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Introduction: This study delves into the spatiotemporal dynamics of land use 
and land cover (LULC) in a Metropolitan area over three decades (1991–2021) 
and extends its scope to forecast future scenarios from 2031 to 2051. The intent 
is to aid sustainable land management and urban planning by enabling precise 
predictions of urban growth, leveraging the integration of remote sensing, GIS 
data, and observations from Landsat satellites 5, 7, and 8.

Methods: The research employed a machine learning-based approach, specifically 
utilizing the random forest (RF) algorithm, for LULC classification. Advanced modeling 
techniques, including CA–Markov chains and the Land Change Modeler (LCM), were 
harnessed to project future LULC alterations, which facilitated the development of 
transition probability matrices among different LULC classes.

Results: The investigation uncovered significant shifts in LULC, influenced 
largely by socio-economic factors. Notably, vegetation cover decreased 
substantially from 49.21% to 25.81%, while forest cover saw an increase from 
31.89% to 40.05%. Urban areas expanded significantly, from 7.55% to 25.59% of 
the total area, translating into an increase from 76.31 km2 in 1991 to 258.61 km2 
in 2021. Forest area also expanded from 322.25 km2 to 409.21 km2. Projections 
indicate a further decline in vegetation cover and an increase in built-up areas to 
371.44 km2 by 2051, with a decrease in forest cover compared to its 2021 levels. 
The predictive accuracy of the model was confirmed with an overall accuracy 
exceeding 90% and a kappa coefficient around 0.88.

Discussion: The findings underscore the model’s reliability and provide a significant 
theoretical framework that integrates socio-economic development with 
environmental conservation. The results emphasize the need for a balanced approach 
towards urban growth in the Islamabad metropolitan area, underlining the essential 
equilibrium between development and conservation for future urban planning and 
management. This study underscores the importance of using advanced predictive 
models in guiding sustainable urban development strategies.
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1 Introduction

The continuous transformation in earth surface through land use 
land cover (LULC) changes impact life forms, climate, and terrestrial 
ecosystems (Koschke et al., 2012; Salazar et al., 2015; Niquisse et al., 
2017). Nearly half of the earth’s surface has been transformed by 
human activities (Vitousek et al., 1997). At global and local levels, 
understanding the changes of LULC are necessary for managing 
natural resources and addressing global climate change mitigation 
(Xiao et al., 2004; Jung et al., 2006). Land use changes in urban areas, 
forest cover and other vegetation are indicators of human activities 
(Wu et al., 2021). The LULC change trajectory categorized worldwide 
by gains in urban land, agriculture, and declines in forests, these 
changes are associated with the change of forest land to agricultural 
expansion, urban growth and deforestation (Foley et al., 2005; Tian 
et al., 2014; Muhammad, 2023). The degree and size of LULC are 
changing in many parts of the world. Particularly in developing 
countries, urbanization, population growth, and rural-to-urban 
migration have increased the importance of monitoring land use and 
land cover changes (Wang et al., 2018). Due to LULC changes, habitat 
degradation and fragmentation are major factors contributing to 
biodiversity loss (Yohannes et al., 2018; Mumtaz et al., 2023). The 
natural landscapes are changing due to deforestation, population 
growth, development and agriculture practices (Mori, 2011).

Under such scenarios, studies using GIS and remote sensing 
technologies can provide scientifically reliable information for 
sustainable land management, particularly temporal information 
enhance monitoring and analysis of LULC changes in past and future 
for policy recommendations (Chettry and Surawar, 2021). Further, 
the cloud-based Google Earth Engine (GEE) platform has made 
significant progress that enables rapid analysis of satellite data 
(Tamiminia et al., 2020; Habibie, 2022; Pan et al., 2022; Pham-Duc 
et al., 2023). LULC classifications obtained from diverse data sources 
have shown a high level of accuracy and visual quality ensuring 
reliable outcomes for research and applications (Hu and Hu, 2019; 
Aksoy et al., 2022). Using remote sensing and GIS to model LULC 
dynamics, the CA-Markov chain model provides enhanced LULC 
forecasting capabilities over other models such as Holt-Winters 
Exponential Smoothing (HWES), Artificial Neural Networks 
(ANNs), where most of these models use historical land use data to 
assess the past land transformation and transition (Civco, 1993; Pan, 
2024). Autoregression (AR) and linear regression (Sexton et al., 2013; 
Ullah et  al., 2019). To provide a comprehensive overview of the 
application of machine learning in urban growth prediction. 
Supplementary Table S1. has been incorporated summarizing key 
references and their contributions to illustrates various methodologies 
and models used in the field, enhancing the reader’s understanding 
of the diverse applications of machine learning in urban 
growth prediction.

These studies have provided highly accurate information on the 
dynamics of land use changes and their drivers, which can assist in 
better guiding city planning for sustainability. Therefore, accurate 
geospatial modeling of urbanization is a prerequisite for sustainable 
development of cities. Previous studies have found that the Land 
Change Modeler (LCM), using an integrated multilayer perceptron 
(MLP) and Markov chain (MC), is an effective model for further 
simulation of land use change as well as the accurate validation of the 
result (Wang et al., 2018; Wang and Maduako, 2018; Hasan et al., 2020; 

Aksoy and Kaptan, 2022). The MLP-MCA-based hybrid approach has 
been implemented to integrate the Multilayer Perception (MLP) 
model with the Markov Chain model, which is a widely accepted 
model for modeling LULC changes using current trends (El-Hallaq 
and Habboub, 2015; Aksoy and Kaptan, 2021). The most important 
feature of the Markov chain model is to predict complex dynamic 
spatial patterns with high accuracy (Gidey et al., 2017; Aksoy and 
Kaptan, 2022).

