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Examining changes in woody
vegetation cover in a
human-modified temperate
savanna in Central Texas
between 1996 and 2022 using
remote sensing

Horia Gabriel Olariu*, Bradford P. Wilcox and Sorin C. Popescu

Department of Ecology and Conservation Biology, Texas A and M University, College Station, TX,

United States

Savanna ecosystems across the globe have experienced substantial changes in

their vegetation composition. These changes can be attributed to three main

processes: (1) encroachment, which refers to the expansion of woody plants

into open areas, (2) thicketization, which is characterized by the growth of

sub-canopy woody plants, and (3) disturbance, defined here as the removal

of woodland cover due to both natural forces and human activities. In this

study, we utilized Landsat surface reflectance data and Sentinel-1 SAR data to

track the progression of these process from 1996 to 2022 in the significantly

modified Post Oak Savannah ecoregion of Central Texas. Our methodology

employs an ensemble classification algorithm, which combines the results of

multiple models, to develop a more precise predictive model, along with the

spectral–temporal segmentation algorithm LandTrendr in Google Engine (GEE).

Our ensemble classification algorithms demonstrated high overall accuracies of

94.3 and 96.5% for 1996 and 2022, respectively, while our LandTrendr vegetation

map exhibited an overall accuracy of 80.4%. The findings of our study reveal

that 9.7% of the overall area experienced encroachment of woody plants into

open area, while an additional 6.8% of the overall area has transitioned into a

thicketized state due to the growth of sub-canopy woody plants. Furthermore,

5.7% of the overall area encountered woodland disturbance leading to open

areas. Our findings suggest that these processes advanced unevenly throughout

the region, resulting in the coexistence of three prominent plant communities

that appear to have long-term stability: a dense deciduous shrubland in the

southern region, as well as a thicketized oak woodland and open area mosaic in

the central and northern regions. The successional divergence observed in these

plant communities attests to the substantial influence of human modification

on the landscape. This study demonstrates the potential of integrating passive

optical multispectral data and active SAR data to accurately map large-scale

ecological processes.
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1 Introduction

Savanna ecosystems hold significant value, as they encompass

∼20% of the Earth’s land surface and contribute to 30% of terrestrial

net primary production (NPP) (Grace et al., 2006). Savanna

ecosystems are home to∼20% of the global population and support

a significant portion of the world’s ranching livestock (Scholes and

Archer, 1997). However, the conservation of these ecosystems is

often overlooked because accurately defining and characterizing

them is challenging. Savannas exhibit remarkable diversity in that

they may be dominated by either woody or herbaceous plant

species; typically, those having low percentages of woody cover

are classified as grasslands, and those having high percentages of

woody cover are classified as closed-canopy woodlands (Fowler

and Beckage, 2019). This results in conservation efforts that aim

to either afforest or deforest natural savannas to better align with

their classification.

Savannas are predominantly found in tropical regions, and

most of the research on savannas has been conducted in Africa,

South America, and Australia (Lehmann et al., 2014). The diverse

collections of open-canopy savannas in subtropical and temperate

regions have received comparatively little attention, despite the

fact that these ecosystems exhibit more distinct characteristics

than their tropical counterparts. It is estimated that across North

America, there exist thirteen distinct types of savannas—six which

are found in the state of Texas (Fowler and Beckage, 2019). Many

of the open-canopy savanna ecosystems in Texas have undergone

a process of woody plant encroachment (WPE), resulting in their

transformation to shrublands or woodlands. This WPE can be

attributed to various factors including the expansion of human

settlements over the past 150 years, intensive grazing practices,

and the suppression of natural fire regimes (Van Auken, 2009; Sala

and Maestre, 2014; Pyne, 2016; Stevens et al., 2016). Furthermore,

WPE can be categorized into two distinct forms, encroachment

and thicketization. Encroachment is characterized by the spread

of woody vegetation into open areas primarily occupied by

herbaceous species (Van Auken, 2009), while thicketization refers

to the increase of understory woody evergreen species within

deciduous woodlands (Leite et al., 2020) (Figure 1). Lastly, certain

regions have experienced an opposing phenomenon known as

disturbance, which refers to the loss of woodland coverage as a

result of natural and/or human activities (Frolking et al., 2009)

(Figure 1).

Woody plant encroachment in the ecologically and climatically

diverse savannas of Texas is a substantial, yet poorly understood

component of the North American carbon budget (Barger et al.,

2011). There is a significant transition from predominantly

belowground biomass in open canopy savannas to aboveground

biomass in thicketized closed canopy woodlands. However, a

synthesis conducted by Zhou et al. (2023) has indicated that

afforestation in savannas has minimal impact on soil organic

carbon, thereby adding complexity to the dynamics of the carbon

budget. Woody plant encroachment significantly influences the

hydrological cycle by altering various components of the water

budget equation, including precipitation, runoff, groundwater

recharge, and evapotranspiration (Bonan, 2008; Eldridge et al.,

2011, 2015; Wine et al., 2012; Leite et al., 2020; Zhou et al.,

2023). Additionally, the frequency of fires has a significant impact

on the ecological diversity of open-canopy savannas undergoing

WPE (Brewer, 2023). During the initial phase of encroachment,

there is a rapid decline in grassland dependent herbaceous species

(Fuhlendorf et al., 2002; Lautenbach et al., 2016), although certain

species may tolerate up to 15% coverage of woody plants (Archer,

2009).

To gain a comprehensive understanding of the ecological

consequences of WPE in open canopy savannas, researchers

necessitate precise and reliable land use and land cover (LULC) data

from which the rate of conversion of open areas to closed-canopy

woodlands can be calculated. LULC data is predominantly obtained

via satellite imagery, the science of which is commonly referred

to as satellite remote sensing. This method is widely recognized

as the nexus between identifying distinguishable patterns on the

Earth’s surface and quantifying ecological impacts on a large scale

(Zhu et al., 2022). Over the past decade, there have been significant

technological advancements in sensor quality and big data retrieval

algorithms. “Remote sensing satellites provide imagery that covers

a wide range of wavelengths, including visible light, infrared

radiation, and microwave radiation (Thies and Bendix, 2011).

They have advanced to the point where they can estimate bio-

geophysical parameters; according to Wu et al. (2019), remote

sensing techniques are capable of quantifying 81 of the 142

parameters related to the atmosphere, oceans, and land surfaces

as defined by the Global Climate Observing System (GCOS),

including parameters such as evapotranspiration (Tang et al., 2015),

soil moisture (Al-Yaari et al., 2019), and leaf area index (Xu et al.,

2018).”

Previous research has indicated that the integration of

synthetic aperture radar (SAR) with visible light imagery is

highly advantageous in distinguishing between areas of vegetation

dominated by trees and adjacent open areas (Huang et al., 2012;

Wang et al., 2018, 2021; Shi et al., 2020; Yang et al., 2021; Lewis

et al., 2022). From 2015 to 2017, Yang et al. (2021) employed

the Phased Arrayed L-band Synthetic Aperture Radar-2 (PALSAR-

2) instrument on board the Advanced Land Observing Satellite-2

(ALOS-2) in conjunction with Landsat 7/8 (surface reflectance)

imagery to generate the first forest map (with a minimum tree

height of 2 meters) for the Southern Great Plains region, at a

30-meter resolution, achieving accuracies as high as 99.2%. In a

comparable investigation, Wang et al. (2018) employed PALSAR-

2 and Landsat 5/7/8 (surface reflectance) imagery to delineate the

intrusion of juniper woodlands into Oklahoma grasslands between

the years 1984 and 2010, achieving accuracies between 89.1 and

96.0%. And Lewis et al. (2022), in their study conducted in the

Brazilian Cerrado, employed a combination of Sentinel-1 SAR and

Sentinel-2 (surface reflectance) imagery to map both native and

non-native savanna vegetation. The overall classification accuracies

achieved in their study ranged between 88.6 and 92.6%.

Other studies have demonstrated the effectiveness of machine

learning (ML) algorithms in accurately classifying remotely sensed

data for quantifying woodland cover over spatially extensive

regions (Pal, 2005; Rogan et al., 2008; Camargo et al., 2019;

Talukdar et al., 2020; Alshari et al., 2023). There has been a recent

increase in interest in the utilization of sophisticated machine

learning (ML) algorithms, including support vector machines
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FIGURE 1

The 1996 images are presented in [Red(R): Near-Infrared (NIR), Green (G): Red, Blue (B): Green] and were captured by the Texas Orthoimagery

Program (TOP) on January 1st, 1996, with a spatial resolution of 1m. The images captured in 2022, displaying (R: NIR, G: Red, B: Green), were

acquired by the Capital Area Council of Governments (CAPCOG) on January 22, 2022, with a spatial resolution of 30 cm. The encroachment instance

at coordinates 96.2341011◦W, 30.8000698◦N exemplifies the proliferation of woody vegetation into open area. The example of thicketization

(96.9604040◦W, 30.3720750◦N) demonstrates the growth of subcanopy woody plants (bright red trees) in a woodland that was previously dominated

by deciduous oak trees (gray trees). The example of the Disturbance (97.2251174◦W, 30.0711242◦N) demonstrates the clearance of a previous

evergreen/mixed woodland area.

(SVM), random forest (RF), and ensemble stacking algorithms.

