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Trees that survive disturbances are important biological legacies that facilitate 
forests’ recovery and enhance their structural and species diversity, substantially 
contributing to the resilience of these ecosystems. The dynamic pattern of legacy 
syndromes sets the understudied aspects of survivors of wind disturbance into 
focus. Several factors at tree, stand, and landscape scales alter the susceptibility 
of the remnant trees, and affect their potential to recover and survive subsequent 
disturbances. The characteristics of the survivors interact with direct stress 
and mortality drivers such as changed environmental conditions and pressure 
by pests and pathogens. Climate change further enhances the post-storm 
vulnerability of the remaining stand. This literature review analyzes the impact 
of disturbance parameters (e.g., severity, seasonal timing) and characteristics 
of the affected forest (e.g., tree species composition, successional stage of 
a forest stand) on the conditions of survivors through post-windthrow stand 
development. We attempted to reveal the main agents and processes driving the 
fate of remnant trees and linked delayed mortality patterns to the main stand-
scale wind disturbance regimes in Eurasian and North American boreal and 
temperate forests: (1) stand-replacing, (2) partially stand-replacing, and (3) fine-
scale gap disturbance. We found that after stand-replacing wind disturbance, 
the spatial location of the remaining trees largely determines their onward 
fate, whereas these survivors are generally more susceptible to subsequent 
mortality compared to trees that survived less severe events. After partially 
stand-replacing wind disturbance, the structure of the remnant stand as well 
as characteristics of the individual remnant trees (e.g., species, age, size) largely 
determine their survival probability. Following a fine-scale gap disturbance, the 
trees at the gap edge are more likely to die, compared to the trees situated 
in the stand interior, but the mortality-causing processes usually operate on a 
longer time scale. Our findings contribute to the current knowledge on post-
windthrow stand development and offer insights into temporal stability of these 
increasingly important biological legacies.
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1 Introduction

Wind is the primary naturally occurring agent of forest turnover in 
humid climates where wildfires are infrequent (Ulanova, 2000; Frelich, 
2002). For instance, windstorms were responsible for 53% of the total 
damage caused by natural disturbances in European forests over the 
period 1950–2000 (Schelhaas et al., 2003). In a compilation covering 29 
European countries, Seidl et al. (2014a) estimated that wind damaged 
32.3 million m3·yr.−1 of timber during the first decade of the 21st 
century. This estimate excludes subsequent damage caused by bark 
beetles and other interacting disturbance agents. Wind disturbance has 
remained the most important disturbance agent in Europe in the past 
20 years as well, although a slight proportional decrease has occurred 
due to doubling of bark beetle disturbance (Patacca et al., 2023). The 
severity of wind-induced effects varies from scattered tree mortality, 
i.e., complex cohort- or fine-scale mosaics of living and dead trees to 
very large windthrow areas with near-total overstory destruction 
(Schaetzl et al., 1989; Everham and Brokaw, 1996; McCarthy, 2001; 
Angelstam and Kuuluvainen, 2004; Shorohova et al., 2008), resulting in 
several potential pathways for onward stand development (Seidl et al., 
2011a; Meigs et  al., 2017). Interaction between wind and trees is 
complex; understanding the process and response requires integration 
of multiple disciplines such as soil science, physics, physiology, ecology, 
meteorology, and climatology (Quine and Gardiner, 2007).

Trees that survive disturbance are an important biological 
component of ecosystem legacy, affecting the resilience and complexity 
of forest ecosystems (Franklin et al., 2000; Seidl et al., 2014b; Jõgiste 
et al., 2017). Different initial states after disturbance (e.g., species, age, 
coverage and spatial configuration of surviving trees) affect eventual 
dominance, size differentiation, degree of mingling and aggregation of 
trees, thus resulting in communities with different structures and 
compositions (Turner et al., 1998; Seidl et al., 2014b; Bāders et al., 2021).

Several potential concurrent factors can predispose a tree to spiral 
into decline. The decline-disease spiral model is a well-known concept 
originally proposed by Manion (1981). It explains how the cumulative 
impact of predisposing, inciting, and contributing factors can lead to 
tree mortality. Following a wind event, a dynamic interplay sets up 
between ecosystem legacies (e.g., surviving trees, deadwood, pit-and-
mound complexes) and altered environmental conditions (e.g., light, 
temperature, soil, water regime) while forests are susceptible to 
subsequent disturbances (Paine et al., 1998; Buma, 2015). Pathogens, 
insect pests, and herbivores also respond to these changes and can 
cause further cascading effects (Gandhi et  al., 2007; Buma, 2015; 
Cannon et al., 2017). Delayed mortality of trees damaged by wind may 
occur for decades after wind events (Harmon and Pabst, 2019).

Many studies have focused on the consequences of windstorms 
for forest ecosystems in temperate and boreal biomes (e.g., Skvortsova 
et al., 1983; Everham and Brokaw, 1996; Ulanova, 2000; Shorohova 
et al., 2008; Vodde et al., 2011; Mitchell, 2013; Peterson, 2019a). Few 
studies, however, provide insights into the onward fate of the remnant 
trees after wind disturbance. The ability to predict onward mortality 
patterns after wind disturbance of various severities would significantly 
contribute to our understanding of stand dynamics. Disturbance 

management is increasingly important as the frequency of windstorms 
is expected to increase under climate change (IPCC, 2014).

The main aim of this literature review was to summarize current 
knowledge on the prospects of remnant trees in wind-disturbed 
stands located in boreal and temperate biomes. Susceptibility of 
surviving trees to subsequent disturbance agents was estimated for 
three main stand-scale wind disturbance regimes inherent in boreal 
and temperate forests: (1) stand-replacing (SR), (2) partially stand-
replacing (PR), and (3) fine-scale gap (FS) disturbance. We expected 
to find that the variety of survival patterns include aspects that make 
forests particularly vulnerable to subsequent disruptive events. 
Acknowledging tree survival patterns predominating after wind 
disturbance in boreal and temperate forests, we aspired to find an 
answer to the questions: (1) which factors affect survival chances of 
trees under different patterns, during and after wind disturbance; and 
(2) what disturbance types are the most likely subsequent risk factors 
to remnant trees?

Literature was retrieved through searches in the Web of Science 
and Google Scholar. We used different combinations of search terms 
in the title, abstracts, and keywords, using Boolean operators, e.g., 
(remnant trees OR surviving trees OR residual trees) AND (boreal OR 
hemiboreal OR temperate) AND (wind OR windthrow OR storm). 
Additional references were identified through cross-references and the 
authors’ knowledge. The extensive literature cited in this review 
reflects complex patterns of forests’ response to the highly variable 
wind disturbance regimes.

2 Surviving trees and their 
susceptibility to subsequent 
disturbance agents

2.1 General vulnerability and development 
of wind-disturbed stands

Disturbances are more likely to occur in previously damaged 
stands (Hanewinkel et al., 2011; Ruel et al., 2023). Surviving trees have 
often encountered mechanical damage to roots, xylem, and crown, 
stressing them and increasing their susceptibility (White and Pickett, 
1985; Puhe, 2003; Seidl and Blennow, 2012; Harmon and Pabst, 2019). 
Stress from injuries and abrupt changes in environmental conditions 
might cause growth retardation. Seidl and Blennow (2012) found that 
the increment of Norway spruce (Picea abies L. Karst) dropped 
significantly in forests affected by the highly destructive winter storm 
Gudrun, compared to pre-storm levels. Exposed remnant trees 
experience physiological adaptations including thickening of trunks 
and increased root growth; response rate depends on growth 
conditions (Stathers et al., 1994). Trees may need several years to 
acclimate to an altered wind environment and regain mechanical 
stability. Mortality from other agents often remains high during these 
years (Schroeder and Lindelöw, 2002; Köster et al., 2009; Shibuya and 
Ishibashi, 2019) as trees allocate resources to repair mechanical 
damages at the expense of defensive mechanisms, thereby increasing 
their susceptibility to insect pests and pathogens (Schowalter, 1985; 
Baier et al., 2002; Wermelinger, 2004; Huang et al., 2020; Puglielli 
et al., 2023).

