

In this comprehensive synthesis, the elucidation of the holistic
process of data construction occurs, where the amalgamation of
acquisition and preprocessing methodologies lays the groundwork
for precise and effective deforestation detection models. The
careful orchestration of data preprocessing steps, including data
annotation, data augmentation, and data partitioning, ensures
that the resulting datasets not only encapsulate the nuances of
real-world scenarios but also empower deep learning models
to contribute meaningfully to environmental monitoring and
conservation efforts.

3.5 Data acquisition for deforestation
detection

The utilization of remote sensing technology has become
indispensable for acquiring crucial imagery data. These images,
harnessed through both satellite and Unmanned Aerial Vehicle
(UAV) technology, are systematically stored in databases, forming
the backbone of analytical endeavors. In the context of satellite
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FIGURE 3

Remote sensing technology for deforestation detection.

imagery, we define databases that can be broadly categorized
into open access and publicly available databases, providing
accessibility to a wide range of users. Open access databases,
as we define them, offer imagery that can be accessed by
anyone, while publicly available databases involve satellite imagery
developed by authorized agencies but remain accessible to the
public. On the other hand, private available satellite imagery,
as we define it, is sourced through direct partnerships with
satellite imagery owners or may be unspecified in the literature.
Meanwhile, for UAV imagery databases, we define a distinction
between publicly available ones, captured by authorized agencies
but accessible to all, and private databases, indicating imagery
captured by the researchers themselves. Understanding these
nuances of remote sensing databases, as we define them, is
paramount for comprehending the dynamics of deforestation
detection methodologies and their applicability in deforestation
detection. Figure 4 illustrates the database sources for data
acquisition in deforestation detection.

The open access satellite imagery database, utilized by 32%,
is a valuable resource for deforestation detection researchers and
practitioners. Notably, studies by Gallwey et al. (2020), Hu et al.
(2021), Wahab et al. (2021), and John and Zhang (2022) exemplify
the utilization of publicly available satellite imagery. Gallwey et al.
(2020) and Hu et al. (2021) leverage Sentinel-2 Multi-Spectral
Instrument (MSI) imagery from the European Space Agency’s
(ESA) Sentinel-2 mission. Similarly, Zerrouki et al. (2021) and

Zerrouki et al. (2022) employ satellite imagery sourced from the
United States Geological Survey (USGS), focusing on a study area
in Biskra, Algeria. On the other hand, Wahab et al. (2021) turn to
Alaska Satellite Facility’s (ASF) data search page, concentrating on
the Permanent Forest Reserve (HSK) in Peninsular Malaysia. John
and Zhang (2022) delve into the SentinelHub, harnessing its open
access platform to access three distinct datasets: RGB-converted
images and deforestation masks of the Amazon Rainforest, a
four-band dataset of the Amazon Rainforest, and another four-
band dataset centered on the Atlantic Forest obtained from
Sentinel-2 satellite sensor imagery. In a different context, Isaienkov
et al. (2021) utilized an open access satellite imagery database
consisting of multitemporal images of the forest-steppe zone
from Copernicus Sentinel-2, concentrating on the Kharkiv region
of Ukraine by using ArcGIS Pro and QGIS. These instances
underscore the accessibility and versatility of open access satellite
imagery databases, fostering collaborative efforts in understanding
and addressing deforestation challenges globally.

Researchers in the field of deforestation detection have utilized
publicly accessible satellite imagery databases, with a usage rate of
19%, to conduct their studies. Significantly, Torres et al. (2021)
and de Andrade et al. (2022) employed satellite imagery from
Landsat-8 and Sentinel-2, while Wagner et al. (2020) utilized
data from GeoEye-1 satellite. Notably, all three studies centered
their focus on the same Pará State, Brazil, within the Brazilian
Legal Amazon (BLA) region. They employed datasets from
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FIGURE 4

Database sources for data acquisition in deforestation detection.

the Amazon Deforestation Calculation Program (PRODES) and
the Deforestation Detection System in Legal Amazon in Real-
Time (DETER), both accessible through the TerraBrasilis portal
developed by the National Institute for Space Research (INPE).

Notably, the PRODES and DETER datasets were accessed
through different methods: de Andrade et al. (2022) directly
accessed them through the INPE portal; Wagner et al.
(2020) utilized QGIS software tools, and Torres et al. (2021)
by leveraged Google Earth Engine (GEE). In a different
context, Dal Molin and Rizzoli (2022) utilized the 2017 Finer
Resolution Observation and Monitoring of Global Land
Cover (FROM-GLC) database with satellite imagery from
Sentinel-1 (S-1) Interferometric Synthetic Aperture Radar
(InSAR) short time series (STS). Their study concentrated on
Amazon River branches, wetlands, and urban areas. These
diverse databases cater to specific study areas, showcasing the
versatility of available resources in addressing deforestation
challenges.

Lee et al. (2020) employed a private satellite imagery database
obtained from High-resolution Komsat-3 images obtained through
a direct partnership with the Korea Aerospace Research Institute
(KARI) and other Korean government agencies. Their study
focused on a landscape affected by deforestation, specifically

in the mountainous area near Bonghwa-gun, Gyeongsangbuk-
do, Republic of Korea. In a distinct approach, Prabowo et al.
(2022) developed their own private satellite imagery database
obtained from Landsat-8 satellite with unspecific details about
their database, comprising 227 images, initially for their exclusive
use. Subsequently, they chose to share this database publicly. In
a similar vein, the work by Alzu’bi and Alsmadi (2022) focused
on major forests in five regions of Jordan between 2010 and 2020
obtained from Landsat-8 satellite but did not disclose specific
details about their database. These instances highlight diverse
approaches, accounting for a later 13%, in the utilization and
disclosure of private satellite imagery databases in deforestation
detection research.

