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Pattern and change of NDVI and 
their environmental influencing 
factors for 1986–2019 in the 
Qinling-Daba Mountains of 
central China
Yonghui Yao *

State Key Laboratory of Resources and Environmental Information System, Institute of Geographic 
Sciences and Natural Resources Research, Beijing, China

Previous studies have shown that climate change and human activities play 
an important role in the vegetation dynamics in the Qinling-Daba Mountains 
of central China. However, which environmental factors including climate, 
topography, soil and human activities play an important role in the vegetation 
dynamics and its spatial pattern in the Qinling-Daba Mountains remains to 
be further clarified. Based on the normalized difference vegetation index (NDVI) 
data of the growing season from 1986 to 2019 synthesized by Landsat series 
satellite data on Google Earth Engine, this study aimed to further investigate 
the spatial pattern of NDVI and its dynamics, and clarify its environmental 
controlling factors in the Qinling-Daba Mountains using the methods of spatial 
analysis and Geodetector. The results showed that: (1) the spatial pattern of 
NDVI in the study area had a U-shaped NDVI distribution in latitude, anti-U-
shaped patterns in longitude and with increasing altitude. (2) 2005 was the year 
of NDVI breakthrough increase, and the vegetation dynamics was divided into 
two periods according to the result of MK mutation test: the slow increasing 
period with an increasing rate of 0.25%/a from 1986 to 2004 (R2 0.74), and the 
rapid increasing period with an increasing rate of 0.30%/a from 2005 to 2019 (R2 
0.92). (3) Topography regulating local hydrothermal conditions and soil enriching 
nutritions played more important influence on NDVI spatial pattern than climate 
factors (temperature and precipitation) at the regional scale. The effect of land 
use on NDVI change was stronger than that of climate warming (temperature), 
and the climate warming in recent decades played a more important role than 
precipitation on the NDVI dynamics. Research on vegetation patterns, changes 
and their environmental influencing factors will help the government and other 
related agencies to formulate plans or policies for infrastructure development 
and land management, ecological restoration.
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1 Introduction

Vegetation as an important part of the terrestrial ecosystem (Piao et al., 2003), has a 
significant influence on global material and energy flows, carbon balance and climate stability 
at different temporal and spatial scales (Schimel et al., 2000; Albani et al., 2006; Liu and Lei, 
2015; Ren and Li, 2003). Due to its high sensitivity to environmental changes, vegetation 

OPEN ACCESS

EDITED BY

Manob Das,  
Mykolas Romeris University, Lithuania

REVIEWED BY

Jianfeng Liu,  
Chinese Academy of Forestry, China
Sajjad Hussain,  
COMSATS Institute of Information 
Technology, Pakistan
Somen Dey,  
Ramananda College, India

*CORRESPONDENCE

Yonghui Yao  
 yaoyh@lreis.ac.cn

RECEIVED 18 January 2024
ACCEPTED 22 August 2024
PUBLISHED 06 September 2024

CITATION

Yao Y (2024) Pattern and change of NDVI and 
their environmental influencing factors for 
1986–2019 in the Qinling-Daba Mountains of 
central China.
Front. For. Glob. Change 7:1372488.
doi: 10.3389/ffgc.2024.1372488

COPYRIGHT

© 2024 Yao. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 06 September 2024
DOI 10.3389/ffgc.2024.1372488

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2024.1372488&domain=pdf&date_stamp=2024-09-06
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1372488/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1372488/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1372488/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1372488/full
https://www.frontiersin.org/articles/10.3389/ffgc.2024.1372488/full
mailto:yaoyh@lreis.ac.cn
https://doi.org/10.3389/ffgc.2024.1372488
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2024.1372488