Delayed mortality can strike trees without any visible damage. 
Ueda and Shibata (2004) associated tree decline and dieback of 

Abbreviations: SR, stand-replacing wind disturbance; PR, partially stand-replacing 

wind disturbance; FS, fine-scale gap disturbance; CWD, coarse woody debris; 

DBH, diameter at breast height; BA, basal area; ha, hectare; y, year.
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apparently healthy-looking remnant trees in a typhoon-damaged 
forest stand with increased aboveground hydraulic resistance caused 
by a large reduction in trunks’ water conducting area. Although 
delayed mortality mostly occurs within a few years following the 
disturbance, Harmon and Pabst (2019) observed delayed mortality 
long after the damaging wind event—of 319 surviving wind-damaged 
trees, 144 (about 45%) died within 35 years. Mortality of the damaged 
trees was highest within the first 5 years, but approximately 11% of 
mortality cases occurred after a 10–25-year delay.

Wind-damaged trees can sometimes resprout, rebuild injured 
crowns or develop secondary shoots from downed stems, even despite 
severe damage (Peterken, 1996; Cooper-Ellis et al., 1999; Peterson, 
2000; Canham et al., 2001). Sprouting ability is substantially affected 
by several tree traits (e.g., species, age, size) as well as by the level of 
pre-disturbance competition between trees (Peterson and Carson, 
1996; Peterson and Rebertus, 1997; Cooper-Ellis et al., 1999; Peterson, 
2000; Dietze and Clark, 2008; Matula et al., 2019). Type of damage 
(stem breakage versus uprooting) is also important—uprooted trees 
sprout more often than broken trees (Dyer and Baird, 1997). As most 
conifers do not sprout, stand regeneration via vegetative recovery is 
usually unattainable in wind-damaged conifer-dominated stands, 
while in situations where species prone to sprouting make up a large 
proportion of the forest, the role of sprouting in re-establishment of 
the forest structure could be substantial (Peterson, 2000; Dietze and 
Clark, 2008).

Peterson and Pickett (1991) reported that 25% of broken trees 
sprouted in the four growing seasons after a tornado in an old-growth 
hemlock-hardwood forest; the tendency to sprout varied significantly 
among species. Of those broken trees that sprouted, 68% were alive at 
the end of the fourth growing season. Cooper-Ellis et  al. (1999) 
reported that a surprisingly large amount (approximately 80%) of 
damaged trees survived and sprouted in the first growing season in an 
experimentally pulled down 75-yr-old temperate Quercus rubra–Acer 
rubrum forest. After 4 years, survival of uprooted and broken trees 
remained above 40% (Foster et al., 1997). In a follow-up study, Plotkin 
et  al. (2013) concluded that the presence of abundant advance 
regeneration, root suckers and stump sprouts, understory vegetation, 
and, most importantly, surviving trees allowed the forest to resist 
changes in ecosystem processes and functions. However, when a forest 
stand is mainly recovered via sprouting, an abrupt shift in tree-
community structure and composition can occur, due to the 
differential ability of species to sprout (Peterson and Pickett, 1991; 
Everham and Brokaw, 1996). Moreover, sprouts (and trees that 
originate from sprouts), may be more susceptible to wood-rotting 
organisms and further mechanical damage, affecting the future 
development of the stand (True and Tryon, 1966; Putz and Sharitz, 
1991; Del Tredici, 2001).

Characteristics of a wind event also affect the condition of 
remnant trees. A simulation of wind damage to old-growth boreal 
stands of mixed species showed that wind speed was more important 
than the number of events for relatively low wind speeds (equal to 
or < 20 m s−1), but at higher wind speeds, the number of events had 
greater impact on severity (i.e., damage done to the forest in terms of 
proportion of trees downed, loss in basal area, loss in above-ground 
biomass; Anyomi et  al., 2016). For long duration events, damage 
propagates until all susceptible trees in a stand are windthrown. 
Similarly, frequent high wind speed events generally clear an area 
more rigorously of weaker trees than do low wind speed events, 

regardless of their frequency. Short duration high wind speed events, 
however, create patches of damage that are bordered by stand edges 
that survived only because the wind speed dropped. These edges 
remain vulnerable to subsequent winds of similar magnitude (Anyomi 
et al., 2016).

Downbursts are a special case of wind disturbance that can result 
in distinct patterns of wind damage. A downburst is a rapid, localized, 
straight-direction surface wind caused by a strong downdraft from the 
base of convective thundershowers and thunderstorms (Xi and Peet, 
2011). Contrary to other types of wind disturbances, in case of a 
downburst, the trees sheltered by other trees or topographic features 
may not have advantages over the trees that have more exposed 
positions, as all trees in a path of a downburst regardless of their level 
of exposure are similarly vulnerable to the downward facing wind 
pressure (Foster et al., 1998; Lin et al., 2004). Thus, downburst often 
create sharp edges between intact forest and completely windthrown 
areas (Foster et al., 1998).

2.2 Susceptibility to next wind event

Wind conditions within the first years after the initial event are 
critical in determining the long-term survival of remnant trees as air 
flow at higher speeds in more exposed stands may cause further 
damage to crowns, stems, or root systems of remnants (Hunter, 1995; 
Mitchell, 2013). For instance, Kitenberga et al. (2021) found that birch 
trees with prior damage had a significantly higher probability (odds 
ratio 4.32, i.e., four times as likely) of further wind damage. 
Vulnerability of the remnant stand to further wind damage generally 
increases with increasing severity of the initial event, whereas the level 
of damage from following wind event can be  much higher than 
expected for the level of winds experienced (Gardiner, 2021).

The timing of the next wind event is important. If the wind event 
takes place between growing seasons, conifers are more susceptible to 
windthrow than deciduous broadleaves due to needle retention (Zeng 
et al., 2010). Moreover, root anchorage strength is increased by soil 
freezing and reduced by soil saturation (Gardiner et al., 2010), thus 
trees are more susceptible to uprooting if wind disturbance takes place 
when the ground is saturated but not yet frozen. Precipitation during 
a windstorm also increases susceptibility to wind damage as water 
adds extra weight to the canopy, increasing the bending forces onto 
the stem when the stem is displaced by the wind (Gardiner et al., 2008).

Long-term disturbance and land use history affect the 
susceptibility of the survivors to further wind damage. For instance, 
even though susceptibility to wind damage generally increases with 
increasing age and size of trees (Foster, 1988; Whitney, 1989), 
sometimes the surviving trees may be the oldest and largest ones in 
the stand (Everham and Brokaw, 1996; Peterson, 2000). Very large 
trees can be open-grown trees from previous land use or trees that 
have had time to develop open-grown characteristics when they 
became canopy emergents due to the gradual death of surrounding 
trees. Such combinations of legacies that often contribute to increased 
resilience of the forest are termed ‘legacy syndromes’ (Jõgiste et al., 
2017). On a single tree scale, heavy snow or ice loading on the crown, 
which occurs primarily in forests located at higher latitudes or high 
altitudes, increases windthrow susceptibility due to increased canopy 
mass and an increase in the drag coefficient (Valinger et al., 1993; 
Stathers et al., 1994). Concomitant factors, such as falling of adjacent 

https://doi.org/10.3389/ffgc.2024.1405430
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Palm-Hellenurm et al. 10.3389/ffgc.2024.1405430

Frontiers in Forests and Global Change 04 frontiersin.org

trees or branches can also cause bark, root, crown, and sapwood 
damage, in some cases leading to fatality (Webb, 1989; Cooper-Ellis 
et al., 1999).

2.3 Susceptibility to fire

The increased amounts of CWD associated with wind 
disturbances increase the probability and severity of a subsequent 
wildfire; wind–fire interactions vary with climatic conditions, with 
regional differences, and with the intensity or severity of individual 
disturbances (Kulakowski and Veblen, 2007; Cannon et al., 2017). 
Wind disturbance may interact with fire not only through the addition 
of fuel, but also through more subtle changes in fuel composition, 
consumption, and arrangement (Cannon et al., 2014). Moreover, wind 
damage may increase fire intensity or severity indirectly as well, by 
changing species composition and/or forest structure toward more 
flammable ones (Cannon et al., 2017; Anoszko et al., 2022).