Regarding sources of UAV imagery, researchers have utilized
various publicly available UAV databases, with a usage rate of
13%. Guan et al. (2022) and Wang et al. (2022) accessed the
FLAME dataset, developed by Northern Arizona University, for
their studies. In a different approach, Lu et al. (2022) employed
a combination of publicly available UAV databases, including
VisiFire, ForestryImages, FiSmo, BowFire, Firesense, and EFD, for
their research. These diverse choices in UAV datasets underscore
the importance of accessing varied sources to address the specific
requirements of deforestation detection studies.
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Researchers have utilized private UAV databases in diverse
geographic contexts, accounting for 23% in deforestation detection.
Giang et al. (2020) focused on a mining area in Daknong province,
Vietnam, utilizing a Phantom 4 RTK. Their data underwent a
meticulous six-step process in the OrthoEngine Tool in PCI
Geomatica Banff Service Pack 1. Meanwhile, Tran et al. (2020)
investigated forest fire occurrences in Andong, the Republic of
Korea, in April 2020, capturing images with a Phantom 4 Pro
V2.0 UAV at a filming height of 150 meters. In the North of
Peru, Morales et al. (2018) concentrated on Mauritia flexuosa using
various UAVs, including TurboAce, Mavic Pro, and SkyRanger. On
the other hand, Chiang et al. (2020) generated a synthetic dataset
by extracting raw data from over 300 images of dead trees in the
Wood of Cree in Scotland. Lastly, Li et al. (2022) conducted boreal
forest canopy mapping in Saihanba National Forest Park, Chengde,
Northern China, employing a DJI Phantom 3 4K micro-quadcopter
equipped with a stock RGB camera. These instances highlight the
diverse applications and geographic scopes covered by private UAV
databases in deforestation detection research.

In conclusion, the multifaceted landscape of data acquisition
methodologies for deforestation detection underscores the pivotal
role of satellite and Unmanned Aerial Vehicle (UAV) technologies.
The accessibility and versatility of open access and publicly
available satellite imagery databases, exemplified by missions
like Sentinel-2 and Landsat-8, provide a global perspective and
enable large-scale monitoring. The integration of UAVs introduces
flexibility and high resolution for localized studies, with both
publicly available and privately created datasets contributing to
the wealth of information. Notably, the utilization of private
satellite and UAV databases reflects diverse strategies, including
partnerships, collaborations, and even synthetic data generation,
showcasing the field’s adaptability to unique research needs. As
technology evolves, the judicious selection of datasets tailored to
specific objectives remains paramount for effective deforestation
detection, promising continued advancements in environmental
monitoring and conservation endeavors.

3.6 Data pre-processing for
deforestation detection

Following the culmination of the data acquisition phase,
the subsequent critical step in the deforestation detection
pipeline is data pre-processing. Data pre-processing serves as
a pivotal intermediary stage between raw data acquisition and
the subsequent model training process. This phase comprises
several key steps that collectively contribute to the effectiveness
of the subsequent model training process. Beginning with data
annotation, where labeled information is added to the dataset,
followed by data augmentation, which introduces variations
to enhance model generalization, and concluding with data
partitioning, which ensures a systematic division of the dataset
for training, validation, and testing purposes, these processes
collectively lay the groundwork for training accurate and resilient
deforestation detection models.

Data annotation involves the meticulous process of labeling
the acquired satellite or UAV imagery to distinguish areas
affected by deforestation from those that remain unaffected. Data

Annotation can be performed manually or with the assistance of
automated tools. This step results in the creation of labeled datasets
containing crucial information about the locations and extent of
deforested regions. The annotated data acts as the foundation for
training machine learning models to recognize patterns associated
with deforestation, providing the necessary ground truth for
supervised learning.

Researchers have employed various Geographic Information
System (GIS) software tools to carry out manual annotation of
datasets for satellite imagery to extract the ground truth. For
instance, in the work conducted by Lee et al. (2020), multiple
software tools such as ArcGIS ver. 10.3, ENVI ver. 5.1, and
ERDAS Imagine 2015 were utilized for this purpose. Similarly,
Isaienkov et al. (2021) employed software tools including ArcGIS
Pro and QGIS, conducting manual labeling and outputting masks
as GeoJSON files. Wahab et al. (2021) utilized QGIS software
(version 3.10) for semantic labeling techniques. In the study by
Wagner et al. (2020), GeoEye images were manually delineated in
QGIS to exclude non-forested areas from the analysis.

In a different approach for manually annotated datasets
focusing on UAV imagery, researchers often turn to the LabelMe
software tools. This is evident in the works of Tran et al. (2020),
where LabelMe software tools were used to extract ground truth
for Forest fire data masks. Similarly, Guan et al. (2022) extracted
ground truth for each image using LabelMe software tools from
the Flame dataset. Lu et al. (2022) employed polygon annotation
with LabelMe software tools to outline the flame target. However,
GIS software tools, as demonstrated in the works by Chiang et al.
(2020), were utilized for the manual annotation of datasets in UAV
imagery. They employed the QGIS software and the Gridsplitter
plugin, generating masks by filling random colors over dead trees
and black for the background. The resulting annotations were then
stored in a COCO format file.

