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Introduction: Coastal forests occupy low-lying elevations, typically adjacent to

tidal salt marshes. Exposed to increased flooding with sea level rise, coastal

forests have retreated as salt marshes advance upslope. Coastal forests likely

currently experience periodic tidal flooding, but whether they temporarily

accommodate or quickly succumb to rising sea level under changing climatic

conditions remains a complex question. Disentangling how tidal flooding and

climate affect tree growth is important for gauging which coastal forests are

most at risk of loss with increasing sea levels.

Methods: Here, dendrochronology was used to study tree growth relative to

climate variables and tidal flooding. Specifically, gradients in environmental

conditions were compared to species-specific (Pinus taeda, Pinus rigida, Ilex

opaca) growth in coastal forests of two estuaries (Delaware and Barnegat Bays).

Gradient boosted linear regression, a machine learning approach, was used to

investigate tree growth responses across gradients in temperature, precipitation,

and tidal water levels. Whether tree ring widths increased or decreased with

changes in each parameter was compared to predictions for seasonal climate

and mean high water level to identify potential vulnerabilities.

Results: These comparisons suggested that climate change as well as increased

flood frequency will have mixed, and often non-linear, effects on coastal forests.

Variation in responses was observed across sites and within species, supporting

that site-specific conditions have a strong influence on coastal forest response

to environmental change.

Discussion: Site- and species-specific factors will be important considerations

for managing coastal forests given increasing tidal flood frequencies and climatic

changes.

KEYWORDS

tidal flooding, tree rings, dendrochronology, gradient boosted regressions, maritime
forests
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1 Introduction

Coastal forests, or those occupying supratidal lands adjacent
to tidal marshes, experience periodic flooding that influence their
health and longevity. Forests retreat upslope as trees die with
increased flooding by sea level rise (SLR) adjacent to tidal marsh
borders, eventually allowing tidal marshes to migrate inland.
Dead trees are already a prominent part of many marsh-forest
ecotones (Smith, 2013; White et al., 2021). Although the outcome
is clear (i.e., tree death), the ecological thresholds, time frames,
and development of forest retreat is less so. Land slope is likely
a key driver of retreat rates, but some studies show variability in
low slope areas (see Smith, 2013; Schieder et al., 2018; Sacatelli
et al., 2023). Mature trees can also possibly survive decades between
when saltwater flooding begins and mortality occurs (Kirwan et al.,
2007; Hall et al., 2022; Chen and Kirwan, 2023). In New Jersey,
USA, sea levels are likely to rise 60 cm over the next 80 years
(Kopp et al., 2019) and, as a result, trees in coastal forests
are increasingly at risk of mortality due to saltwater exposure
(Zhang et al., 2021; McDowell et al., 2022). How trees respond
to environmental conditions will be important for predicting
where or when existing coastal forests die back with SLR. For
coastal managers, understanding when a forest might succumb to
increasing floods will be important to plan for landscape changes in
the next century as climates change and SLR accelerates.

Changing climatic conditions, in addition to increasing flood
frequencies, add additional complexity to whether coastal forests
might temporarily accommodate or quickly succumb to rising sea
levels. In the broader US Northeast region, which includes the
Mid Atlantic, air and oceanic temperatures are likely to increase
and precipitation events may become more intense (Dupigny-
Giroux et al., 2018). These changes will have direct consequences
to tree phenology and resilience across the Mid Atlantic (Butler-
Leopold et al., 2018), but species-specific vulnerability will likely
drive variations in responses to changing conditions (Swanston
et al., 2018). For tree species situated at their southernmost ranges,
for example, warming temperatures could increase the probability
of mature trees suffering from concurrent heat and flooding, since
unrelated yet simultaneous disturbance events can exacerbate stress
(Niinemets, 2010). Tree species already at their northern range
limits, however, might gain resilience as temperatures rise. For
these trees, warming might reduce the probability of temperature-
related stress occurring contemporaneously with coastal floods.
It stands to reason that climatic effects on tree growth would
influence predictions of coastal forest retreat to SLR, yet recent
mapping efforts find that these influences can be complex or not
significant across a marsh-forest ecotone (Chen and Kirwan, 2022,
Molino et al., 2023).

How environmental conditions affect tree growth is important
for gauging which coastal forests are most at risk of retreat with
climate change and increasing sea levels. Deviations from species-
specific environmental optima reduce tree growth, with repeated
growth reductions signaling increasing tree stress (Ogle et al., 2000;
Bigler and Bugmann, 2004; Niinemets, 2010). If stressful conditions
persist, mortality results (Bigler and Bugmann, 2004). Thus, the
relative risk of mortality due to SLR in extant coastal forests can
be studied by measuring tree growth over time. Dendrochronology
is a useful tool to study growth relative to climate and tidal flooding

in the Mid Atlantic. While improved mapping may help further
refine spatial patterns in forest stress and retreat (Chen and Kirwan,
2022, 2023), dendrochronology offers an additional perspective for
analyzing how the intricacies of past environmental conditions
affected tree growth. Predictions on future growth might also be
developed by comparing growth-condition relationships over past
decades (Lloyd et al., 2013; Gu et al., 2019). Dendrochronological
studies can supplement mapping or ecological studies by providing
an understanding of which factors induce tree stress in low-lying
coastal forests, which in turn helps predict critical points in tree
stress or mortality and, therefore, forest retreat.