2.4 Susceptibility to insect outbreaks

Insect pests are the most significant biotic mortality-causing 
agents following a wind disturbance. Increased amounts of CWD in 
wind-disturbed forests are prime breeding habitats for potentially 
greatly damaging subcortical insects (Gandhi et al., 2007). In turn, 
insect pests can vector fungal infections that aid in the depletion of 
host defenses (Paine et al., 1997; Krokene and Solheim, 1998; Faccoli 
and Santini, 2016; Vogt et al., 2020). Bacteria also may play a role in 
neutralizing tree defenses (Boone et al., 2013).

Tree-killing bark beetles can have a profound ecological effect on 
wind-disturbed remnant stands, influencing their species composition, 
age structure, density, woody debris inputs etc. (Raffa et al., 2015). At 
stand scale, local context regarding insect pests (e.g., presence and 
abundance of the pest, climatic conditions influencing reproduction 
rate of pests as well as susceptibility of a host) is clearly important; 
presence and abundance of antagonists, i.e., predators and parasites of 
the pest, may also make a considerable difference (Massey and 
Wygant, 1954; Osetrov, 2002; Bouget and Duelli, 2004; Wermelinger, 
2004; Eriksson et al., 2007; Kärvemo et al., 2014a; Jan Weslien et al., 
2024). Location of the disturbed forest can influence the severity of 
infestation as voltinism (number of broods or generations of an 
organism within a year) of insect pests depends on latitude and 
elevation, with a greater number of generations occurring in milder 
climates (Lange et  al., 2006; Jönsson A M, et  al., 2007). Species 
composition of the disturbed stand is of high importance, as pests and 
pathogens are usually host-specific (Bouget and Duelli, 2004; Tedersoo 
et al., 2019). There is a strong positive correlation between stand-scale 
host tree volume and risk of bark beetle infestation (Kärvemo et al., 
2014b). Among bark beetles that colonize live trees, most have evolved 
adaptations to exploit conifers in the Pinaceae family, despite 
remarkable defenses that these trees can mount (Sequeira et al., 2000; 
Franceschi et al., 2005; Raffa et al., 2015). Species composition can 
have more complex effects on vulnerability as well, for example, Baier 
et al. (2002) found that spruces in mixed stands had a higher primary 
resin flow as a response to bark beetle attack, compared to trees in 
pure spruce stands. Moreover, it has been found that volatiles released 
by non-host trees disturb bark beetle response to pheromones (Byers 

et al., 1998; Jactel et al., 2001; Zhang, 2003), thus possibly improving 
the resistance of mixed forests.

On a single tree scale, the level of damage the tree was subjected 
to during wind disturbance determines the fate of a remnant tree to a 
substantial extent, as bark beetles can detect cues associated with 
stress physiology of their host plants (Raffa et al., 2015). Attacks by 
several insect species can occur simultaneously, causing cumulative 
effect (Göthlin et al., 2000). Higher entry rates have been observed in 
response to root infection, defoliation, fire- or lightning injury, old 
age, and other stresses (Christiansen, 1991; Jakuš et al., 2011; Lindgren 
and Raffa, 2013). However, once the pest population has reached the 
epidemic phase, host defenses no longer play a major role since the 
insects are abundant enough to overcome the defense mechanism in 
all but the most vigorous or genetically resistant trees (Lindgren and 
Raffa, 2013). The age of a tree is a significant factor, as several 
age-related parameters (thickness and texture of bark, thickness of 
phloem, vitality of the host) affect its susceptibility to bark beetles 
(Långström, 1983; Ferrenberg and Mitton, 2014; Takei et al., 2021), 
whereas different species have dissimilar host requirements (Göthlin 
et al., 2000). For instance, the lower limit of the thickness of bark 
which can be colonized by Ips typographus L. is 2.5 mm, which is 
usually attained when the DBH of the host tree has reached about 
15 cm (Grunwald, 1986; Seidl and Rammer, 2017). Dendroctonus 
rufipennis Kirby prefers large, mature trees as a host, but may attack 
trees with DBH as small as 5 cm when larger trees become depleted 
and the beetle population has become excessively abundant (Massey 
and Wygant, 1954). Some highly damaging bark beetles prefer a 
breeding substrate exposed to the sun; Jakuš et al. (2011) found that 
trees with a higher level of stem shading (longer crown length) had a 
higher probability of surviving the I. typographus outbreak. Some 
observations of potentially highly damaging insect pests associated 
with wind disturbances in temperate and boreal biomes are described 
in Table  1. Several landscape and stand-scale parameters (e.g., 
elevation, aspect, initial stand density) additionally affect the 
predisposition of the remnant stand to insect outbreaks (Tables 2, 3).

The decline-disease spiral model concept applies in regard to 
insect pest outbreaks, as all large-scale wind disturbances within the 
range of severe pests such as D. rufipennis or I. typographus do not 
result in subsequent outbreaks, indicating that some other factors 
need to co-occur for a large-scale infestation to emerge; drought has 
been suggested to be the most influential contributing factor (Jönsson 
A M, et al., 2007; Raffa et al., 2008; Hart et al., 2014; Netherer et al., 
2015; Dodds et al., 2019). For instance, after World War II, catastrophic 
insect outbreaks occurred when large cuttings for reparations that 
generated huge amounts of litter and debris were followed by a hot 
and dry summer in 1946 (Hanewinkel et al., 2011).

2.5 Susceptibility to pathogenic fungi

The presence of rot-causing fungi such as Heterobasidion spp., 
Armillaria spp. and Phellinus spp. is known to harm the mechanical 
stability of infected trees, thus increasing the risk of wind damage 
(Whitney, 1989; Quine and Gardiner, 2007). In turn, wind disturbance 
may facilitate the spread of pathogenic fungi by creating infection 
courts on residual trees from collision and abrasion from falling trees, 
by fracturing the roots, and by fungal spore dissemination (Schmid-
Haas and Bachofen, 1991; Hennon, 1995; Worrall et al., 2005; Krisans 
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et  al., 2020). Moreover, wind disturbances can facilitate fungal 
pathogens via altered microclimatic conditions (e.g., temperature, 
relative humidity) which can increase abundance and infection 
success of many pathogenic species (Cobb and Metz, 2017; Idbella 
et al., 2023). Additionally, wind disturbance can substantially alter the 
communities of symbiotic fungi (Idbella et al., 2023; Venice et al., 
2023), which can affect seedling establishment (Nara, 2006; Liang 
et  al., 2020) and decrease stand’s resistance to abiotic and biotic 
stressors (Van Der Heijden et al., 2008; Anthony et al., 2022). However, 
the impact of wind disturbance on fungal communities is not a subject 
of many research papers, thus the magnitude and causality of these 
interactions is still largely unclear.

Due to different susceptibility of tree species, a forest stand with 
diverse tree species composition is less vulnerable to fungal pathogens, 
compared to monospecific stands (Pautasso et al., 2005). Some studies 
have shown that root and butt rot (caused by Heterobasidion spp. and 
other pathogens) frequency in Norway spruce is higher in fertile sites 
(e.g., Garbelotto and Gonthier, 2013; Müller et al., 2018).

Bark beetles that colonize living conifers are frequently associated 
with pathogenic fungi that are introduced into the tree during the 
attack process (Paine et  al., 1997; Krokene and Solheim, 1998; 
Netherer et al., 2021). These symbiotic fungi are important allies to the 
pest as they produce beetle semiochemicals and degrade host toxins, 
helping to exhaust tree defenses (Netherer et al., 2021). Among the 
fungal associates of spruce bark beetles in Eurasia, a blue stain fungus 
Endoconidiophora polonica (formerly known as Ceratocystis polonica), 
primarily transmitted by I. typographus, is the most virulent (Solheim, 
1988; Christiansen, 1991; Krokene and Solheim, 1998.). Another blue 
stain fungus Grosmannia penicillata is also a noteworthy subsidiary to 
the pest (Schebeck et  al., 2023; Netherer et  al., 2024). In North 
America, Leptographium abietinum is associated with Dendroctonus 

spp., causing additive damage to members of the Pinaceae, especially 
Picea spp. (Jacobs et  al., 1998). Tomicus spp. have several fungal 
associates as well, for instance they are an active transmitter of the 
tracheomycotic genus Ophiostoma, inducing blue stain in Pinus 
yunnanensis Franchet in China (Pan et al., 2017) and Pinus sylvestris 
in Sweden (Solheim and Långström, 1991). In northern Spain, 
Tomicus piniperda has been found to vector Fusarium circinatum, the 
causal agent of pitch canker disease, in Pinus radiata D. Don (Bezos 
et al., 2015).