Furthermore, in the domain of assisted annotation for satellite
imagery, John and Zhang (2022) utilized GRASS-GIS 7.6.1
software tools. They employed a modified version of the k-means
classification algorithm, repeatedly reclassifying images until the
corresponding masks achieved a “satisfactory rating.” In contrast,
for UAV imagery, Li et al. (2022) employed the CANEYE software
tool with no gamma correction to assist in the annotation process.
This involved classification into sky or canopy elements (stems,
branches, and leaves) using the supervised threshold in excess
blue index feature space for UAV LiDAR and in situ digital cover
photography (DCP) images, resulting in a binary image output.

These diverse approaches showcase the flexibility in tool
selection for data annotation in deforestation detection studies,
highlighting the importance of choosing suitable tools based on
specific project requirements and objectives. The referenced studies
contribute valuable insights into the methodologies employed for
manual annotation and emphasize the significance of accurately
labeled datasets in training effective deep learning models for
deforestation detection.

Data augmentation is a pivotal step in diversifying the
dataset, mitigating the risk of model overfitting, and enhancing
the model’s ability to generalize to unseen scenarios. Geometric
transformations, such as 0 to 360◦ rotations, vertical horizontal
and flips, and adjustments in the hue saturation, and brightness,
play a crucial role in this process, as demonstrated in the works
of Wagner et al. (2020). In study by de Andrade et al. (2022),
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training image patches were subjected to data augmentation by 90,
180, 270◦ rotated for both the original and rotated versions flipped
vertically. Meanwhile, in Alzu’bi and Alsmadi (2022) study, images
underwent augmentation, including a vertical and horizontal flip
by 180 degrees, enabling the generation of new images from the
originals. The concept of data augmentation, aimed at enriching
datasets with a variety of perspectives to simulate real-world
conditions, is further exemplified in the research by Gallwey
et al. (2020). Here, the augmentation process involved reflections
and random rotations ranging from 0 to 90◦, generating 480,000
individual training patches from 16,000 fully labeled images.
This approach ensures that the model is exposed to a diverse
range of environmental variations, enhancing its robustness and
adaptability when applied to different landscapes and deforestation
scenarios.

Data partitioning involves the strategic division of the dataset
into training, validation, and testing sets, a crucial step for
accurately assessing the model’s performance. The training set,
constituting the majority of the dataset, is dedicated to teaching
the model to recognize patterns associated with deforestation.
Simultaneously, the validation set assists in tuning hyperparameters
and preventing overfitting during the training process. Finally,
the testing set facilitates an unbiased evaluation of the model’s
performance on unseen data, ensuring its generalization capability
beyond the training data.

However, there is no standard ratio for dividing the dataset into
these sets, as exemplified in various studies. For instance, Wang
et al. (2022) randomly selected 80% of their data for training, 10%
for validation, and 10% for testing from a 4200-image dataset. In
contrast, Alzu’bi and Alsmadi (2022) split their dataset into 70% for
training (3294 images), 10% for validation (366 images), and 20%
for testing (912 images). Meanwhile, Morales et al. (2018) created
a larger training set of 95% from a total of 25,248 image patches,
allocating 2.5% for the validation set and 2.5% for the test set.
On the other hand, Lee et al. (2020) only subdivided their dataset
into 80% (50 images) for learning and 20% (13 images) for testing.
Despite the absence of a standard ratio, data partitioning remains a
crucial step in data pre-processing. Ensuring that the same data are
not used across training, validation, and testing stages is imperative
for robust model evaluation.

In contrast to the conventional approach of data annotation
followed by data augmentation and then data partitioning, Torres
et al. (2021), adopted a different sequence in their method.
They initiated the process with data annotation, followed by data
partitioning and then data augmentation. After annotating the
data from PRODES and They partitioned the images by dividing
them into 15 non-overlapping tiles of 715 × 734 for Landsat and
2145 × 2202 for Sentinel 2 datasets. These tiles were subsequently
distributed into three groups: 20% for training, 5% for validation,
and 75% for testing. Recognizing the inherent imbalance in both
datasets, where the deforestation class constituted less than 1%, they
addressed this challenge by applying data augmentation techniques.
Specifically, they employed 90◦ rotations, as well as horizontal
and vertical flip transformations, to enhance the diversity of
patches containing deforestation spots. This innovative approach
to data processing showcases the adaptability of methodologies
in addressing specific challenges, such as class imbalance, in
deforestation detection studies.

In essence, these data pre-processing steps collectively
contribute to the creation of a well-structured and diverse dataset,
setting the stage for the development of accurate and reliable deep
learning models for deforestation detection. The careful execution
of data annotation, data augmentation, and data partitioning
ensures that the models are equipped to handle the intricacies of
real-world deforestation scenarios and contribute meaningfully to
environmental monitoring and conservation efforts.

3.7 Deep learning architectures for
deforestation detection

There are various deep learning architectures employed in the
context of deforestation detection. Deep learning, which is a subset
of machine learning, focuses on training deep networks to learn
and make predictions using extensive datasets. In the context of
deforestation detection, the primary objective is to identify regions
where trees have been cut down or removed, often leveraging
satellite imagery input for analysis.