Dendrochronology was used here to study how gradients
in environmental conditions affect species-specific (Pinus taeda,
Pinus rigida, Ilex opaca) growth in coastal forests of two estuaries
(Delaware and Barnegat Bays). Haaf et al. (2021) previously
reported on correlations with climatic conditions and tidal water
levels at these same sites, but correlation results can be limited
in scope. For instance, correlation tests fail to detect non-linear
relationships that are common in tree responses to environmental
conditions (Anderson-Teixeira et al., 2022). Correlation tests
are nonetheless important for a general understanding of tree
responses, like those needed for climatic reconstructions, but
on an ecological level, additional syntheses could elucidate
variability in forest vulnerability to retreat under rising sea level.
This study examines how coastal flooding and climatic factors
influence tree growth in coastal forests using gradient boosted
regressions, in addition to some linear analyses. Gradient boosting
improves regression models through an iterative, algorithmic
machine learning process (Elith et al., 2008). Gradient boosted
regressions offer more power than simple linear-based tests
(e.g., Pearson correlations) to find relationships among multiple
parameters with complications such as collinearity, non-linearity,
and autoregression (Elith et al., 2008; Dormann et al., 2013; Lloyd
et al., 2013; Gu et al., 2019). We chose gradient boosted regressions
given their use and higher performance compared to other models
in previous tree ring research (Lloyd et al., 2013; Fang et al., 2015;
Gu et al., 2019; Sahour et al., 2021; Kuhl et al., 2023). From gradient
boosted results, we also develop baselines from which to anticipate
how changing conditions, in both climate and coastal flooding,
might affect the future growth of trees in coastal forests.

2 Materials and methods

2.1 Study sites and study species

We based our analyses on trees sampled from four coastal forest
study sites — two each in the Delaware Bay and Barnegat Bay in
the US Mid Atlantic (Figure 1). Sites were selected by gentleness
of slope, proximity to intertidal marshes, possible inundation if
sea levels rose 1.2 m (which is approximately the most recent
maximum tide level in Lewes, DE as a result of Hurricane Sandy
in 2012; Fanelli et al., 2013), and the abundance of large diameter,
low elevation trees (Figure 2 and Haaf et al., 2021). We used
previously published dendrochronological records from loblolly
pine (Pinus taeda L.), pitch pine (Pinus rigida Mill.), and American
holly (Ilex opaca Aiton) for this study (Haaf et al., 2021; Table 1,
Figure 2, and Supplementary Figure 1). In Delaware Bay, 51 loblolly
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FIGURE 1

Map of study sites in New Jersey and Delaware (black boxes) along with the location of NOAA tide gages used to study relationships between tree
growth and coastal water levels (black circles).

pines were cored at Jakes Landing, NJ (39.178◦N, −74.853◦W)
and 60 American hollies were cored at the St Jones Delaware
National Estuarine Research Reserve, DE (39.089◦N, −75.439◦W).
In Barnegat Bay, 51 pitch pines were cored at Cattus Island, NJ
(39.981◦N, −74.128◦W) and 51 American hollies were cored at
the Lighthouse Center, NJ (39.089◦N, −75.439◦W). Additional
descriptions are in Haaf et al. (2021).

Across their range, loblolly and pitch pine are found
where maximum temperatures are below 38◦C, with pitch pines
withstanding cooler minima than loblolly pines (−40◦C vs.
−23◦C, respectively) (Burns and Honkala, 1990a). No maximum
temperatures have been recorded for American holly, but
minimum temperatures across the species range is −23◦C (Burns
and Honkala, 1990b). Cumulative annual precipitation for all three
species is approximately 1,000–1,500 mm (Burns and Honkala,
1990a,b). Loblolly pines reach their most northern distribution in
New Jersey, whereas American hollies reach their most northern
distribution in Massachusetts. Both loblolly pine and American
holly have southern distributions that extend southwest to eastern
Texas. Generally, pitch pine has a more northerly distribution,
from Maine to eastern Tennessee (Burns and Honkala, 1990a,b).
All three species occur in an array of forest types, from mesic to
xeric, across the eastern US and are common in forests abutting
salt marshes in these areas.