3 Patterns under different wind 
disturbance regimes

3.1 Stand-scale wind disturbance regimes 
in boreal and temperate forests

Disturbance size and severity are inversely related to event 
frequency (Foster and Reiners, 1986; Turner et al., 1998; Angelstam 
and Kuuluvainen, 2004; Hanewinkel et al., 2011). This relationship 
creates a gradient from infrequent, coarse-grained stand-replacing 
disturbances (SR) to moderately frequent, medium-grained 
disturbances (partially stand-replacing disturbances, PR), to very 
frequent fine-grained single (or few) tree gap disturbances (fine-scale 
gap disturbances, FS), as depicted in Figure 1. These regimes usually 
create even-aged stands, multi-aged stands, and all-aged stands, 
respectively (Frelich, 2002), according to the prevailing local 
disturbance regime. Within the framework of this study, we consider 
a wind disturbance event to be stand-replacing when >75% of the 
upper strata (i.e., canopy trees and emergent trees) are downed 
during the incident, as proposed by Bouchard et al. (2009). Fine-scale 

TABLE 1 Observations of highly damaging insect pests associated with wind disturbances in boreal and temperate forests.

Insect pest Host Location References

Ips typographus L. Picea abies (L.) Karst. Eurasia

Wermelinger (2004); Schroeder (2001); Schroeder and Lindelöw 

(2002); Bouget and Duelli (2004); Eriksson et al. (2007); Köster 

et al. (2009); Hanewinkel et al. (2011); Kärvemo et al. (2014a);

Tomicus spp. (T. piniperda L. 

and T. minor Hartig.)
Pinus spp.

Eurasia (T. piniperda 

invasive in North America)

Långström (1983); Hui and Lieutier (1997); Benzel (2015)

Dendroctonus rufipennis Kirby 

and D. pseudotsugae Hopkins

Picea spp.

Pinus contorta Doug. ex Loud.

Pseudotsuga menziesii (Mirb.) Franco

Western North America

Massey and Wygant (1954); Hinds et al. (1965); Reynolds and 

Holsten (1994); Mercado (2020); Gandhi et al. (2007)

Polygraphus proximus Blandf.

Abies spp.

Pinus spp.

Larix spp.

Tsuga spp.

East Asia, invasive in 

Siberia and central 

European Russia

Baranchikov et al. (2010); EPPO (2014); European Food Safety 

Authority (EFSA) et al. (2020)

Monochamus spp. (vectors of 

pine wilt disease)

Pinus spp.

Abies spp.

Picea spp.

Larix spp.

North America

Eurasia

Gardiner (1975); Gandhi et al. (2007); Pimentel et al. (2023)

Scolytus ventralis LeConte Abies spp. Western North America Berryman and Ferrell (1988); Goheen and Hansen (1993)

Tetropium spp. Picea spp. North Ameriva Gardiner (1975); Sweeney et al. (2001)

Dendroctonus terebrans 

Olivier., Pissodes nemorensis 

Germar.

Pinus spp.

Picea spp.

Cedrus spp.

North America (Southern 

U.S.A)

Vogt et al. (2020)

https://doi.org/10.3389/ffgc.2024.1405430
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


P
alm

-H
ellen

u
rm

 et al. 
10

.3
3

8
9

/ff
g

c.2
0

24
.14

0
54

3
0

Fro
n

tie
rs in

 Fo
re

sts an
d

 G
lo

b
al C

h
an

g
e

0
6

fro
n

tie
rsin

.o
rg

TABLE 2 Summary table describing landscape-scale factors that affect post-windthrow vulnerability of surviving trees to subsequent disturbances (SD) based on relations revealed between Windthrow Site 
Characteristics (WSC) and wind disturbance regimes.

Factors 
contributing to 
vulnerability of 
surviving trees

Windthrow site 
characteristics 
(WSC)

The relations between WSC 
and Disturbance Regime (− 

no to Minor; ± Minor to 
Considerable; + 

Considerable to Major)

The relations between WSC and Subsequent 
Disturbances (SD) following a Major Wind 

Disturbance (+ Amplifying effect; − Buffering 
effect; +(−) both relations present)

References

FS PR SR Wind Insects Pathogens Fire

Long-term disturbance 

and land use history

Successive blowdowns 

(storms)

± + + +(−) + + +(−) Skvortsova et al. (1983); Everham and Brokaw (1996); Allen (1992); 

Khakimulina et al. (2016); Harmon and Pabst (2019); Vašíčková et al. 

(2021)

Other previous 

disturbances (logging, 

fires)

± + + +(−) +(−) +(−) – Foster (1988); Pavlov (2015); Cannon et al. (2017); Jõgiste et al. 

(2018); Ruel et al. (2023)

High local population 

size of pests

± + + + Osetrov (2002); Schroeder and Lindelöw (2002); Kärvemo et al. 

(2014a); Eriksson et al. (2005); Eriksson et al. (2007)

Topography and 

bedrock

Shallow soils ± ± + + + + Buma (2015); Pavlov (2015); Siitonen et al. (2000); Cannon et al. 

(2017); Ruel (2000); Stathers et al. (1994); Foster (1988)

Deep fertile soils ± ± + +(−) + Everham and Brokaw (1996); Bouchard et al. (2009); Shorohova et al. 

(2008); Müller et al. (2018); Garbelotto and Gonthier (2013); Stueve 

et al. (2011)

Organic soil ± + + + Schaetzl et al. (1989); Stathers et al. (1994); Mitchell (1995)

Acidic soil ± + + + Mayer et al. (2005); Braun et al. (2003)

Harsh environmental 

conditions associated 

with high latitude/

altitude

± + + − Lange et al. (2006); Jönsson A M, et al. (2007)

Spatial extent Large area affected − ± + + + Schroeder (2001); Quine and Gardiner (2007)

Climate
Drought following the 

wind disturbance
+ + + + + + +

Bouget and Duelli (2004); Gandhi et al. (2007); Jönsson A M, et al. 

(2007); Kulakowski and Veblen (2007); La Porta et al. (2008); Raffa 

et al. (2008); Hart et al. (2014); Cannon et al. (2017); Csilléry et al. 

(2017); Dodds et al. (2019); Krokene et al. (2023)

Relations between WSC and Disturbance regimes reflect the authors’ interpretation. References apply to the relations between WSC and SD.
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TABLE 3 Summary table describing stand-scale factors that affect post-windthrow vulnerability of surviving trees to subsequent disturbances (SD) based on relations revealed between Windthrow Site 
Characteristics (WSC) and wind disturbance regimes.

Factors 
contributing 
to vulnerability 
of surviving 
trees

Windthrow site 
characteristics (WSC)

The relations between 
WSC and Disturbance 

Regime (− no to Minor; ± 
Minor to Considerable; + 
Considerable to Major)

The relations between WSC and 
Subsequent Disturbances (SD) 

following a Major Wind Disturbance (+ 
Amplifying effect; − Buffering effect; 

+(−) both relations present)

References

FS PR SR Wind Insects Pathogens Fire

Edaphic conditions

Soil compaction ± ± ± + Greacen and Sands (1980); Quine and Gardiner (2007)

Frozen soil ± + + − Peltola et al. (1999b); Gardiner et al. (2010)

Saturated soil ± + + + Schaetzl et al. (1989); Gardiner et al. (2010); Lüscher (2002); Beniston et al. 