As shown in Figure 5, CNN-based methods, including
U-Net, DeepLabV3, ResNet, SegNet, and FCN, stand out as the
predominant architecture for deforestation detection, leveraging
their roots in image recognition tasks. Designed originally for
image recognition, these models exhibit remarkable efficacy in
identifying deforested areas using satellite imaging data. By
exposing CNNs to a large amount of labeled satellite imagery,
these networks learn to extract hierarchical and spatial features,
differentiating between forested and deforested regions. This
training process enables CNNs to recognize patterns and structures
associated with deforestation, facilitating accurate detection.
In addition to these well-known architectures, other notable
generative models such as Variational Autoencoder (VAE) and
Generative Adversarial Network (GAN) have found success in
image segmentation and classification tasks, harnessing deep
learning for data generation. Despite the prevalence of CNN-based
methods, conventional machine learning approaches like Early
Fusion (EF), Multi-Task Learning (MTL), and Random Forest (RF)
persist, offering valuable alternatives for specific applications within
the broader context of deforestation detection.

Among the CNN models, U-Net and its variants have been
extensively utilized for deforestation detection by 45% of the
studies as either the primary architecture or as a benchmarking
algorithm. The most remarkable performance was achieved by
Wang et al. (2022), who have introduced a segmentation technique
using U-Net model, coupled with ResNet50 as the backbone.
Their approach outperformed other literature works in terms
of accuracy. They demonstrated exceptional accuracy, achieving
a remarkable 99.91%. Furthermore, they also reported a Mean
Pixel Accuracy (mPA) of 92.81%, a Mean Intersection over
Union (mIoU) of 89.24%, and a Frequency-Weighted Intersection
over Union (FWIoU) of 99.89%. This impressive performance
proves the effectiveness of their approach in accurately detecting
deforested areas using satellite imaging data. Compared to other
popular architectures, such as DeepLabv3 + and PSPNet, their
results showed a notable improvement. Specifically, their method
outperformed DeepLabv3 + by 0.02% and PSPNet by 0.1% in
terms of accuracy. These findings are consistent with a prior study
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FIGURE 5

Deep learning architectures for deforestation detection.

conducted by Torres et al. (2021), which also achieved similar levels
of accuracy compared to Wang et al. (2022). They have employed
a ResU-Net model that combined the advantages of both skip
connections from U-Net and residual blocks from ResNet. This
fusion of techniques has contributed to the promising results by
extracting more finer patterns on the deforestation areas.

Besides U-Net CNN model, DeepLabV3 and its variant which
is also a CNN model have emerged as notable contenders, in which
14% of the studies have utilized the model, both as a primary
approach and as a benchmarking algorithm. Among the studies, the
work by Morales et al. (2018) stands out with the most impressive
results. Their work introduced a segmentation technique based
on the DeepLabv3 + architecture, enhanced with additional
complex layers, leading to superior performance compared to
other benchmarked models. They have achieved remarkable results,
demonstrating an accuracy of 98.143%, a specificity of 96.599%,
and a sensitivity of 95.556%. These performances highlight the
effectiveness of their approach in accurately identifying deforested
areas using satellite input. Compared to the other four variants
of U-Net, their findings showed substantial improvement, ranging
from 0.354 to 2.063% in terms of accuracy increment. This
underscores the competitive advantage of their DeepLabv3 + -
based approach over the benchmarked architectures. The results

reported in Morales et al. (2018) are also aligned with those from
a previous study conducted in de Andrade et al. (2022), which
also attained promising outcomes. However, it is worth to note
that the work in de Andrade et al. (2022) utilized a different
accuracy metric, which is F1-Score to assess their results. They
employed a DeepLab-based Change Detection (DLCD-14) method,
focusing on semantic segmentation for deforestation detection.
There is consistent finding across these studies, in which they
have highlighted the effectiveness and reliability of DeepLab-based
approaches for deforestation detection. The remarkable accuracy,
specificity, and sensitivity achieved by Morales et al. (2018) have
demonstrated the potential of these techniques to contribute
significantly to environmental monitoring and conservation efforts.

ResNet, SegNet, and FCN, along with their assorted variants
constituting a comprehensive suite of CNN models, have each been
featured in no fewer than three studies, collectively contributing
to a 5% share per model in the research landscape included in
this study. This triumvirate of architectures, established as the
third most favored algorithms, is notably highlighted across a
total of 9 studies. This combined impact amounts to a substantial
15% representation in the broader research domain, playing
pivotal roles not only as main architectures but also as crucial
benchmarking algorithms. Among these models, Guan et al. (2022)
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have achieved the best results using ResNet architecture. They
introduced the DSA-ResNet model, comprising of three primary
components: an input feature matrix, a feature extraction layer,
and an output layer. The model also incorporates binary cross-
entropy as a loss function to enhance network accuracy and
evaluate the optimal weight matrices. Their results revealed that
DSA-ResNet50 outperformed other models, including VGGNet,
GoogleNet, the original ResNet, and an additional ResNet variant
called SE-ResNet50. Specifically, DSA-ResNet50 achieved the best
precision of 91.85%, recall percentage of 88.81%, F1-score of
90.30%, and a mean Intersection over Union (mIoU) of 82.31%. As
for SegNet, the most impressive outcomes were reported by Torres
et al. (2021). They have applied SegNet to two different datasets,
namely Landsat-8 and Sentinel-2. For the Landsat-8 dataset, SegNet
attained a Mean Overall Accuracy (OA) of 99.5%, recall of 52.7%,
precision of 69.3%, and F1-score of 59.6%. On the other hand, for
the Sentinel-2 dataset, SegNet achieved a Mean Overall Accuracy
(OA) of 99.6%, recall of 55.4%, precision of 78.0%, and F1-score
of 63.3%. Finally, Wang et al. (2022) reported the best results
using the Fully Convolutional Network (FCN) model. They applied
FCN with two different backbones, VGG16 and ResNet50. When
VGG16 is used as the backbone network, FCN achieved a Pixel
Accuracy (PA) of 99.67%, Mean Pixel Accuracy (Mean mPA) of
84.56%, mean Intersection over Union (mIoU) of 81.62%, and
Frequency Weighted Intersection over Union (FWIoU) of 99.52%.
On the other hand, when ResNet50 is used as the backbone
network, FCN achieved a PA of 99.72%, Mean mPA of 84.74%,
mIoU of 82.79%, and FWIoU of 99.63%.