2.2 Dendrochronological analysis

Trees cores, diameter-at-breast height, and coordinates were
collected from 213 trees across the four study sites from 2018
to 2020 using standard field procedures (see Pilcher et al., 1990
for standard procedures). Tree ring widths were measured to a
precision of ± 0.001 mm using a Velmex

R©

unislide table coupled
with Tellervo

R©

measurement software. Cores were cross-dated and
verified using COFECHA (Holmes, 1983). Detrended ring width
indices (RWI) were derived from ring width lengths (RWL) using
cubic smoothing splines, using R statistical software with the “dplR”
package (Cook et al., 1990; Bunn et al., 2022; R Core Team, 2022).
Detailed site descriptions, field methods, and core preparation
methods are reported in Haaf et al. (2021).

2.3 Climate and water level data

Temperature and precipitation data for the study areas
were obtained from the National Centers for Environmental
Information (NCEI) regional climate datasets (available range from
1,895 to 2,020) (Haaf et al., 2021; Figures 3, 4). Maximum monthly
water level reports from 1980 to 2020 were obtained for each
National Oceanic and Atmospheric Administration (NOAA, 2020)
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FIGURE 2

Graph of individual tree elevation and distance to the marsh edge for loblolly pines at Jakes Landing (A), American hollies at St. Jones (B), pitch pines
at Cattus Island (C), and American hollies at the Lighthouse Center (D). Point sizes vary by diameter at breast height (DBH) and point color varies by
age. Solid vertical line is the marsh edge at each site, solid horizontal line is local mean higher high water, and dashed horizontal line is the local
maximum lunar tide level from ∼2000–2019.

TABLE 1 Species description and previously published monthly
environmental parameter correlations.

Species Monthly environmental
condition correlations
(Haaf et al., 2021)1

Loblolly pine
(Pinus taeda L.)

[–] antecedent December water level
[+] February temperature

American holly2

(Ilex opaca Aiton)
[+] antecedent December
precipitation
[+] March precipitation
[+] January water level

Pitch pine
(Pinus rigida Mill.)

[–] June water level

1Drought was also analyzed in Haaf et al. (2021) but is not within the scope of this paper. 2St
Jones only; no monthly temperature, precipitation, or water level parameters were significant
for hollies at the Lighthouse Center (yet some drought conditions were significant, see Haaf
et al., 2021). Symbols in brackets denote whether the monthly correlation was positive [+]
or negative [−].

real-time gage closest to each study site: Cape May, Lewes, and
Atlantic City (NOAA, 2020; Figures 3, 4 and Supplementary
Figure 2). It is important to note that these water level values
were used as proxies and may not be entirely reflective of flood

conditions at our coastal forest sites. For additional methods on the
sourcing, derivation, and treatment of water level and climate data,
see Haaf et al. (2021). On average, seasonal climatic conditions were
relatively similar among sites within the relatively small latitudinal
gradient (i.e., 39.089◦N to 39.981◦N) from 1981 to 2020 (Figure 3).
Mean temperatures ranged from −0.94◦C to 24.4◦C with a mean
of 12.5◦C. Cumulative precipitation ranged from 29 to 207 mm,
with a mean of 96 mm Mean maximum water levels ranged from
1.08 to 1.83 m NAVD88, with an overall mean of 1.10 m. Over
the last forty years (∼1980 to present), most seasonal temperatures,
precipitation, and sea level have significantly changed (Figure 4).

We compared the historical distribution of temperature and
precipitation from 1980 to 2019 to climate projections for
2019-2080 (Figure 3). Climate projections for Shared Socio-
economic Pathways 2 (SSP2-4.5 or SSP2) from Coupled Model
Intercomparison Project 6 (CMIP6) was selected because it is the
intermediate greenhouse gas emissions scenario, with little change
in CO2 emissions until ∼2050; other scenarios have emissions
either declining or doubling (IPCC, 2023). We downloaded CMIP6
data using the Google Earth Engine CMIP6 Explorer (GEECE; Guo
et al., 2018; Krasting et al., 2018; Lea et al., 2024).

Sea level projections to 2080 for a low-intermediate to
intermediate climate scenario with 0.3 m global sea level
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FIGURE 3

Boxplots of seasonal mean water level (m NAVD88, top row), cumulative precipitation (middle row), and mean temperature (bottom row) by site and
species. Seasons are colored and arranged left to right: spring, summer, autumn, and winter. For each seasonal parameter, a solid colored line
represents the predicted mean value for 2080.

rise were chosen for each NOAA tide station from Sweet
et al. (2022). We added these increase values to current mean
high water at each station to obtain a localized projection
value. This represents a linear rise in sea level, although will
likely rise exponentially through time (Callahan et al., 2017,
Kopp et al., 2019, Taherkhani et al., 2020).

