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As a fundamental element of global carbon storage, the storage carbon in 
terrestrial ecosystem is significant for climate change mitigation. Land use/
cover change (LUCC) is a main impact element of ecosystems’ carbon storage. 
Evaluating the relation between land use change and carbon storage is vital 
for lowering global carbon emissions. Taking Hainan Island as an example, this 
paper employs the InVEST as well as the CA-Markov models to assess and predict 
how different land use affects carbon storage in various situations from 2000 to 
2020 and from 2030 to 2050 on Hainan Island. The influence factors, together 
with driving mechanisms of carbon storage spatial distribution are quantitatively 
analyzed as well in this paper. The results demonstrate that, from 2000 to 
2020, Hainan Island’s net increase in built land was 605.49  km2, representing 
a growth rate of 77.05%. Over the last 20  years, Hainan Island’s carbon storage 
and density have decreased by 5.90 Tg and 1.75  Mg/hm2, respectively. The sharp 
rise in built land mainly makes the carbon storage decline. From 2030 to 2050, 
land use changes on Hainan Island are expected to result in differing degrees 
of carbon storage loss in various scenarios. In 2050, Hainan Island’s carbon 
storage will decline by 17.36 Tg in the Natural Development Scenario (NDS), 
13.61 Tg in the Farmland Protection Scenario (FPS), and 8.06 Tg in the Ecological 
Protection Scenario (EPS) compared to 2020. The EPS can efficiently maintain 
carbon sequestration capability, but it cannot effectively prevent cropland area 
loss. Regarding the carbon storage’s spatial distribution, Hainan Island generally 
exhibits a pattern of high carbon storages in the low and middle carbon storages 
in the surrounding areas. Areas with high value are primarily located in Hainan 
Island’s central and southern mountainous areas, whereas areas with low value 
are primarily located in surrounding areas with lower elevations, primarily 
encompassing built land and cropland. Geographic detection presented the 
spatial differentiation of carbon storage in Hainan Island is mainly influenced 
by factors like slope, land use intensity, and DEM, as well as its interaction 
with other factors is significantly strengthened (p  <  0.05). Under the strategic 
framework of the “carbon peaking and carbon neutrality” goal and the national 
ecological civilization pilot zone, it is imperative to carefully consider scenarios 
for ecological protection and farmland protection, adopt ecological regulation 
models with spatial differentiation, and implement land use policies to improve 
ecosystem stability, which will contribute to carbon storage loss reduction and 
ensure food and ecological security.

OPEN ACCESS

EDITED BY

Bo Huang,  
NTNU, Norway

REVIEWED BY

Xiuqing Nie,  
Chinese Academy of Forestry, China
Wenfeng Gong,  
Hainan University, China
Tangzhe Nie,  
Heilongjiang University, China
Li Taohui,  
Yunnan Normal University, China

*CORRESPONDENCE

Jinrui Lei  
 raykingre@163.com  

Zongzhu Chen  
 30160280@qq.com

†These authors have contributed equally to 
this work

RECEIVED 04 December 2023
ACCEPTED 02 July 2024
PUBLISHED 19 July 2024

CITATION

Lei J, Zhang L, Chen Z, Wu T, Chen X and 
Li Y (2024) The impact of land use change on 
carbon storage and multi-scenario prediction 
in Hainan Island using InVEST and CA-Markov 
models.
Front. For. Glob. Change 7:1349057.
doi: 10.3389/ffgc.2024.1349057

COPYRIGHT

© 2024 Lei, Zhang, Chen, Wu, Chen and Li. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 19 July 2024
DOI 10.3389/ffgc.2024.1349057

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2024.1349057&domain=pdf&date_stamp=2024-07-19
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1349057/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1349057/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1349057/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1349057/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1349057/full
mailto:raykingre@163.com
mailto:30160280@qq.com
https://doi.org/10.3389/ffgc.2024.1349057
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2024.1349057


Lei et al. 10.3389/ffgc.2024.1349057

Frontiers in Forests and Global Change 02 frontiersin.org

KEYWORDS

carbon storage, LUCC, InVEST, CA-Markov, multi-scenario prediction, Hainan Island, 
geo-detector

1 Introduction

Global warming is now a significant influencing element for the 
sustainable development of human civilization and the economy as a 
result of the rise in greenhouse gas emissions (IPCC, 2014). The global 
carbon balance assessment results show that 31% of anthropogenic 
carbon dioxide emissions from 2010 to 2019 were absorbed by 
terrestrial ecosystems (Piao et al., 2022). Global warming has been 
significantly slowed down over the past few decades as a result of the 
terrestrial ecosystem’s ability to absorb atmospheric carbon dioxide 
(CO2) (Piao et al., 2009; Grassi et al., 2017; Kothandaraman et al., 
2020). Governments and academics around the world are now 
focusing on regulating atmospheric CO2 concentration by 
safeguarding and enhancing ecological carbon storage (Yu et al., 2010; 
Xu et al., 2018b; Friedlingstein et al., 2020; Piao et al., 2022). The 
Chinese government stated specifically that by 2030 it would strive for 
the carbon peak and by 2060 obtain carbon neutrality. “Carbon 
neutrality” refers to the total amount of CO2 generated by human 
activities being equal to the total amount of CO2 fixed by actions such 
as afforestation, vegetation restoration, energy conservation and 
emission reduction, thus forming a relative “zero emission” of carbon. 
As the world’s largest developing country and carbon emitter, China 
has conducted in-depth monitoring, estimation, and research on 
carbon sinks and emissions in terrestrial ecosystems in the process of 
achieving the “dual carbon” goals, and has taken a series of measures 
including afforestation, natural forest protection, ecosystem 
restoration, and increasing the proportion of non-fossil fuels (Wang 
et  al., 2021; Liu Z. et  al., 2022), this plays an important role in 
maintaining global carbon emission balance and carbon absorption 
balance. According to Piao et al. (2009), terrestrial ecosystems play a 
significant part in global carbon storage. Its carbon pool is primarily 
distributed among forests, farms, grasslands, wetlands, cities, deserts, 
and other ecosystems (Xu et  al., 2019). The carbon pool of each 
terrestrial ecosystem type includes a soil carbon pool and a vegetation 
carbon pool (Tang et al., 2018; Zhang et al., 2022), which are essential 
in both absorbing atmospheric CO2 and reducing climate change (Ito 
et al., 2016; Li et al., 2020). The major impact factor of storage of 
carbon in the terrestrial ecosystem is Land Use/Cover Change 
(LUCC), which is the major form of human activity (Wiesmeier et al., 
2015; Xiang et  al., 2022a). LUCC is comprehensively affected by 
climate, terrain, human activities, and other natural, social, and 
economic factors, and has an impact on ecosystem functions, such as 
greenhouse gas exchange, hydrological cycle, and carbon (Li et al., 
2023). Therefore, quantifying the connection between carbon storage 
and land use change is crucial for studying terrestrial ecosystem’s 
carbon storage.