These algorithms demonstrate high efficacy when applied to

tasks that involve structured and labeled data. Moreover, artificial

neural networks (ANNs), which emulate the functioning of the

human brain, are attracting interest due to their capacity to

analyze unstructured data. In a semiarid Texas savanna, Olariu

et al. (2022) employed RF, SVM, and a convolutional neural

network (CNN) to map tree species encroachment using resampled

UAV imagery, achieving overall accuracies exceeding 96% when

compared to ground reference data. In a separate investigation
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carried out by Long et al. (2021) an ensemble stacking algorithm

was utilized to analyze Sentinel-2 imagery to delineate eight distinct

land cover classes within the Dongting Lake wetland in central

China, achieving accuracies exceeding 94% when compared to

high resolution imagery and the Copernicus Global Land Cover

Layers- Collection 2 (Buchhorn et al., 2020). Finally, Ge et al. (2019)

used an ANN to analyze Sentinel-1 SAR data for the purpose of

mapping different land cover types in a Mediterranean savanna

ecosystem. The study reported an overall accuracy rate of 90%when

compared to randomly selected testing data collected using high

resolution imagery.

This research is conducted within the Post Oak Savannah

ecoregion located in Central Texas. This ecoregion, which extends

across a vast area (over 55,000 km2, stretching from the southern

to the eastern parts of the state), has undergone significant

transformations since the arrival of European settlers in the early

19th century (Griffith et al., 2007). As a consequence, these

ecosystems have become mere remnants of their former bounty,

both in extent and ecological function. Most of the Post Oak

Savannah ecoregion is located within the Carrizo–Wilcox (CW)

aquifer recharge zone, which extends from the southern region of

Texas to the northeastern parts of Louisiana and Arkansas. The

aquifer underlying this zone serves as a water source for more

than 66 counties, making it the third most important aquifer in

Texas (Hutchison, 2009; Huang et al., 2012). However, the growing

human population and consequent increase in water demands

have led to a decline in the CW aquifer’s water levels, and WPE

has been identified as a contributing factor (Moore et al., 2012).

A study conducted by Basant et al. (2023) in the CW aquifer

determined recharge of groundwater is minimal under thicketized

oak woodland stands, whereas recharge rates of 3–18 cm/year was

found for open areas. The study also found a higher probability of

water infiltration into the soil surface in open areas, with instances

of sub-surface saturation observed exclusively in open areas and

never in woodlands.

Based on qualitative anecdotal evidence (Campbell, 1925;

Tharp, 1926; McBride, 1933; Parmalee, 1955; Garza and Blackburn,

1985; Midwood et al., 1998; Singhurst et al., 2004; Griffith et al.,

2007; Stambaugh et al., 2011), the Post Oak Savannah ecoregion

has experienced a substantial transformation in land cover over

the past century. Nevertheless, the absence of a quantitative

evaluation has not yet provided support for these assertions, thus

indicating a gap in research. Hence, considering the documented

alteration in land patterns during the precious decades, along

with WPE, the Post Oak Savannah ecoregion has established

favorable circumstances for the utilization of modern remote

sensing techniques to quantitatively evaluate the extent of change

in land cover.

The objective of our study is to comprehensively analyze the

temporal changes in land cover within the Post Oak Savannah from

1996 to 2022, employing a range of remote sensing methodologies.

Specifically, we aim to characterize the three primary processes of

change— namely, encroachment, thicketization, and disturbance—

as illustrated in Figure 1. Our research methodologies consists

of five fundamental steps: (1) Integration of data from multiple

sources, including surface reflectance, SAR, geophysical data, and

the Landsat derivative product known as RAP. (2) Processing of

the data, using the Google Earth Engine (GEE) platform. This

involves an ensemble stacking algorithm that utilizes multiple base-

learning ML classifications, to facilitate identification of land cover

types for both the years 1996 and 2022. (3) Change detection

analysis, to obtain data on land cover change between 1996 and

2022. (4) Implementation of the LandTrendr algorithm, to generate

a map illustrating the changes in vegetation cover over time. (5)

Overlay analysis, utilizing the LandTrendr map to extract temporal

information from our change detection analysis, with the purpose

of elucidating the timing of the land cover change. This study aims

to expand upon previous research on the mapping of WPE in

open-canopy savanna ecosystems. Its findings will provide valuable

insights on how and why land cover has changed over the past few

decades within the ecologically diverse and historically significant

Post Oak Savannah ecoregion.

2 Materials and methods

2.1 Study area

The Post Oak Savannah ecoregion in east central Texas

encompasses a total of 31 counties and spans an area of over

55,000 km2– including, along its western boundary, much of

the important Carrizo–Wilcox aquifer (Figure 2). Historically, the

Post Oak Savannah was characterized as an open canopy savanna

with a high density of various grasses and forbs, interspersed

with patches of post oak (Quercus stellata) and blackjack oak

(Quercus marilandica) (Wasowski and Wasowski, 1988). This

particular ecoregion is recognized as a transitional zone between

the East Texas Piney Woods ecoregion renowned for its dense

evergreen forests and the Central Texas Blackland Prairie ecoregion

characterized by its black, calcareous, alkaline, and heavy clay soils

(Diggs et al., 1999; Schmidly, 2002).

The average precipitation within this ecoregion increases

gradually from ∼900mm in the southwestern portion to over

1,150mm in the northeastern portion (Griffith et al., 2007). Along

this gradient, the topography ranges from predominantly flat

terrain at about 90 meters above sea level to gently rolling hills

at about 250 meters above sea level (Griffith et al., 2007). Soils

within the Post Oak Savannah are influenced by elevation—those

in the high elevation areas characterized by the presence of sand

and sandy loam pockets, and those in the lower elevation areas

composed predominantly of clay and clay loams (Packard and

Mutel, 1997). Annual average temperatures in the region vary

between 18 and 21◦C, with peak summer temperatures reaching

∼40◦C (Griffith et al., 2007).

In Pre-European settlement times, the plant communities of

the Post Oak Savannah were sustained through the regular (every

2–5 years) occurrence of fires. These fires effectively prevented

the encroachment of woody species and promoted the growth

of prairie grasses and forbs (Rideout, 1994; Packard and Mutel,

1997). Large indigenous ungulates, particularly the American bison

(Bos bison bison), played a crucial role in the dispersal of seeds

onto disrupted soil. Bison notably exerted low grazing pressure,

as herds of up to 1,000 individuals freely roamed the extensive

territories, thereby providing ample time for the plant community

to regenerate (Rideout, 1994).
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FIGURE 2

The Post Oak Savannah ecoregion is situated in east central Texas, as depicted in a Landsat composite image captured between January 01, 2022,

and March 31, 2022. The image is presented as a false color composite, with the color scheme assigned as follows: Red (R) representing

Near-Infrared (NIR), Green (G) representing Red, and Blue (B) representing Green. The boundaries of the US states were derived from the Census

Bureau’s MAF/TIGER GIS database (U.S. Census Bureau), while the boundary of the Post Oak Savannah ecoregion was sourced from the U.S. EPA (U.S.

EPA). The boundary of the Carrizo-Wilcox Aquifer was obtained from the Texas Water Development Board (TWDB).
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Although early European settlers practiced horse and cattle

grazing, by the late 19th century cotton farming had emerged

as the predominant land use (Packard and Mutel, 1997). The

suppression of the natural fire regime in this region for the

past 150 years has resulted in the encroachment of dense stands

of Quercus stellata. Currently, the Quercus stellata stands have

experienced additional thicketization, caused by the growth of

sub-canopy evergreen woody plants, primarily yaupon holly (Ilex

vomitoria) and eastern red cedar (Juniperus virginiana). Over the

past few decades, human activities—particularly the escalation of

land conversion for agriculture and urbanization—have resulted

in the significant reduction of native open-canopy savannas and

grasslands. Today, a significant portion of remaining open areas

have undergone conversion to improved pastureland. These areas

are predominantly covered by perennial warm-season grasses such

as Cynodon dactylon and Paspalum notatum.

2.2 Data and method overview

The remote sensing data used for this study is composed of

various datasets with different spatial resolutions; they include

Landsat TM/ETM+/OLI (30-m), Sentinel-1 SAR GRD (10-m),

National Agriculture Imagery Program (NAIP) (0.6- to 2-m), 1996

Texas Orthoimagery Program (TOP) (1-m), 2022 Capital Area

Orthoimagery Project (CAPCOG) (30-cm), and 2022 StratMap

(15-cm). The Landsat datasets consists of Landsat 5 TM imagery

captured between 1996 and 2012, Landsat 7 ETM+ imagery

captured between 1999 and 2021, and Landsat 8 OLI imagery

captured between 2013 and 2021. The Sentinel-1 SAR GRD data

utilized in this study was acquired during two distinct seasons:

spring, with the mean pixel value calculated between March 1st,

2022, and April 20th, 2022; and summer, with the mean pixel

value calculated between June 11th, 2022, and August 31st, 2022.

In addition, we used three ancillary datasets: NASA’s Shuttle

Radar Topography Mission Digital Elevation Model DEM (SRTM

DEM, 30-m), the RAP (30-m), and the National Land Cover

Database for 1992 and 2021 (30-m). The datasets were obtained

from GEE (https://developers.google.com/earth-engine/datasets)

(Gorelick et al., 2017). The boundary vector data were acquired

from the United States Environmental Protection Agency (EPA)

(https://www.epa.gov/eco-research/ecoregion-download-files-

state-region-6) (U.S. Environmental Protection Agency, 2023).