In addition to the well-known deep learning architectures
like U-Net, DeepLabV3, ResNet, and SegNet, there are other
notable generative models that have been successfully employed
for image segmentation and image classification tasks. Two such
models are the Variational Autoencoder (VAE) and the Generative
Adversarial Network (GAN), both of which leverage deep learning
architectures for data generation tasks constituting a total 4% of
the model usage over this literature study. In the study presented
in Zerrouki et al. (2021), VAE demonstrated promising results
with high accuracy, precision, and F1-Score, by achieving 98%
accuracy, 98.9% precision, and a remarkable F1-Score of 98%.
The True Positive Rate (TPR) was reported at 97.1%, indicating
the model’s effectiveness in correctly identifying positive instances.
Additionally, the False-Positive Rate (FPR) was notably low at 1.1%,
suggesting the model’s ability to minimize false alarms. On the
other hand, GAN, as described in Zerrouki et al. (2022), reported
even more impressive performance. It achieved an accuracy of
99.3%, precision of 98.9%, and an outstanding F1-Score of 99.3%.
The True Positive Rate (TPR) reached an impressive 99.7%, further
highlighting the model’s capability to correctly identify positive
instances. Similar to VAE, GAN also exhibited a high precision
of 98.9% and a low False-Positive Rate (FPR) of 1.1%. Both VAE
and GAN are generative models that offer distinct advantages in
data generation tasks. VAE is known for its ability to generate new
data samples while maintaining the underlying data distribution,
making it valuable for data augmentation and generalization.
On the other hand, GAN excels in generating synthetic data
by training two competing neural networks, the generator, and
the discriminator, leading to more realistic and diverse generated
samples. These results demonstrated the potential of generative
models in image segmentation and classification tasks. VAE

and GAN can complement basic deep learning architectures,
offering unique capabilities for data generation and expanding
the possibilities of deep learning applications in various fields,
including deforestation detection and environmental monitoring.

It is worth noting that conventional machine learning
algorithms, such as Early Fusion (EF) (de Andrade et al., 2022),
Multi-Task Learning (MTL) (Lu et al., 2022), and Random Forest
(RF) (Dal Molin and Rizzoli, 2022), continue to be popular choices
among researchers in the context of image segmentation, including
for deforestation detection applications. These algorithms have
been employed in 8% of the studies included in the final selection.
However, it is important to highlight that, despite their popularity,
none of the conventional machine learning algorithms performed
better than the deep learning models used in the respective
research. Among the machine learning algorithms, MTL stood
out as it outperformed YOLOv5-s in several crucial metrics.
Specifically, MTL achieved a significantly higher mean average
precision (mAP) of 56.3%, average precision for small objects
(APS) of 38.2%, and average recall for small objects (ARS) of
46.2%. These results indicate that MTL has a competitive advantage
over YOLOv5-s in accurately detecting smaller objects, which is
particularly relevant in tasks like deforestation detection, where
identifying subtle changes in vegetation covers are essential.

Despite the strong performance of MTL, deep learning models
remained the preferred choice due to their ability to automatically
learn complex features from data and their proven success in
image segmentation tasks. Deep learning architectures, such as
the ones discussed previously (e.g., U-Net, DeepLabV3, ResNet,
SegNet, and FCN), have consistently demonstrated state-of-
the-art performance in deforestation detection, outperforming
conventional machine learning algorithms. Furthermore, a study
conducted by Lee et al. (2020) provided compelling evidence
regarding the robustness of deep learning models in the context
of deforestation detection. The research concluded that these deep
learning models exhibit resilience and adaptability to changes in
the aspect ratio of forest and non-forest images. This finding
is significant as it highlights the versatility of deep learning
models when analyzing satellite imagery with varying proportions
of forested and non-forested areas. Such adaptability allows the
models to effectively detect deforestation, even in scenarios where
the spatial distribution of forests may differ substantially from the
surrounding landscapes.

While these models demonstrate notable strengths, it’s essential
to recognize their inherent limitations. Challenges such as the
demand for extensive labeled datasets (Chiang et al., 2020),
computational resources (Morales et al., 2018), and potential biases
in training data (Lee et al., 2020) are common. Additionally,
difficulties may arise in detecting deforestation within regions
featuring irregularly shaped forests or highly variable land cover
proportions (John and Zhang, 2022). The adaptability of deep
learning models to handle diverse aspect ratios enhances their
practical applicability in real-world scenarios, where satellite
images may depict irregularly shaped forest regions or varying
land cover proportions. These findings instill confidence in the
reliability (Li et al., 2022) and generalizability (Gallwey et al., 2020)
of deep learning-based models for deforestation detection systems,
reinforcing their potential utility in environmental monitoring and
conservation efforts. In conclusion, the discussed deep learning
models provide a range of effective tools for deforestation detection.