Yao 10.3389/ffgc.2024.1372488

Frontiers in Forests and Global Change 02 frontiersin.org

dynamics has been recognized as an important indicator for 
monitoring the climate change (Parmesan and Yohe, 2003; Zhang and 
Li, 2023). Many studies on vegetation dynamics have used Normalized 
Difference Vegetation Index (NDVI) as an indicator to analyze the 
characteristics, dynamics and driving factors of vegetation (Fang et al., 
2003; Anyamba and Tucker, 2005; Jong et al., 2011; Wang J. et al., 2019; 
Wang W. et  al., 2019). Earlier studies paid more attention to the 
relationship between climate change and vegetation change and found 
that climate change was the main driving factor of vegetation 
dynamics (Anyamba and Tucker, 2005; Liu et al., 2015; Phillips et al., 
2008; Hussain et al., 2023). Recent studies have focused on the impacts 
of both human activities and climate change on vegetation dynamics, 
and the results suggest that human activities have both positive and 
negative impacts on vegetation change. The negative impacts of 
human activities on vegetation dynamics are mainly caused by the 
destruction and reduction in vegetation due to the infrastructure and 
commercial construction (Hussain et al., 2022; Deng et al., 2018) or 
urbanization (Yao and Cui, 2022). Some human activities such as land 
use management or ecological restoration projects, have positively 
contributed to the increase in NDVI (Chen et al., 2019a,b; Qu et al., 
2020; Jiang et al., 2021; Xu et al., 2021; Yao and Cui, 2022).

Regional NDVI change and its response to climate warming and 
human activities are still hot topics in current studies of global 
environmental change (Xu et al., 2021; Ma et al., 2012). The Qinling-
Daba Mountains known as the north–south transitional zone of China 
and a large east–west ecological corridor (Zhang, 2019; Yu et al., 2022), 
is a sensitive and important region for climate change (Luo, 2009) and 
human activities (Yao and Cui, 2022). And the vegetation of the 
Qinling-Daba Mountains has also undergone profound changes under 
the interaction of the climate warming and human activities (Yao and 
Cui, 2022; Li et al., 2022). Many studies analyzed the vegetation 
dynamics and its driving forces in the Qinling-Daba Mountains by 
NDVI and found that the NDVI showed a significant upward trend 
and the vegetation change was sensitive to temperature (Zhang et al., 
2011; He et al., 2011; Ren et al., 2012; Cui et al., 2012; Chen et al., 
2019a,b). However, some studies found that the NDVI change in the 
Qinling-Daba Mountains was due to the precipitation deficit (Liu et al., 
2015). Some other studies found that the NDVI in the Qinling 
Mountains had a decreasing trend (Sun et al., 2010; Sun et al., 2009). 
The above studies, which used different source or temporal data and 
methods in different local study areas (covering parts of the Qinling-
Daba Mountains such as Taibai Mountain or Micang Mountain), led 
to different conclusions. And they mainly focused on the trend of 
vegetation dynamics, and few of them discussed the spatial pattern of 
NDVI and its controlling factors at the regional scale.

Human activities have been shown to play an important role in 
climate and land surface changes (Stott et al., 2004; Wang et al., 2023). 
As an important composition of the land surface environment, 
vegetation dynamics is mainly related to topography, soil, climate 
conditions and human activities (Nemani et al., 2003; Xu, 2018). Recent 
studies have paid more attention to the effects of human activities and 
climate warming on vegetation dynamics. Cui et al. (2012) analyzed the 
response of vegetation to temperature and the distance from human 
aggregation areas in the Qinling Mountains from 2000 to 2009 based 
on MODIS NDVI data by linear regression and correlation analysis, 
and found that the temporal stability of vegetation was inversely 
distributed with the distance from human aggregation areas. Deng et al. 

(2018) pointed out that human activities had both positive (through 
the implementation of ecological restoration projects) and negative 
(through urbanization) effects on vegetation change. Yao and Cui 
(2022) analyzed the trend of NDVI change and its spatial variation with 
elevation, slope, and land use type based on annual growing season 
NDVI data from 1990 to 2019, and discussed the effects of climate 
warming and land use on vegetation dynamics. Although these studies 
discovered the increasing trend of NDVI values in Qinling-Daba 
Mountains in recent decades, and discussed the driving factors of 
climate change (temperature and precipitation) and human activities 
(land use), there is no further statement on which factor of them 
(climate change and human activities) plays more important roles on 
the vegetation dynamics in recent years. As we know, climate factors 
(temperature and precipitation) are the main controlling factors of 
vegetation distribution, while according to our field surveys and related 
studies, topography and soil in the Qinling-Daba Mountains have also 
significantly affected the NDVI pattern. But few studies have discussed 
the effects of topography and soils on regional NDVI patterns.