Two basic methodologies according to DeNitrification-
DeComposition (DNDC) Model (such as Biome BGC and Century) 
and carbon density statistics have been used to quantify terrestrial 
ecosystem carbon reserves in recent years (Liang et al., 2021; Zhang 
et al., 2022). The former can dynamically simulate the carbon cycling 

process of ecosystems and has higher accuracy in estimating results, 
but it requires multiple model parameters, complex model structure, 
and does not emphasize the relationship between land type change 
and terrestrial ecosystem carbon storage (Liu et al., 2019), making it 
more suitable for small-scale research; The latter estimates carbon 
storage based on land use type carbon density, which has the 
advantages of simple required data and fast operation speed, making 
it more suitable for large-scale assessment (He et al., 2016). Therefore, 
the approach of employing carbon density data to assess regional 
carbon storage have been utilized by both domestic and international 
scholars, with the InVEST (Integrated Valuation of Ecosystem Service 
and Tradeoffs) Model being the most popular. This model has the 
qualities of less required data and fast operation speed, and it can 
achieve visual expression of the carbon storage’s spatial allocation and 
dynamic variances, which has achieved successes in evaluating the 
carbon storage’s dynamic differences in caused by regional land 
policies (Houghton and Nassikas, 2017). For instance, Zhang et al. 
(2016) explored the spatial pattern of carbon storage in the Bailong 
River Basin in Gansu Province according to the InVEST and GIS 
technology, and they discussed the effects of altitude, slope, and aspect 
on the carbon storage’s spatial allocation. Xiang et al. (2022b) utilized 
the InVEST to study how storage of carbon in the major urban regions 
of Chongqing responded to land use difference over the previous 
20 years. However, previous researches put much emphasis on the 
current land use change responding to carbon storage, with less 
attention paid to future land use simulation and prediction. Especially, 
there are few research cases targeting carbon storage variances in land 
use under different circumstances. The CA-Markov model (Hoque 
et al., 2021; Liang et al., 2021), PLUS model (Men and Pan, 2023), and 
CLUE-S model (Jiang et al., 2017) are now the most widely adopted 
models for predicting land use. Among them, the CA-Markov model 
focuses on simulating its own mechanism, and its transformation 
rules may be difficult to consider the influence of geographical factors 
and economic and social factors (Zhou et al., 2016). However, the 
CA-Markov model combines the strong spatial simulation ability of 
the CA model with the high prediction accuracy of the number of 
Markov models, greatly improving prediction accuracy, and is widely 
used in various fields such as land use, urban growth, and diffusion 
research (Aburas et al., 2017; Liu Q. et al., 2021). Babbar et al. (2021) 
adopted InVEST and Markov models to assess and predict carbon 
storage in India’s Sariska Reserve in two different scenarios from 2000 
to 2035. The findings revealed that local communities caused loss of 
carbon to the atmosphere through illegal logging. Hoque et al. (2021) 
evaluated and predicted the dynamic changes in artificial development 
of forest and carbon storage in the ecosystem of coastal regions of 
Bangladesh in three future land management scenarios according to 
the CA-Markov and InVEST. The results demonstrated that an 
increase in artificial forest area would promote regional carbon 
storage. Liang et al. (2021) evaluated the effect of land use variance 
imposed on storage of carbon in the Loess Plateau area in China from 
the year of 1995 to 2050 by setting up three different scenarios 

https://doi.org/10.3389/ffgc.2024.1349057
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Lei et al. 10.3389/ffgc.2024.1349057

Frontiers in Forests and Global Change 03 frontiersin.org

according to the CA-Markov and InVEST. This demonstrates that 
coupling the two models, combined with temporal and spatial scales 
to forecast regional land use situations and the carbon storage’s change 
trend, can serve as crucial references for local carbon storage service 
management and carbon neutrality policy formulation, and thus 
provide guidance for addressing future climate change.

Hainan Island is the largest tropical island and one of the most 
significant ecological functional areas in China. It has a forest cover of 
more than 60% and a vast area of primitive tropical rainforest. Its 
enormous carbon sequestration capacity is significant for the regional 
carbon balance and cycle (Ren et al., 2014; Kothandaraman et al., 2020). 
Many researches are currently focusing on the carbon storage changes 
in forest ecosystems, regional urban agglomerations, and critical 
watershed ecosystems. There is relatively little research on the carbon 
storage in tropical island ecosystems, particularly a lack of awareness that 
future land use variances will cause carbon storage changes in tropical 
areas (Ren et al., 2014; Liu Q. et al., 2022; Gao et al., 2023). At present, 
Hainan is constructing a national pilot zone of ecological civilization as 
well as a free trade port with Chinese features. The population of Hainan 
is increasing, the urban scale is rapidly rising, and the ecological 
environment is being continuously disrupted by human activities, which 
leads to severe land use changes, particularly in key urban regions such 
as Haikou and Sanya (Lei et al., 2020), as well as high energy consumption 
and carbon emission intensity, seriously threatening the carbon storage 
service function of local ecosystems. It also leads to a decrease in forest 
coverage and loss of biodiversity, further disrupting ecological balance. 
Hence, it is critical to investigate the changes in carbon storage and land 
use spatiotemporally in the current and future periods to give a reference 
foundation for promoting carbon sequestration and emission reduction 
in Hainan Island, exploring a green low-carbon economy, and developing 
further reasonable land use policies.

The research is conducted according to the land use statistics for 
Hainan Island from the year of 2000 to 2020. The InVEST model was 
adopted to assess the effect of changing land use on Hainan Island’s 
carbon storage from 2000 to 2020. The CA-Markov was adopted to 
model and estimate land use and carbon storage changes on Hainan 
Island in 2030, 2040 and 2050  in three different situations. The 
following trend of carbon storage change in Hainan Island and its 
impact factors were analyzed as well. Specifically, this study is aimed 
to: (1) analyze the land use features and carbon storage variances in 
Hainan Island from the year of 2000 to 2020; (2) predict the changing 
types of land use in the island in multiple scenarios from 2030 to 2050, 
and evaluate the spatiotemporal differences in carbon storage 
characteristics; (3) explore the influencing factors as well as driving 
force of the carbon storage’s spatial distribution in the island.

2 Data sources and research methods

2.1 Overview of the study area

Covering approximately 3.4 × 104 km2, Hainan Island (18.80°–
20.10°N, 108.37°–111.03°E), is the second largest province next to 
Taiwan and is situated in southern China (Figure 1). Additionally, it 
serves as a crucial strategic hub for China’s Maritime Silk Road. There 
are various geomorphic types in the island, with Yingge Ridge (1,811 m) 
and Wuzhi Mountain (1,867 m) as the core uplift and being followed, 
from the center outward, by hills, mountains, plateaus, plains, as well 

as oceans. The climate of the island is hot and rainy, with long summers 
and no winters. It has a typical tropical monsoon marine climate, with 
an annual average temperature of 22.5°C–25.6°C. The isotherm 
increases from the central mountainous area to the surrounding coastal 
areas, with Qiongzhong County in the central part of Hainan Island 
having the lowest temperature and Sanya City in the southern part 
having the highest temperature. Hainan Island also has a typical 
tropical rainforest forest ecosystem and excellent ecological 
environment. However, in recent years, economic development and 
other human factors have caused considerable damage to the ecosystem.