Our analysis of the distribution and dynamic mapping of

land cover within the Post Oak Savannah was carried out in

four main stages, as shown in Figure 3: (1) Implementation of an

ensemble-stacking algorithm (integrating multiple GEE-based ML

algorithms) that analyzes a diverse range of satellite images and

ancillary data—including Landsat 5 TM, Landsat 8 OLI, Sentinel-

1, a Digital Elevation Model (DEM), and RAP—to accurately

classify different land cover types. Additionally, vegetation indices

for the years 1996 and 2022, obtained during leaf-on and leaf-

off periods and their differences, were taken into account. (2)

A comprehensive post classification change detection analysis, to

ascertain the specific locations where transitions between different

classes have occurred. (3) Annual computation of the Normalized

Burn Ratio (NBR) and consolidation of the results into an image

stack, for use with the LandTrendr algorithm to analyze annual

distributions of vegetation change. This process draws on all

available Landsat data on GEE from 1996 to 2022. (4) An overlay

analysis, to determine annual class transitions.

2.3 Classification of land cover

The land cover classification stage was partitioned into six

classes: (1) open area, (2) deciduous woodland, (3) evergreen

woodland, (4) mixed woodland, (5) urban, and (6) water. These

classes were established on the basis of data from the United States

Geological Survey 1992 and 2021 National Land Cover Database

(NLCD), 2022 NAIP imagery, 1996 TOP imagery, 2022 CAPCOG

imagery, and 2022 StratMap imagery.

The open area class is defined as non-urban surfaces

characterized by minimal or no tree coverage, such as grazing

land, pastures, and grasslands (NLCD). The three woodland classes

are defined as areas containing woody vegetation of all sizes

visible at a spatial resolution of 15 cm to 1m, with the woodland

type (deciduous, evergreen, and mixed) being determined via

high-resolution leaf-off imagery—including 2022 NAIP imagery

(60 cm), 1996 TOP imagery (1-m), 2021 CAPCOG imagery (30-

cm), and 2022 StratMap imagery (15-cm) (NLCD). The urban class

encompasses all discernible human-made constructions, along with

open spaces used for purposes such as recreational activities and

quarrying (NLCD). The water class is defined as encompassing all

semi-permanent and permanent bodies of water, irrespective of

sedimentation levels, that can be identified through high-resolution

imagery (NLCD).

A total of 3,500 stratified random sample points were generated

(by means of ArcGIS Pro 3.1). For the year 1996, these sample

points were based on the 1992 NLCD classes, and for the year

2022 they were based on the 2021 NLCD classes (Table 1). As

shown in Table 2, we integrated NLCD classes to align with our

classification scheme. A minimum separation distance of 100

meters was implemented in order to ensure a distance of at least

three pixels between each sample point. The land cover type of

each sample point was determined via high-resolution imagery.

If a land cover class could not be determined for a particular

sample point, a neighboring sample point of the same class type,

identified through visual interpretation of high-resolution imagery,

was manually chosen and used as a substitute. For our dataset, we

used a split of 70% for training and 30% for testing, following the

methodology outlined by Stone (1974).

2.3.1 Feature selection
Compositing low to mid-resolution satellite imagery enables

the identification of the most optimal observations from a set

of samples to guarantee the accurate depiction of the region of

interest without any interference from cloud cover, cloud shadows,

snow/ice, and intra-annual variation within a specific time frame at

the same geographical location (Qiu et al., 2023). Additionally, the

combination of leaf-on and leaf-off seasonal images has been noted

to improve classification accuracies by capturing the phenological

differences of different cover types in different seasons (Xie et al.,
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FIGURE 3

Flowchart illustrating the four main stages of our research, aimed at examining the distribution of vegetation types and mapping changes in land

cover within the Post Oak Savannah from 1996 to 2022. (1a) Creation of data features for the years 1996 and 2022, followed by the training of

base-learning models such as Classification and Regression Tree (CART), Support Vector Machines (SVM), Random Forest (RF), and Gradient Boosted

Trees (GBT). (1b) The stacking and training of the base-learning model outputs by a meta-learning algorithm (RF) to generate final classification maps

for the years 1996 and 2022. (2) Post-classification change detection analysis was then conducted to identify and quantify unique areas of change,

indicating the presence of three fundamental processes: encroachment (change from open area to woodland), thicketization (change from

deciduous woodland to evergreen and mixed woodland), and disturbance (change from woodland to open area). (3a) Landsat 5, 7, and 8 data were

gathered, and preprocessing steps including gap filling, cloud and shadow masking, and clipping to the study boundary were performed to create an

image stack spanning the years 1996 and 2022. (3b) Calculation of the Normalized Burn Index (NBR) was conducted for the entire image stack. The

Landtrendr algorithm was employed to calculate interannual trajectories, eliminate peaks, identify change vertices, simplify the models, and select

the best model based on the p-value of F-statistic. (4) An overlay analysis was performed to superimpose the Landtrendr vegetation map onto the

change detection map to extract the years class changes occurred.
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2019). For the 1996 classification, the collection of Landsat 5 TM

imagery was by season: the winter months (January–March), when

the leaves are off, and the summer months (June–August), when

the leaves are on. These filtered images were then compiled into

separate stacks for further analysis. For the Post Oak Savannah

ecoregion, the leaf-off stack comprised 79 images, while the leaf on

stack consisted of 121 images. A cloud and shadow-free composite

for the winter and summer of 1996 was generated by means

of the ee.Algorithms.Landsat.simpleComposite function from the

GEE library. The parameterization of this function included the

following features: a percentile score of 50 to calculate the average

value of the entire composite for each band; a cloudScoreRange

score of 0 to ensure a composite without clouds and shadows; and

the maxDepth parameter was set to the total number of images

per stack enabling the maximum number of scenes to be used

in computing each pixel (79 for winter and 121 for summer).

Additionally, the asFloat parameter was set to True, to ensure

floating point values for each pixel in the composite.

For the 2022 classification, the collection of Landsat 8 OLI

imagery was filtered by season: the winter months (January–

March), when the leaves are off, and the summer months (June–

August) when the leaves are on. The leaf off stack comprised of

93 images, while the summer stack consisted 103 images. A cloud

and shadow-free composite for the winter and summer of 2022

was generated by means of ee.Algorithms.Landsat.simpleComposite

function from the GEE library. The parameterization features

TABLE 1 Number of sample points generated for each of the six land

cover classes, for the 1996 and 2022 datasets.

Land cover class 1996 2022

Open area 754 737

Deciduous woodland 702 715

Evergreen woodland 705 685

Mixed woodland 718 722

Urban 352 348

Water 269 293

Total 3,500 3,500

The samples were gathered via stratified random sampling utilizing NLCD data 1992 and

2021, facilitated by ArcGIS Pro.

of this function were configured to match those of the 1996

classification, with the exception of themaxDepth parameter, which

was adjusted to reflect the total number of images available for 2022

(93 for winter and 103 for summer).

The selected bands for the two classifications comprised a

combination of spectral bands from Landsat 5/8 and difference

indices derived from Landsat 5/8, which are essential for classifying

vegetation cover. Furthermore, elevation and slope data derived

from the DEM were integrated into the analysis, given the

predominance of woodlands in the Post Oak Savannah that are

typically located in low-lying bottomland areas. The data pertaining

to tree, shrub, perennial grass, annual grass, and bare ground

cover from RAP were utilized because of the extensive vegetation

measurements conducted on the ground (over 31,000 data points).

Moreover, the VV backscatter coefficient data from Sentinel-

1 (limited to the year 2022) was included due to its capacity

to differentiate seasonal phenological changes in deciduous and

evergreen woodlands, which are affected by canopy structures

(Ling et al., 2022). The spectral bands consisted of six surface

reflectance bands from Landsat 5 and 8, as follows: for Landsat 5—

B1: Blue, B2: Green, B3: Red, B4: NIR, B5: SWIR1, and B7: SWIR2;

and for Landsat 8—B2: Blue, B3: Green, B4: Red, B5: NIR, B6:

SWIR1, and B7: SWIR2. To ensure consistency in resolutions, the

Sentinel-1 data underwent resampling to 30-m using the resample

() function in GEE and a bicubic resampling method, one of the

most commonly used interpolation based methods (Keys, 1981).

To improve the distinguishability of different types of

woodlands, which often appear similar at a 30-m resolution,

we used the surface reflectance bands from Landsat 5/8 to

create difference indices, which exploit the seasonal phenological

variations between deciduous and evergreen species in different

woodland types (Yang et al., 2012, 2021; Wang et al., 2018). The

expression() function in GEE was utilized to compute the leaf-off

and leaf-on values for various indices, including the normalized

difference vegetation index (NDVI), normalized difference water

index (NDWI), soil-adjusted vegetation index (SAVI), normalized

difference build-up index (NDBI), and enhanced vegetation

index (EVI). These indices have demonstrated the capability to

differentiate between different land cover classes, including wooded

and non-wooded areas (Chen et al., 2006; Cai et al., 2020; Dai

et al., 2020). We then calculated the simple difference between

the peak annual and minimum annual values for NDVI and

TABLE 2 Characteristics of each of the six land cover categories, based on the land cover classes defined by the 1996 and 2021 National Land Cover

Databases.