In a word, the spatial pattern of NDVI and its environmental 
influencing factors in the Qinling-Daba Mountains of central China 
need to be further investigated. Therefore, the objectives of this study are 
to further clarify: (1) the spatial pattern of NDVI and its environmental 
influencing factors in the study area; (2) which factor among these 
environmental factors plays a more important role in NDVI change in 
this region. Therefore, the environmental factors including climate, soil 
and topography are selected in this study to discover the influencing 
factor of NDVI pattern, and the factors including climate, population 
density, gross domestic product (GDP) and land use are selected as the 
influencing factors of NDVI change. The results of this study are of great 
significance for a comprehensive understanding of the impact of 
environmental factors, including climate warming and human activities, 
on the vegetation of the Qinling-Daba Mountains.

2 Datasets and methods

2.1 Study area

The Qinling-Daba Mountains, composed of the Qinling 
Mountains in the north, the Hanzhong Basin-Hanshui Valley in the 
middle, and the Daba Mountain in the south, is situated in central 
China (102°–114°E, 30°–36°N), covering a total area of about 
30.60 × 104 km2 (Qin et al., 2008), and is known as the transitional 
zone of China (Kou et al., 2020; Yao et al., 2020) (Figure 1). It extends 
1,000 km in the east–west direction and 200–300 km in the south–
north direction, covering 155 counties, 31 cities and 6 provinces in 
central China (Figure 1). As the north–south transitional zone in 
China, steep elevation gradients and complex climate make it a 
biodiversity hotspot, the vegetation in this region gradually changes 
from subtropical evergreen broadleaf forest to deciduous broadleaf 
forest from south to north, and has vertical zonality in the mountains 
(Liu and Lu, 1990); it is also an important habitat for rare animals, 
containing many nature reserves and national parks (Yu et al., 2022). 
Therefore, this area is one of the most important and concerned areas 
for biodiversity in China, and one of the most sensitive areas to 
climate change and human activities (Yao and Cui, 2022; Zhang 
et al., 2019).
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2.2 Datasets

The NDVI dataset used in this study was the annual growing 
season (May to September) NDVI data (30 m resolution) of Landsat 
5/ Landsat 7/ Landsat 8 from 1986 to 2019, which were synthesized 
using the maximum synthesis method on the Google Earth Engine 
(GEE) platform. Savitzky–Golay (SG) filtering was applied to the 
annual growing season NDVI data to further reduce the noise (Kou, 
2021). Temperature and precipitation data with 500 m resolution were 
downloaded from the Data Center of Resources and Environment 

Science, Chinese Academy of Sciences1 for 1980–2015, which were 
generated by 2,400 meteorological stations using the spatial 
interpolation method (Figures 2A,B). The ASTER GDEM (Advanced 
Spaceborne Thermal Emission and Reflection Radiometer Global 
Digital Elevation Model, downloaded from https://earthdata.nasa.
gov/) with 30 m resolution was mainly used to analyze the pattern and 
change of NDVI with variable altitude. Land cover data sets (1 km 

1 http://www.resdc.cn

FIGURE 1

Location and geomorphological map of the Qinling-Daba Mountains in central China.
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resolution) for 1990, 1995, 2000, 2005, 2010 and 2015 were 
downloaded from the Data Center of Resources and Environment 
Science, Chinese Academy of Sciences (see text footnote 1) 
(Figure  2C). The soil type data (Figure  2D), population density 
(1990–2015), and GDP data (1995–2015) (all with 1 km resolution) 
were also downloaded from the Data Center of Resources and 
Environment Science, Chinese Academy of Sciences (see text footnote 
1). Among of them, the soil type data were digitally generated 
according to the “1: 1,000,000 Soil Map of the People’s Republic of 
China” compiled and published by the National Soil Census Office in 
1995 (Figure 2D); the population density data and GDP data were 
based on the statistics of population and GDP by county, using the 
multi-factor weight distribution method to calculate the distribution 
weights of land use type, night light brightness, residential area 
density, and other related factors (Xu and Zhang, 2017) (Figures 2E,F). 
These data were used to analyze the influencing factors on NDVI 
pattern and change.

2.3 Methods

Firstly, the spatial patterns and dynamics of NDVI were analyzed. 
The Sen trend method (Sen, 1968) and Mann-Kendall (MK) 

significant test were used to analyze the NDVI trend for 1986–2019. 
The Sen trend method can effectively avoid the influence of time series 
data loss and data distribution form, and eliminate the interference of 
time series outliers (Liu et  al., 2010), and the MK significant test 
(Mann, 1945; Kendall, 1975) was conducted to test the significance of 
the calculated Sen trend. The MK mutation test (Karpouzos et al., 
2010) was used to determine the mutated NDVI change period and to 
discover the dynamic process of NDVI. The spatial patterns of NDVI 
along latitude, longitude and elevation in the Qinling-Daba Mountains 
were investigated by profile analysis (along 33.6° N and 107° E) and 
statistical analysis methods.