The Hainan Statistical Yearbook shows urban population in Hainan 
has risen from 40.7% in 2000 to 60.3% in 2020, and the urban area has 
increased from 667.0 km2 to 1,703.6 km2. In June 2020, the State Council 
and the Central Committee of China put forward a general plan for 
constructing Hainan Free Trade Port, setting up the island as a free 
trade port. As a major strategic deployment of the country, Hainan’s 
socio-economic and urban construction ushered in a new round of 
boom. By 2020, Hainan will have 10.0812 million residents in total, a 
gross regional product of 556.624 billion yuan, which is 55,100 yuan per 
capita. The current land use is dominated by forestland and cropland, 
with a forest coverage of 62.1%, ranking the forefront in China.

2.2 Data sources

2.2.1 Spatial fundamental statistics
In this research, the statistics includes three periods of land use 

(Figure 2), DEM, NDVI, soil type data, meteorological data, socio-
economic data, road and natural reserve vector data of Hainan Island 
from 2000 to 2020. The data sources and details are given in Table 1. 
Data preprocessing was performed using ArcGIS10.3 software, 
including projection conversion, resampling, as well as cropping. The 
above mentioned data was unified into raster data with a 30 m spatial 
resolution and a projected corresponding system applying CGCS2000_ 
3_ Degree_ GK_ CM_111E.

2.2.2 Carbon density data
The China Terrestrial Ecosystem Carbon Density Dataset of the 

National Ecological Science Data Center1 provides carbon density 
statistics. This data set was designed through connecting the carbon 
density of China’s terrestrial ecosystem with related experimental 
statistics (Xu et al., 2018a), covering major ecosystem types such as 
forests, grasslands, cropland, wetlands, and shrubs, including carbon 
density of aboveground biomass, carbon density of belowground 
biomass, as well as carbon density of soil organic at various depths, 
this study mainly refers to carbon density data at 0–100 cm soil depth. 
On the basis of the above data sets, the forest carbon density data of 
Hainan Island was obtained by referring to Gao et al. (2023), who 
used the latest forest resource second-class survey distribution data 
and field sample survey data. The carbon density data of other land 
types mainly refer to the carbon density results of land types in the 
Hong Kong Zhuhai Macao Greater Bay Area (Deng et al., 2022), 
Beibu Gulf (Zhang et al., 2023), and Hainan Island Coastal Zone (Sun 
et al., 2023), excluding data with significant differences in magnitude, 

1 https://www.cern.ac.cn
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and calibrating and correcting based on precipitation and 
temperature similarity (Alam et al., 2013; Xiang et al., 2022a,b). The 
relationship between biomass carbon density and annual average 
temperature is based on the formula proposed by Chen et al. (2007), 
and the relationship between soil carbon density and annual 
precipitation is based on the formula proposed by Alam et al. (2013). 
After correcting the obtained data with local climate data, the carbon 
density statistics of multiple kinds of land use in the research region 
were finally determined (Table 2).

2.3 Methodologies

2.3.1 Carbon storage evaluation on the basis of 
InVEST model

This research evaluated the distribution of land use carbon 
storage in the island quantitatively by adopting the Carbon module 
in InVEST 3.5.0 (Clerici et  al., 2019; Xiang et  al., 2022a). The 
Carbon module estimates the storage carbon in ecosystem according 
to land use/land cover data, and divides the storage into 4 basic 

FIGURE 1

The location of the research area.

FIGURE 2

Land use of Hainan Island from 2000 to 2020, where (A-C) represent the years 2000, 2010, and 2020, respectively.
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pools: belowground, aboveground, soil, and dead organics. The 
formula is:

 C C C C Ctot above below dead soil= + + +

Where, Ctot represents total carbon storage (Mg C); Cabove is 
carbon storage of aboveground biomass (Mg C); Cbelow is carbon 
storage of belowground biomass (Mg C); Cdead is carbon storage 
of dead organic (Mg C); Csoil is soil carbon storage (Mg C). 
According to the user guidebook of the InVEST model, a specific 
land use’s carbon density is assumed to be  fixed (Tallis et 
al., 2013).

2.3.2 Multi-scenario prediction based on 
CA-Markov model

The Markov is a long-run way to predict the situation of an event 
in the following period according to its state in a certain period (Liu 
Y. et  al., 2021; Zhu et  al., 2021; Xiang et  al., 2022a). The cellular 
automata (CA) model can simulate the complex systems’ 
spatiotemporal evolution of Li et al. (2007). The CA-Markov combines 
the two to complement their advantages, fully utilizing the CA model’s 
strong spatial simulation ability and the Markov long-run prediction 
ability (Hu and Zhang, 2018; Pan et al., 2018; Lei et al., 2022). The two 
models are as follows:

 X X Pt t+ = ´1

 
S f S Nt t t, + = ( )1 ,

Where, Xt + 1 denotes the situation of a random event at moment 
t + 1, which is the outcome predicted by the Markov. Xt denotes the 
situation of a random event at moment t. P represents the transition 
probability matrix. S represents a finite and discrete set of states of 
cells. F represents the cells’ transformation rule. N represents the cell’s 
adjacency. t and t + 1 denotes various moments.

This study employs the CA-Markov in IDRISI 17.0 to finely 
describe the differential characteristics of land use types according to 
eighteen secondary land types in Hainan. Taking the land use 
statistics of Hainan Island in 2010 as the initial state, slope, DEM, 
distance from residential areas, distance from roads, as well as 
distance from water bodies were selected as limiting factors for 
prediction (Liu Q. et al., 2021), and corresponding transfer suitability 
maps were established to estimate the land use of Hainan Island in 
2020. The coefficient Kappa was adopted to evaluate the accuracy by 
comparing the predicted and the actual results of land use in 2020 
(Zhang et al., 2020; Xiang et al., 2022a). The formula can be:

 
Kappa =

-
-
p p

p
e

e

0

1

Where, Kappa is the accuracy validation obtained from the 
calculation. pe and po denote the theoretical simulation accuracy and 
general simulation accuracy. When Kappa is between 0 and 0.20, the 
accuracy of the simulation results is extremely low; when between 
0.20 and 0.40, the accuracy is average; when between 0.40 and 0.60, 
the accuracy is moderate; when between 0.60 and 0.80, the accuracy 
is relatively high; and when between 0.80 and 1.00, the accuracy is 
very high (Lei et al., 2022).

In this research, the future scenario setting is based on the 
development goals proposed in the “Territorial Spatial Planning of 

TABLE 1 Data acquisition and preprocessing.

Data type Data source and processing References

Land use data Vector data on land use in Hainan Island for the three years 2000, 2010 and 2020 were obtained from the Resource 

and Environmental Science and Data Center of the Chinese Academy of Sciences. It divides types of land use into six 

first classes and eighteen second classes, including grassland, cropland, unused land, forestland, water land, and built 

land (Liu J. et al., 2018).

http://www.resdc.cn

Land use intensity The index of the land use intensity for the research region was calculated according to the land use intensity analysis 

method put forward by Zhuang and Liu (1997).