Land cover class 1992 NLCD land cover class 2021 NLCD land cover class

Open area Grassland/herbaceous, pasture/hay, urban/recreational

grasses, emergent herbaceous

Grassland/herbaceous, pasture/hay, emergent herbaceous wetlands

Deciduous woodland Deciduous forest Deciduous forest

Evergreen woodland Evergreen forest Evergreen forest

Mixed woodland Mixed forest, shrubland, woody wetlands Mixed forests, shrub/scrub, woody wetlands

Urban Low intensity residential, high intensity residential,

commercial/industrial/transportation, bare rock,

quarries/strip mines

Barren land, developed open space, developed low intensity, developed

medium intensity, developed high intensity

Water Open water Open water
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EVI. This calculation aids in discriminating between evergreen

woodlands, characterized by a minor disparity, and deciduous

and mixed woodlands, which exhibit a more substantial difference

(Wang et al., 2018, 2021; Basualdo et al., 2019). The calculation

of the difference in SAVI was omitted as it is closely linked

to NDVI, utilizing both the red and NIR bands. Similarly, the

difference in NDBI was not computed as it is designed to highlight

constructed urban areas that remain constant throughout the

seasons. Additionally, the difference in NDWI was not determined

as its primary purpose is to track variations in water content of

water bodies, which is not the focal point of our research inquiry.

Elevation data were extracted directly from the SRTM

DEM, the slope was calculated from the SRTM data via

the ee.Algorithms.Terrain() function in GEE. Ascending and

descending VV backscatter coefficients were computed from the

C-band Sentinel SAR data, which operates in VV/VH polarization

mode (Belenguer-Plomer et al., 2019; Udali et al., 2021) during the

spring and summer seasons. From the RAP data, three distinct

feature bands were generated: the RAP woody (the sum of the

RAP tree percent cover band and the RAP shrub percent cover

band), the RAP grass (the sum of the RAP annual grasses and

forbs percent cover band and the RAP perennial grasses and forbs

percent cover band), and the RAP bare ground percent cover band.

The RAP derivative features created were visually juxtaposed with

the NLCD datasets from 1992 and 2021, 2022 NAIP imagery, 1996

TOP imagery, 2021 CAPCOG imagery, and 2022 StratMap imagery

utilized in formulating our land cover classification scheme to

ascertain their consistency.

The Landsat reflectance bands, derived indices, elevation and

slope data, Sentinel-1 backscatter coefficient, and RAP data were

combined by means of the addBands() function in GEE. Finally,

the newly merged images underwent resampling to achieve a

resolution of 30-m. The 1996 classification encompassed a total of

31 features (excluding any SAR features), and the 2022 classification

incorporated 35 features (Supplementary Table S1).

Feature importance, also known as the “Gini importance”

or “mean decrease impurity,” is a measure that quantifies the

absolute decrease in node impurity. This measure is weighted by

the probability of reaching that node and is averaged over the total

number of trees in a given classification (Breiman et al., 2017).

For our study, we determined a relative importance by individually

calculating the importance value of each feature and subsequently

dividing it by the sum of the importance values of all features. This

calculation was performed twice for the RF base-classifier (with

31 features for the year 1996 and 35 features for the year 2022).

For the meta-learner, the outputs of four models—RF, GBT, SVM,

and CART—served as features to obtain the importance values of

the models.

2.3.2 Implementation of the classification
algorithm

This study employed a stacking ensemble algorithm

methodology, which integrates the outcomes of multiple

models to create a more accurate predictive model. This stacking

methodology is carried out in two steps: (1) the first-level classifiers,

also known as base-classifiers, are utilized as a training set for

the second-level classifier, called the meta-learner; and (2) the

meta-learner is constructed on the basis of predictions generated

by the first-level classifiers (Healey et al., 2018; Long et al., 2021; Xu

and Zhang, 2022). The utilization of a stacking ensemble algorithm

in classification offers the advantage of leveraging the strengths

of multiple high-performing models to generate predictions that

outperform any individual model within the ensemble (Healey

et al., 2018). To enhance the accuracy of subsequent classification, a

diverse ensemble of four base-classifiers was employed, comprising

the following: classification and regression tree (CART), support

vector machines (SVM), random forest (RF), and gradient-boosted

decision trees (GBT). Previous studies have highlighted the

effectiveness of these four machine learning classifiers in classifying

land cover on the GEE platform (Bui et al., 2021; Oo et al., 2022;

Zhao et al., 2024).

The CART model was configured with the following

parameters: maxNodes: unlimited, minLeafPopulation: 1.

The SVM model was configured with the following parameters:

all default settings were used, except for the kernel type being

set to Radial Basis Function, which is the most commonly used

non-linear kernel function (Zafari et al., 2019). The RF model

was configured with the following parameters: numberOfTrees

= 1,000, variablesPerSplit = square root of the number of

variables, minLeafPopulation = 1, bagFraction = 0.5, maxNodes

= unlimited, and seed = 0. The GBT model was configured with

the following parameters: numberOfTrees = 1,000, shrinkage

= 0.005, samplingRate = 0.7, maxNodes = unlimited, loss =

LeastAbsoluteDeviation, seed= 0.

Once the initial classifications had been completed, the

accuracy of each was assessed. Only base-classifications that

achieved an overall accuracy of 85% or higher were selected as

training data for the meta-learner. Random Forest was selected

as the meta-classifier to combine the outcomes produced by the

base-classifiers, because prior research had demonstrated its strong

capability in handling large datasets—particularly for mapping

extensive and/or diverse regions and for aggregating the outcomes

of base-classifiers (Cai et al., 2020; Adugna et al., 2022).

2.3.3 Verification of classification accuracy
assessment

The accuracy of the training/validation points chosen was

verified via high-resolution color infrared (CIR) winter imagery

from 1996 and 2022. The utilization of winter imagery was aimed

to facilitate the identification of different woodland types. This

is because evergreen and mixed woodlands retain most of their

foliage during the winter season, unlike deciduous woodlands.

For the 1996 classification, a total of 27 digital orthophotos from

the TOP dataset were used (TNRIS). This imagery was acquired

during the period of December 1995–January 1996 and was

processed to eliminate displacement caused by sensor orientation

and terrain relief. All of the processed TOP images consisted of

three bands: NIR, red, and green; have a spatial resolution of 1-

m; and encompass a quarter-quadrangle measuring 3.75min of

latitude by 3.75min of longitude.

For the classification of 2022, accuracy was verified by means

of digital orthophotos (a total of 32) from the NAIP dataset
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(TNRIS). This imagery was acquired during the period November

2021–December 2022 and was processed to eliminate displacement

caused by sensor orientation and terrain relief. All processed NAIP

images consisted of three bands: NIR, red, and green; have a

spatial resolution of 60-cm; and encompass a quarter-quadrangle,

measuring 3.75-min of latitude by 3.75-min of longitude, in terms

of size. The disparities in resolution between the 1996 TOP images

(1-m) and the 2022 NAIP images (60-cm) did not hinder the

validation process during the comparison of selected samples. This

is because the 1-m CIR resolution is sufficiently high to distinguish

juvenile trees and their phenology (e.g., evergreen vs. deciduous).

An error matrix was constructed for evaluation of the accuracy

metrics, namely overall accuracy (OA) (Equation 1) and Kappa

coefficient (KC) (Equation 2). These metrics were computed via the

following formulas:

OA = TC/N (1)

KC = N

r∑

i−1

xii −

r∑

i−1

xi + Xx+1

N2
−

r∑

i−1

(xii + Xx+1). (2)

where TC = total number of correctly labeled pixels, N = total

number of testing pixels, r = number of rows and columns in the

confusion matrix, xii = observation in row i and column i, xi+

= marginal total of row i, and x + I = marginal total of column

i The metrics OA and KC are widely accepted in the field for

evaluating classification accuracy. OA provides a measure of the

overall accuracy of the classification model, while KC takes into

consideration the probability of chance agreements.

User Accuracy (UA) (Equation 3) and Producer Accuracy

(PA) (Equation 4) were incorporated in order to ensure that

evaluation of the classification outcomes was comprehensive. The

UA quantifies the likelihood that a classified pixel accurately

represents the ground conditions. The PA assesses the accuracy of

ground feature representation on a classified map. The formulas

were computed as follows:

UA = X/Y (3)

PA = X/Z (4)

whereX= the number of pixels correctly identified in eachmap

class, Y = the total number of pixels claimed by the map to be in

that class, and Z = total number of pixels in the reference class.

2.4 Assessment of land cover change

We conducted a post-classification change detection analysis

to quantify the differences in land cover classes within the Post

Oak Savannah between 1996 and 2022. Using GEE, we were

able to derive specific class transitions from one class to another

and subsequently calculate their corresponding areas in square

kilometers (km2). A total of 30 different types of class changes were

identified, with specific focus placed on the shift between open areas

and the three different types of woodland.

2.5 Computation of growing season
normalized burn ratio and construction of a
time series

The NBR is a vegetation index derived from remote sensing

data that serves as an indicator of both healthy green vegetation and

vegetation disturbances (Key and Benson, 2006). Previous research

has used inter-annual changes in NBR to monitor alterations in

LULC, particularly vegetation cover (Bright et al., 2019; Zhu et al.,

2019; Pasquarella et al., 2022; Zhou et al., 2023). Additionally, NBR

has been recognized for its superior performance in identifying

forest disturbances through the LandTrendr algorithm compared

to other spectral bands and indices such as NDVI, the NIR Landsat

band, and NDMI, as indicated by previous studies (Cohen et al.,

2018, 2020). We used a total of 5,785 scenes acquired from the

Landsat 5, 7, and 8 satellites annually during the growing season

(June to August), spanning the period 1996–2022. Masking of

clouds, snow, and shadows plays a crucial role in the classification

of satellite remote sensing images, enabling the interpreter, as

well as the computer, to effectively analyze the prevailing ground

conditions. For this reason, we preprocessed each scene using an

internal cloud identification algorithmwithin GEE to identify those

with a cloud cover percentage of <10%. This CFMask algorithm

was then utilized to mask out any remaining pixels that contained

clouds and/or shadows.