Then, the main environmental influencing factors of NDVI 
pattern and its change were investigated by Geodetector analysis. As 
we know, climatic factors such as temperature, precipitation, light and 
seasonal variation are the main factors influencing vegetation 
distribution, and soil factors such as soil type, texture, pH, and 
nutrient content have important effects on vegetation growth (Brady 
and Weil, 2008; Marschner, 2012). Topography regulates the local 
re-distribution of precipitation, soil moisture, and solar radiation, 
which in turn affect the distribution of vegetation (Bonan, 2015; 
Turner et al., 2001). Therefore, four factors, including soil type, DEM 
(as a combination of topographical factors such as elevation and 
slope), temperature and precipitation, were selected as the regional 

FIGURE 2

Main data and maps used in this study [(A) annual temperature; (B) annual precipitation; (C) land cover and land use in 2015; (D) soil map; 
(E) population density in 2015; (F) GDP in 2015].
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environmental influencing factors of NDVI pattern. Previous studies 
have found that climate change was the main driving factor for NDVI 
changes, although human activities also had important effects on 
NDVI changes, but it was weaker than that of these climate factors 
(Pei et al., 2019; Yang and Han, 2019; Tao et al., 2020; Zhang et al., 
2020). Therefore, temperature, precipitation, and three human activity 
factors including population density, GDP, and land use type (Table 1) 
were selected to reveal the driving factors of NDVI change in the 
Qinling-Daba Mountains based on the above mentioned data every 
five years. As the input data of the Geodetector requires classified data, 
all the selected factors were classified into the classified data with 9 
categories by the natural breakpoint method.

The Geodetector method was constructed on the assumption that 
when an independent variable has an important effect on a dependent 
variable, the spatial distribution of the independent variable and the 
dependent variable should be similar (Wang and Hu, 2012; Wang 
et al., 2010; Wang and Xu, 2017). It can quantitatively express the 
spatial stratification heterogeneity of the research object by analyzing 
the similarities and differences between the intra-layer variance and 
the inter-layer variance (Hu et al., 2011; Wang et al., 2013). At present, 
it has been widely used to detect the driving factors in many studies, 
such as land use (Hu et al., 2011), public health (Wang et al., 2013), 
regional economy (Ding et al., 2014), regional planning (Liu and Yang, 
2012; Yang et al., 2016), meteorology and environment (Du et al., 
2016), and vegetation change (Peng et al., 2019; Wang J. et al., 2019; 
Wang W. et al., 2019). Therefore, this study used the Geodetector 
method to detect the influencing factors of vegetation pattern and 
change. The Q-statistic in Geodetector can be used to measure spatial 
stratified heterogeneity, detect explanatory factors, and analyze the 
interactive relationship between variables (Wang and Xu, 2017). The 
range of the Q-statistic is [0, 1], and a larger value of the Q-statistic 
indicates that the independent variable has the stronger explanatory 
power on the dependent variable (Wang and Xu, 2017). At the 
extremes, a Q-statistic value of 1 indicates that the independent 
variable (X) completely controls the spatial distribution of the 
dependent variable (Y), and a Q-statistic value of 0 indicates that the 
independent variable of X has no relationship with the dependent 
variable of Y. The P-statistic, which corresponds to the Q-statistic of 
the independent variable (X), can be used to represent the significance 

of the variable X on the dependent variable Y. For example, a P-statistic 
of less than 0.05 means that the effect of the variable X on the 
dependent variable Y is significant, and a P-statistic of less than 0.01 
means that the effect of the variable X on the dependent variable Y is 
highly significant, which can be  interpreted as the smaller the 
P-statistic, the greater the reliability of the inference that a certain type 
of independent variable X has an effect on the dependent variable Y.