-

DEM The data was sourced from ASTER GDEM with a30 m resolution from the National Geospatial Data Cloud. The 

surface analysis tools from ArcGIS 10.3 were adopted to extract slope and aspect statistics for the research area from 

DEM.

http://www.gscloud.cn

NDVI It was sourced from the National Geospatial Data Cloud and the maximum value of monthly data was extracted 

using CV-MVC, which is synthesized into an annual dataset with a 1 km resolution.

http://www.gscloud.cn

Meteorological data The data includes annual temperature on average and annual rainfall, sourced from the National Meteorological 

Science Data Center with a 1 km resolution.

http://data.cma.cn

Soil type data The data was from the Harmonized World Soil Database (HWSD) offered by the Food and Agriculture Organization 

(FAO).

https://www.fao.org

Socio-economic data The Chinese Academy of Sciences provided the population density statistics and per capita GDP, with a1 km 

resolution.

http://www.resdc.cn

Road data The roads’ vector data such as highways and railways was sourced from the 1:250000 national basic geographic 

database.

https://www.webmap.cn

Natural reserve data The vector data for nature reserves like Hainan Tropical Rainforest National Park, Nature Reserve and Nature Park 

were obtained from the forestry regulatory department of Hainan Province.

-
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Hainan Province (2020–2035).” Referring to Liu Q. et al. (2021) and 
Xiang et  al. (2022a)’s research on future scenario setting, three 
different scenario types, namely natural development scenario (NDS), 
farmland protection scenario (FPS), and ecological protection 
scenario (EPS), were built in this study to simulate the land use spatial 
distribution in Hainan Island in 2030, 2040, and 2050, respectively. 
Table 3 presents the specific scenario settings.

2.3.3 Geo-detector analysis
Put forward by Wang and Xu (2017), the geographic detector is a 

statistical way to detect spatial differentiation between geographical 
objects and analyze the corresponding driving factors (Xue et al., 2023). 
Carbon storage is a very complicated process influenced by human, 
natural, and economic factors (Hofhansl et al., 2020; Wang et al., 2022; 
Wang P. J. et  al., 2023). Referring to relevant research cases, this 
research mainly emphasizes natural and human factors and selects nine 
indicators as influencing factors, including annual temperature, soil 
type, annual rainfall, slope elevation, normalized difference vegetation 
index (NDVI), per capita GDP, land use intensity, and population 
density (Han et al., 2023; Wang P. J. et al., 2023). Creating fishing nets 
in ArcGIS 10.8 and iterating multiple times to generate sample points, 
it was found that the best geographical detection results were achieved 
when the grid was 2 km × 2 km. Therefore, a grid unit of 2 km × 2 km 
was ultimately constructed on Hainan Island, and the average values of 
carbon storage and all influencing factor grids were extracted from the 
grid. Then, the optimic function in the GD package was called in the 
R language environment (Song et  al., 2020) to set five alternative 
discretization ways, including natural, equal, geometric, quantitative, 
and sd, with the data hierarchy set between level 5–15. By comparison, 
the classification combination and optimal discretization method were 
picked up for the maximal q value. The discretization category variables 

were then brought in the geo-detector for interactive, risk, and factor 
detection. In this way, this study quantitatively analyzed the influencing 
factors and response mechanisms of the spatiotemporal variation of 
carbon reserves (Lei et al., 2023). The formula below can calculate the 
value of q:

 
q

N
h

L
h h= - =å

1 1

2

2

s

Ns

Where, q, with a value range of [0, 1], describes a specific factor’s 
influencing extent on the spatiotemporal distribution of carbon 
storage. When the value becomes bigger, the impact of the factor 
imposed on the carbon storage spatial allocation in the research 
region becomes greater, and vice versa. L represents the overall sample 
size of the influencing factor. N and Nh denote the total and subarea 
carbon storage. σ2 and σh

2 indicate the carbon storage discrete variance 
in the overall research region and subareas, respectively.

3 Results

3.1 Dynamic changes in land use and 
carbon storage in Hainan Island (2000–
2020)

3.1.1 Features of land use change in Hainan Island 
(2000–2020)

As shown in Table 4, the leading kinds of land use in Hainan are 
forestland and cropland, occupying 62.62 and 25.38% of the total area 
in 2020, respectively. With a growth rate of 77.05% and a strong 

TABLE 2 Carbon density of various types of and use on the island.

First class Second class Aboveground 
biomass carbon 

density/(Mg/hm2)

Belowground 
biomass carbon 

density/(Mg/hm2)

Soil carbon 
density/(Mg/

hm2)

Dead organic 
carbon density/

(Mg/hm2)

Cropland Paddy field 5.76 1.19 97.26 2.11

Dry land 5.68 1.17 95.96 2.09

Forestland Forestland 44.5 10 111.07 3.44

Shrubwood 11.53 3.27 66.4 1.58

Opening 11.76 3.34 67.74 1.59

Others 30.12 6.1 92.61 1.72

Grassland Grassland with high-coverage 4.8 6.68 100.31 1.49

Grassland with moderate-coverage 4.73 6.58 88.37 1.47

Grassland with low-coverage 3.06 4.26 57.2 0.95

Water land Graff 0 0 85.1 0

Reservoir and pond 0 0 81.1 0

Mudflat 0 0 112.32 0

Floodplain 0 0 110 0

Built land Urban and town land 2.28 0.66 30.21 0

Rural settlement 3.2 0.92 42.28 0

Others 2.32 0.67 30.71 0

Unused land Sand 0.31 0.09 4.13 0

Swamp 0.1 0.03 113.78 0
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increase between 2010 and 2020, Hainan saw the biggest net increase 
in built land between 2000 and 2020, at 605.49 km2. The water land is 
next, with a net rise of 195.16 km2 and a growth rate of 15.23%. Its area 
first increased and then slightly reduced. Forestland and cropland saw 
the highest decreases, with losses of 353.25 km2 and 307.30 km2, 
respectively, at rates of 1.62 and 3.41%. The regions of grassland and 
unused land reduced by 79.41 km2 and 51.80 km2, respectively, with a 
rate of 6.43 and 36.67%.

According to the land use transfer map shown in Figure 3, Hainan 
Island experienced frequent land use transitions from 2000 to 2020. 
The expansion of forestland was the largest during the two decades, 
reaching 505.50 km2. Specifically, a total of 310.58 km2, 90.98 km2, and 
74.66 km2 of the forestland were transferred into built land, water land, 
and cropland. Cropland possessed the second largest roll-out region 
of 479.71 km2, with 303.89 km2, 102.42 km2, and 61.86 km2 of the land 
being transferred into built land, water land, and forestland, 
respectively. The total roll-out area of grassland, water land, and built 
land was 131.34 km2, 92.81 km2, 98.07 km2, respectively, mainly into 
cropland, forestland, or built land. Unused land is steadily being 
utilized and developed as it continues to decline, mostly transferring 
to cropland, built land, and grassland. From a roll-in point of view, 
built land had the largest transfer area over the two decades, which 
was 684.16 km2, primarily sourced from forestland and cropland, 
covering 310.58 km2 and 303.89 km2, respectively. Water land also had 
a large roll-in area of 298.42 km2. Other land use type had relatively 
small roll-in areas.