For each Landsat scene, we used near-infrared (NIR) and short-

wave infrared-2 (SWIR-2) reflectance values in the computation of

NBR, as shown in Equation (5).

NBR =
ρNIR, t − ρSWIR2, t

ρNIR, t + ρSWIR2, t
, (5)

where ρNIR, t is equal to the surface reflectance value of the

NIR band at time t in a specific year, and ρSWIR2, t is the surface

reflectance value of the SWIR2 bands at the same time and for the

same year.

The mean NBR value per pixel was computed over a one-year

period, and the results were then arranged in chronological order

to generate a stack of images representing the mean annual NBR

(Equation 6):

NBRmean,Y = mean (NBR)SE Y ∈ [1996, 2022], (6)

where NBRmean,Y is equal to the annual average NBR value, Y

is a specific year between 1996 and 2022, with S representing the

NBR image of the starting year (1996), and E representing the NBR

image of the ending year (2022).

2.6 Analysis of the annual distribution of
vegetation change through incorporation
of NBR data in the LandTrendr algorithm

LandTrendr is a time-segmentation algorithm implemented in

GEE that utilizes line segments to detect changes in land cover

states for individual pixels across a sequence of images captured
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over time (Kennedy et al., 2010, 2018). The characterization of

these state changes is limited, as the algorithm is unable to detect

specific minute changes that occur over time. However, it can

still provide historical context for every pixel in an image time

series. In other words, the LandTrendr algorithm is designed to

condense and analyze the history of a pixel’s on an annual basis,

effectively filtering out noise and identifying significant vegetation

change events.

We used the LandTrendr algorithm to generate a

comprehensive map illustrating the dynamics of vegetation

change, including vegetation gain, vegetation loss, and no change

in vegetation, during the period 1996–2022 (Long et al., 2021).

Such a map is critical for comprehending the nature of the changes

that have taken place between the land cover classifications of

1996 and 2022; it elucidates the temporal dynamics of vegetation

cover—whether it has remained stable, experienced rapid decline as

a result of disturbances such as fire and urbanization, or exhibited

gradual increase through primary and secondary succession.

2.6.1 Removal of outliers and construction of a
time series

To strike a balance between capturing spatial detail and

minimizing the impact of outlier values, we computed the

mean NBR value using a 3 by 3 window kernel for the NBR

time series. We effectively eliminated spikes in line segments

(caused by residual image artifacts) through the adjustment of the

spikeThreshold parameter; this parameter eliminates outlier vertices

that would cause NBR values to return to pre-spike values within

a period of 1–2 years— a necessary adjustment because genuine

land cover changes typically require several years to recover to

pre-spike values.

We identified the vertices of the line segments by calculating

a least-squares, first-order regression of the NBR index for all

points in the time series (only the first and last year as vertices

for one line segment) (Kennedy et al., 2018). The vertex that

exhibited the greatest deviation from the regression line was

then designated as the next point, resulting in the formation of

two line segments (Kennedy et al., 2018). New regressions were

subsequently calculated for each of the two generated line segments,

and the line segment exhibiting the higher mean square error

(MSE) was selected for the next vertex split (Kennedy et al., 2018).

This process was continued until the number of segments reached

the specified value for themaxSegments parameter— at which point

each iterative, smallest-MSE segment was connected from vertex

to vertex.

2.6.2 Model simplification and selection
Once the maximum complexity segmentation model was

established, a series of trajectory models were generated with

varying numbers of segments, ranging from one segment to the

maximum number of segments. Needless segmentations were

eliminated by removing the vertex with the lowest strength.

The identification of the weakest vertex was based on the

recovery_threshold, which involves the deletion of a line segment

if its recovery slope spans the entire date range. The exceptionally

rapid recovery observed can be attributed to the presence of a

defective cloud- and shadow masking mechanism. The best model

for each pixel was selected based on the smallest p-value of the F-

statistic (p-of-f ). In this study, the LandTrendr parameterization

included setting maxSegments to 6, spikeThreshold to 0.9,

preventOneYearRecovery to True, while the remaining parameters

were left at their default values.

2.6.3 Validation of the vegetation change map
LandTrendr generates 5-band images which include the

following information: the year of vertex, magnitude of change,

duration of change, initial value, and the change rate. The analysis

involved retrieving the change magnitude, starting value, change

duration, and vertex year. The term “changemagnitude” pertains to

themaximumdisparity observed between two vertices. The starting

value refers to the index value assigned to the first year. The concept

of change duration refers to the length of time over which a change

has occurred, measured in years. It is observed that vegetation gain

exhibits the slowest rate of change, while vegetation loss experiences

the fastest rate of change. The term “vertex year” refers to the

initial year of a vegetation change event. The LandTrendr images

were subsequently organized based on the slowest gain, which

signifies the natural growth of vegetation, and the fastest loss, which

indicates disturbance events. Given that pixels may have undergone

both gains and losses over the 26-year period, the latest vertex year

was selected to represent the transition of the 1996 land cover class

to the 2022 land cover class.

We validated the accuracy of our vegetation change map using

TimeSync, a LandTrendr companion image interpretation software

tool designed for visualizing image time-series and collecting

data. TimeSync presents the shifts in trends for each sampled

point by utilizing a yearly spectral trajectory plot along with

the corresponding Landsat image for every year. This feature

enables users to utilize the Landsat image stack to confirm the

occurrence of vegetation change during the vertex year indicated

on the spectral trajectory plot. Furthermore, within the TimeSync

environment, users have the capability to access high-resolution

Google Earth imagery to corroborate vegetation changes that may

not be discernible solely from the Landsat images. A total of 150

sample points were generated using ArcGIS Pro 3.1, for each of

three categories of vegetation change: vegetation gain, vegetation

loss, and no change. Using TimeSync, Landsat, and high-resolution

Google Earth imagery, we examined all 450 data points to validate

the presence of vegetation loss, gain, or no change at the vertex

years. A 1-year buffer was incorporated into the validation process

of the vertex year, to accommodate uncertainties associated with the

detection of small woody plants in open areas, as well as the lack of

access to high-resolution imagery in previous years. For instance,

if the first year of change was determined to be 2001, we used

high-resolution imagery from the period 2000–2002 to validate the

alteration in vegetation.

2.7 Overlay analysis

The map illustrating changes in vegetation, produced with

LandTrendr, was superimposed on the map generated through
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post-classification change detection. An overlay analysis was

conducted to determine the latest vertex year for each pixel that

experienced a change in class, thereby indicating the specific year

of the class transition. This process involved the conversion of each

unique transition type (e.g., open area to deciduous woodland—

class one, open area to evergreen—class two, etc.) into multi-part

polygons and extracting the vertex year from the vegetation change

map produced by LandTrendr. This procedure was conducted

using ArcGIS Pro version 3.1. The years were subsequently

segmented into five 4-year intervals and one 6-year interval (1997–

2000, 2001–2004, 2005–2008, 2009–2012, 2013–2016, and 2017–

2022).

3 Results

3.1 Feature and model importance

For the base-learning classifier, the feature importance

calculations for the years 1996 and 2022 exhibited comparable

trends, as depicted in Figure 4. For both years, least significant

variables were the RAP bareground and slope features; and

summertime features were less significant than wintertime

features— in particular the summer red and SAVI features for

1996 and the summer EVI, NDBI, NIR, SAVI, and SWIR2 features

for 2022 (Figure 4). The lower significance for summer features

can be atrributed to the spectral resemblances observed among

different types of woodlands during the leaf-on season, particularly

at a resolution of 30 meters. Nine of the ten most significant

features in the base-learning classifications from 1996 to 2022

were related to wintertime conditions, and seven of those were

vegetation indices (Figure 4). The winter NDWI and the winter

NDVI were identified as the most significant features for 1996

and 2022, respectively (Figure 4). The SAR features, which were

exclusively incorporated into the 2022 classification, exhibited a

moderate level of significance (Figure 4).

For the meta-learning classifier, the feature importance

calculation for 1996 and 2022 also yielded comparable trends

(Figure 4). For both years, the CART model was found to be

the least useful, while the GBT model was determined to be the

most useful in generating final ensemble land cover classifications

(Figure 4). The SVM and RF models experienced a minor shift

in importance, with the second and third places being swapped

between 1996 and 2022 (Figure 4).

3.2 Classification accuracy

For 1996, the base-learning classifiers demonstrated overall

accuracies (OAs) of 88.4, 91.0, 93.2, and 93.4% for the CART,

SVM, RF, and GBT models respectively (Table 3; Figure 5). The

implementation of the ensemble stacking algorithm led to a notable

improvement in the OA, to 94.3% (Table 3). The land cover classes

of open area, urban, and water exhibited the highest levels of

accuracy, with a significant number of values exceeding 95%. Of

the three woodland classes, deciduous and evergreen woodlands

showed quite high accuracies, ranging from the mid 80s to 90%;

the mixed woodland scored the lowest (77–90%).