Frontiers in Forests and Global Change 19 frontiersin.org

https://doi.org/10.3389/ffgc.2024.1300060
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-07-1300060 January 30, 2024 Time: 13:28 # 20

Md Jelas et al. 10.3389/ffgc.2024.1300060

Understanding both their strengths and limitations is crucial
for informed decision-making in environmental monitoring and
conservation efforts. The ongoing evolution of these models,
coupled with advancements in data generation techniques,
promises exciting prospects for the future of deforestation detection
and broader applications in environmental science.

4 Discussion

The application of deep learning in deforestation detection
showcases its suitability and potential in addressing various
environmental challenges. The versatility of deep learning
techniques is evident through their successful application in
detecting deforestation, desertification, mining sites, and forest
fires. The emphasis on directly detecting deforestation by a
significant portion of the narrowed down researched studies (55%)
underscores the urgency of combating deforestation incidences
and the needs for effective monitoring methods.

Remote sensing through satellite imagery emerges as the
preferred choice for large-scale deforestation detection and
monitoring, constituting 64% of the utilized methods. The
widespread coverage, frequent data updates, and cost-effectiveness
of satellite imagery make it a powerful tool for understanding
and managing deforestation at a regional or global scale.
Conversely, UAVs offer valuable advantages for localized or
targeted monitoring, providing high-resolution and detailed
information for specific areas. Both remote sensing methods have
their own advantages, and they can be deployed together to
complement each other based on the study’s scope. However, for
general monitoring purposes, satellite imagery proves superior
in meeting the goals, budget, and spatial requirements of most
deforestation monitoring projects.

In the evaluation of state-of-the-art deep learning models
for deforestation detection, U-Net emerges as the most popular
choice with a substantial 45% adoption rate and achieving the
highest accuracy of 99.91%. Distinguished by its innovative use
of skip connections, U-Net facilitates superior feature propagation
within the segmentation network, rendering it exceptionally adept
at handling limited labeled data and capturing intricate details.
Following closely is DeepLabV3, the second most popular model
at a 14% adoption rate, showcasing an impressive 98.143%
accuracy in semantic segmentation tasks, particularly excelling
in intricate landscapes such as forests. ResNet, SegNet, and
FCN collectively shared the third position with each model
contributing around 5% usage, respectively, highlighting their
balanced representation in this research topic. ResNet utilization of
residual blocks proves to be instrumental in enhancing the overall
model precision to 91.85%. Meanwhile, SegNet’s encoder-decoder
structure allows efficient memory usage that makes it suitable
for resource-constrained environments, achieving a Mean Overall
Accuracy (OA) of 99.5%. Despite FCN’s historic significance in
advancing semantic segmentation with a Pixel Accuracy (PA) of
99.67%, the more recent architectures, U-Net and DeepLabV3,
have outshone its performance in recent years. These results
highlight the effectiveness of deep learning tools in addressing the
complexities of deforestation detection and underscore the models’
versatility in tackling intricacies. They demonstrate not only high

accuracy but also adaptability to specific challenges, providing
valuable insights for developing resilient and efficient monitoring
systems. This contribution significantly aids ongoing efforts to
combat deforestation.

Two notable studies by Morales et al. (2018) and Torres
et al. (2021) employed two distinct methodologies, showcasing
diverse approaches and outcomes. Morales et al. (2018) utilized
private UAV databases, incorporating images from TurboAce,
Mavic Pro, and SkyRange. Using the DeepLabV3 model, they
achieved an impressive 98.143% accuracy through 100 epochs of
training with a learning rate of 0.003, a batch size of 16, and
the Adaptive Moment Estimation (Adam) optimizer. In contrast,
Torres et al. (2021) focused on the Amazon Forest, employing the
Fully Convolutional Networks (FCN), U-Net, ResU-Net, SegNet,
FC-DenseNet, Xception, and Deeplabv3 + models. Notably, SegNet
demonstrated the best Mean Overall Accuracy of 99.5%. Their
model was trained for 100 epochs with a learning rate of 0.0001,
and a batch size of 16, utilizing the Adam optimizer with Weighted
Cross-Entropy Loss. The comparative analysis reveals variations
in data annotation, dataset selection, multiscale approaches, and
data processing sequences, underscoring the adaptability of each
methodology to specific challenges in forest monitoring and
conservation.

For the comparison of deforestation detection algorithms
based on UAV data, Wang et al. (2022) focused on evaluating
the performance of popular deep models such as FCN, U-Net,
PSPNet, and DeeplabV3 + . Their findings show that U-Net
exhibited superior accuracy at 99.91%, emphasizing its efficacy in
deforestation detection. Meanwhile, the FCN model demonstrated
a robust accuracy performance of 99.67%, showcasing its
effectiveness in accurately segmenting regions. The study employed
consistent training configurations, utilizing a learning rate of
0.001, 600 epochs, a batch size of 8, and a binary cross-
entropy loss function. In general, U-Net’s remarkable accuracy and
FCN’s strong pixel accuracy underscore their potential suitability
for deforestation detection tasks. Future research could delve
deeper into individual model strengths and limitations, exploring
considerations such as computational efficiency and resource
requirements for real-world deployment.

Overall, deep learning, in combination with remote sensing
technologies, offers powerful tools for accurately identifying and
tracking deforestation activities. This improvement allows data-
driven decision-making to be made for optimal conservation
efforts, ultimately contributing to the preservation and sustainable
management of our forests. As deep learning and remote sensing
techniques continue to evolve, further enhancements are expected,
providing even more effective solutions for addressing the critical
issue of deforestation.