Developing countries like Pakistan suffer from rapid urbanization 
and as a result local temperatures increased, native habitats have been 
fragmented and air pollution has increased (Hassan et  al., 2016). 
Islamabad the capital of Pakistan is a prime example of these 
challenges. As a result of population growth and migration for 
employment and education, LULC in the city has changed dramatically 
(Mumtaz et al., 2020; Fahad et al., 2021). Despite these challenges, 
Islamabad stands out for its effective forest conservation and 
infrastructure management. Dynamic landscape patterns require 
understanding the complex interactions between changes in the 
landscape (Coomes et al., 2001). Islamabad’s urban growth contributes 
to unplanned sprawl and declining living standards. To overcome 
these challenges, an effective strategy for improving urban quality of 
life, promoting sustainable development, and mitigating 
environmental degradation is needed.

Addressing gaps in predicting Land Use and Land Cover (LULC) 
changes, this study leverages multi-temporal Landsat imagery and the 
Random Forest algorithm for classification, alongside cellular 
automata and Markov chain models for future urban growth 
projections. It offers insights for sustainable urban planning by 
forecasting trends in forests, vegetation, urban, and barren lands, 
underscoring the imperative of harmonizing socio-economic 
development with environmental conservation.

2 Materials and methods

2.1 Study area

Islamabad, the capital of Pakistan, is the crucible of socio-
economic, political, and environmental development in the country. 
Geographically, the city is part of the northern extension, situated at 
(33° 44′ 16.9620” N, 73° 5′ 4.1568″ E) (Figure  1) located at the 
Potohar plateau of Punjab province. Which makes it an important 
administrative and commercial center. With an area of 1,010 km2 
both mountainous terrain and undulating plains exist between 450 
and 600 m above sea level (Ahmed et al., 2023). The topography of 
Islamabad is characterized by high elevations in the north, east, and 
west, and relatively low elevations in the south. The city is surrounded 
by Margalla hills rising over 685 meters at the western end and 1,604 
meters on its east. The Margalla Hills National Park is an area of 
significant biological diversity (Badshah et  al., 2020). Numerous 
wildlife species inhabit the surrounding forests (Mannan et al., 2019). 
The urban center has experienced significant demographic 
expansion, surpassing a population of 1.2 million individuals, as 
reported by the National Population Census (Pakistan Statistics of 
Bureau, 2017). Based on its climatic conditions, the region has a 
humid subtropical climate with warm summers and dry winters 
(Butt et  al., 2015). The mean annual temperature is 13°C. The 
temperature drops to a minimum of 4°C in December and January. 
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The hottest months are May, June, and July, with average temperatures 
between 36 and 42°C (Ahmed et al., 2023). A Tertiary sandstone, 
limestone, and alluvial sediment deposit has been identified in 
the area.

2.2 Data source and processing

This study used multi-temporal Landsat data to model urban 
growth. The analysis was performed using four time periods of 
Landsat datasets to produce LULC maps, the TM Landsat-5 from 1991 
and 2001, ETM+ Landsat-7 from 2011, and OLI_TIRS Landsat-8 from 
2021 which were available as Level 1, Collection 1, Tier 1 datasets 
using GEE platform, selected all temporal images with zero or close 
to zero (less than 10%) cloud coverage, atmospherically corrected 
surface reflectance scenes for the study area. Our study area is covered 
by a single scene (path 150 and row 37). Supplementary Table S2 
shows the relevant data.

One major function of pre-processing is to remove such 
distortions, especially when optical sensor data is used, during May 
of 2003, the hardware of the Landsat 7 ETM+ sensor failed, leading 
to scanline problems that caused gaps in the images (Wang et al., 
2020; Choate et al., 2021). To address this concern in our research, 

we adopted a two-pronged strategy. Firstly, we opted for images 
with fewer scanline errors, especially in  locations with human 
settlements. Secondly, we  employed sophisticated gap-filling 
techniques, including the Local Linear Histogram Matching 
(LLHM) method (Chen et al., 2015; Lee et al., 2016). This method 
utilizes statistical properties of neighboring pixels to estimate 
missing pixel values, thereby minimizing the effects of data gaps on 
our analysis (Asare et  al., 2020). In 2021, Landsat-8 Surface 
Reflectance (SR) images were procured and classified via the Google 
Earth Engine (GEE) platform. Annual composite images were 
integrated, employing median values to generate a synthetic image 
with minimal cloud cover across the study area. Clouds and 
shadows were efficiently obscured using the quality assurance (QA) 
band, ensuring clarity in the resultant imagery (Qiu et al., 2019; 
Article, 2021). Further, SRTM DEM with a spatial resolution of 
30-meters was used to estimate terrain variables such as distance to 
highways, elevation, proximity to rivers, and distance to urban areas 
using Euclidean Distance Method. The purpose of including these 
terrain elements was to improve the accuracy of the 
classification process.

Methodological framework of the study has been illustrated in 
Figure  2. All analysis was conducted using GEE. Supervised 
classification approaches were used to derive five land use classes for 

FIGURE 1

Altitudinal-based map of the study area.
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study area. Supplementary Table S3 shows five land cover types. These 
clusters were WA, FL, BA, BL, and VL, for each of the land use types, 
training samples were randomly generated in GEE platform. In terms 
of image classification, the outputs were then subjected to supervised 
classification using Random Forest (RF) classifier to obtain the basic 
features of land form.

2.3 Classification of land uses based on 
random forests

There are a number of classification methods available, such 
as Random Forest (RF), Support-Vector-Machine (SVM), 
Decision-Tree-Classifier (DTC), Classification and Regression 
(CART), MLC and Artificial Neural-Network (ANN) (Li et al., 
2019). RF is widely used algorithm for remote sensing image 
classification in land-cover categorization, based on decision tree 
model involves the production of several trees widely used in land 
cover classification, achieved efficient classification results in a 
variety of remote sensing experiments (Jin et al., 2018; De Sousa 
et al., 2020). RF classifications are generally thought to be more 
stable than other commonly used parametric techniques, such as 

Maximum Likelihood, due to the use of bootstrapping and a 
random subset of data in building the RF model (Strobl 
et al., 2009).