As For 2022, the base-learning classifier exhibited higher

OAs than for 1996: the CART, SVM, RF, and GBT OAs were

recorded as 92.9, 93.7, 94.7, and 95.5%, respectively (Table 3). The

implementation of the ensemble-stacking algorithm improved the

OA— to a score of 96.5% (Table 3). The accuracy trends observed

for 1996 remained consistent for 2022, with the land cover classes

of open area, urban, and water exhibiting the highest levels of

accuracy (values ranging from 93 to 100%) (Table 3). All three of

the woodland class demonstrated significant improvement, with

evergreen woodlands exhibiting the highest accuracies (surpassing

90%), deciduous from 88 to 97%, and mixed woodlands ranging

from 84 to 95% (Table 3).

3.3 Spatial distribution of land cover
change

The distribution of land cover underwent significant changes

between 1996 and 2022, suggesting a dynamic transformation

within the Post Oak Savannah region (Figure 6). The open area

class, encompassing natural grassland/herbaceous cover, open

rangeland, crop agriculture, and herbaceous dominated wetlands,

suffered a cumulative loss of 2,525 km2 (Table 4). Despite this loss,

the class still maintained its status as the most extensive, covering

a total area of 27,449 km2 (Table 4). The most significant growth

was seen for the deciduous woodland class, which expanded by

2,851 km2 over the course of 26 years—surpassing the growth of

the mixed woodlands, and making it the largest woodland class,

with a total of 12,807 km2 (Table 4). The only class of woodland

that experienced a loss between 1996 and 2022 was the evergreens,

which decreased markedly in land area (from 3,365 to 1,802 km2–

a loss of 1,563 km2) (Table 4). The urban class saw a significant

increase in size, nearly doubling from (491 to 905 km2), reflecting

the substantial population growth within the region (Table 4). And

finally, the open water class exhibited a relatively stable trend, with

a marginal increase of 99 km2 (Table 4).

Woody plant encroachment has been identified as the primary

driver of change in the Post Oak Savannah ecosystem (Table 5).

Between 1996 and 2022, ∼5,338 km2 of open land underwent a

conversion to woodland (Table 5). The greater part of this land

cover consists of deciduous woodlands, which account for 4,117

km2 of the total encroached area (Table 5). The transformation

of open land into deciduous woodlands is particularly evident in

the southern, drier area of the Post Oak Savannah (Figure 6). In

addition, a significant expanse of open land (some 1,063 km2)

underwent encroachment by mixed forest species (Table 5). The

amount of land initially encroached by deciduous woody plants

and subsequently subjected to thicketization by evergreen species

remains uncertain. Finally, a small area (158 km2) encroached by

evergreen woodlands was observed, primarily in the central and

northern regions of the Post Oak Savannah, which consists mainly

of softwood trees planted for timber production (Table 5).

Thicketization—the overgrowth of evergreen woody species

in the understory—has emerged as the second most important

process of land cover change in the Post Oak Savannah (Table 5). A

significant portion of this transformation took place in the central
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FIGURE 4

The relative importance of features (base-learning RF classifier) and models (meta-learning classifier) for the years 1996 and 2022 is presented in

descending order from most to least significant. Abbreviations such as the Normalized Di�erence Vegetation Index (NDVI), Normalized Di�erence

Water Index (NDWI), Normalized Built-Up Index (NDBI), Soil Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), Synthetic Aperture

Radar Descending (SAR Dsc), and Synthetic Aperture Radar Ascending (SAR Asc) are commonly used in remote sensing studies.
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TABLE 3 Accuracies of the four base-learning classifiers [Classification and Regression trees (CART), Support Vector Machines (SVM), Random Forest (RF), and Gradient Boosted Trees (GBT)] and of the

ensemble-stacking algorithm for (A) 1996 and (B) 2022.

(A) CART SVM RF GBT Ensemble

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Open area 96.0 96.7 93.0 98.8 96.7 97.5 95.3 99.2 96.6 99.3

Deciduous woodland 88.3 82.4 93.0 90.6 95.8 91.9 95.5 88.2 97.6 93.9

Evergreen woodland 90.5 87.2 93.1 87.8 93.3 92.4 94.3 90.8 91.9 94.2

Mixed woodland 77.4 82.8 79.6 87.8 86.8 90.0 84.0 90.5 86.6 90.0

Urban 93.2 93.2 98.0 94.3 89.7 94.6 100.0 97.7 100.0 93.6

Water 88.0 93.6 100.0 87.8 95.5 93.5 100.0 100.0 100.0 94.0

Overall accuracy (%) 88.4 91.0 93.2 93.4 94.3

Kappa coefficient 0.857 0.888 0.915 0.918 0.929

(B) CART SVM RF GBT Ensemble

Open area 98.0 98.0 98.6 98.0 97.0 99.2 98.6 98.6 96.9 100.0

Deciduous woodland 89.7 91.0 88.2 95.5 90.7 94.8 91.5 96.3 92.9 97.5

Evergreen woodland 91.1 92.6 94.9 91.8 96.0 93.0 95.1 95.9 98.3 95.9

Mixed woodland 89.2 84.9 89.9 84.9 93.1 89.7 93.3 88.1 95.5 91.4

Urban 95.7 100.0 97.8 97.8 92.9 100.0 100.0 100.0 100.0 96.1

Water 97.9 97.9 98.8 100.0 100.0 95.6 100.0 97.9 98.4 96.8

Overall accuracy (%) 92.9 93.7 94.7 95.5 96.5

Kappa coefficient 0.913 0.922 0.934 0.944 0.957
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FIGURE 5

Comparison of high-resolution, leaf-o� aerial imagery, specifically TOP (1-m) imagery from 1996 and CAPCOG (30-cm) imagery from 2022. The

color scheme employed was as follows: Red (R) representing Near-Infrared (NIR), Green (G) representing Red, and Blue (B) representing Green.

Classifications were produced using the ensemble stacking algorithm. The coordinates for the locations are as follows: (A) 96.2302091◦W,

30.7963780◦N, (B) 96.9598470◦W, 30.3175249◦N, (C) 97.5384985◦W, 29.7256995◦N.
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FIGURE 6

Changes in land cover between 1996 and 2022 as shown by the ensemble classification.

TABLE 4 Total coverage for each of the six land cover classes in 1996

compared with that in 2022, and extent of change.

Land cover
class

1996
(km2)

2022
(km2)

Change

(km2)

Open area 29,974 27,449 −2,525

Deciduous

woodland

9,956 12,807 2,851

Evergreen

woodland

3,365 1,802 −1,563

Mixed woodland 10,779 11,502 723

Urban 491 905 415

Water 1,275 1,374 99

and northern regions, as the sub-canopy of the older deciduous

woodlands was gradually invaded by evergreen woody plants. Our

study identified a total of 3,782 km2 of deciduous woodlands

underwent thicketization by evergreen woody plants, resulting in

3,625 km2 being converted to mixed woodlands and 157 km2 being

converted to evergreen woodlands (Table 5). The southern portion

of the Post Oak Savannah, in contrast, saw a reverse process: 917

km2 of evergreen woodlands and 2,738 km2 of mixed woodlands

were transformed into deciduous woodlands, suggesting the action

of a distinct dynamic in the southern region (Table 5).

Despite the substantial overall decrease in the extent of open

area (about-2,525 km2), a noteworthy amount of open area was

also gained through the loss of woodlands (Table 4). Between 1996

and 2022, a total of 1,055 km2 of deciduous woodland, 675 km2

of evergreen woodland, and 1,424 km2 of mixed woodland were

converted into open areas (Table 5). Compared with the 3,365 km2

covered by evergreen woodlands in 1996, this class saw the greatest

reduction, with over 20% being converted to open space.

3.4 LandTrendr accuracy

The accuracy of LandTrendr outputs in identifying vegetation

changes and their corresponding years of change was found to be

satisfactory, with an OA of 80.4% (Table 6). Vegetation gain pixels

exhibited a user accuracy of 79.3% and a producer accuracy of

83.2%. Vegetation loss pixels showed comparable outcomes, with

a user accuracy of 80.7% and a producer accuracy of 83.4%. For the
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TABLE 5 Land cover changes during 1996–2022 that reflect the dynamic mechanisms driving changes across the Post Oak Savannah.

Encroachment Thicketization Disturbance Southern Thicketization

Change type Area
(km2)

Change
type

Area
(km2)

Change
type

Area
(km2)

Change
type

Area (km2)

Open to deciduous 4,117 Deciduous to

evergreen

157 Deciduous to

open

1,055 Evergreen to

deciduous

917

Open to evergreen 158 Deciduous to

mixed

3,625 Evergreen to

open

675 Mixed to

deciduous

2.738

Open to mixed 1,063 Mixed to

evergreen

722 Mixed to open 1,424

Total 5,338 Total 4,504 Total 3,154 Total 3.655

TABLE 6 LandTrendr vegetation validation using TimeSync and

high-resolution Google Earth Pro imagery.

Change
type

Vegetation
gain

Vegetation
loss

No
change

User
accuracy

(%)

Vegetation

gain

119 12 19 79.3

Vegetation

loss

8 121 21 80.7

No change 16 12 122 81.3

Producer

accuracy

(%)

83.2 83.4 75.3

Overall

accuracy

80.4

Bold values are correctly classified pixels.

unchanged pixels, user accuracy was 81.3% and producer accuracy

was 75.3% (Table 6).