(2007)

Location

Location on hill or higher 

altitude

− ± + + Foster and Boose (1992); Quine and Gardiner (2007); Talkkari et al. (2000); 

Hanson and Lorimer (2007)

On sun-exposed slopes ± + + + Christiansen and Bakke (1988); Jakuš et al. (2011); Netherer and Nopp-Mayr 

(2005)

Stand development 

phase

Young − + + − − Christiansen et al. (1987); Rich et al. (2007); Angelstam and Kuuluvainen 

(2004); Kärvemo et al. (2014b); Jõgiste et al. (2017); Kumbașlı et al., 2011; 

Foster (1988); Everham and Brokaw (1996); Canham et al. (2001) Bouchard 

et al. (2009)

Developing − + + – −

Middle-aged (mature for cutting) ± + + + ±

Old-growth + + + +(−) + + +

Species composition

Large proportion of conifers + ± + + + + Arévalo et al. (2000); Rich et al. (2007); Shorohova et al. (2008); Everham and 

Brokaw (1996); Loehle (2000); Yoshida and Noguchi (2009); Webb (1989); 

Peterson (2019a); Everham and Brokaw (1996); Canham et al. (2001); Papaik 

and Canham (2006); Anyomi et al. (2017); Raffa et al. (2015)

Large proportion of shade-

intolerant/early successional 

species

+ + + +

Mixed stands (versus pure 

conifer stands)

± + ± − − − − Schmid-Haas and Bachofen (1991); Foster and Boose (1992); Baier et al. 

(2002); Pautasso et al. (2005); Anyomi et al. (2017); Hély et al. (2000); Kafka 

et al. (2001); Jactel et al. (2017)

Initial (pre-storm) 

stand density

Dense stand ± + + + + + Christiansen et al. (1987); Stathers et al. (1994); Nicoll and Ray (1996); 

Mitchell (2013); Pavlov (2015)

Post-storm stand 

characteristics

Small proportion of surviving 

trees

− − + + Moore et al. (2003); Maguire et al. (2006); Urgenson et al. (2013); Coates 

(1997); Huggard et al. (1999); Hale et al. (2012)

Dispersed pattern of survivors − ± + + Moore et al. (2003); Coates (1997); Thorpe and Thomas (2007); Maguire et al. 

(2006); Urgenson et al. (2013)

Large quantities of CWD − ± + + + + Schroeder and Lindelöw (2002); Eriksson et al. (2005); Göthlin et al. (2000); 

Kärvemo et al. (2014b), Cannon et al. (2017); Mitchell (2013)

Large proportion of wind gap 

area

− + + + + Zeng et al. (2010); Kärvemo et al. (2014a)

(Continued)
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TABLE 3 (Continued)

Factors 
contributing 
to vulnerability 
of surviving 
trees

Windthrow site 
characteristics (WSC)

The relations between 
WSC and Disturbance 

Regime (− no to Minor; ± 
Minor to Considerable; + 
Considerable to Major)

The relations between WSC and 
Subsequent Disturbances (SD) 

following a Major Wind Disturbance (+ 
Amplifying effect; − Buffering effect; 

+(−) both relations present)

References

FS PR SR Wind Insects Pathogens Fire

Microclimate 

associated with 

existence of large 

open areas

Extreme temperatures − ± + + + + Carlson and Groot, (1997); Ishizuka et al. (2002); Gilmore et al. (2003); 

Bouget and Duelli (2004); Wermelinger (2004); Shibuya and Ishibashi (2019)

Exposure to wind − ± + + + Gardiner et al. (2005); Schroeder (2001); Quine and Gardiner (2007); Allen 

(1992)

Increase in irradiance and soil 

temperature

− ± + + + Carlson and Groot, (1997); Schroeder and Lindelöw (2002); Kärvemo et al. 

(2014b); Kautz et al. (2013); Mezei et al. (2019)

Post-storm 

management

Log piles storage nearby − ± + + + + Eriksson et al. (2005); Mitchell (2013); Wermelinger (2004); Rossi et al. 

(2009); Everham and Brokaw (1996)

Salvage logging/sanitation 

removals (versus no salvage)

− ± + + − + − Eriksson et al. (2005); Schroeder (2001); Zeng et al. (2010); Nikolov et al. 

(2014); Peterson (2019a); Peterson (2019b); Wermelinger (2004); Rossi et al. 

(2009); Gilmore et al. (2003); Fraver et al. (2011)

Biologic interactions

Presence of heart- and root rots + ± ± + + Webb (1989); Whitney (1989); Goheen and Hansen (1993); Ruel (1995); 

Worrall et al. (2005); Krisans et al. (2020)

Herbivory (vector species) + ± ± + Schmid-Haas and Bachofen (1991); Schuldt et al. (2017); Paine et al. (1997); 

Krokene and Solheim (1998); Faccoli and Santini (2016); Vogt et al. (2020); 

Boone et al. (2013); Schebeck et al. (2023)

Prior infestation by insects − ± ± + +(−) Papaik et al. (2005); Seybold and Downing (2009); Skelton et al. (2019); 

Dodds et al. (2023); Sherlock (2023)

Bark beetle infestation in the 

close vicinity (<500 m) of WS

+ + + + Wermelinger (2002); Wermelinger (2004); Kautz et al. (2013)

Inter-tree competition + + + + + Kuuluvainen (2002); Angelstam and Kuuluvainen (2004); Caron et al. (2009); 

Mitchell (2013); Korolyova et al. (2022)

Incompatibility of tree species + + + − Elie and Ruel (2005)

Friction by a neighboring tree ± ± ± + Schmid-Haas and Bachofen (1991); Metslaid et al. (2018)

Relations between WSC and Disturbance regimes reflect the authors’ interpretation. References apply to the relations between WSC and SD.
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gap disturbance occurs when small gaps are formed by one or a few 
fallen trees, this disturbance regime is inherent in late-successional 
forests (Runkle, 1985; Kuuluvainen, 1994). Gap size for single treefalls 
mostly ranges from 50 to 200 m2 (McCarthy, 2001). Discriminating 
FS from PR is challenging, as the threshold between the severity 
levels is often unclear (Hart and Kleinman, 2018). Within the 
framework of this review, we  consider a wind disturbance to 
be partially stand-replacing when at least 15% (but less than 75%) of 
the trees in the upper and mid canopy layers have been downed 
during the event. Our delineation is based on a review article 
(McCarthy, 2001) in which gap characteristics of gap-disturbed 
forests were examined. We acknowledge that setting such a threshold 
is arbitrary, thus, if possible, we also took origin of the gaps into 
consideration: partially stand replacing disturbances are abrupt 
exogeneous events, while fine-scale gap disturbances are more 
gradual and mostly driven by endogenous agents such as fungi, 
insects, and inter-tree competition; wind appears as the final agent 
that fells the predisposed trees.

3.2 Vulnerability after stand-replacing 
disturbances

Long-term estimates regarding the fate of remnant trees are rarely 
documented, but Shibuya and Ishibashi (2019) reported a cumulative 
56% mortality rate of remnant trees 60 years after a wind event that 
downed 93% of the basal area (85% of trees) in a conifer-dominated 

study plot located in Hokkaido. In a mixed species study plot nearby 
where the same wind event had downed 86% of the basal area (82% 
of trees), the cumulative post-windthrow mortality added up to 60% 
37 years after the wind disturbance (mortality was not tracked from 
there on). In both study plots, mortality was particularly high during 
the first 5 years following the windthrow event, especially for conifers. 
It must be kept in mind that after an extended period of time, tree 
death cannot always be  clearly associated with wind disturbance 
anymore, as with an expanding timescale, other interacting factors 
(e.g., other unrelated abiotic and biotic disturbance agents, tree 
senescence) become increasingly influential (Harmon and Bell, 2020).

The mortality probability of a remnant stand depends on the 
severity of the disturbance; remnants from stand-replacing 
disturbances are generally more susceptible to subsequent 
disturbances than remnants from less severe disturbances. Evidence 
regarding high correlation between disturbance severity and growth 
retardation of remnant trees (Seidl and Blennow, 2012) indicates that 
trees endure more stress after high-severity wind disturbance, 
compared to a less severe event. The authors found that for every 10% 
of the standing timber volume structurally damaged by storm 
Gudrun, a 6.7% growth reduction occurred on average in the 3 years 
following the storm.