3 Results

3.1 NDVI spatial patterns and changes in 
the Qinling-Daba Mountains

3.1.1 The spatial patterns of NDVI
According to the spatial distribution of the average NDVI in the 

Qinling-Daba Mountains from 1986 to 2019 (Figure 3A), the NDVI 
showed a U-shaped distribution pattern in latitude and an anti-U-
shaped pattern in longitude and with increasing altitude 
(Figures 3C–E). Mountainous areas such as Qinling Mountains and 
Daba Mountains, especially the nature reserves such as Shennongjia 
Nature Reserve and Taibai Mountain Nature Reserve, etc., had higher 
NDVI average value (above 0.8) than other areas (e.g., Hanzhong Basin 
area). The Hanzhong Basin-Hanshui Valley in the middle of the 
Qinling-Daba Mountains, the low-altitude areas of the Funiu 
Mountain, and some areas in Gansu and Sichuan provinces had lower 
average NDVI values (between 0.4 and 0.6) than these mountainous 
areas, and the NDVI values around the cities along the Hanjiang River 
were even lower than 0.3. The NDVI values in the low-altitude areas in 
the northeast of the study area and the high-altitude areas in the west 
of the study area were also relatively low. Statistical analysis of NDVI 
mean values at different altitudes showed that the NDVI first increased 
and then decreased with increasing altitude: the NDVI mean value at 
an altitude below 500 m was 0.6857, at altitudes between 1,000 m 
and1500 m was 0.7884, and slightly decreased (from 0.7743 to 0.7343) 
at altitudes between 1,500 m and 3,500 m; above 3,500 m, the NDVI 
mean value decreased significantly; above 4,000 m, the NDVI mean 
value decreased to 0.4429 (Figure 3E). The spatial pattern of NDVI in 
the Qinling-Daba Mountains showed that the physical topography, 
such as elevation, played an important role in the NDVI pattern.

3.1.2 The temporal changes of NDVI
From 1986 to 2019, the NDVI in the Qinling-Daba Mountains 

showed a significant upward trend, with an average increase rate of 
0.28%/a (R2 of 0.943) (Figures 3B,G,H), indicating the continuous 
improvement of the vegetation cover in the study area, which was also 
found in the previous studies (Liu et al., 2015; Yao and Cui, 2022; 
Chen et al., 2019a,b). Another characteristic of the NDVI change was 
that the upward trend of NDVI was more obvious in the low-altitude 
areas (below 1,500 m), while the high-altitude mountainous areas 
(above 2000–3,000 m), especially the nature reserves, tended to remain 
stable, which was also found in our previous study (Yao and Cui, 
2022). For example, the places of Longnan County-Tianshui County 
in Gansu Province, the western part of Funiu Mountain, and the water 
conservancy area of the South to North Water Transfer Project had 
higher increasing rates of NDVI value, although where the NDVI 
values were slightly lower. On the contrary, the western mountainous 
areas of the study area and the nature reserves (such as the Taibai 

TABLE 1 Environmental influencing factors for NDVI pattern and change 
in the Qinling-Daba Mountains.

Factors Code Indictor Unit Factor 
type*

Geomorphology X1 Topography – ①

Soil X2 Soil type – ①

Climate

X3
Annual average 

temperature
°C

①, ②

X4
Annual 

precipitation
mm

①, ②

Economy

X5 Population density Person/km2 ②

X6 GDP

Ten 

thousand 

Yuan/km2

②

Land use X7 Land use type ②

*① Controlling factor for NDVI pattern; ② Driving factor for NDVI change.
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Mountain Nature Reserve and Shennongjia Nature Reserve) with high 
NDVI mean value had lower increasing rates, and the Sen trend values 
were between-0.005 and 0.005 (which did not pass the significant test 
at 0.05 level). Of cause, the NDVI value in the surrounding areas of 
cities and towns showed a decreasing trend (Figure 3B).

The result of MK mutation test on NDVI time series from 1986 to 
2019 was the same as that from 1990 to 2019 (Yao and Cui, 2022), 
which showed that NDVI had a breakthrough increase around 2005 
(Figure  3F). Combined with the growth and development 
characteristics of vegetation, the dynamic process of NDVI in the 

FIGURE 3

The temporal and spatial patterns of the average NDVI in the Qinling-Daba Mountains from 1986 to 2019 [(A) Multi-year average NDVI from 1986 to 
2019; (B) Temporal and spatial variation of NDVI Sen trend from 1986 to 2019; (C) Multi-year average NDVI along 107°E profile; (D) multi-year average 
NDVI along 33.6°N profile; (E) multi-year average NDVI at elevation; (F) MK mutation test of NDVI in the Qinling-Daba Mountains for 1986–2019; 
(G) Annual average NDVI trend from 1986 to 2004; (H) Annual average NDVI trend from 2005 to 2019].
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Qinling-Daba Mountains could be divided into two periods: the slow 
increasing period with an increasing rate of 0.25%/a from 1986 to 
2004 (R2 0.74), and the rapid increasing period with an increasing rate 
of 0.30%/a from 2005 to 2019 (R2 0.92).