2.4 Statistical analyses

2.4.1 Gradient boosted regression
Gradient boosted regression trees, or gradient boosted models

(GBMs), is an ensemble machine learning technique that builds a
series of regressions; each new model corrects previous models by
training to predict residual error. GBMs were constructed using
a linear formula predicting tree ring width indices given seasonal
temperature, precipitation, and maximum tidal water levels using
the “gbm” package in R (R Core Team, 2022; Ridgeway et al., 2024):

RWI = Tw + Pw + Ww + Ts + Ps + Ws + Tu +

Pu + Wu + Ta + Pa + Wa (1)

Where RWI is the ring width index, T is mean seasonal
temperature, P is monthly cumulative precipitation for the season,

and W is mean seasonal water level. Seasons were winter
(December–February); spring (March–May); summer (June–
August); and autumn (September–November). Environmental
parameters (T, P, and W) are denoted with the following subscripts
for each season: w is winter, s is spring, u is summer, and
a is autumn. All seasonal parameters were contemporaneous
with the year of tree growth. GBMs were tuned with various
hyperparameters, such as a shrinkage rate of 0.08, and set to stop
before 1 terminal node was reached (see Supplementary Table 1
for tuning parameters used here and Bentéjac et al., 2021 for a
discussion on tuning hyperparameters). GBMs were also cross-
validated (nfolds = 5, random splits).

Growth optima can be interpreted through single-variable
partial dependence plots (PDPs; Greenwell, 2017) by discerning
where the response variable (i.e., RWI) is maximized along the
parameter gradient (Lloyd et al., 2013; Gu et al., 2019). PDPs
show predicted RWI (ŷ) for each seasonal parameter within the
GBM (Equation 1). Both linear regressions and generalized additive
models (GAM) of GBM model outputs were then used to discern
and visualize how growth responses varied as parameter values
changed (for GAMs, we used “mgcv” and “ggplot2” packages in
R; Wood, 2011; Wickham, 2016). GBM modeled RWI values (i.e.,
ŷ) were compared to current (1979–2019) seasonal summaries of
temperature, precipitation, and tidal water levels to discern whether
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FIGURE 4

Seasonal trends over time in mean water level (blue, left panes), cumulative precipitation (green, center panes), and mean temperature (red, right
panes) for Cape May, New Jersey (other sites follow similar patterns). Seasons are arranged top to bottom by row: spring, summer, autumn, and
winter. Regression lines are provided for trends that were significant (p < 0.05).

existing conditions fell below, met, or exceeded model-derived
optima. Finally, we compared current averages to climate and sea
level projections for the next ∼60 years (see section 2.3 “Climate
and water level data”) relative to modeled growth response to see
how climate change will affect growth predictions for species at
each site.

2.4.2 Backward elimination and generalized
additive models

In addition to comparisons with the previous correlation study
on each site’s mean chronology (i.e., Haaf et al., 2021), here we
ran traditional statistical tests on the relationships among climate
variables, water levels, and tree ring width to help contextualize
GBM results. We first built several linear mixed models consisting
of raw RWLs with individual trees as random effects and year,
seasonal mean temperature, cumulative precipitation, and mean
maximum tidal water as fixed effects. We used backward log-
likelihood stepwise elimination to simplify these models and
identify which variables were likely the best linear parameters of
current tree growth using the “buildmer,” “lme4,” and “MuMIn”
packages in R (Bates et al., 2015; Voeten, 2022; Bartoń, 2023).

Next, we constructed pairwise interaction-only GAMs for each
site using the “mgcv” package in R (Wood, 2011). Each GAM model
accounted for individual trees and grouped two-way relationships
by season (i.e., no interactions among seasons were tested). These
GAM results were then used to identify which pairs had significant
(α = 0.05) smoother terms and if those relationships were linear
(effective degrees of freedom, or edf = 1) or non-linear (edf > 1).
Although GBMs were run on RWI, similar to previous correlation

studies, these additional tests were run on RWLs of individual trees
to account for tree-specific variation.

3 Results

3.1 Model fits

3.1.1 Gradient boosted regression
GBM test set accuracy results ranged from 82 to 97% and

root mean square errors (RMSE) ranged from 0.128 to 0.271 mm
(Supplementary Table 1). Relationships between loblolly pine
RWI and environmental variables at Jakes Landing had the
lowest RMSEs among the sites (∼0.12 units RWI), whereas
American hollies at St Jones was highest (∼0.25 units RWI).
Relationships between environmental conditions and pitch pine
RWI at Cattus Island and American holly RWI at the Lighthouse
Center had RMSEs of about ∼0.20 mm across all models
(Supplementary Table 1).