5 Challenges and future works

The emergence of Google Earth, incorporating Google Earth
Engine (GEE), Google Earth Pro, and Google Maps, has ushered
in a transformative era for deforestation assessment, forest
redefinition, and global-scale monitoring. The intuitive interface of
Google Earth provides a unique avenue for immersive exploration
of high-resolution satellite imagery, fostering a profound
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understanding of deforestation dynamics. The capabilities of
Google Earth are further amplified by GEE, offering on-demand
access to an expansive repository of remote sensing data. This
accessibility streamlines deforestation detection, exemplified by
Alonso et al. (2020), who employed GEE to validate and verify
findings using the PRODES and DETER databases from Landsat-8
Collection 1 Tier 1 and Sentinel-2 L1C. This integration not only
streamlines evaluation but also contributes to the redefinition
of forests at the national level, enabling countries to redefine
and assess their forest boundaries with unprecedented precision,
thanks to the aid of detailed imagery.

In a complementary vein, the study conducted by Hu et al.
(2021) illuminates the diverse uses, benefits, and untapped potential
of Google Earth in refining and augmenting data annotations.
Utilizing visual analysis of Very High-Resolution (VHR) post-
event optical images from Google Earth, the authors meticulously
refined annotations, underscoring the platform’s versatility beyond
a mere visualization tool. Leveraging the high-quality and up-
to-date imagery offered by Google Earth, researchers enhanced
the precision of their annotations, showcasing the platform’s
utility for detailed and contextually rich analysis. This not only
underscores immediate benefits in data refinement but also hints at
the broader potential of Google Earth in enhancing various research
methodologies across diverse domains. Hu et al.’s study sheds
light on the multifaceted advantages and emerging possibilities
associated with harnessing the capabilities of Google Earth in
scientific endeavors.

Moreover, the global impact of forest loss is addressed through
the scalability of assessments using Google Earth platforms. Dal
Molin and Rizzoli (2022) illustration of the combination of
different datasets, such as Sentinel-1 Interferometric Short Time
Series (STS) and Landsat imagery, exemplifies the platform’s
potential for global-scale mapping. The capability to superimpose
footprints on aerial scenes using Google Earth images provides
a comprehensive view of deforestation patterns on a larger scale.
Furthermore, Google Earth Pro plays a pivotal role in ensuring the
accuracy and reliability of deforestation assessments by enabling
cross-referencing and validation of results against land use maps,
as demonstrated by Wahab et al. (2021). This validation process
enhances the robustness of deforestation assessments, providing a
solid foundation for decision-making.

Looking toward the future, Giang et al. (2020) suggested that
the usage of high-resolution imagery provided by Google Earth can
further contribute to the improvements in land cover classification
by using deep learning techniques. The platform provides detailed
and up-to-date imagery, whereby it is perceived as a valuable
resource for increasing the accuracy of training such models. The
existence and integration of Google Earth platforms have not
only streamlined deforestation assessments but also redefined the
way nations approach their forest boundaries and enabled global-
scale monitoring, marking a pivotal contribution to environmental
monitoring and decision-making processes.

The primary hurdle encountered in training deep learning
architectures lies in acquiring a substantial dataset. This challenge
is exemplified in the work by de Andrade et al. (2022),
where researchers have harnessed a staggering 1,716,000 images,
comprising 40,392 deforestation-class samples and 1,675,608 non-
deforestation samples. This approach aligns seamlessly with the
methodology in (Gallwey et al., 2020), which employed a colossal

set of 480,000 individual training images. However, the endeavor to
amass a vast dataset needs not to be deemed as insurmountable,
as manual augmentation techniques can be employed to further
augment the dataset. Manual image augmentation techniques, as
illustrated in Morales et al. (2018), involve basic rotation operators
at 90◦, 180◦, and 270◦ angles. Furthermore, these rotated images
can be further expanded by applying horizontal and vertical
flipping, thereby significantly amplifying the dataset size.

Despite having access tested on extensive datasets, the state-
of-the-art CNN-based deep learning models capability like U-Net,
DeepLabV3, ResNet, SegNet, and FCN suffer from spatial-
information loss and inadequate feature representation (Elizar
et al., 2022). The fundamental cause of this issue primarily stems
from their incapacity to comprehend the intricate contextual
nuances across different scales, coupled with the omission of
semantic insights, especially during pooling operations. As a
CNN commences its operation, it initially encodes elementary
semantic components such as edges and corners, progressively
evolving to capture more intricate semantic attributes, exemplified
by complex geometric shapes. In theory, enabling CNNs to
extract features spanning various levels of semantic representation
holds a significant advantage, as tasks like classification and
segmentation greatly benefit from the fusion of both simple and
complex feature maps. Consequently, the integration of multiscale
capabilities across the entire network emerges as a pivotal factor,
facilitating the comprehensive capture of diverse feature scales to
effectively represent the intended task. This inherent multiscale
representation empowers the network to seamlessly integrate low-
level and high-level features from confined receptive fields, thereby
significantly enhancing the overall performance of deep models.