Figure 7 illustrates the processes of encroachment,

thicketization, and disturbance taking place in the Post Oak

Savannah, as well as LandTrendr fitted lines that effectively capture

their temporal progression. Figure 7A illustrates the gradual

expansion (mainly between 2001 and 2012) of deciduous woody

species into an open area, as depicted by the upward trend of the

fitted line. Similarly in Figure 7B, the NBR values show a gradual

rise beginning in 2007, as indicated by the fitted line of the model,

specifically for the southernmost evergreen woodland patch. The

trend line for the northern evergreen woodland patch, depicting

encroachment between 2009 and 2016, is not shown in the picture.

Figure 7C reflects the impact of a thinning operation conducted

in 2001 on a deciduous woodland, as well as the subsequent

thicketization. Because these processes overlapped, the resulting

mixed woodland was categorized as vegetation gain (having taken

place following a vegetation loss).

3.5 Period-based changes in land cover

Over the 26-year time period, the annual rate of encroachment

was 0.37%. This rate varied among different types of woodlands,

with deciduous woodlands experiencing a rate of 0.3%, mixed

woodlands at 0.07%, and evergreen woodlands at a minuscule

0.008%. A majority of the land cover changes in the Post Oak

Savannah took place during a period of just 3 years: 1997–2000

(Figure 8). This brief period saw a significant portion of the overall

encroachment taking place, resulting in the conversion of 3,188

km2 of open land into woodland representing an annual rate of

1.4%—a sizeable amount of which was attributed to deciduous

woody vegetation (2,342 km2 at an annual rate of 1.0%) and

mixed woodlands (732 km2 at an annual rate of 0.3%) (Figure 8A).

Evergreen woodlands accounted for the remainder. The next 3-

year period (2001–2004) saw a substantial decrease in the level

of encroachment and was then followed by a period of consistent

increase (2005–2012) (Figure 8A). This trend was observed for

all three classes of woodland (Figure 8A). Finally, for the period

2013–2022, overall encroachment rates declined significantly, with

a cumulative total of only 114 km2 and an annual rate of 0.05%

(Figure 8A).

Similar patterns were observed in the process of thicketization.

Over the 26-year time period the annual rate of thicketization

was 0.26%, Nearly half of the total thicketized area (1,886

km2 at an annual rate of 0.85%) came into being during

the period 1997–2000 (Figure 8B). Then, between 2001 and

2004, thicketization rates decreased, affecting only 233 km2 at

an annual rate of 0.1% (Figure 8B). For the periods 2005–

2008 and 2009–2012, rates increased once more, reaching

752 km2 (0.3% annual rate) and 720 km2 (0.3% annual

rate), respectively (Figure 8B). And finally— in contrast to the

encroachment pattern—from 2013 to 2022 thicketization decreased

onlymarginally, encompassing a total area of 526 km2 (0.1% annual

rate) (Figure 8B).

With respect to disturbance, period-based trends showed

a greater consistency than those of either encroachment or

thicketization (Figure 8C). Over the 26 year time period the

annual rate of disturbance was 0.22%. For the woodland classes,

disturbance reached its peak between 1997 and 2000, with a total

area of 873 km2 (an annual rate of 0.029%) affected (comprising

406 km2 of mixed woodland at an annual rate of 0.18%, 334

km2 of deciduous woodland at an annual rate of 0.15%, and

133 km2 of evergreen woodland at an annual rate of 0.06%)

(Figure 8C). The mixed woodland category accounted for the bulk

of disturbed woodlands during all periods, with the exception of

2001–2004, when the highest proportion converted to open areas

consisted of deciduous woodland (Figure 8C). Between the years

2001 and 2022, the rates of disturbance exhibited a semi-constant
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FIGURE 7

Maps of vegetation change within the Post Oak Savannah between 1996 and 2022, and the corresponding LandTrendr fitted-line graphs of a pixel

(designated by yellow circle) within the designated area. The coordinates for the locations are as follows: (A) 97.6449961◦W, 28.4604706◦N, (B)

94.7603615◦W, 33.4467194◦N, (C) 95.0309760◦W, 33.4861302◦N.
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FIGURE 8

Changes in land cover by period for the three major mechanisms (A) encroachment, (B) thicketization, (C) disturbances, and (D) a period-based

comparison of their significance.

pattern, with no instances of falling below 169 km2 (an annual

rate of 0.08%) or exceeding 532 km2 (an annual rate of 0.25%)

(Figure 8C).

Of the three processes, encroachment accounted for the

most significant amount of change between 1996 and 2022,

even though most of it took place during the period 1997–

2000, with a noticeable decline in subsequent years (Figure 8D).

After the year 2000, thicketization emerged as the primary

mechanism of change, affecting a greater area than encroachment

(Figure 8D). Disturbance was the least significant mechanism in

terms of total area affected, yet its rates exhibited consistent

stability across all time periods (Figure 8D). Additionally, it is

noteworthy that between 2017 and 2022, disturbance affected a

larger area than either encroachment or thicketization, marking

this period as the start of an overall decline in woodland coverage

(Figure 8D).

We found that changes in land cover resulting from

encroachment, thicketization, and disturbance took place

unevenly throughout the Post Oak Savannah (Figure 9).

Encroachment emerged as the prevailing mechanism of change

in the southern portion, while also playing a substantial role

in the central and northern areas. Most of the encroachment

in the latter areas occurred before 2004, in contrast to

the southern area, which continued to undergo significant

encroachment until 2016 (Figure 9). The prevailing mechanism

of transformation in the central and northern areas was

thicketization, which proceeded at a relatively consistent rate

until 2016; this process was much more limited in the southern

part of the region, where it was observed predominantly

between 1997 and 2000 (Figure 9). Disturbance patterns were

similar across the central and northern parts of the Post Oak

Savannah, with a slight decrease observed in the southern area

(Figure 9).

4 Discussion

4.1 Classification accuracies

Compared to previous studies, our methodology demonstrated

comparable or slightly improved performance in mapping of

the three woodland types (deciduous, evergreen, and mixed).

For example, Udali et al. (2021), employing a RF classifier to

distinguish different woodland types, achieved a classification

accuracy of 94.0% and concluded by emphasizing the importance

of using leaf-off images for accurate mapping of woodland

types in boreal regions. Wang R. et al. (2023) obtained similar

findings when employing leaf-off imagery to distinguish woodland

types in a subtropical and humid region of southeastern China.

Yet other studies have found that a fusion of the imagery

captured during different seasons yields favorable outcomes in

the mapping of woodlands (Liu et al., 2018; Macintyre et al.,

2020; Bjerreskov et al., 2021; Turlej et al., 2022). Our study, given
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FIGURE 9

Spatial and temporal changes in land cover within the Post Oak Savannah region from 1996 and 2022 brought about by encroachment,

thicketization, and disturbance, resulting in simultaneous periods of woodland cover expansion and reduction.

the accuracy scores attained, further validates these findings—

demonstrating the advantages of multi-temporal optical imagery,

particularly leaf-off data, in the cartographic representation

of woodlands.

The practice of stacking and categorizing multiple ML outputs

as base-learners for meta-learning is a recent development, the

results of which are comparable to those of deep learning (DL)

algorithms (Long et al., 2021; Mallick et al., 2022; Zhang et al.,

2022; Wang S. et al., 2023). In our study, use of the feature-

based class predictions obtained from ML base learners as inputs

for a ML meta-learning classifier enhanced the accuracy of our

classification results. The integration of this algorithm into the GEE

framework resulted in overall accuracies of 94.3 and 96.5% for

the years 1996 and 2022, respectively (Table 3) —an increase of

at least 0.9% compared to our most accurate classifier (GBT) and

of 5.9% over that of our least accurate classifier (CART). Even so,

the improvements in accuracy achieved in our study were not as

significant as those reported for previous studies employing similar

methodologies. For example, Long et al. (2021) reported a nearly

10% increase in accuracy when classifying land cover in a wetland

in China. Similarly, Zhang et al. (2022) reported a remarkable

22.12% improvement in accuracy for estimating above-ground

biomass worldwide. Possible factors contributing to the significant

variations in accuracy improvement among the studies include

disparities in data, scale, location, and classification methodologies.

Nevertheless, it is clear that implementation of the ensemble-

stacking algorithm yielded increased accuracies to those of the

individual base-learners.

4.2 LandTrendr accuracies and avenues for
improvement

We employed the LandTrendr algorithm to effectively capture

the dynamic temporal nature of land cover transitions in the Post

Oak Savannah region from 1996 to 2022. The results obtained

were satisfactory, with an overall accuracy of 80.4% in capturing

both the year of change and the type of change (vegetation gain,

vegetation loss, or no change—see Table 6). Our results were

comparable with those of previous research conducted by Zhu

et al. (2019), Gelabert et al. (2021), Long et al. (2021), and Xiao

et al. (2023). Zhu et al. (2019) documented marginal enhancements

in outcomes by employing Landtrendr, achieving accuracies of

up to 87% for lake conversion and 83% for cropland conversion.

This was accomplished by utilizing an NDVI image stack to track

the yearly progression of lakes transitioning into croplands and

vice versa. Furthermore, Gelabert et al. (2021) utilized Tasseled

Cap transformation image stacks and integrated their results

through SVM to map WPE during secondary succession in the

Pyrenees Mountains of Northern Spain. The results showed a

marginal enhancement in comparison to our findings, offering

backing for the utilization of ML in the assessment of LandTrendr

outputs for WPE classification. Based on these comparisons, it is

suggested that enhancing the precision of these findings could be

achieved through the integration of machine learning algorithms.