Random Forest (RF) algorithm developed by Breiman (2002) is 
based on decision trees and has received significant attention over 
the past two decades and has been successfully applied in ecological 
research. Implementation of RF is simplified by only fine-tuning 
n-tree and m-try (Maxwell et al., 2018). The RF method is most 
commonly employed for the interpretation of satellite imagery, 
according to a comprehensive meta-analysis of 349 peer reviewed 
studies conducted over the past decade (Tamiminia et al., 2020). 
Given the various factors considered, RF was selected as the 
classification method for the current investigation. Following the 
suggestions provided by prior research (Cánovas-García et  al., 
2017). For the current study, RF was selected as the classification 
method. Based on preliminary assessments of our dataset, 100 trees 
were selected (ntree = 100) (the number of trees to grow). As a 
default, “mtry” represents the square root of the total number of 
features at each node. The dataset is randomly split into two 
portions, with 70% of the data utilized for training the RF model and 
the remaining 30% employed to validate the constructed model. In 
this technique, a bootstrap sample consisting of approximately 90% 

FIGURE 2

Methodological overview of current study.
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of the training data is randomly selected to construct an individual 
decision tree.

2.4 Accuracy assessment

Training samples were selected based on five categories of land 
use. The training data were 70% of the samples, while the testing data 
were 30%. Data sets for 1991 (train 1,661, test 504), 2001 (train 1,473, 
test 441), 2011 (train 909, test 272), and 2021 (train 909, test 272), 
respectively. To measure classification results accuracy, 1,027 and 308 
pixels are collected from the train and test (Siddique et al., 2021). 
Accuracy assessment was carried out on the resulting classified 
imagery using confusion matrix and kappa index (Morales-Barquero 
et  al., 2019). The confusion matrix uses a variety of statistical 
indicators, including user accuracy, producer accuracy, and kappa 
statistics. (Equation 1–2) was used to estimate the Kappa coefficient 
(Jenness and Wynne, 2005). Kappa coefficients below 0.4 indicate a 
lack of agreement, while 0.4–0.8 indicates a moderate agreement, and 
above 0.8 indicate great agreement (Mishra and Rai, 2016). Kappa 
coefficient was calculated using the formula.

 
Kappa Coefficient K
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N is the total number of observations. m is the number of rows 
(and columns) in the matrix. Xii represents the count of observations 
in both row i and column i, specifically the diagonal elements of the 
matrix. Xi +   denotes the marginal total of row i. X + i  denotes the 
marginal total of column i.

2.5 Prediction and validation of LULC 
change

The Land Change Modeler (LCM) is a highly reliable model that 
has consistently outperformed other methods for simulating and 
predicting LULC types using the CA-Markov model. This model is 
integrated into the TerrSet Geospatial Monitoring and Modeling 
System (TGMMS) software, which was used to predict future LULC 
for a specified year based on classified historical satellite images. To 
make these predictions, Landsat images from previous years were 
analyzed using the LCM model to assess factors affecting future LULC 
changes and quantify the extent of changes between specific periods 
(Eastman, 2016). This methodology has been thoroughly tested and 
widely utilized to predict and analyze changes, providing both losses 
and gains in LULC assessment. The LCM model produces two types 
of maps: hard projections and soft projections. Hard projections 
develop a simulated map for the prediction year, with each pixel 
assigned to a specific land use category. Soft projections assess 
vulnerability, with each pixel assigned a value from 0 to 1. A small 

value indicates a low level of vulnerability change, while a high value 
indicates a high level (Ayele et al., 2019).

Spatial analysis was conducted on the land use and land cover 
(LULC) variations in Islamabad for the years 1991, 2001, 2011, and 
2021. To produce future land use scenarios, we examined current land 
use patterns, temporal data, and future growth trends. We utilized 
LCM analyses, including “change analysis,” “transition potentials,” and 
“change prediction” tabs, to simulate future trends. These models 
utilized sub-models and explanatory factors to generate transition 
potential maps. Several machine learning tools, such as similarity-
weighted (SimWeight), MLP neural networks and logistic regression, 
were employed to calculate the amount of land predicted to change 
based on additional images obtained from simulations (Eastman, 
2016). Models reflect a complex relationship between land change 
phenomena and their explanatory variables, offering greater flexibility 
and dynamic flexibility than other approaches (Fathizad et al., 2015). 
The LULC categories and scenarios were also predicted using the 
Transition Probability Matrix (TPM) (Wang et  al., 2012; Li et  al., 
2015). Markov chain model is capable of simulating LULC changes, 
utilizing the Bayes equation (Equations 3–5). Additionally, a hybrid 
CA-MC model calculates transition probabilities using LULC layers 
from different periods and distinguishes LULC classes by their 
transition probabilities. TerrSet software estimates future changes 
based on temporal data using the CA-MC model (Eastman, 2020).

 S t P x S tij+( ) = ( )1  (3)

The variable S (t + 1) denotes the state of the system at time t, 
whereas Pij refers to the transitional probability matrix that quantifies 
the likelihood of transitioning between different land use groups.
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P denotes the Markov probability matrix, while Pij signifies the 
probability of transitioning from state i to state j in the subsequent 
time increment. The probabilities of transitions from low to high are 
approximately 0 and 1, correspondingly.

 S f S t Nt t, ,+( ) = ( )( )1  (5)

These variables represent the system status at t and t + 1, 
respectively. The cellular field is denoted by N, f denotes the algorithm 
responsible for transforming local space in a cellular manner. The 
term S refers to a collection of distinct and restricted cellular states. 
The transition probability matrix Pij corresponds to each state.

A single map of suitability is generated by the CA-Markov model 
through the integration of numerous constraints and parameters is 
illustrated in Figure 3 (Eastman, 2012, 2016; Singh et al., 2015). A 
probability transition matrix is generated by identifying probability 
transition regions. A probability transitional matrix shows the 
likelihood of a specific LULC class being transferred to an alternative 
class over time. For each LULC category, the transitional zone matrix 
contains the predicted changes in pixel values (Eastman, 2020). In 
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order to prepare for future simulations of land use and land cover 
(LULC), multiple datasets were collected from 1991 and 2001. Based 
on these datasets, LULC patterns for 2011 were simulated. The 
transition probabilities derived from the changes observed between 
1991 and 2001 provided insights into the dynamics of land use 
changes over time. We simulated the LULC patterns for the year 2021 
based on the validated simulation results of 2001 and 2011. To 
measure our model’s predictive accuracy, validation metrics were used 
for years 2011 and 2021 to assess our model’s predictive accuracy. A 
validated model was then used to forecast the LULC covers for the 
years 2031, 2041, and 2051 through simulations. Future projections 
enable an understanding of how land use patterns will change over 
time and provide valuable insight into future landscapes.