Severe large disturbances create more variability in successional 
pathways than small disturbances, providing opportunities for the 
initiation of multiple stable states, while abundance and spatial 
arrangement of remnants is a key factor in determining the outcome 
(Turner et al., 1998). Wind disturbances are rarely spatially uniform; 

FIGURE 1

Schematic succession cycles under different disturbance regimes (circles, circle size represents cycle length). FS, Fine-scale dynamics occur most 
frequently and have the shortest cycle; PR, Partially stand replacing events generally have a lower frequency and hence a longer cycle; SR, Stand 
replacing disturbance events have the longest cycle. Partially stand replacing and stand replacing disturbance events (arrows with dashed lines), 
depending on the current regime, atypical disturbance severity and frequency, may accelerate or delay succession in the process, and temporarily shift 
disturbance regime.
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thus, the heterogeneity of storm impacts can cause the spatial pattern 
of survivors to be more aggregated compared to a pre-disturbance 
state, whereas aggregation is likely to peak at high but not extreme 
levels of severity (Woods, 2004; Peterson, 2020). For instance, Wolf 
et al. (2004) observed strongly aggregated mortality patterns at scales 
of 5–50 m as a result of the 1999 extratropical cyclone in a Danish 
mixed-species deciduous forest. Allen et al. (2012) also reported that 
a severe storm greatly altered the spatial pattern of a Pinus strobus 
stand, producing a more clumped distribution of surviving trees. Such 
development was not clear in an oak-dominated (Quercus borealis) 
stand nearby that was similar in topographic and soil conditions but 
had endured less severe wind damage. The tendency for the survivors 
to form aggregated patterns can be  important, because numerous 
studies on variable retention systems have demonstrated that in 
general, the proportion of residual trees left and their onward wind-
caused mortality are inversely related, while highly dispersed trees 
have higher mortality than the trees clustered in aggregates (e.g., 
Moore et al., 2003; Maguire et al., 2006; Thorpe and Thomas, 2007; 
Lavoie et al., 2012; Urgenson et al., 2013). Similarly, Peterson and 
Cannon (2021) found that support from neighboring trees reduces the 
force that a given tree must withstand, thus increasing critical wind 
speed required to down the tree.

Survivors growing at the formerly open edges of a wind-damaged 
stand are better acclimated and generally less susceptible to the next 
wind, while newly exposed trees that previously grew in the stand 
interior are not accustomed to the exposure and thus more susceptible 
(Ennos, 1997; Brüchert and Gardiner, 2006; Gardiner et al., 2008). 
Static wind load on survivors is positively correlated with the size of a 
canopy opening; the increase of maximum static wind load is up to 14 
times higher than the load in an undisturbed forest, thus possibly 
leading to onward windthrow mortality at the downwind gap edges 
(Quine and Gardiner, 2007; Panferov and Sogachev, 2008). Moreover, 
the maximum static wind load is experienced at the downwind gap 
edge independently of gap size, the maximum turbulent kinetic 
energy, however, shows the apparent shift toward the lateral and even 
to the leeward gap edges with the increasing gap diameter above a size 
of 15 times canopy height (Panferov and Sogachev, 2008), making all 
remnant trees at newly formed edges of a large gap susceptible to next 
heavy intense wind event. On the other hand, recurring windstorms 
may have only a little effect on a forest if the previous storm has 
already removed most of the susceptible trees (Webb, 1989).

High-severity wind disturbances are accompanied by a greater 
amount of breeding material with non-existent or weak defenses and 
more favorable microclimatic conditions for bark beetles, compared 
to less severe disturbances (Göthlin et  al., 2000; Schroeder and 
Lindelöw, 2002; Wermelinger, 2002; Kärvemo et al., 2014b). Some 
hazardous forest pests such as I. typographus attack windthrown 
spruces in gaps more frequently than they attack trees along edges, 
which in turn are preferred over trees in closed stands (Göthlin et al., 
2000; Schroeder and Lindelöw, 2002; Bouget and Duelli, 2004). 
Mortality caused by I. typographus usually peaks in the second or third 
summer after severe wind damage—insects migrate from gap interior 
to the forest edge where they first colonize the most susceptible trees, 
but later, when the bark beetle population size has reached epidemic 
level, they may migrate to trees without any visible damage (Schroeder, 
2001; Osetrov, 2002; Schroeder and Lindelöw, 2002; Kärvemo et al., 
2014a). For instance, Köster et al. (2009) found that only 25% of the 
initial Norway spruce remnants that survived at the edges of the 

largest wind gaps were alive 5 years after the wind event, whereas 
I. typographus caused most of the subsequent tree deaths. South-
facing newly formed gap edges have been found to be  twice as 
vulnerable to I. typographus attacks, compared to north-facing gap 
edges (Kautz et al., 2013).

The magnitude of bark beetle damage can be  immense—in 
western Colorado, after a severe windstorm of 1939, a severe outbreak 
of D. rufipennis followed, destroying an additional 10.1 million m3 of 
timber by 1951 (Massey and Wygant, 1954). The outbreaks of 
D. pseudotsugae can be  similarly destructive—after a series of 
windstorms between 1949 and 1953  in western Oregon and 
southwestern Washington that resulted in 27 million m3 of 
windthrown trees, an additional 8.3 million m3 of standing trees were 
killed by D. pseudotsugae (Gandhi et al., 2007).

Depending on spatial and temporal factors, wind-disturbed 
forests may be  highly vulnerable to subsequent fire disturbance 
(Tables 2–4); vulnerability increases with increasing severity of wind 
damage (Cannon et al., 2017). For instance, due to the increase in 
CWD, modeled fire burn times and the extent of the fire were found 
to increase dramatically with increasing blowdown severity (Buma 
and Wessman, 2011). Similarly, Kulakowski and Veblen (2007) found 
that high blowdown severity was strongly spatially correlated with 
high fire severity. The risk of fire substantially increases if wind 
disturbance is followed by periods of dry, hot, windy weather 
(Kulakowski and Veblen, 2007; Mitchell, 2013).

3.3 Vulnerability after partially 
stand-replacing disturbances

Large areas of boreal and temperate forests are naturally regulated 
by moderate-severity disturbances, leading to heterogeneous and 
dynamic stand and landscape structures (Frelich and Lorimer, 1991; 
Papaik and Canham, 2006; Kuuluvainen, 2009; Stueve et al., 2011; 
Koivula et al., 2014; Khakimulina et al., 2016; Hart and Kleinman, 
2018; Meigs and Keeton, 2018). Generally, structural complexity peaks 
when wind disturbance is of intermediate severity (Peterson, 2019b). 
Greater stand-scale structural and compositional diversity enables 
spreading risk among survivors that have different susceptibility to 
various stressors and disturbance agents (Jactel et al., 2017; Mitchell 
et  al., 2023). Thus, if such heterogeneity is evident following a 
moderate-severity wind disturbance, the survivors are generally more 
resistant to subsequent disturbance agents such as wind, insects, 
pathogenic fungi, and fire (Everham and Brokaw, 1996; Hély et al., 
2000; Kafka et al., 2001; Pautasso et al., 2005; Griess and Knoke, 2011; 
Seidl et al., 2011b; Jactel et al., 2017), compared to remnant stands 
with homogeneous structure and composition.

Partially stand-replacing disturbances have some characteristics 
similar to SR, although to a lesser degree. With increasing size of the 
openings, surviving trees become more susceptible to subsequent 
mortality. Wind loading increases very rapidly with increasing size of 
the opening, up to a gap diameter of twice the height of the edge trees 
(Quine and Gardiner, 2007). Windthrow increases the proportion of 
edge habitats. New edges created by wind are susceptible to further 
wind damage due to sudden changes in wind loading that the trees are 
not acclimated to (Stathers et al., 1994; Gardiner et al., 1997; Peltola 
et al., 1999a). Zeng et al. (2010) found that when the proportion of gap 
areas increased from 10 to 20%, the length of edges at risk increased 
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by 77–80% for different age classes. The total length of edges at risk 
reached a maximum when about 50% of the landscape was open gaps. 
The characteristics of the newly formed edges matter, as abruptness 
and density of the edges strongly influence wind loading (Stathers 
et al., 1994; Gardiner et al., 1997). Structural contrast between the 
forested and non-forested areas generally increases with increasing 
disturbance severity (Foster et  al., 1998; Stueve et  al., 2011), thus 
uneven sparse stand- and gap edges often resulting from moderate 
windthrows may be very vulnerable to further windthrow (Stathers 
et al., 1994; Gardiner et al., 1997).