Of the 48 linear models used to discern trends in GBM-modeled
RWI with seasonal environmental parameters (i.e., PDP results), 35
tests were statistically significant (73%; < 0.05) (Figures 5–8). At
Jakes Landing, regressions of modeled RWI in PDPs suggest that
modeled RWI significantly increased with increasing water levels
in spring, summer, and autumn, but decreased with increasing
water levels in winter (Figure 5). Modeled RWI also significantly
increased with increasing spring and winter precipitation. For
temperature, modeled RWI significantly increased with spring,
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FIGURE 5

Loblolly pine, Jakes Landing. Partial dependence plots of model-fitted RWI for seasonal [spring, (A); summer, (B); autumn, (C); and winter, (D)] water
level, precipitation, and temperature. Black lines are means of cross-validated models (also see Supplementary Figure 3). Dashed trend lines are
linear regressions shown when p < 0.05. Linear regression results, shown in color (in gray if p > 0.05), consist of the model equation, adjusted R2,
and p-value. Curvilinear trends, with gray 95% confident boundaries, are fitted with a generalized additive model (GAM). GAM effective degrees of
freedom (edf) are shown in black. Solid vertical lines are current means (1980–2019) for each environmental variable, whereas broken lines are the
2080 projected value for precipitation, temperature, and water levels. Triangular symbols in the upper left of each pane represent whether RWI
trends for each seasonal parameter suggest more (upward triangle) or less (downward triangle) growth as the climate changes or sea levels rise.
Panes without these symbols show which comparisons were inconclusive, based on lack of linear trends in growth or because the environmental
parameter has minimal predicted change.

summer, and winter temperatures, but decreased with warmer
autumn temperatures. For American hollies at St Jones, modeled
RWI significantly decreased with increasing water levels in
summer but increased with increasing water levels in winter
(Figure 6). Modeled RWI also significantly increased with
increasing precipitation across spring, summer, and autumn, but
RWI decreased with increasing winter precipitation. Modeled RWI
significantly increased with spring and summer temperature but
decreased with increasing winter temperatures.

At Cattus Island, modeled pitch pine modeled RWI
significantly increased with increasing summer water levels, but
decreased with increasing spring water levels (Figure 7). Modeled
RWI decreased with increasing summer, autumn, and winter
precipitation but increased with increasing spring precipitation.
Modeled RWI increased with increasing spring and winter
temperatures. For American hollies at the Lighthouse Center,
modeled RWI significantly increased with increasing spring and
winter water levels (Figure 8). Modeled RWI significantly increased

Frontiers in Forests and Global Change 07 frontiersin.org

https://doi.org/10.3389/ffgc.2024.1362650
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-07-1362650 August 28, 2024 Time: 11:10 # 8

Haaf and Dymond 10.3389/ffgc.2024.1362650

FIGURE 6

American holly, St Jones. Partial dependence plots of model-fitted RWI for seasonal [spring, (A); summer, (B); autumn, (C); and winter, (D)] water
level, precipitation, and temperature. Black lines are means of cross-validated models (also see Supplementary Figure 4). Dashed trend lines are
linear regressions shown when p < 0.05. Linear regression results, shown in color (in gray if p > 0.05), consist of the model equation, adjusted R2,
and p-value. Curvilinear trends, with gray 95% confident boundaries, are fitted with a generalized additive model (GAM). GAM effective degrees of
freedom (edf) are shown in black. Solid vertical lines are current means (1980–2019) for each environmental variable, whereas broken lines are the
2080 projected value for precipitation, temperature, and water levels. Triangular symbols in the upper left of each pane represent whether RWI
trends for each seasonal parameter suggest more (upward triangle) or less (downward triangle) growth as the climate changes or sea levels rise.
Panes without these symbols show which comparisons were inconclusive, based on lack of linear trends in growth or because the environmental
parameter has minimal predicted change.

with increasing spring precipitation but decreased with increasing
autumn and winter precipitation. Modeled RWI significantly
decreased with spring, summer, and autumn temperatures.

3.1.2 Backward elimination and generalized
additive models

Backward elimination of linear models suggested several
possibly important environmental parameters of tree growth for
both locations in the Delaware Bay (Table 2). Individual trees
accounted for 62% of the model variance at Jakes Landing and

31% of the variance at St Jones. Marginal R2 (i.e., fixed without
random effects) values for Jakes Landing and St Jones were 0.0266
and 0.0826, respectively; conditional R2 (i.e., with random and
fixed effects) values for Jakes Landing and St Jones were 0.633
and 0.368, respectively. Backward elimination suggested intercept-
only models for both Barnegat Bay sites, so no parameters were
identified for a good model fit (Table 2).