2.6 Driver variables

LULC is influenced by many factors, both natural and 
anthropogenic. In order to accurately simulate LULC, it is crucial to 
take into account the potential impact of the independent variables, 
as highlighted by Gharaibeh et  al. (2020). The present study 
investigated the main independent factors, as indicated in Figure 3. 
Elevation, slope, proximity to highways, proximity to rivers, proximity 
to metropolitan regions, and likelihood raster were the potential 
driver variables. Moving distances over time was represented by 
distances from roads, streams, and city. According to Leta et al. (2021), 
land use patterns and resource accessibility are enhanced by rivers’ 
proximity, while the proximity of roads facilitates urban development 
(Kim et al., 2020). According to Gharaibeh et al. (2020) Proximity to 
urban areas significantly affects land transformation. The proximity of 
a property site to urban centers directly correlates with its potential 
for conversion into an urban area. Closer to urban centers, land is 
more easily converted (Leta et al., 2021). Based on the findings of 

Zhang et al. (2019), the slope of the terrain impacts the alteration of 
land cover. A gentler slope promotes land use transition. Urban land 
accumulation is predominantly observed in areas with relatively flat 
slopes, while deforestation rates decrease as slope gradients increase 
(Wang et al., 2017).

2.7 Validation of MLP CA-MC model output

The process of validation is essential in assessing the precision 
and dependability of a predicted maps in comparison to a reference 
map (Wang et  al., 2016). LULC changes and urban growth were 
simulated using the CA-MC and MLP-NN hybrid models. LULC data 
from 1991 and 2011 were compared with simulation results for 2021. 
MLP-NN was used to simulate future perditions for (2031, 2041, and 
2051 respectively). LULC map remapping to reflect 2021 provided an 
evaluation of algorithm precision. LCM performs a cross-tabulation 
as part of its validation procedure. Comparing the projected map 
from 2021 with the actual map from 2021 is shown in 
Supplementary Table S3. A comparison of the predicted LULC map 
for 2021 with the reference image from the same year was undertaken 
using the validation algorithm within the LCM model (Wang 
et al., 2016).

A kappa coefficient was used to compare the actual and 
projected land use maps. VALIDATE and Receiver Operating 
Characteristic (ROC) modules in TerrSet were used to calculate the 
area under the receiver operating characteristics curve, evaluate the 
location agreement between observed and projected LULC layers 
(Giglioni et al., 2021; Girma et al., 2022). According to the study 
conducted by Mosammam et al. (2017), the first kappa metric has a 
limitation in its ability to differentiate between quantification and 
location errors, thus limiting its overall accuracy. By computing the 
K-indices of several variables, specifically Kno (kappa for no 

FIGURE 3

Layer nodes of input variables: (A) Elevation. (B) Evidence likelihood. (C) Distance from the road. (D) Slope. (E) River proximity. (F) Distance from urban.
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information), Klocation (kappa for location), Kstandard (kappa for 
standard), and Klocation Strata (kappa for stratum-level location), 
the resolve the issues (Mosammam et al., 2017). Four key measures 
are taken into account when examining precision, both spatially and 
numerically. The K standard, Kno, and Klocation stratum scores. 
Several other measures can be  used to assess agreement and 
disagreement in addition to the aforementioned statistical 
indicators. This includes Agreement Quantity, Agreement Chance, 
Agreement Grid Cell, and Disagreement Grid Cell. The simulated 
map and the base map are compared using these measures. The 
relevant data are presented in Supplementary Table S4 (Viera and 
Garrett, 2005).

Understanding the simulated model requires a thorough 
understanding of disagreement quantity and grid cell components 
(Wang et al., 2016). Predicted and actual LULC maps are compared 
using this validation method (Islam et  al., 2018). There is a 
significant difference between the maps of the two categories in 
quantity (changes or persistence) and allocation. A difference in 
amount refers to an inaccurate alignment in the proportion of LULC 
classes between two maps. A spatial allocation discrepancy refers to 
the difference between images resulting from an incomplete 
integration of spatial allocations across all categories (Kim 
et al., 2011).

2.8 Annual rate of change analysis

The assessment of LULC change was conducted employing the 
LCM framework. This analysis comprised three distinct sections: a 
quantitative evaluation of LULC categories, a net change analysis, and 
an assessment of the individual contributions of each LULC class to 
the overall net change. The research utilized classified maps from 
1991, facilitating a comparative analysis with observed LULC data 
from 2001, 2011, and 2021. This comparison underpins the projection 
of LULC changes for 2031, 2041, and 2051, thereby elucidating the 
trajectory of LULC transformations (Mosammam et al., 2017). The 
LULC dynamics in each study period were assessed using the 
numerical values extracted from the classified images. To acquire the 
change pattern, the images classified from consecutive periods were 
cross-tabulated and compared to each other. There are four distinct 
time intervals, The probability matrix was done between 1991–2001, 
2001–2011, 2011–2021, and beyond 2021 using LCM. Finding the 
least common multiple of two or more numbers requires finding the 
smallest positive integer divisible by each number. This concept can 
be used to calculate the percentage change (Hassen and Assen, 2018), 
and the rate of change were determined for LULC categories by using 
Equations (6–7) to determine LULC classes (Gashaw et al., 2014). to 
determine the amount of the changes experienced between the 
periods of the different LULC categories.