The roll-in area of forestland was the largest between 2000 and 
2010, at 158.22 km2, mostly from cropland and grassland. However, 
the roll-in area was only 13.03 km2 between 2010 and 2020. The roll-in 
area of built land between 2000 and 2010 was relatively small, at 
231.52 km2, mainly transferred from cropland; whereas between 2010 
and 2020, the roll-in area was relatively large, at 510.40 km2, mainly 
transferred from forestland.

3.1.2 Characteristics of carbon storage changes 
in the island (2000–2020)

According to Table 5, the carbon storage of the island in 2000, 
2010, and 2020 was 443.37 Tg, 441.59 Tg, and 437.47 Tg, with carbon 
densities of 129.37 Mg/hm2, 128.82 Mg/hm2, and 127.62 Mg/hm2. The 
island’s carbon storage as well as carbon density has shown a 
downward tendency over the 20 years, with a decrease of 5.90 Tg in 
carbon storage and 1.75 Mg/hm2 in carbon density. In terms of time, 

Hainan’s carbon storage as well as carbon density fell by 1.78 Tg and 
0.55 Mg/hm2 between 2000 and 2010, and 4.12 Tg and 1.20 Mg/hm2 
between 2010 and 2020, respectively, with the most significant 
decrease between 2010 and 2020.

By comparing different carbon pools, it can be found that the soil 
carbon pool of Hainan Island has the highest carbon storage, 
accounting for over 74% of the carbon storage in total, following 
aboveground and underground biomass carbon pools, and the lowest 
is the dead organic carbon pool. The corresponding carbon storage of 
the above four pools are 327.39 Tg, 83.07 Tg, 19.13 Tg, and 7.89 Tg in 
2020, respectively, which decreased by 4.14 Tg, 1.25 Tg, 0.33 Tg, and 
0.18 Tg in comparison with 2000.

As shown in Figure 4, as for various types of land use, forestland 
in Hainan Island has the highest carbon storage, occupying over 70% 
of the total, following cropland, while unused land has the lowest. 
Carbon storage of Hainan Island presented an obvious growth 
tendency from 2000 to 2020, with a cumulative increase of 2.25 Tg 
and, in particular, 1.72 Tg between 2010 and 2020. Additionally, there 
was an increase of 0.94 Tg of carbon storage in water land. The falling 
tendency of carbon storage in forestland as well a cropland is relatively 
obvious, with a decrease of 4.97 Tg and 3.23 Tg over 20 years, 
respectively.

3.2 Prediction of the island’s carbon 
storage between 2030 and 2050 in 
multiple scenarios

3.2.1 Land use variance in Hainan Island in 
different scenarios

According to IDRISI software evaluation, the Kappa coefficient in 
2020 reached 0.97, indicating that the CA Markov model has high 
simulation accuracy. The model was adopted to predict the land use 
spatial distribution in Hainan Island from 2030 to 2050  in three 
different situations, as shown in Figure  5. It can be  seen that the 
simulated spatiotemporal dynamic tendencies of land use have high 
heterogeneity in the three scenarios with diverse land use management.

The simulation results in Figures 5, 6 demonstrate that the general 
land use pattern of the island remains mostly constant across the three 
simulation scenarios, with an obvious rise in the number of built land. 
Key urban locations like Haikou and Sanya are where built land has 
risen the most. There are some variances in the changes of other types 

TABLE 3 Different development scenarios set for Hainan Island.

Scenarios Description

NDS The land use data for Hainan Island in 2010 and 2020 were picked up as the base and final years, and a Markov chain according to the current land use 

change patterns and development models was adopted to compute the transfer probability matrix and transfer area, without setting any constraints. At 

10-year intervals, the study area’s land use is predicted in the NDS scenario from 2030 to 2050.

FPS Cropland is the carrier of food security. Strengthening cropland protection mostly entails lowering the built land expansion, slowing the transfer rate of 

cropland to other land types, and designating permanent basic farmland as a limited transfer area. In the FPS scenario, the cropland transfer 

probability to built land drops by 70%, while the probability of transferring to water, grassland, and forest declines by 40%.

EPS The National Park of Hainan Tropical Rainforest was officially established in October 2021. Hainan Province has formed a system of natural reserves, 

the main body of which are national parks, and has implemented a strict ecological protection system. Considering the ecological protection 

regulations and development plans, this study addresses the core protected areas of Hainan Tropical Rainforest Park, nature reserves, and nature parks 

as restrictions to restrict arbitrary conversion of natural ecological land. In the EPS scenario, the possibility of forestland, water, and grassland being 

transferred to built land is lowered by 70%, and the possibility of grassland, farmland, and unused land being transferred to forestland rose by 30%.
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of land. The NDS scenario continues the and use change pattern and 
development modes of the previous phase, and the magnitude of the 
changes in each land type is broadly constant with the previous phase. 
In each phase from 2020 to 2050, the largest increase was in the region 
of built land, with a total rise of 1,885.98 km2 and 54.82 km2 in 
grassland over the 30 years. Cropland, forestland, water land, unused 
land, and other land types have their areas declined by respective 
amounts of 694.30 km2, 1,215.41 km2, 52.27 km2, and 1.70 km2. The 
reduction of cropland area in the FPS scenario is the smallest of the 
three simulated scenarios, only reducing 112.52 km2, effectively 
ensuring the food security of the province. This is accomplished by 
controlling the total amount of fundamental cropland. The EPS 
scenario restricts the uncontrolled conversion of natural ecological 
land, resulting in the lowest reduction in forestland and water land, at 
271.21 km2 and 7.51 km2, respectively. Built land sees the smallest area 
growth, with an increase of 1,056.81 km2, hence effectively ensuring 
Hainan’s ecological environment security in 2050.

3.2.2 Changes in carbon storage of Hainan Island 
in multiple scenarios

The assessment results of three simulated scenarios (Figure 7) 
illustrate varying degrees of decline with respect to the density and 
storage of carbon in the island from 2030 to 2050. By 2050, Hainan 
has a carbon storage of 420.12–429.41 Tg, with a carbon density of 
122.64–126.35 Mg/hm2. Compared to 2020, Hainan’s carbon storage 

in 2050 is reduced by 17.36 Tg in the NDS scenario, 13.61 Tg in the 
FPS scenario, and 8.06 Tg in the EPS scenario. The carbon densities 
are predicted to drop by 4.98 Mg/hm2, 3.89 Mg/hm2, and 2.27 Mg/hm2, 
respectively. In the NDS scenario, the density and storage level of 
carbon in the island are the lowest, while those in the EPS scenario are 
the highest.