Severity and extent of wind disturbance affect remnant stands’ 
vulnerability to bark beetle outbreaks: Schroeder and Lindelöw (2002) 
found that tree mortality caused by I. typographus peaked earlier in 
smaller stands with fewer wind-felled trees than in the larger stands 
with more wind-felled trees. They also found that the total number of 
wind-felled spruces and the area of the wind-disturbed forest were 
significantly correlated with the number of trees subsequently killed 
by I. typographus. Similarly, Kärvemo et al. (2014a) found that at the 
landscape level, the area of storm gaps was a significant factor affecting 
tree mortality from I. typographus. Sometimes after a moderate-
severity disturbance, insect pests may exhibit a bimodal response—
first they colonize the windthrown and dying trees and build up 
populations, then there may be some decline, but the abundance still 
stays at relatively high levels, and then the pest responds positively 
again as the remnant trees are further weakened and colonized over 
time (Vogt et al., 2020). It is also possible that medium-severity wind 
disturbances can result in higher beetle populations than high-severity 
events because extensive mortality can lead to abrupt collapse in 
suitable habitat provision when the dead trees become too dry for bark 
beetle colonization, whereas intermediate-severity disturbances can 
maintain suitable habitats longer (Stadelmann et al., 2013; Kärvemo 
et  al., 2014a; Vogt et  al., 2020). Moreover, the death of host trees 
exposes nonhost remnant trees to higher wind loads, making them 
more vulnerable to wind (Ruel et al., 2023).

Greenberg (2021) observed recovery dynamics following 
moderate-severity wind disturbance in a temperate upland hardwood 
forest. Formed gaps were 0.166–1.08 ha in size, an average of 24.0% of 
trees (41.1% BA) were windthrown, and 1.0% of trees (1.1% BA) died 
standing during wind disturbance within the gaps. Over the 21 years 
after the hurricane, 15.4% (16% BA) of trees additionally died in gaps, 
while mortality was 15.1% (14.1% BA) in the control plots. Although 
in gaps more trees died additionally due to windthrow (8.2% in gaps 
versus 3.1% in control), these long-term results indicate that overall 
delayed tree mortality was not substantially accelerated in gaps 
following the initial “pulse” of hurricane-related mortality. Similarly, 
Szwagrzyk et  al. (2017) reported very low subsequent mortality 
13 years after wind disturbance (plots with different severities pooled) 
in a mixed forest dominated by Scots pine; many quite heavily 
damaged (e.g., strongly bent or leaning) trees had survived. However, 
Sato et  al. (2017) observed high delayed mortality following a 
moderate-severity typhoon disturbance in a natural mixed forest 
dominated by Sakhalin fir (Abies sachalinensis (F.Schmidt) Mast.). 
During a 7-year post-disturbance period, the annual mortality was 
approximately 2–4%, with averages of 3.5 and 2.8% during the periods 
of 1–2 years later and 3–7 years later, respectively, significantly 
exceeding the level recorded during the pre-disturbance period 
(average of 0.9%). The main tree species A. sachalinensis had especially 
high delayed mortality levels; during the 7-year post-disturbance 

period, additionally damaged basal area reached approximately 80% 
of that which occurred during the disturbance. Post-disturbance 
deaths of A. sachalinensis exhibited a spatial pattern of gradual 
expansion around A. sachalinensis trees that had died during 
the disturbance.

Several factors may account for large variations in mortality, 
including contingency—remnant trees may or may not experience 
another heavy wind. Similarly, weather conditions prior to, during, 
and after partial wind disturbance may or may not facilitate insect 
pests. Moreover, pest infestation and wildfire do not necessarily occur 
after wind disturbance, even if weather conditions favor such events 
(Szwagrzyk et al., 2017). Soil conditions (e.g., periodically waterlogged 
or hydromorphic soils) also add to the variation in mortality (Mitchell, 
1995; Vašíčková et al., 2021).

On a single tree scale, the characteristics of a survivor such as 
species, age, and size largely affect its fate following PR (Table 4). 
The level of damage caused to its stem, roots and canopy during 
wind disturbance clearly influences its prospects as well (Webb, 
1989; Everham and Brokaw, 1996; Arévalo et al., 2000). Arévalo 
et  al. (2000) studied tree damage and mortality over 14 years 
following a moderate severity (approximately 50% mortality during 
the wind event; two forest types pooled) windthrow in permanent 
plots in an oak forest and a pine forest in central Minnesota. They 
found that the probability of a tree dying varied with respect to 
damage type and severity—mortality probability was approximately 
0.18 for undamaged trees and 0.38 for lightly damaged trees. At the 
same time, for trees with broken stems the mortality probability 
increased to 0.84 and uprooted trees had only marginal chances 
(mortality probability 0.98) to survive throughout the study period. 
Interestingly, Vašíčková et al. (2021) noticed that storm Herwart 
(2017) selectively impacted the conifer population in the 
Czech Republic. They found that trees that germinated under the 
canopy and experienced several periods of suppression and release 
were more likely to survive the storm. Thus, the authors proposed 
that individuals with a more varied disturbance history with 
accompanying denser wood are more likely to survive recurring 
wind disturbances.

Disturbance of moderate severity might lower the incidence of 
diseases affecting relatively old trees for a given species. For example, 
balsam firs (Abies balsamea) in the southern boreal forest of North 
America become more susceptible to spruce budworm (Choristoneura 
fumiferana Clem.) attacks as they age due to declining concentrations 
of defensive secondary foliar compounds (Kumbașlı et  al., 2011). 
Although other factors besides host age also influence population 
dynamics of C. fumiferana, windstorms that blow down older cohorts 
every few decades may reduce the incidence of this insect at stand- 
and landscape-scales.

3.4 Vulnerability of remnant stands under 
gap dynamics

Following FS, the affected stands are generally less vulnerable to 
subsequent wind disturbances as a result of the local high 
frequency-low intensity wind disturbance regime (McCarthy, 2001; 
Angelstam and Kuuluvainen, 2004). The relatively frequent winds 
enhance the adaptation of trees in the entire stand, including the trees 
at gap edges. For instance, Shorohova et al. (2009) concluded that 
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TABLE 4 Summary table describing tree-scale factors that affect post-windthrow vulnerability of surviving trees to subsequent disturbances (SD) based on relations revealed between subfactors (SF) and wind 
disturbance regimes.

Factors 
contributing to 
vulnerability of 
surviving trees

Subfactor 
(SF)

The relations between 
SF and Disturbance 

Regime (− no to 
Minor; ± Minor to 
Considerable; + 
Considerable to 

Major)

The relations between SF and 
Subsequent Disturbances (SD) 

following a Major Wind Disturbance  
(+ Amplifying effect; − Buffering 

effect; +(−) both relations present)

References

FS PR SR Wind Insects Pathogens Fire

Position Gap interior 

(Single trees and 

small tree 

groups)

− ± + + + Allen (1992); Osetrov (2002); Quine and Gardiner (2007); Göthlin et al. (2000)

At newly formed 

gap edge

− + + + + Köster et al. (2009); Osetrov (2002); Quine and Gardiner (2007); Kärvemo et al. (2014a); 

Kärvemo et al. (2014b)

Downwind edge 

of a large gap

− − + + Quine and Gardiner (2007); Panferov and Sogachev (2008)

At the priorly 

open edge 

bordering 

unforested area 

(road/lake/field)

− + + − − Dyer and Baird (1997); Ennos (1997); Gardiner et al. (1997); Schroeder and Lindelöw (2002); 

Brüchert and Gardiner (2006); Kautz et al. (2013)

Emergent canopy 

layer

+ + + +(−) Foster et al. (1998); Peterson and Pickett (1991); Foster and Boose (1992); Stathers et al. (1994); 

Anyomi et al. (2017); Jõgiste et al. (2017)

Sub-canopy layer ± + + − Woods (2004)

Size Relatively large 

DBH

− ± + + + Dyer and Baird (1997); Peterson and Rebertus (1997); Arévalo et al. (2000); Peterson (2004); 

Göthlin et al. (2000); Rich et al., 2007; Jönsson M T, et al. (2007); Kärvemo et al. (2014a); Sato 

et al. (2017); Greenberg (2021); Frelich and Ostuno (2012); Korolyova et al. (2022)