The dynamics of LULC were analyzed using numerical data from 
classified imagery. Images from successive intervals were cross-
tabulated for pattern analysis across four time intervals: 1991–2001, 
2001–2011, 2011–2021, and beyond 2021, using the LCM framework. 
The methodology for estimating percentage and rate of change in 
LULC categories employs the least common multiple concept and is 
detailed through (Equation 6–7) as per (Gashaw et al., 2014; Hassen 
and Assen, 2018), facilitating the quantification of LULC changes over 
the study periods.
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In this instance, Ax represents the LULC area (ha) of an earlier 
land cover image while Ay represents the later image. T is the period 
between Ax and Ay (Leta et al., 2021).

3 Results

3.1 Accuracy assessment

Based on RF classification method the changes in LULC were 
assessed by generating confusion matrixes for each land cover category 
in 1991, 2001, 2011 and 2021. The overall accuracy, kappa statistics, 
user and producer accuracy, obtained through confusion matrix for 
each land cover class are listed in Table 1. The overall accuracy values 
for 1991, 2001, 2011, and 2021 were 90.89, 90.76, 91.19, and 91.11%, 
respectively. The corresponding kappa statistics for these years are 0.87, 
0.87, 0.88, and 0.88, respectively. The accuracy of the more current land 
map exhibits an improvement, as compared to previous years maps.

3.2 LULC change analysis

The study analyzed the land use changes in Islamabad for 1991, 
2001, 2011, and 2021, specifically emphasizing, five major land cover 
classes were identified viz., WA, FL, BA, BL, and VL (Figure 4). The 
data from 1991 indicates that the extent of land covered by vegetation 
Increased at 49.21% (497.22 km2). Over three decades, this proportion 
progressively declined to 25.81% (260.83 km2) in 2021. The forest area, 
as determined in 1991 was around 31.89% (322.25 km2) of the total 
land area, after three decades, this proportion had an upward trend, 

TABLE 1 Accuracy calculation of 1991–2021 LULC maps.

Variables
Years

1991 2001 2011 2021

Producer 

accuracy

Water 92.21 85.15 87.82 87.82

Forest 89.23 93.13 92.00 92.00

Built-up 88.8 89.06 92.59 92.59

Bareland 93.11 92.50 91.02 91.02

Vegetation 90.05 92.38 91.71 91.71

User 

accuracy

Water 91.97 90.27 91.33 91.33

Forest 92.35 92.37 92.92 92.92

Built-up 88.5 90.81 90.49 90.49

Bareland 91.31 90.14 88.75 88.75

Vegetation 89.27 89.71 92.22 92.22

Kappa coefficient 0.87 0.87 0.88 0.88

Overall accuracy 90.89 90.76 91.19 91.11
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reaching 40.05% (409.21 km2) in 2021. It indicates an average increase 
of 8.61% in the forest area from 1991 to 2021. The calculation of the 
bare land area in 1991 yielded a value of 106.52 km2, accounting for 
10.54% of the total area. In 2021, the bare land area was determined 
to be  73.66  km2, representing 7.29% of the total area 
(Supplementary Table S5; Figure 5). It indicates a decline of −3.25% 
in the bare land area from 1991 to 2021. Our findings showed a 
built-up area in 1991 was determined to be 76.31 km2, accounting for 
7.55% of the total area. Where it expanded significantly to 258.61 km2 
in 2021, representing 25.59% of the total area. It indicates a substantial 
increase of 18.04% in the built-up area from 1991 to 2021 (Figure 5). 
The predicted cumulative change in water area between 1991 and 2021 
was roughly −0.03 km2. Specifically, the water area was 7.93 km2 in 
1991 and 7.90 km2 in 2021. There was no discernible alteration in the 
extent of the water surface between 1991 and 2021 (Figures 4, 5).

3.3 Gain and loss in landcover classes

Land use change models, particularly the LCM, were applied to 
LULC maps (1991–2021) to predict net changes, including gains and 
losses, across different classes, aiming to show spatial and temporal 

variations (Figure 6). Transformations are categorized into loss, gain, 
and net change, with gains calculated from persistence and column 
totals, and losses from row totals and persistence. Significant impacts 
were noted on vegetation and bare land distribution. Forests recorded 
the highest gains (2011–2021), while the largest vegetation losses 
occurred between 1991 and 2001 and 2011 and 2021, with forests also 
experiencing losses (2001–2011). Built-up areas expanded, between 
2001 and 2011, whereas barren land observed gains and losses in the 
same periods, respectively. Water bodies had minimal changes. 
Overall, there was a decline in vegetation cover and bare land, against 
an increase in urban land use, highlighting significant shifts in 
Islamabad’s LULC, with increased forest and built-up areas and 
decreased vegetation and bare land.

3.4 LULC change detection

The model generated transition probability matrices (TPM) to 
represent the changes between LULC types during three time periods: 
1991–2001, 2001–2011, and 2011–2021 (Supplementary Table S6; 
Figure 7). During 1991–2001 the highest conversion rate was observed 
for vegetation to forest (55.56 ha), built-up (56.80 ha), and barren land 

FIGURE 4

The land use map of the capital territory of Islamabad region in (A) 1991, (B) 2001, (C) 2011, (D) 2021.
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(49.95 ha) (Figure 8). At the same time, barren land was significantly 
converted to the built-up area (23.71 ha). Between 2001 and 2011, 
vegetation was observed to convert to built-up (87.58 ha) and barren 
land (56.35 ha), while barren land was dominantly converted to 
built-up (34.49 ha). However, the forest was considerably converted to 
vegetation (62.74 ha). From 2011 and 2021, vegetation was significantly 
converted to forest (131.62 ha) and built-up (61.96 ha), barren land 

was converted to built-up (57.33 ha) and vegetation (40.85 ha). Overall, 
the highest conversion during 1991–2021 was observed for vegetation 
to built-up (142.44 ha) and forest (125.30 ha), respectively.