GAM results for single parameters explained a large portion
of deviance at all sites (60–97%), with all tests, except for
spring precipitation for American holly at the Lighthouse

Frontiers in Forests and Global Change 08 frontiersin.org

https://doi.org/10.3389/ffgc.2024.1362650
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-07-1362650 August 28, 2024 Time: 11:10 # 9

Haaf and Dymond 10.3389/ffgc.2024.1362650

FIGURE 7

Pitch pine, Cattus Island. Partial dependence plots of model-fitted RWI for seasonal [spring, (A); summer, (B); autumn, (C); and winter, (D)] water
level, precipitation, and temperature. Black lines are means of cross-validated models (also see Supplementary Figure 5). Dashed trend lines are
linear regressions shown when p < 0.05. Linear regression results, shown in color (in gray if p > 0.05), consist of the model equation, adjusted R2,
and p-value. Curvilinear trends, with gray 95% confident boundaries, are fitted with a generalized additive model (GAM). GAM effective degrees of
freedom (edf) are shown in black. Solid vertical lines are current means (1980–2019) for each environmental variable, whereas broken lines are the
2080 projected value for precipitation, temperature, and water levels. Triangular symbols in the upper left of each pane represent whether RWI
trends for each seasonal parameter suggest more (upward triangle) or less (downward triangle) growth as the climate changes or sea levels rise.
Panes without these symbols show which comparisons were inconclusive, based on lack of linear trends in growth or because the environmental
parameter has minimal predicted change.

Center, suggesting important non-linear smoothers for model
fit (Figures 5–8). Additionally, pairwise interaction term GAMs
suggest that, 32 of the 48 tests (66%) had represented a significant
interaction (α < 0.05) and 26 of those 32 significant tests were
non-linear (81%; edf > 1) (Table 3).

3.2 Climate change and tree growth

Climate change predictions varied across seasons (Figure 3),
and coupled with already observed trends in these parameters

(Figure 4), represent considerable possible changes to growth
capacity in these coastal forests. Predictions for precipitation
were similar to current autumn and winter levels, but spring
projections were typically higher, and summer lower, than
the current the means. Predictions for temperature and water
levels were higher for all seasons. These predictions mostly
corroborate trends observed over the last 40 years, except
for precipitation, which tends to have higher variability
that limits finding significant trends over time, and spring
temperatures, which have been increasing despite predictions of
cooling.
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FIGURE 8

American holly, Lighthouse Center. Partial dependence plots of model-fitted RWI for seasonal [spring, (A); summer, (B); autumn, (C); and winter, (D)]
water level, precipitation, and temperature. Black lines are means of cross-validated models (also see Supplementary Figure 6). Dashed trend lines
are linear regressions shown when p < 0.05. Linear regression results, shown in color (in gray if p > 0.05), consist of the model equation, adjusted
R2, and p-value. Curvilinear trends, with gray 95% confidence boundaries, are fitted with a generalized additive model (GAM; not shown if effective
degrees of freedom (edf) = 1). GAM edf are shown in black. Solid vertical lines are current means (1980–2019) for each environmental variable,
whereas broken lines are the 2080 projected value for precipitation temperature, and water levels. Triangular symbols in the upper left of each pane
represent whether RWI trends for each seasonal parameter suggest more (upward triangle) or less (downward triangle) growth as the climate
changes or sea levels rise. Panes without these symbols show which comparisons were inconclusive, based on lack of linear trends in growth or
because the environmental parameter has minimal predicted change.

In comparing trends in growth variation across each seasonal
parameter with predicted climate or water level change (see black
triangles in Figures 5–8), patterns emerged that suggested tree
growth might be affected positively or negatively by predicted
changes. At Jakes Landing, loblolly pine growth might increase
due to warmer springs, summers, and winters, wetter winters (i.e.,
increased precipitation), and higher spring, summer, or autumn
water levels, yet decrease due to warmer autumns, drier springs and
increasing winter water levels (Figure 5). For American holly at St

Jones, growth may increase due to warmer springs and summers,
as well as increasing winter water levels, but decrease in response
to drier springs and autumns, wetter winters, increased summer
water levels, and warmer winter temperatures (Figure 6). For Cattus
Island, pitch pine growth may increase due to warmer springs
and winters, increasing summer water levels, and drier autumns,
yet growth may decrease in response to drier springs and wetter
winters, and increased spring water levels (Figure 7). American
holly at the Lighthouse Center may experience increased growth
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TABLE 2 Linear mixed models results from backward elimination.

Site, species Parameters Coefficient Standard error t

Jakes Landing, loblolly pine Ta −0.113 0.022 −5.03

Wa −1.14 0.24 −4.74

Tw +0.148 0.17 8.30

Ww −0.975 0.19 −5.07

St Jones, American holly Pa 0.00141 0.00021 6.50

Ws −0.823 0.21 −3.78

Pu 0.00152 0.00027 5.44

Wu −1.29 0.27 −4.71

Tw 0.0947 0.013 7.18

Pw 0.00228 0.00030 7.42

Ww 0.840 0.12 6.54

Cattus Island, pitch pine Intercept only

Lighthouse Center, American
holly

For parameters, T is temperature, P is precipitation, and W is water level; seasons for each parameter are denoted with the following subscripts: w is winter, s is spring, u is summer, and a is
autumn. All parameters shown had p-values < 2 10−4 .

due to increased water levels in spring and winter, as well as drier
autumns, yet grow less in response to drier springs, wetter winters,
and warmer springs, summers, and autumns (Figure 8).