According to the carbon storage spatial distribution from 2020 to 
2050 shown in Figure 8, the carbon storage of Hainan Island generally 
illustrates a distribution pattern of high in the low and middle around. 
Areas with high value are chiefly in the southern and central 
mountainous regions of the island. These areas are a concentrated 
distribution of tropical forests in Hainan, with high stand quality that 
favors carbon accumulation. The maximum carbon density can reach 
169.01 Mg/hm2. Low-value areas are mainly found in lower-lying areas 
around the island, which mainly include cropland and built land due 
to human activities, especially distributed in major urban areas such 
as Haikou and Sanya. In terms of the variances in carbon storage 
(2020–2050), the island has the largest decreasing storage of carbon in 
the NDS scenario, following the FPS scenario, and the EPS scenario 
has the lowest reduction in carbon storage. Regions with rising carbon 
storage are chiefly distributed along the coast due to the impact of 
ecological restoration policies in degraded coastal zones.

According to the variances in carbon storage of various types of 
land use shown in Figure 9, over 70% of carbon storage in the island 
is distributed in forestland, which conforms to the overall carbon 

TABLE 4 Variances in land use types in the island (2000–2020).

Types of land use Cropland Forestland Grassland Water land Built land Unused land

2000 Area/km2 9008.65 21819.14 1234.45 1281.41 785.87 141.25

Proportion 26.29% 63.67% 3.60% 3.74% 2.29% 0.41%

2010 Area/km2 8891.93 21742.29 1135.91 1507.49 907.81 93.54

Proportion 25.94% 63.43% 3.31% 4.40% 2.65% 0.27%

2020 Area/km2 8701.35 21465.89 1155.04 1476.57 1391.35 89.45

Proportion 25.38% 62.62% 3.37% 4.31% 4.06% 0.26%

Area change from 2000 to 2020/km2 −307.30 −353.25 −79.41 195.16 605.49 −51.80

Rate of area change from 2000 to 2020 −3.41% −1.62% −6.43% 15.23% 77.05% −36.67%

FIGURE 3

Map of land use transfer of Hainan Island (2000–2020), where (A-C) represent the land transfer situation from 2000 to 2010, 2010 to 2020, and 
2000 to 2020, respectively.
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storage distribution between 2000 and 2020. However, such variances 
for each kind of land use in varying scenarios vary, and the overall 
tendency conforms to the area changes in the kind of land use of 
corresponding scenarios. Specifically, the carbon storage in cropland 
and forestland is significantly reduced from 2020 to 2050 in the NDS 
scenario, by 7.30 Tg and 17.01 Tg, respectively, while the built land’s 
carbon storage revealed a significant rise with 6.72 Tg. In the FPS 
scenario, carbon storage in cropland decreased by only 1.18 Tg, in 
forestland by 17.15 Tg, and in built land by 4.76 Tg. In the EPS 
scenario, by protecting natural ecological spaces, the carbon storage 
of forestland is reduced by only 3.69 Tg, that of cropland is reduced 
by 8.14 Tg, and that of built land is increased by 3.81 Tg. Carbon 
storage changes in grassland, water land and unused land are not 
obvious in the three mentioned scenarios.

3.3 Analysis of the carbon storage 
influencing factors in Hainan Island

3.3.1 Single-factor detection of carbon storage
Taking the statistics of carbon storage allocation in 2020 as an 

example, geo-detectors were utilized in this research to decide the 
effect degree of various elements on the carbon storage spatial 
distribution in Hainan Island. Table 6 shows that all the influencing 
factors affect how carbon storage is distributed spatially, and the 
explanatory power of each factor is in the following order: slope > land 

use intensity > DEM > NDVI > population density > soil type > GDP 
per capita > annual rainfall > annual temperature. All factors have 
passed the significance test, with p < 0.05. Among them, slope and land 
use intensity have an explanatory power of over 50%, which is the 
predominant element for the changing storage of carbon in Hainan 
Island. DEM, NDVI, population density, soil type, and per capita GDP 
are also important factors affecting carbon storage change, with the q 
values all above 0.2, indicating that the carbon storage’s spatial 
variance in the research region is jointly affected by natural and socio-
economic elements. The influence of annual rainfall and temperature 
is relatively small, with the q values less than 0.2, indicating that 
meteorological differences impose a relatively small influence on the 
carbon storage distribution in Hainan Island.

3.3.2 Interaction and ecological detections of 
carbon storage

According to the findings of interaction and ecological detections 
shown in Figure 10, it can be concluded that the connection between 
any two impact factors has a greater influence on the carbon storage 
spatial variance than that of a single factor. To be  specific, the 
connection value between land use intensity and slope is the largest, 
with an explanatory power of more than 70%, which serves as the 
major cause for the carbon storage’s spatial differentiation in Hainan 
Island. The explanatory power of the connection between land use 
intensity, slope, and other elements on the spatial differentiation of 
carbon storage exceeds 60%, and the explanatory power of the 

TABLE 5 Storage and density of carbon in various carbon pools in Hainan Island from 2000 to 2020.

Year Aboveground 
biomass carbon 

pool (Tg)

Belowground 
biomass carbon 

pool (Tg)

Soil carbon 
pool (Tg)

Dead organic 
carbon pool 

(Tg)

Total 
carbon 

storage (Tg)

Carbon density 
(Mg/hm2)

2000 84.31 19.46 331.53 8.07 443.37 129.37

2010 83.93 19.30 330.36 7.99 441.59 128.82

2020 83.07 19.13 327.39 7.89 437.47 127.62

Change in 2000–2020 −1.25 −0.33 −4.14 −0.18 −5.90 −1.75
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FIGURE 4

Changing storage of carbon in different types of land use (2000–2020).
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connection between other elements is also above 40%. The interactive 
detection results are mainly dual-factor enhancement, with only the 
pairwise interaction between annual temperature, annual rainfall, and 
per capita GDP being nonlinear enhancement, and the q value is 
significantly increased. This indicates that various influencing factors 
under complex conditions will have a significant impact on Hainan’s 
carbon storage, especially when natural factors are affected by human 
activities, and the variance in the carbon storage function will 
be more significant.

4 Discussion

4.1 Effect of land use change on storage of 
carbon in Hainan Island (2000–2020)

The storage level and sequestration potential of carbon in the 
terrestrial ecosystem have always been a concern, which is crucial for 
identifying the carbon cycle mechanism and formulating emission 
reduction policies (Gao et al., 2023). This research adopted carbon 
density data and land use for Hainan Island between 2000 and 2020 to 
analyze the distribution characteristics of Hainan Island’s carbon 
storage. The results demonstrate that Hainan Island presented a 
downward tendency in both carbon storage and density over the two 

decades, falling by 5.90 Tg and 1.75 Mg/hm2. This indicates that the 
carbon storage capacity of Hainan Island has weakened during the 
period. It can be  explained by the rapid social and economic 
development of Hainan Island from 2000 to 2020. Particularly, since 
the implementation of the Hainan International Tourism Island policy 
in 2010, land use has undergone drastic changes (Lei et al., 2020), 
leading to a large amount of cropland and forestland being converted 
into built land. The net increase in built land area was 605.49 km2, an 
increase of up to 77.05%. The development of built land has stripped 
off the surface soil, compacted the soil, and cleared vegetation in large 
green spaces, resulting in a significant decrease in above-ground 
carbon density and soil carbon density (Chen et al., 2013), leading a 
drop in carbon density and carbon storage across the island. This 
conforms to the findings from other scholars. Liang et  al. (2021) 
evaluated the effect of land use change on storage of carbon in the 
Loess Plateau in China between 1995 and 2050, and found that the 
built land’s quick expansion and fluctuations in cropland made carbon 
storage fall. Xiang et al. (2022a) also found through their analysis of 
carbon storage change in the major urban region of Chongqing 
between 2000 and 2020 that the transfer of land use was mainly from 
cropland to built land, which increased the region of built land quickly, 
resulting in a fall of 5.78 Tg in carbon storage and 10.57 Mg/hm2 in 
carbon density in the major urban region of Chongqing. Liu Z. et al. 
(2022b) proposed that the changes in LUCC in Hainan Island from 

FIGURE 5

Prediction of land use types in the island in multiple scenarios (2030–2050).
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FIGURE 6

Statistics of land use area in Hainan in multiple scenarios.