A categorization of multiscale approaches in deep-learning
networks, as classified in (Elizar et al., 2022), encompasses two main
groups: Multiscale Feature Learning and Multiscale Feature Fusion.
The former involves techniques such as Multiscale CNN, Spatial
Pyramid Pooling, and Atrous Spatial Pyramid Pooling. The latter
involves techniques such as Multiscale Feature Fusion, comprised
of Image-level Fusion and Feature-level Fusion, whereby the
latter further encompasses Early Fusion and Late Fusion. This
comprehensive taxonomy of multiscale-deep-learning architecture
is depicted in Figure 6.

Of the diverse multiscale techniques, Atrous Spatial Pyramid
Pooling (ASPP) and Spatial Pyramid Pooling (SPP) stand out
prominently, a point underscored in Stofa et al. (2022). Building
upon this, they introduced four innovative architectural variations
based on ASPP and SPP, namely Direct Atrous Spatial Pyramid
Pooling (DASPP-Net), Waterfall Atrous Spatial Pyramid Pooling
(WASPP-Net), Direct Spatial Pyramid Pooling (DSPP-Net), and
Waterfall Spatial Pyramid Pooling (WSPP-Net). Out of these four
variants, WASPP-Net performs the best and shows the potential of
strategically positioning the ASPP units can enhance the accuracy
of leading-edge CNN architectures. Additionally, findings in (Ru
et al., 2023) also indicate that a modified U-Net augmented
with an SPP unit at the bottleneck layer demonstrated increased
performance, yielding an accuracy of 86.71%, intersection over
union (IoU) of 75.59%, and an F1-score of 82.88%. Of significance,
the SPP unit placement is not optimized yet and there is a possibility
of further performance increment through exploring different
layers of the U-Net architecture for the SPP unit integration.

Frontiers in Forests and Global Change 21 frontiersin.org

https://doi.org/10.3389/ffgc.2024.1300060
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-07-1300060 January 30, 2024 Time: 13:28 # 22

Md Jelas et al. 10.3389/ffgc.2024.1300060

FIGURE 6

The comprehensive taxonomy of multiscale-deep-learning
architecture employed for classification and segmentation
objectives.

As a deep learning architecture achieves exceptional
performance on training data through a substantial dataset and
strategic multiscale unit placement, it may excel during training,
but it may experience significant performance degradation during
test phase. This is a pervasive issue in deep learning, referred to
as overfitting, whereby a model becomes exceptionally proficient
during training phase yet struggles to generalize effectively to new
unseen data (Zulkifley et al., 2021). The overfit model inadvertently
captures the noise and fluctuations present in the training data
rather than the fundamental underlying patterns, representative of
the intended problem. In essence, overfitting leads to the model
memorizing training examples, including their noise and outliers,
rather than discerning the fundamental relationships and features
for accurate predictions on new data.

One approach to tackle overfitting challenge is by incorporating
an attention mechanism into the deep learning architecture. In
this context, the work in Zulkifley et al. (2021) introduced the
Attention-Xception Network (AXNet), which strategically guides
the network to allocate more weight to specific image regions
by integrating it with the Xception architecture. The results
underscore that implementing the attention mechanism enhances
network capabilities by emphasizing weights on selected regions of
interest, as evidenced by the attention maps.

Another effective approach to address overfitting involves
the integration of group and shuffle techniques. In Abdani
et al. (2021), the authors enhanced the FC-DenseNet-103 by
embedding the group and shuffle convolution module to further
increased segmentation accuracy. Group convolution enables
training networks with distinct sets of filters, thereby preventing
the network from converging into a few dominant filters.
Concurrently, shuffle operation diversifies the input to the group
convolutions, effectively shuffling channels across different groups.
This integration of group and shuffle convolution modules bolsters
the network capability in learning unique features, yielding better
performance.

Both of these approaches’ present avenues for further
exploration in enhancing existing CNN-based deep learning

models. By integrating attention mechanisms and group shuffle
convolution techniques, the potential for enhanced segmentation
accuracy as well as reduced computational overhead might become
feasible, and they merit further comprehensive investigation.

6 Conclusion

In conclusion, this comprehensive literature review has
provided a detailed examination of the application of deep learning
techniques in deforestation detection through classification
and segmentation tasks based on satellite imaging input. The
critical importance of monitoring deforestation for environmental
preservation and conservation efforts cannot be overstated, and
this review has shed light on the remarkable potential of deep
learning models to address this pressing challenge.

The review showcased a range of state-of-the-art deep learning
architectures, such as U-Net, DeepLabV3, ResNet, SegNet, and
FCN, which have significantly advanced the accuracy and efficiency
of deforestation detection. Through their adaptability to diverse
landscapes and varying scales and proportions of forested and non-
forested areas, these models have demonstrated their effectiveness
in detecting deforestation even in complex and irregularly shaped
forest regions. This adaptability feature holds promise for real-
world application where accurate deforestation detection is vital.

The exploration of multiscale feature learning, attention
mechanisms, and group convolution techniques further highlights
the ongoing efforts to enhance the accuracy and generalization
capability of deep learning models. These strategies not only
address issues such as spatial-information loss and overfitting but
also contribute to the development of more robust and reliable
models for deforestation detection.

In the face of escalating environmental concerns, it is
imperative that we harness the potential of cutting-edge
technologies to counteract the effects of deforestation. The
convergence of integrated remote sensing and deep learning
technologies embody a promising avenue for creating a positive
impact on global forest conservation. As we advance into the
future, the knowledge gained from this review will undoubtedly
contribute to the development of more accurate, efficient, and
accessible methods for detecting and mitigating deforestation,
thereby ensuring the sustainable management of our invaluable
forest resources.
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