4 Discussion

The mortality and retreat of coastal forests in response to
climate change and sea levels rise will shape future coastal
landscapes. Although slope likely plays a fundamental role in
how quickly forests are affected by rising sea levels (Smith, 2013;
Schieder et al., 2018; Molino et al., 2021), the variability of rates
in moderate to low slope environments suggest that ecological
or site-specific characteristics are important factors in retreat
(Fagherazzi et al., 2019; Powell et al., 2024). One likely component
of this variability is how different tree species respond to changing
environmental conditions, which can be discerned through tree
ring patterns (Fritts, 1978). As temperatures rise, precipitation
changes, and flood frequency increases (Figures 3, 4), studying tree
rings to understand growth responses to environmental conditions
can help managers foreshadow how coastal forests may fare into the
future. As a first step, this study sought to examine how tree growth
varies with environmental conditions (i.e., climate, tidal flooding)
and infer the effects of changing conditions on the vulnerability for
tree species common in the low-lying coastal forests in New Jersey
and Delaware to future mortality.

Higher water levels are generally thought to reduce tree growth
and these results suggested that while this might be the case
occasionally, positive associations between RWI and water levels
were detected regularly (e.g., Ww for American holly at St Jones,
Table 2; Figures 5A–C, 6D, 7B, 8A, D). Other recent studies have
also found mixed growth responses to increased saltwater flood
exposure (Field et al., 2016; Haaf et al., 2021; Noe et al., 2021).
One possible mechanism is that conditions that correlate with tidal
water levels, like groundwater levels, could have regular influence
on tree growth within these coastal forest systems. As an example,

higher tide levels elevate groundwater tables and could enhance
moisture availability during times of low precipitation (e.g., via
hydraulic lift; Dawson, 1996). Groundwater has been shown to
subsidize tree growth in sandy soils (Ciruzzi and Loheide, 2021),
which are common in the coastal plains of New Jersey and Delaware
(Markewich et al., 1990). How these conditions affect tree growth
within a broader geographical scale, however, is unclear (see local
case studies by Hirano et al., 2018; Kearney et al., 2019; Wang
et al., 2020; Ross et al., 2021) and more research is needed to make
predictions at the landscape level. Another possible explanation
is that during high water events, trees may not be directly
flooded or may not be flooded long enough to elicit detectable
responses, especially if floods last less than a few hours or days.
Trees might evade short-term flood damage by closing stomata,
with damage taking days to develop (e.g., anaerobic conditions;
Kozlowski, 1982). Importantly, our analyses here look only at
contemporaneous conditions within the year of tree growth, but it
is highly likely that growth effect lags exist with previous conditions,
such that future studies should consider previous months, seasons,
or even years to elucidate possible relationships.

Gradient boosting regression models in this study suggested
that seasonal conditions and their predicted changes have varied
consequences on growth (Figures 5–8). Changes across a parameter
gradient could be detrimental or beneficial to trees depending
on growth responses (Lloyd et al., 2013; Gu et al., 2019). For
instance, results for Jakes Landing loblolly pine here show a
strong increase in growth with increasing winter temperatures
(Figure 5D), which mirrors results from linear mixed models
(Table 2) and previous correlation studies (Table 1; Haaf et al.,
2021). Especially as its most northern distribution, warming
winters will likely have positive effects on loblolly pine growth given
strong positive correlations with winter temperatures. Loblolly ring
widths, however, may decrease with warmer autumns (Figures 3, 4,
5C). Warmer autumn temperatures may interfere with latewood
production if temperatures drop abruptly thereafter (Piermattei
et al., 2015; Begum et al., 2018), potentially leading to higher
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TABLE 3 Two-way interaction generalized additive models.

Site, species, deviance explained Interaction pair Edf F-statistic

Season Parameters

Jakes Landing, loblolly pine, 60.9% Autumn T, P 3.8 8.90

Spring T, P 1.0 10.3

W, P 4.1 5.07

T, W 0.030 0.009

Summer T, P 3.7 7.03

W, P 5.4 5.42

T, W 3.0 2.64

Winter T, W 5.3 8.52

St Jones, American holly, 46.6% Autumn W, P 8.3 9.73

Spring T, P 9.3 13.5

W, P 1.0 22.0

T, W 0.39 0.097

Summer T, P 3.4 12.3

T, W 1.2 0.481

Winter W, P 4 7.26

Cattus Island, pitch pine, 69.1% Autumn W, P 10 7.87

T, W 3.1 2.03

Spring T, P 2.3 6.78

W, P 3.8 23.3

Summer T, P 1.0 30.5

W, P 5.4 16.2

Winter T, P 1.5 5.83

W, P 1.0 9.82

T, W 1.6 1.86

Lighthouse Center, American holly, 48.0% Autumn W, P 9.1 11.0

Spring T, P 5.3 10.2

T, W 1.0 0.682

Summer T, P 7.3 6.77

W, P 1.0 25.4

T, W 4.4 8.66

Winter T, P 1.8 4.34

W, P 1.0 79.2

For parameters, T is temperature, P is precipitation, and W is water level. Effective degrees of freedom (edf) allude to whether interaction was linear (edf = 1), non-linear (edf > 1), or uncertain
(edf < 1). All parameters shown had p-values ≤ 0.05.