FIGURE 7

Changing storage and density of carbon in multiple scenarios in the island (2000–2050).
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1992 to 2019 resulted in a decrease of approximately 1.50 Tg in carbon 
storage, with the occupation of cropland by built land being the major 
cause for the fall in carbon storage.

This research found that the forestland’s carbon storage in the 
island was the highest from 2000 to 2020, which was 314.49–319.46 
Tg, occupying over 70% of the total, indicating that the forestland 
carbon pool, as the largest one in the terrestrial ecosystem of Hainan 
Island, acts a crucial part in maintaining and stabilizing the carbon 
storage of the whole island. But it has accumulated a decrease of 4.97 
Tg from 2000 to 2020, resulting in a dampening effect on the carbon 
storage function. The forestland carbon density on average in Hainan 
Island is 146.43 Mg/hm2, which is basically consistent with the values 
of 147.66 Mg/hm2 from Gao et al.’s study of carbon density of forest 
ecosystem in Hainan Island (2023), 163.70 Mg/hm2 from Ren et al.’s 
study of carbon density of forest ecosystem on the basis of continuous 
inventory data in Hainan Province (2014), and 149 ± 12 Mg/hm2 from 
Liu et al.’s study of carbon density of subtropical forest ecosystem 
(2018b). This indicates that the research findings on the forestland 
carbon storage and density in Hainan Island are reliable. In addition, 
there is significant room for improvement in the forestland carbon 
storage and density in Hainan. In 1994, commercial logging of 
ancient woodlands in Hainan was completely halted, and measures 
such as closing hillsides to facilitate afforestation were implemented, 
effectively protecting ancient woodlands resources. Moreover, with 
the comprehensive protection and systematic restoration of ancient 
forests in the National Park of Hainan Tropical Rainforest, the 
secondary forests, inefficient plantations, pulp and paper forests in 
the central mountainous areas of Hainan have been gradually 
restored to tropical ancient forests with rich species and diverse 

levels. Some studies have shown that high tree species richness can 
increase the carbon stock of tropical forest ecosystems 
(Kothandaraman et al., 2020), and each additional tree species will 
increase the carbon stock by 6.4% (Liu X. J. et al., 2018). In addition, 
research shows that the sink-increasing effect of afforestation will 
change regularly as the forest age increases. The increase in forest age 
between 2000 and 2040 will lead to an increase in China’s forest 
vegetation carbon stocks by 6.69 Pg C (Yao et al., 2018). Therefore, by 
altering the structure of a single tree species, future forest 
management can move toward near-natural afforestation with 
multiple tree species and stable forest ages. It is recommended to 
actively cultivate and use top-notch local tree species that can 
maintain carbon sequestration and further optimize forest structure, 
appropriately update the forest age structure, and optimize the spatial 
and temporal distribution of forest age and stand structure (Piao 
et  al., 2022), which will precisely enhance forest quality, steadily 
increase carbon sequestration and sink potential, and maximize the 
potential offsetting capacity of forest ecosystems to achieve 
carbon neutrality.

4.2 Multi-scenario prediction of carbon 
storage in the island (2030–2050)

The CA-Markov and the InVEST models in this study are to 
assess the influence of land use change imposed on storage of carbon 
in Hainan Island in three future scenarios of NDS, FPS, and EPS from 
2030 to 2050. In the NDS scenario, Hainan Island will have the 
greatest rise in built land area from 2030 to 2050, with a rise of 

FIGURE 8

Carbon storage’s spatial variances in multiple scenarios in Hainan Island from 2020 to 2050.
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1885.98 km2 in total over 30 years. Since the area of cropland and 
forestland will shrink, a substantial types of land use featuring with 
high carbon density, such as cropland and forestland, will shift to 
built land with low carbon density. Compared to 2020, the storage of 
carbon in 2050 would fall by 17.36 Tg, the lowest among the three 
simulated scenarios. This result conforms to the other scholars’ 
conclusions. Jiang et al. (2017) investigated the influences of urban 
growth on storage of carbon in the Changsha-Zhuzhou-Xiangtan city 

group, and discovered that the conversion of cropland and forestland 
to built land was the primary cause of the largest storage loss of 
carbon in the NDS scenario from 2014 to 2023. Zhu et al. (2019) 
studied storage of carbon of the Qihe River Basin in the Taihang 
Mountains in China in different scenarios and found that the carbon 
storage and density decreased significantly in the NDS scenario, 
mainly because the cropland area continued to decrease and the built 
land continued to expand.
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FIGURE 9

Temporal variances of storage of carbon in various types of land use (2020–2050).

TABLE 6 Factor detection results.

Impact 
factor

DEM Slope NDVI Soil 
type

Annual 
precipitation

Annual 
temperature

Land use 
intensity

GDP Population 
density

q statistic 0.486 0.583 0.472 0.393 0.142 0.119 0.566 0.272 0.398

p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Since Chinese government has always emphasized the 
significance of food security, the method of controlling the total 
amount of basic farmland is adopted in the FPS scenario, which is in 
line with the development goals proposed in the “Territorial Spatial 
Planning of Hainan Province. Of the three simulation scenarios, the 
FPS scenario has the lowest reduction in cropland area of only 
112.52 km2. The food security of the whole province is effectively 
safeguarded, with carbon storage reduced by 13.61 Tg and cropland 
carbon storage reduced by only 1.18 Tg. In the EPS scenario, 
restrictions will be imposed on the arbitrary conversion of natural 
ecological land across the province, in line with the ecological 
environment protection goals proposed for constructing the Hainan 
Free Trade Port and the National Ecological Civilization Pilot Zone. 
The EPS scenario has the lowest reduction in forestland and water 
land, and the least rise in built land. In this scenario, the entire storage 
of carbon of the island is 429.41 Tg in 2050, which is the highest 
among the three simulated scenarios, with only a decrease of 8.06 Tg. 
Among them, the carbon storage of forestland only decreased by 3.69 
Tg, and that of cropland decreased by 8.14 Tg, while that of built land 
increased by 3.81 Tg. This indicates that in this scenario, the 
protection and restriction of ecological lands like forests, grasslands, 
and water bodies have effectively curbed the risk of carbon storage 
reduction in Hainan Island, which is conducive to maintaining 
ecosystem service functions (Lei et al., 2020). Hoque et al. (2021) 
found the dynamic changes in artificial development of forest and 
ecosystem carbon storage through their study of storage of carbon in 
the coastal areas of Bangladesh in the three simulated land 
management scenarios. With improved ecological protection and 
forest management, future carbon storage in coastal Bangladesh will 
rise slightly, mainly due to the increase in artificial forest areas, which 
promotes increased regional carbon storage. Oppositely, if ecological 
protection is not accounted in the future, carbon storage will 
significantly decrease in the process of high urbanization. These 
findings are also reflected in other scholars’ researches. Xiang et al. 
(2022a) found in their study of carbon storage changes in the major 
urban region of Chongqing in 2035 that in the highly urbanized 
scenario, carbon storage decreased by 5.25 Tg overall, which is 

significantly higher than the natural trend scenario where carbon 
storage decreased by 3.37 Tg. This suggests that urbanization and 
growing built land have a crucial impact on reducing carbon storage.