3.5 Validating CA-Markov model with 
2011–2021 land use patterns

The construction of a future LULC map involves key stages, 
starting with the application of a Markov chain technique to formulate 
a prospective land change matrix based on results analysis. Significant 
changes in simulated land use for 2011 include a 0.22 probability of 
transitioning from bare land to built-up areas and a 0.11 probability 
of transitioning from vegetation to forest (Table 2). In 2021, significant 
changes were identified, particularly a predicted shift from bare land 
to built-up areas (probability of 0.11) and bare land to vegetation 
(likelihood of 0.13). The predicted map correlated strongly with the 
actual area distribution, as indicated in Supplementary Table S7.

3.6 LULC change prediction based on the 
CA-Markov model

Prior to predictions, maps from 1991 to 2001 and 2001 to 
2011 were analyzed to generate historical and present predictive 
models for 2011 and 2021, respectively. Subsequent projections 
for 2031, 2041, and 2051 were formulated using probability and 

FIGURE 5

LULC area coverage (km2) of Islamabad during 1991–2021.

FIGURE 6

Gain and loss area of the LULC class in 1991–2001, 2001–2011, and 
2011–2021.

https://doi.org/10.3389/ffgc.2024.1345047
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Badshah et al. 10.3389/ffgc.2024.1345047

Frontiers in Forests and Global Change 10 frontiersin.org

transition area matrices derived from a Markov chain model 
(Table 3; Figure 9). This analysis revealed a progressive increase 
in the transition of vegetation to forest, with probabilities of 35% 
in 2031, escalating to 56% by 2051. A similar upward trend was 
observed in the conversion of vegetation to built-up areas, with 
projected probabilities rising from 16% in 2031 to 20% in 2041, 
before slightly decreasing to 19% in 2051. Conversely, the 
transition from bare land to built-up areas demonstrated a 
declining trend within the same period. The transition probability 
matrix facilitated an assessment of the predicted percentage 
changes in land cover from 2021 to 2051, revealing a significant 
shift toward predominance in built-up land (Figure 8; Table 4). 
The data indicated a continuous increase in built-up land, 
growing from 25.59% in 2021 to 36.76% in 2051, primarily due 
to the conversion of vegetation, barren, and forested areas. 
Despite an initial increase in forested areas by 40.50% from 1991 
to 2021, a subsequent decline was projected through to 2051, 
resulting in a decrease to 36.88%. Similarly, undeveloped areas 
were consistently diminishing from 2011 to 2050. The study 
mapped the spatial extent of five LULC classes for historical 
(1991, 2001, 2011, and 2021) and projected years (2031, 2041, 
and 2051), indicating a notable evolution in land use patterns 
over the projected period (Figure 9).

3.7 MLP-NN model performance

Using MLP-NN, a widely used machine learning technique, to 
identify complicated patterns and behaviors (Albuquerque et al., 2005; 
Reitz, 2006). The model, with input, hidden, and output layers detailed 
in Table 5, achieved significant optimal results. The MLP-MC model, 
with seven input nodes, eight hidden nodes, and nine output nodes, 
delivered the highest accuracy. Analyzing each driving variable’s 
impact on MLP-NN performance, we employed sensitivity analysis 
across 10,000 iterations. Utilizing unique methods, the study 
showcased proficiency, with 0.8821 skill and 89.08% accuracy, 
verifying the model’s reliability in categorizing unknown pixels based 
on optimized weights and training dataset patterns.

3.8 Evaluating the contribution of 
independent variables to model precision

As part of our study, we assessed how independent variables 
interact in our study, maintaining each constant during model 
evaluation. Supplementary Table S8 reveals patterns, showing a 
22.67% accuracy reduction when keeping evidence likelihood 
constant. This factor emerged as crucial in our study, aligning 

FIGURE 7

LULC changes in Islamabad from 1991 to 2021.
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with previous research (Leta et al., 2021). Despite its impact, our 
model remained effective, emphasizing the importance of 
recognizing biophysical properties in understanding 
environmental dynamics.

3.9 Isolation of individual independent 
variables with other factors

The specific effects of individual independent variables to analyzed 
the effects of individual independent variables by isolating one while 
keeping others constant, revealing unique characteristics. 
Supplementary Table S9 reveal Significant accuracy and skill metric 
variations, except for the initial attempt with unrestricted variables. 
The methodology provided insight into interaction effects and 
intercorrelations among input variables, consistent with prior 
discussions (Ozturk, 2015).

FIGURE 8

Transition area matrix of LULC classes between 1991 and 2021.

TABLE 2 Transition probabilities matrix for 2011 and 2021.

2021 (Predicted map)

Present 

(1991–

2011)

Water Forest Builtup Bareland Vegetation

Water 0.8214 0.094 0.0628 0.0015 0.0202

Forest 0.0001 0.84 0.0458 0.0184 0.0957

Builtup 0.0015 0.0402 0.7205 0.0727 0.165

Bareland 0.0002 0.0093 0.1165 0.6412 0.1327

Vegetation 0.0004 0.0392 0.0302 0.0928 0.7375

TABLE 3 Transition probabilities matrix for 2031, 2041, and 2051.

Transition probabilities matrix

2031

Future 

(predicted 

map of 

2011—

predicted 

map of 

2021)

Water Forest Builtup Bareland Vegetation

Water 0.9148 0.0296 0.0309 0.013 0.0118

Forest 0.0037 0.9239 0.0246 0.0152 0.0326

Builtup 0.0038 0.0864 0.6079 0.0826 0.2194

Bareland 0.0006 0.0526 0.411 0.2432 0.2927

Vegetation 0.0013 0.3511 0.1653 0.0468 0.4355

2041

Water Forest Builtup Bareland Vegetation

Water 0.8371 0.0618 0.0551 0.0186 0.0275

Forest 0.007 0.8681 0.0494 0.0213 0.0542

Builtup 0.0064 0.2138 0.442 0.0819 0.2559

Bareland 0.0028 0.1996 0.3995 0.1076 0.2905

Vegetation 0.0037 0.4941 0.2004 0.0507 0.2511

2051

Water Forest Builtup Bareland Vegetation

Water 0.7662 0.0972 0.073 0.0222 0.0414

Forest 0.0099 0.8267 0.0893 0.025 0.0691

Builtup 0.0087 0.33 0.3501 0.0717 0.2395

Bareland 0.0052 0.3267 0.3401 0.0758 0.2522

Vegetation 0.0063 0.5647 0.1964 0.0482 0.1843
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FIGURE 9

Predicted LULC classification maps of Islamabad of 2031, 2041, and 2051.