3.2 Environmental influencing factors of 
NDVI patterns and changes

The Q-statistics of the four factors on vegetation cover pattern 
were ranked as soil type (X2) > topography (X1) > annual average 
temperature (X3) > annual precipitation (X4) (Table 2), which showed 
that physical environmental factors (soil and topography) played 
stronger influencing roles on the NDVI spatial pattern than climate 
factors in Qinling-Daba Mountains.

Based on the Geodetector analysis of environmental factors on 
NDVI change, the explanatory power (Q-statistic) of each factor was 
ranked as follows: land use type (X7) > annual average temperature 
(X3) > annual precipitation (X4) > population density (X5) > GDP (X6) 
(Table  3). This result showed that land use and temperature had 
stronger effects on regional NDVI changes than precipitation, and the 
effect of land use was stronger than that of temperature. The effects of 
population density (X6) and GDP (X7) were relatively weak 
(Q-statistic less than 0.06).

4 Discussion

4.1 Environmental influences on NDVI 
spatial pattern at the regional scale

When studying NDVI changes and patterns, climate and 
anthropogenic factors are often considered, but other 
environmental factors such as soil and topography are often 
neglected. It is well known that soil properties such as soil type, 

texture, pH, and nutrient content have important effects on 
vegetation growth (Brady and Weil, 2008; Marschner, 2012), and 
topography redistributes local hydrothermal conditions and soil 
nutrients, resulting in the changes in temperature, precipitation 
and vegetation along elevation (Bonan, 2015; Turner et al., 2001; 
Zhang et  al., 2009). In this study, although temperature and 
precipitation played important roles in the distribution and 
growth of vegetation, their effects on the spatial pattern of NDVI 
at the regional scale were weaker than soil and topography. In 
particular, the effect of precipitation on NDVI pattern was weaker 
than that of temperature in the study area. Therefore, when 
studying the influencing factors of NDVI patterns at different 
scales, we  should fully consider the effects of various 
environmental factors.

4.2 Effects of land use on NDVI changes in 
the study area

A recent study showed that the “Greening Earth” was attributed 
to human land use practices in China and India (Chen et al., 2019a,b). 
This study (Table 3) and other related studies on NDVI change in the 
Qinling-Daba Mountains also showed that land use had a great 
influence on NDVI change (Yao and Cui, 2022; Cui et al., 2012; Sun 
et al., 2010). The Qinling-Daba Mountains is not only an ecological 
functional area for biodiversity conservation in China, but also a water 
conservation area for the “South to North Water Transfer Project” in 
China. Many nature reserves (over 30), national forest parks (about 
37), national geological parks (11), and scenic spots (over 7) have been 
established in the study area from the 1960s to the present. The good 
condition of the vegetation was one of the achievements of these 
environmental protections. In addition, the rapid increase of NDVI in 
the areas below 1,500 m was partly contributed by the land use policies 
(Chen et al., 2019a,b; Yao and Cui, 2022). The Chinese government 
issued the Grain-for-Green policy in 1999–2000, and local 

TABLE 2 Geodetector analysis results of environmental factors on NDVI pattern in Qinling-Daba Mountains.

X1 X2 X3 X4

Topography Soil type Annual average 
temperature

Annual precipitation

Q-statistic 0.289 0.291 0.163 0.098

P-statistic 0.000 0.000 0.000 0.000

TABLE 3 Q-statistics of Geodetector analysis for environmental influencing factors of NDVI change in the Qinling-Daba Mountains.