In 2022, Hainan proposed to develop a new urbanization model for 
the island, adhering to coordinated planning, construction and 
management of the entire island as a major metropolis and picturesque 
area. By examining the influence of changing land use imposed on storage 
of carbon in Hainan in three scenarios: NDS, FPS and EPS from 2030 to 
2050, this study reveals how land use spatial control affects the 
quantification of regional development and environmental protection. 
And, simulations of future carbon storage changes depending on multiple 
land use scenarios give a reference for planning regional land use.

4.3 Influencing factors of carbon storage 
spatial distribution in Hainan Island

Relevant research shows that the carbon storage’s spatial 
distribution in terrestrial ecosystems is the result of the 
comprehensive effect of natural and human factors like topography, 
vegetation type, climate conditions, etc. (Hofhansl et  al., 2020; 
Kothandaraman et al., 2020; Han et al., 2023). Regarding carbon 
storage’s spatial distribution, Hainan Island generally exhibits a 
pattern of high carbon storages in the middle and low carbon 
storages in the surrounding areas, which highly conforms to the 
topographic distribution characteristics of the whole island. Mainly, 
areas with high value are distributed in the Tropical Rainforest 
National Park located in Hainan’s central mountainous areas, 
dominated by tropical virgin wildwood featuring high stand quality 
and strong carbon reserves. Areas with low value are mainly 
distributed in surrounding areas with lower elevations, primarily 
encompassing cropland and built land, especially in urban areas such 
as Haikou and Sanya cities, where the carbon storage is relatively low. 
As for mountainous areas, Xiang et  al. (2022a) found that the 
low-carbon storage areas in the main urban area of Chongqing are 
mainly concentrated in Yuzhong District, which is mainly focused 
on construction land and has a fast urbanization process; High 

FIGURE 10

Interaction detection and ecological detection results. The underline indicates that the two factors’ interaction is nonlinear enhancement, while the 
rest is dual-factor enhancement; Y represents significant correlation, while N represents insignificant correlation.
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carbon storage areas are mainly distributed in mountainous systems 
dominated by forests, with strong carbon storage, reflecting the 
impact of terrain, landforms, and land use intensity on the 
distribution pattern of regional carbon storage. The analytical 
outcomes of this research using geo-detectors reveal that factors such 
as land use intensity, slope, and DEM are the major drivers of spatial 
differentiation of carbon storage in the island, which conforms to the 
conclusions of the above analysis. Other influencing factors include 
NDVI, population density, soil type, GDP, etc. According to Han 
et al. (2023), the spatial variance of carbon storage is mainly affected 
by annual average NDVI, human activity intensity and other factors 
through geographical detectors. Pereira et al. (2015) also found that 
soil type is the driving factor affecting the carbon storage spatial 
allocation. Moreover, the influence of annual rainfall and temperature 
is relatively small, indicating that differences in meteorological 
factors have a minor impact on Hainan’s carbon storage. This 
conclusion is consistent with Wang C. W. et al. (2023), who argued 
that climate factors such as annual temperature and precipitation on 
average are not the predominant factors for the spatial variance of 
carbon storages in the Taihang Mountains. Wang C. W. et al. (2023) 
discovered that NDVI and soil type had a significantly larger impact 
than other elements on the carbon storage spatial variance. The 
results of the interaction detection demonstrate that the influence of 
any two factors exceeds that of a single factor, and the synergistic 
enhancement effect formed by the complicated coupling of different 
driving factors together influences the spatial differentiation of 
storage of carbon in Hainan Island (Xiang M. et al., 2022; Han et al., 
2023). The interaction of DEM, slope, and land use intensity with 
other factors has a generally higher explanatory power, implying that 
the synergistic effect of regional topography and land use intensity 
with other factors is the major element to affect the spatial 
differentiation of Hainan’s carbon storage.

5 Conclusion

This study combines the CA-Markov and InVEST models to 
analyze the changes in carbon storage and its reaction to land use 
changes in Hainan from 2000 to 2020. Changes concerning land use 
and carbon storage in Hainan Island were predicted in three different 
scenarios from 2030 to 2050 in this study. Geo-detectors were also 
used to explore the influencing factors and driving mechanisms of 
the carbon storage’s spatial allocation in Hainan. From 2000 to 2020, 
Hainan’s carbon storage and density have shown a downward trend 
over the two decades, with a decrease of 5.90 Tg in carbon storage 
and 1.75 Mg/hm2 in carbon density. Compared with 2020, the carbon 
storage of Hainan Island in 2050 decreased by 17.36 Tg in Natural 
Development Scenario (NDS), 13.61 Tg in Farmland Protection 
Scenario (FPS), and 8.06 Tg in Ecological Protection Scenario (EPS), 
indicating a lowest carbon storage level of NDS and a highest one of 
EPS. With respect to spatial allocation, the carbon storage of Hainan 
Island generally illustrates a distribution pattern of high in the low 
and middle around. Areas with high value are chiefly found in the 
southern and central mountainous regions of the island. Areas with 
low value are chiefly found in lower-lying areas around the island. 
Geo-detector analysis shows that slope, land use intensity, and DEM 
are the main impact factors for such a spatial difference, and its 
interaction with other factors shows a general reinforcement, 

revealing that the synergistic impact of terrain and land use intensity 
with other factors is the major cause of the spatial change in Hainan’s 
carbon storage.

In summary, under the strategic framework of the “carbon 
peaking and carbon neutrality” goals and the national ecological 
civilization pilot zone, when optimizing future land use structure and 
formulating land use policies on Hainan Island, FPS and EPS should 
be taken into consideration comprehensively. We recommend proper 
control of expanding built land in low-altitude regions around Hainan 
Island, stronger protection of high-quality cropland, and systematic 
ecological restoration projects in high-altitude areas, especially within 
the Hainan Tropical Rainforest National Park. In addition, by restoring 
the integrity and authenticity of tropical rainforest ecosystems, 
stabilizing and improving carbon storage capacity, ecological security 
and the amount of cropland can be effectively ensured, thus providing 
important support for achieving green, low-carbon, and sustainable 
development in Hainan.
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