TABLE 4 Area coverage, percentage, and change of LULC in Islamabad of predicted maps for 2031, 2041, and 2051.

Legend

2021 2031 2041 2051 2021–2031 2031–2041 2041–2051 2021–2051

Area Area Area Area Change Change Change Change

km2 % km2 % km2 % km2 % km2 % km2 % km2 % km2 %

Water 7.91 0.78 7.91 0.78 6.91 0.68 7.91 0.78 0.00 0% −1.01 −13% 1.00 14% 0.00 0%

Forest 409.22 40.51 399.15 39.51 389.01 38.51 372.67 36.89 −10.07 −2% −10.13 −3% −16.33 −4% −36.54 −9%

Builtup 258.62 25.60 342.08 33.86 360.51 35.69 371.44 36.77 83.46 32% 18.43 5% 10.92 3% 112.83 44%

Barren 73.67 7.29 43.39 4.29 45.23 4.48 48.61 4.81 −30.28 −41% 1.84 4% 3.38 7% −25.05 −34%

Vegetation 260.83 25.82 217.72 21.55 208.57 20.65 209.61 20.75 −43.12 −17% −9.14 −4% 1.03 0% −51.23 −20%

Total 1010.24 100.00 1010.24 100.00 1010.24 100.00 1010.24 100.00

3.10 Iterative backward constant forcing

A training method is used in which all variables are examined at 
the beginning and used consistently throughout training. To assess 
which pair may have the least impact on the model’s proficiency if 
included or excluded, hold each variable constant. When some 
variables are removed from the equation, the model’s skill increases 
slightly. This method identified pairs of variables whose joint removal 
had little effect on model performance. Due to variable interactions, 
this iterative approach can comprehensively evaluate model 
performance. Since the model skill variance was negligible, all factors 
in Supplementary Table S10 were used in this investigation (Girma 
et al., 2022).

3.11 Validation of simulated maps

By using the Validate module in TerrSet, to validate the MLP, 
CA-MC model, it was initially employed to simulate the land cover 
patterns in 2011 (T’3) by utilizing the land cover maps from 1991 (T’1) 
and 2001 (T’2). Subsequently, the model was further used to simulate 
the land cover patterns in 2021 (T’4) by utilizing the land use maps from 
2001 (T’2) and 2011 (T’3). The Kappa statistic was calculated to assess 
the compatibility between the simulated quantities and locations and the 
reference maps from 2011 and 2021. According to the overall Kappa 
statistics. The Kno = 78%, the Klocation = 80%, the KlocationStrata = 80%, and the 
Kstandard is 72%. Figure 10 illustrates the distribution of agreement and 
disagreement factors, along with an overall correctness of 88.2% for 
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MLP-CA-MC. Validation results, consistently exceeding 80%, indicate 
robust agreement between observed and projected LULC layers. Post-
validation, the model was prepared for predicting land use changes in 
2031, 2041, and 2051, showcased in Figure 9. The ROC measure gauged 
the model’s predictive ability regarding the continuous surface 
distribution of a Boolean variable, emphasizing soft prediction evaluation.

4 Discussion

The use of GIS tools and machine learning algorithms to predict 
future LULC patterns has been studied in several studies. In our study, 

Google Earth Engine (GEE) was used to evaluate LULC changes 
across four time periods (1991, 2001, 2011, and 2021). Additionally, 
the Cellular Automata-Markov model was used to predict LULC 
changes in 2031, 2041, and 2051. Over 90% precision was consistently 
achieved over four distinct time periods. Accordingly, the results of 
Gharaibeh et al. (2020), Girma et al. (2022), Abbas et al. (2023), and 
Uddin et al. (2023) align with the findings of our study, indicating that 
all categories of producers were categorized with an accuracy rate over 
85%. Consistently high accuracy across various studies supports the 
validity of the supervised classification method employed. A study 
conducted by Dewan and Yamaguchi (2009), that the minimum level 
of accuracy achieved across all parameters measured was 85.6% using 
the Multispectral Scanner (MSS) data. Another study Kayiranga et al. 
(2016) reported that all images from 1986 to 2015, the accuracy and 
Kappa coefficient values were over 75%. In the present investigation, 
within the four-time intervals of 1991, 2001, 2011, and 2021, the 
Kappa coefficients exhibited values exceeding 0.86% across all 
categories. Similar findings were observed in the study conducted by 
Martinez del Castillo et al. (2015) where they examined the Kappa 
coefficients exceeded 0.8 for all forest classifications.

Changes in LULC have significantly affected the distribution of 
vegetation, bare land, forests, and built-up areas within the study area. 
Vegetation represents the largest portion of land usage and has declined 
significantly. Islamabad’s built-up areas and forests significantly 
increased from 1991 to 2021, while vegetation and bare land decreased 
dramatically. Mannan et  al. (2021) also reported that since 1990, 
Islamabad’s built-up area has increased. Rural residents move to urban 
areas for several reasons, such as pursuing education, finding work or 
opening businesses (Mannan et al., 2021). Urban growth is a result of 
governmental policies and real estate development (Hassan et  al., 
2016). A gradual decline in barren land and vegetation area was 
observed between 1991 and 2021. Also, Mannan et al. (2021) found a 

FIGURE 10

Successes and errors of the simulation.

TABLE 5 Parameter and model performance result.