This integration could be complemented by the utilization of

different vegetation indices (e.g., NDVI, EVI, and Tasseled Cap

Greenness) and optical bands such as NIR in conjunction with
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NBR. This approach holds promise for shaping forthcoming

research endeavors.

4.3 Discussion of large trends/ecological
impacts

Our findings confirm the hypothesis put forth by earlier

researchers that the density of woody vegetation in the Post Oak

Savannah has increased over time (Campbell, 1925; Tharp, 1926;

McBride, 1933; Parmalee, 1955; Midwood et al., 1998; Singhurst

et al., 2004; Stambaugh et al., 2011). The encroachment of 5,338

km2 of open area by woody plants (Table 5), as well as the

thicketization of 3,782 km2 of long-established deciduous oak

patches by the evergreen species Juniperus virginiana and Ilex

vomitoria (Table 5), are likely attributable to a combination of

overgrazing and an altered fire regime. Conversely, significant

stretches of woodland, amounting to some 3,154 km2 (Table 5),

have undergone conversion to open areas. The contribution of

direct human disturbance of woodlands to this conversion, though

active management practices such as mechanical removal of woody

material and prescribed burning, has been a neglected factor in

investigations of land cover change over the past 26 years. The

net outcome of these various alterations of land cover is a modest

(4.2%) rise in woodland coverage within the Post Oak Savannah

region from 1996 to 2022—considerably less than initially expected.

However, in comparison to previous studies on WPE conducted

in the Southern Great Plains region, the annual rate of change

for the woodland classes identified in this study was found to be

similar. Our research identified a yearly percentage change of 0.37%

from open areas to woodland, with 0.3% associated with deciduous

woodlands and 0.07% with mixed and evergreen woodlands. Asner

et al. (2003) reported an increment in woody cover by 0.2% in a

400-km2 area of northern Texas, USA, between 1937 and 1999,

primarily attributed to the growth of deciduous shrubs, particularly

Prospopis glandulosa. Smeins and Merrill (1988) discovered that

Juniperus ashei and Juniperus pinchotti, which are evergreen trees

resembling Juniperus virginiana, were gradually spreading into a

semiarid grassland in central Texas at a yearly rate of 0.6%.

The 4.2% increase in woodland cover fails to fully capture the

comprehensive and dynamic changes that have taken place during

this period. This region’s distinctive geographical characteristics,

including pronounced differences in latitude (28 to 34◦N) and

in precipitation (with a gradient ranging from 900mm in the

southwest to 1,150mm in the northeast), have given rise to

an uneven distribution of alterations in land cover. Although

all three change processes were observed in the entire region,

their expression varied in magnitude. The northern and central

areas of the Post Oak Savannah are dominated by a deciduous

overstory consisting of Quercus stellata, Quercus Marilandica, and

Carya texana, as is evident in the 1996 ensemble classification

(Figure 6). Thicketization then took place, through the growth of

sub-canopy woody plants (Juniperus virginiana and Ilex vomitoria),

transforming a significant portion of these areas into mixed

woodlands by the year 2022 (see Figure 6). In contrast, in 1996

the southern area of the Savannah consisted primarily of a

phenologically diverse overstory, with Quercus fusiformis, Quercus

virginiana, and Prosopis glandulosa being the dominant species

(Figure 6). While many of the trees in the area persisted, by

2022 the invasion of the surrounding open spaces by deciduous

woody species—particularly Prosopis glandulosa, Acacia ridgula,

Colubrina texanis, and Esyanhardtia texana—had transformed the

terrain into a predominantly deciduous woodland. In the region

as a whole, woodland disturbance emerged as the most consistent

mechanism of these changes. Responsible for the disturbances in

woodland areas are shifts in historical land use (such as grazing,

farming, urban and rural development, and lignite coal mining)

(Parmalee, 1955; Bartlett, 1995; Loucks, 1999). For example,

the urban land cover class increased by 84.3% over the period

1996 to 2022, expanding from 491 to 905 km2–which in fact

is a conservative estimate because many small rural roads were

misclassified as open space (disadvantage of medium resolution

imagery) (Table 4). This growth aligns with population trends in

Texas, as eight out of the ten fastest-growing counties in the

United States are situated in Texas (U.S. Census Bureau, 2011).

4.4 Human impact on findings

Much of the anthropogenic influence on the Post Oak Savannah

region is attributable to management practices employed on

privately owned land. It is reported that as of 2016, around 63% of

woodlands in the region are under private ownership (Willhoite,

2015). Additionally, according to Bexanson (2000), by the year

2001 <1% of the ecological system was being actively managed

for conservation purposes. In the mid 1900s, wildlife biologists

conducted research that revealed the negative impact of brush

control on wildlife, particularly in south Texas. Concurrently,

hunting of white-tailed deer was growing in popularity, providing

landowners with economic incentives to decrease brush control in

order to enhance the habitat for deer and other wildlife species

(Taylor et al., 1999). Furthermore, in 1995, Texas voters ratified a

constitutional amendment making wildlife management an eligible

“agricultural practice”, which permitted landowners whose land

was currently assessed for agricultural use under the Open Space

program to also use their land for wildlife management and thereby

qualifying for tax exemptions from the Texas Parks and Wildlife

Department. In south Texas, it is generally recommended that

individuals enrolled in this program refrain from removing woody

plants that constitutemore than 25–30% of their total property. The

findings of our study reflect the fact that these policies contributed

to a substantial decrease in the clearance of woody plants by private

landowners, which paved the way for the remarkable expansion

of deciduous woody plants observed in the southern Post Oak

Savannah from 1997 to 2012. Similar findings were reported by

Gelabert et al. (2021) in Spain, where the abandonment of ranch

land led to a surge in WPE (which then gradually diminished).

The observed temporal variations in woodland changes, as

depicted in Figure 9, suggest the emergence of several stable

vegetative states. The reduction in encroachment after 2012

indicates that the southern Post Oak Savannah has evolved into

a stable landscape dominated by deciduous shrubs. Similarly, the

decline in thicketization after 2016 led to the development of a

stable thicketized oak woodland in the central and northern areas
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of the Post Oak Savannah. Hernández-Valdez et al. (2023) observed

a comparable pattern in a secondary shrubland/oak woodland

mosaic in Central Mexico. This particular ecosystem had been

subjected to intensive grazing and farming activities for over 70

years, which were followed by a decrease in grazing intensity and

the abandonment of cultivation. It has been proposed that in

the early 20th century, human-induced fire suppression created

the conditions for heightened oak recruitment and thereby for

the subsequent invasion of oak savannahs by Juniperus virginiana

and, later, Ilex vomitoria (Dupree, 2004; Stambaugh et al., 2014;

Chapman and Bolen, 2017; Galgamuwa et al., 2020). In contrast

to declining encroachment and thicketization rates, disturbance

rates remained relatively consistent. This suggests that open areas

currently under direct management will maintain their stability

throughout the entire Post Oak Savannah region. Part of this

phenomenon can be credited to the emergence of landmanagement

workshops that utilize “peer-to-peer” instructional methods, which

have become increasingly popular in Texas. These workshops have

encouraged land managers to participate in the conservation of

open spaces (Restivo et al., 2023).

The advent of cloud-based computing and the availability of

remote sensing databases have brought about a transformation

in researchers’ ability to conduct comprehensive and precise

environmental analyses on a large scale. By facilitating the

quantification and upscaling of field findings, these advancements

enable the characterization of underlying ecological and

anthropogenic processes that impact large regions. Our study

has leveraged these advancements to assess the impacts of WPE,

thicketization, and disturbance on the Post Oak Savannah region

from 1996 to 2022. A major finding of this assessment is that

three distinct plant species communities currently coexist and

have remained stable over a period of time: deciduous shrubs in

the southern area, and a mosaic of open areas and thicketized

oak woodlands in the central and northern areas. Further, the

successional divergence of these plant communities indicates the

significant impact of human modification on the landscape.

4.5 Implications, limitations, and future
research

In the past, the primary responsibility of management was

predominantly delegated to private owners. Nonetheless, the

results of this study have the potential to offer valuable insights

for local and state governmental, as well as non-governmental

organizations, concerning targeted WPE management initiatives.

Furthermore, this study investigates different types of WPE,

specifically encroachment and thicketization, which require diverse

treatment strategies and aid in the understanding of challenges

faced by inhabitants in this region. A notable limitation of this

study was the unavailability of high-resolution leaf-off historical

imagery predating 1996, which constrained the timeframe of the

study. This dataset could have been utilized as valuable reference

data to expand the study’s baseline to 1985, aligning with the

initiation of Landsat’s systematic data collection. The phenomenon

of WPE is a gradual process that unfolds over the course of

several decades. Analyzing its influence on the Post Oak Savannah

throughout a 26-year timeframe aids in illustrating its implications

on the terrain. Nevertheless, the study could have provided more

profound insights if it had been feasible to prolong the duration of

the study and expand the time period intervals from 4–6 years to

10–15 years.

Future research endeavors can enhance the LandTrendr

modeling technique by integrating various vegetation indices and

surface reflectance bands. Reclassification through the use of DL

architectures could be a promising avenue to explore, but may

not warrant significant investment given the already high level of

classification accuracy demonstrated by our study. Furthermore,

the addition of Sentinel-2 imagery with a higher spatial resolution

(10m), can offer valuable insights into the historical developments

of the Post Oak Savannah. Finally, the findings of this study could

be utilized in tandem with other water-related research in the

region to enhance comprehension of the effects of WPE and forest

disturbance on the significant Carrizo-Wilcox Aquifer.
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