cavitation vulnerability in the winter (Pereira et al., 2018). This,
in turn, may exacerbate vulnerability to higher winter water levels
thereafter (Figure 5D).

GBM results further showed that non-linear relationships
existed between growth and environmental parameters for most
sites and species (Figures 5–8 and Table 3). For instance, both
American holly at St Jones and pitch pines at Cattus Island have
non-linear responses to spring temperatures, where growth reaches
minima at mid-temperature ranges (∼10 or 11◦C) (Figures 7, 8).
On occasion, multiple extrema even suggest that some relationships
could be multi-nodal (e.g., holly growth relative to spring
precipitation at St Jones, Figure 6A). Although linear mixed models

match GMB output for Jakes Landing loblolly pine, non-linearity
could be why linear mixed model and GBM results were not
entirely congruent at St Jones. At St Jones, American holly had
four significant linear model coefficients (autumn and summer
precipitation; summer and winter water levels) that matched GBM
results. Yet, the other four parameters either had non-significant
linear relationships (i.e., autumn temperature, Figure 6C, and
spring water levels, Figure 6A) or GBM concurred that the
parameter was significant but directionality was opposite (i.e.,
winter temperature and winter precipitation, Figure 6D). In these
four examples, GAM results suggest a high degree of non-linearity
(where edf > 7.5). Secondly, linear mixed models generally failed
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for sites in Barnegat Bay and non-linearity may be the culprit.
GBM, in these instances, can provide insight into relationships
that linear tests might not be able to detect. Parameters that
suggest opposing results for different statistical tests require
more study to understand these relationships more definitively.
Regardless, non-linear and/or multi-modal relationships have also
been found in previous tree ring studies (Lloyd et al., 2013; Gu
et al., 2019; Matisons et al., 2021; Anderson-Teixeira et al., 2022).
Ultimately, non-linear relationships suggest biological or ecological
complexities exist that require further study (e.g., Rossi et al., 2013).

Site-specific responses to climate and flooding conditions could
be one of the likely leading mechanisms of variability in forest
retreat relative to rising sea levels. Site-specificity has received
recent focus in attempting to understand drought mortality
(Trugman et al., 2021). This study analyzed tree rings from
three species at four sites, across two estuarine settings, yet we
could not make generalizations about species- or estuary-specific
patterns of tree growth across environmental gradients. American
holly growth at the Lighthouse Center, for example, decreased
significantly with increasing autumn precipitation whereas holly
growth at St Jones increased (Figures 6B, 8B, respectively).
Hypothetically, hollies at the Lighthouse Center could be generally
more vulnerable to mortality during stormy and wet autumns
even though hollies St Jones likely have higher flood exposures
in general (i.e., lower elevations, Figure 2; Haaf et al., 2021).
A single large storm surge event during a wet autumn might
be particularly detrimental for hollies at the Lighthouse Center
if seasonal temperatures climb and precipitation had already
waterlogged roots, which may occur more frequently as autumn
precipitation increases (Figure 4).

Following Liebig’s Law, sensitivity to seasonal conditions
might vary for the same species at different locations depending
on site-specific limiting factors, such as nutrient or moisture
availability (Stine and Huybers, 2017; Stine, 2019). Topography,
soil types, forest structure (e.g., tree size/age classes, density) or
composition (e.g., species dominance), and flood or meteorological
exposure (Carr et al., 2020), could all also instill limitations on
resources and influence stress gradients. Interactions with site-
specific conditions, many of which may be non-linear, likely
predispose different coastal forests to stress in unique ways which
complicates predicting where or when coastal forests retreat as sea
levels rise.

5 Conclusion

Retreating coastal forests is a primary consequence of rising sea
levels, but regional variability in rates of retreat make predicting
where and how quickly forest loss will occur difficult. Patterns
in tree growth, as a proxy for stress and mortality vulnerability,
showed that relationships with climate and tidal flooding are
complex and frequently non-linear. As climates change, and
sea levels rise, some sites or species may confer benefits to
growth, whereas other sites may experience conditions that reduce
growth. Site-specificity of results underscores the importance
of local conditions on tree growth in coastal forests. To aid
future management efforts, future research should examine site-
specific mechanisms and explore non-linear relationships that may
contribute to tree responses to climate and tidal flooding.
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