Application types Classification

Input layer neurons 6

Hidden layer neurons 7

Output layer neurons 6

Requested samples per class 5,000

Final learning rate 0.0001

Momentum factor 0.5

Sigmoid constant 1

Acceptable RMS 0.01

Iterations 10,000

Training RMS 0.2269

Testing RMS 0.2276

Accuracy rate 0.8821

Skill measure 0.8769
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decline in both barren and agricultural land in Islamabad between 1990 
and 2020, with an annual reduction rate of 0.25 and 1.24%, respectively. 
A recent study conducted by Habte et al. (2021) in Ethiopia revealed a 
decline in the extent of bare land resulting from land restoration efforts 
in the country’s northeastern region from 1984 to 2005. The findings 
of our study indicate a general upward trend in the extent of forested 
land in Islamabad for the period spanning from 1991 to 2021. The 
present finding aligns with the research conducted by Mannan et al. 
(2021). Since 1990, the forested area of Islamabad has been preserved 
and has shown a growth rate of 0.92% annually. Forested areas within 
Islamabad expanded from 2011 to 2021 due to effective management 
strategies and law enforcement measures implemented by the forest 
management department. According to Chen and Liu (2005) and Ioja 
et  al., (2020) Forest conservation regulations in urban areas can 
contribute to the creation of diverse protected zones, such as green 
belts, research centers, and botanical gardens. Margallah Hills National 
Park (MHNP) near Islamabad is an example of urban forest 
preservation (Ahmed et al., 2023). Furthermore, it is worth noting that 
Islamabad is also home to an increasing number of green belts, roadside 
plantations, and botanical gardens as highlighted by Shinwari and 
Khan (2000) The forest policies implemented by the federal government 
in Islamabad account for the increase in forested areas.

The Markov chain and MLP neural network techniques in LCM 
provide insights into the magnitude and spatial distribution of change 
in LULC prediction, respectively (Hepinstall et al., 2008). All of the 
kappa index values in the study surpass the acceptable threshold of 80% 
(Mandrekar, 2010; Gharaibeh et al., 2020). Indicating a high level of 
agreement between the simulated and observed LULC maps. Besides 
that, a highly satisfactory Area Under the Curve (AUC) value of 0.88 
was achieved (Mandrekar, 2010). According to our analysis, significant 
urbanization is projected for the region by 2031, 2041, and 2051, with 
vegetation and barren land converting to built-up areas during the study 
period. The study results indicate massive urban expansion, replacing 
other land cover forms. The CA-MC model predicts expansion to cover 
approximately 371.44 km2 by 2051, representing a net increase of 
112.83 km2 compared to land cover in 2021 (Figures 4, 9). Additionally, 
forested areas are expected to experience a minor reduction in coverage 
due to built-up area expansion. Overall, rapid population growth drives 
urban expansion, contributing to forest loss. The findings of this study 
align with the results reported by Samie et al. (2017) which indicate that 
the expansion of built-up areas is followed by continuous reduction in 
other land use categories, such as forests, both now and in the future. 
Alsharif et al. (2022) Under the CA-MC prediction model, built-up area 
continues to increase as other land uses decrease. Dey et al. (2021) A 
combination of multi-layer perceptron (MLP) and Markov chain (MC) 
modeling techniques was used to analyze LULC change dynamics in 
Rajshahi, Bangladesh, for 2000–2020 and 2020–2040. Overall, the 
findings predict a 30% urban expansion by 2030, with a 17% decrease 
in green cover. However, urban areas are predicted to increase in our 
study area as green cover decreases (−36.55 km2).

4.1 Study limitations and future 
implications

In this study, we  used Random Forest algorithms, Cellular 
Automata, and Markov Chain models to predict changes in LULC. For 

better land use and land cover classification and future prediction using 
Landsat data from 1991 to 2021, satellite remote sensing is an efficient 
means of generating large-scale land use and land cover data. 
Furthermore, Random Forest can only capture certain aspects of 
complex urban environments. Meanwhile, The Cellular Automata and 
Markov Chain models use simplified dynamics. While the study 
predicted changes up to 2051, longer-term forecasts could face 
significant uncertainties due to unforeseen socio-economic and 
environmental changes. LULC classification and urban growth are two 
areas that should be explored further, according to this study. Higher 
resolution and more recent satellite data, notably from the Sentinel 
series, are crucial to improving LULC classifications and urban growth 
predictions. Using advanced deep learning techniques and neural 
networks could also yield more precise urban expansion forecasts. 
Future research should also integrate socioeconomic data. Urban 
dynamics can be  better understood by incorporating population 
growth, economic development, and land use policies into models. 
Moreover, analyzing various urban development scenarios beyond 2051 
would provide valuable insights for long-term urban planning and 
sustainability. The field is still underexplored.

5 Conclusion

The objective of this study was to assess the LULC changes 
and forecast the future land use patterns of the metropolitan area 
Islamabad of Pakistan. The study employs Landsat satellite 
imagery from 1991–2021 to derive LULC maps and changes are 
examined to estimate urban growth. Further the CA-Markov 
model was used to estimate the future land cover changes in the 
Metropolitan area. The analysis utilizes the multi-layer 
perceptron (MLP) and Markov chain (MC) modeling 
methodologies. The findings unveiled a significant advancement 
in socioeconomic conditions. The process of urban expansion 
resulted in the depletion of vegetation, including both barren and 
forest areas. The results of the simulation conducted for the 
projected time frame of 2021–2051 indicate a significant decrease 
in the extent of vegetation, bare land, and forested areas, with 
reductions of 51.22, 25.05, and 36.53 km2, respectively. The land 
covered by vegetation is subject to significant effect, resulting in 
a projected drop from 260.83 to 209.60 km2. According to the 
Metropolitan Comprehensive Plan (MCA), there is a significant 
level of urban expansion projected, amounting to approximately 
371.44 square kilometers by the year 2051. This expansion is 
expected to result in a net increase of 112 km2 between the years 
2021 and 2051. The results obtained from this research possess 
the capacity to provide valuable perspectives for policymakers in 
developing efficient approaches for future urban land utilization 
planning and administration. Furthermore, the study also 
underscored the urgent need for reformation of urban planning 
and urban forest practices in order to safeguard the visual 
attractiveness of the city and guarantee the overall conservation 
of green areas. A noteworthy benefit of this study is its utilization 
of an extensive time range, which enabled a thorough assessment 
of changes in LULC within the study area. This holds special 
significance considering the constrained availability of reports 
within this specific setting.
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