Year X3 X4 X5 X6 X7

Annual average 
temperature

Annual precipitation Population density GDP Land use type

1990 0.117 0.061 0.039 - 0.167

1995 0.138 0.045 0.052 0.028 0.184

2000 0.132 0.104 0.047 0.030 0.178

2005 0.131 0.107 0.036 0.019 0.185

2010 0.158 0.063 0.045 0.021 0.160

2015 0.175 0.066 0.047 0.026 0.146

P-statistic for every factor was 0.000.
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governments formulated strict implementation measures (Chen et al., 
2019a,b; Chen et al., 2006; Zhang et al., 2010). One of the achievements 
of Grain-for-Green was that croplands in mountainous areas with 
slopes steeper than 25° were required to be returned to forest (or 
grassland), and those with slopes between 15° and 25° were 
conditionally returned to forest or grassland (Chen et al., 2006; Zhang 
et al., 2010). During the field survey of the “Comprehensive Scientific 
Investigation of the North–South Transitional Zone” project, it was 
also found that a large number of croplands in the mountainous areas 
below 1,500 m were returned to forest. Moreover, the croplands also 
contributed to the increase in NDVI due to the rapid growth of hybrid 
cultivars, multiple cropping, irrigation, fertilizer use, pest control, 
improved seed quality, farm mechanization, credit availability, and 
crop insurance schemes (Chen et al., 2019a,b; Yao and Cui, 2022). 
Therefore, places below 1,500 m have higher NDVI increases, and the 
breakthrough increase period was around in 2005 (Figure 3). All these 
indicate that land use in the Qinling-Daba Mountains has had a 
positive effect on vegetation dynamics in recent years, and its effect on 
NDVI change was even stronger than that of climate warming. The 
temperature of the study area has been warming significantly, while 
the precipitation has been increasing slightly (Yao and Cui, 2022). That 
is why the effect of precipitation was weaker than that of land use and 
temperature on NDVI change in this area.

4.3 Appropriate indicators of 
anthropogenic factors

Due to the lack of high-resolution quantitative data on human 
activities (Xie and Yao, 2024), most quantitative analyses of human 
activities have focused on land use, population density, or 
GDP. However, except for land use data, the resolution and quality of 
population density and GDP data are not good enough to characterize 
human activities. As a result, the results obtained are not satisfactory. 
Additionally, infrastructure construction such as transportation and 
roads, social and economic development, and urbanization also affect 
the NDVI change. Therefore, which indicators can better reflect the 
impact of human activities on NDVI, especially how to objectively 
evaluate the impact of human activities on NDVI, remains to be further 
explored. Moreover, human activities have greatly affected every aspect 
of the Earth and have a profound influence on vegetation change, so 
there is a need for a more comprehensive indicator that can synthesize 
the various human activities. Recently, quantitative methods for 
assessing and analyzing the impact of human activities on the natural 
environment, as well as data products, have also developed rapidly. 
Human activity intensity (HAI) has been widely used to assess and 
quantify the impacts of human activities on landscapes (Goudie, 2018; 
Shrestha et al., 2021). There are some useful HAI data products such as 
HAI data (Xie and Yao, 2024), the global human footprint map 
(Sanderson et al., 2002; Venter et al., 2016; Mu et al., 2022) and the 
wildness map (Lin et al., 2016; Cao et al., 2019), which can greatly 
facilitate our analysis of the impact of human activities on NDVI.

5 Conclusion

The aim of this study is to discover the spatial pattern of NDVI 
and its environmental influencing factors in Qinling-Daba Mountains, 
and to find out which factor among of them plays a more important 

role in the NDVI change in recent decades. The conclusions of this 
study are as follows:

 1. NDVI in the Qinling-Daba Mountains showed a U-shaped 
pattern in latitude, and anti-U-shaped patterns in longitude 
and with increasing altitude, indicating that the topography 
played an important role in the regional NDVI pattern.

 2. NDVI in the Qinling-Daba Mountains showed a significant 
upward trend and experienced a dynamic change process (with 
a breakthrough increase period around 2005) for 1986–2019. 
According to the results of this study, the process of vegetation 
dynamics could be divided into two periods: the slow increase 
period from 1986 to 2004 (with an increase rate of 0.25%/a) and 
the rapid increase period from 2005 to 2019 (with an increase rate 
of 0.30%/a). The rapid increase period was coincided with the 
implementation period of the Grain-for-Green project and other 
ecological restoration projects in the early 21st century, which 
showed that land use, especially those forest conservation and 
expansion programs, strongly contributed to the NDVI increase.

 3. Soil and topography played a more important role in the spatial 
pattern of NDVI than climate (temperature and precipitation) 
at the regional scale. The effect of land use on NDVI change 
was stronger than that of climate warming (temperature), and 
the climate warming in recent decades played a more important 
role than precipitation on the NDVI dynamics.

The results of this study indicated that the physical environmental 
factors such as soil, topography and climate control the spatial pattern 
of NDVI, and human activities play a more important role in NDVI 
change than climate change in recent decades. It is useful for the 
government and other related agencies to formulate plans or policies for 
infrastructure development and land management, ecological restoration.
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