Post-disturbance loss of 

functions

Damaged crown 

or sapwood

+ + + + Christiansen (1991); Mitchell (2013); Frelich (2016); Kitenberga et al. (2021)

Damaged root 

system

− ± + + + + Christiansen (1991); Jakuš (1995); Osetrov (2002), Köster et al. (2009); Mitchell (2013)

Loss of leaves 

and needles 

(photosynthesis)

+ + + − + + Christiansen (1991); Bouget and Duelli (2004); Mitchell (2013); Frelich (2016)

Tilted position of 

the trunk

± + + + Jakuš (1995)

(Continued)
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TABLE 4 (Continued)

Factors 
contributing to 
vulnerability of 
surviving trees

Subfactor 
(SF)

The relations between 
SF and Disturbance 

Regime (− no to 
Minor; ± Minor to 
Considerable; + 
Considerable to 

Major)

The relations between SF and 
Subsequent Disturbances (SD) 

following a Major Wind Disturbance  
(+ Amplifying effect; − Buffering 

effect; +(−) both relations present)

References

FS PR SR Wind Insects Pathogens Fire

Other tree characteristics Large/dense 

crown

+ + + + − King and Loucks, (1978); Stathers et al. (1994); Rich et al. (2007); Jakuš et al. (2011); Korolyova 

et al. (2022)

Snow/ice loading 

on the crown

+ + + + Valinger et al. (1993); Stathers et al. (1994); Peltola et al. (1999a)

Presence of 

branch knots

+ + + + Quine and Gardiner (2007)

Shallow root 

systems

+ + + + Stathers et al. (1994); Quine and Gardiner (2007); Peltola et al. (2013)

Rough bark 

texture

+ + + + Långström (1983); Ferrenberg and Mitton (2014)

Large height/

DBH ratio (low 

stem taper)

+ + + + Grace (1988); Stathers et al. (1994); Gardiner et al. (1997); James (2010)

Relations between SF and Disturbance regimes reflect the authors’ interpretation. References apply to the relations between SF and SD.
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0.2–10.4% basal area removal by windthrow does not significantly 
increase subsequent mortality in boreal forests.

Runkle (1998) found that nearly half of the gaps (46%) expanded 
during a 14-year study period in a southern Appalachian old-growth 
hardwood-dominated forest. Mortality rates were higher for larger 
stems; American beech (Fagus grandifolia) exhibited greatest mortality 
rate (1.18% y−1). The average mortality rate of canopy trees bordering 
gaps (0.60% y−1) was, however, not significantly higher than canopy-
tree mortality in general, suggesting that the presence of gaps did not 
influence tree mortality rates. Nevertheless, storms with higher wind 
speeds can cause significant expansion of gaps due to increased 
exposure to wind of trees at gap edges. Foster and Reiners (1986) 
found that stepwise gap expansion caused by windthrow and 
coalescence of gaps into larger gaps were common processes in the 
virgin subalpine forests located at Crawford Notch, New Hampshire. 
Bottero et al. (2011) also recognized gap expansion to be an important 
process in a temperate mixed old-growth forest in 
Bosnia and Herzegovina, whereas wind and snow were suggested to 
be  the main agents of onward mortality. In another study from 
Bosnia and Herzegovina, Nagel and Svoboda (2008) found that 70% 
of gaps showed evidence of subsequent expansion after their initial 
formation in a mountainous forest reserve dominated by European 
beech (Fagus sylvatica L.) and silver fir (Abies alba Miller).

Pathogenic fungi are highly influential mortality agents in forests 
driven by gap dynamics (Hennon, 1995; Angelstam and Kuuluvainen, 
2004). As infected trees fall, they often injure nearby trees, thereby 
creating entry points for new infections and contributing to the 
persistence of decay fungi in the stand (Hennon, 1995). Worrall et al. 
(2005) stated that gap expansion is a prominent feature of the 
disturbance regime of Picea rubens-Abies balsamea forests in the 
northern Appalachians mountains, as gap expansion was found to 

occur more frequently than gap initiation in these forests. The genus 
Abies was strongly associated with gap expansion; stem breakage 
under wind-loading was the most commonly identified onward 
mortality agent, whereas fungi causing root and butt rots were the 
most frequent biotic mortality agents, followed closely by spruce 
beetles (D. rufipennis).

The spatial and temporal dynamics of bark beetles and their 
natural enemies are linked to the disturbance regime. Forests that are 
primarily shaped by gap dynamics exhibit relatively constant and 
diverse supply of dead and dying trees (Bouget and Duelli, 2004; Vogt 
et al., 2020), ensuring the continuous presence of natural enemies and 
competitors of bark beetles (Bouget and Duelli, 2004). Nevertheless, 
the potential still exists for insect outbreak if there is a source of 
infestation nearby (Osetrov, 2002; Wermelinger, 2004; Kärvemo et al., 
2014a), given that the stand contains suitable host trees. For instance, 
in Switzerland, a major bark beetle (mainly I. typographus) outbreak 
that started in 1993 in a 120-year-old Norway spruce stand presumably 
was a consequence of some scattered trees felled by storm Vivian. This 
outbreak culminated in almost total death of the stand by 1995 
(Wermelinger, 2002). Described disturbance regimes and most likely 
subsequent disturbance agents associated with them are depicted in 
Figure  2. Summarized effects of windthrow on subsequent 
disturbances classified by landscape, stand and tree spatial scales are 
described in Tables 2–4.

4 Cumulative effects of climate 
change on post-storm vulnerability

Climate change alters natural disturbance regimes and the 
relevance of disturbance agents; multiple compounding disturbance 

FIGURE 2

A conceptual diagram visualizing wind disturbance regimes and the generally most likely subsequent disturbance agents affecting the survivors. 
Relationships between disturbance regimes and subsequent disturbance agents reflect the authors’ interpretation. Environmental and meteorological 
factors have a strong influence on these processes, thus extreme values of these factors can cause deviations from general patterns.
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events, such as wind followed by fire, or multiple windstorms within 
a short period of time, are predicted to become more common (Seidl 
and Rammer, 2017; Seidl et  al., 2020; Anoszko et  al., 2022). 
Compounded disturbances within the normative recovery time of the 
community may have serious ecological consequences—resilience of 
the ecosystem might decrease, possibly leading to altered states and 
disruptions in ecosystem functioning (Paine et al., 1998; Buma and 
Wessman, 2011; Seidl et al., 2014b; Johnstone et al., 2016).

Wind disturbance events are expected to increase in frequency 
and intensity in the future (IPCC, 2014). Vulnerability of forests to 
wind disturbance is also expected to increase due to decreased periods 
of frozen soils that provide strong root anchorage (Peltola et  al., 
1999b). Moreover, storms may be accompanied by heavier rainfall, 
leading to more saturated soils, thus further increasing vulnerability 
to uprooting (Beniston et al., 2007). Droughts, which are expected to 
set in quicker and become more intense due to climate change 
(Mukherjee et  al., 2018), also weaken trees and make them more 
prone to stem breakage under wind-loading (Csilléry et al., 2017; 
Krokene et al., 2023) and to bark beetle attacks (Jönsson A M, et al., 
2007; Hart et al., 2014; Dodds et al., 2019).

Disturbances from fire, insect pests, and pathogens are likely to 
become more frequent and more intense under climate change (Dale 
et al., 2001; Jönsson A M, et al., 2007; Seidl and Rammer, 2017). Wildfire 
frequency and seasonality are projected to increase concomitantly with 
higher temperatures and more frequent drought occurrences (Flannigan 
et al., 2000; Liu et al., 2010; Whitman et al., 2019). Such trend is already 
evident, as fire impact has increased significantly in the last decades 
across Europe (Patacca et al., 2023). The vulnerability of forests to fungal 
pathogens such as Heterobasidion spp. and Armillaria spp. is expected 
to increase due to the increased sporulation and mycelial growth of 
pathogens in a warmer climate and due to decreased resistance of trees 
under drought and heat stress (e.g., Gonthier et al., 2005; La Porta et al., 
2008; Klopfenstein, 2009; Müller et al., 2018). Drought can also affect 
the complex interactions between host trees, bark beetles and associated 
microorganisms—Netherer et  al. (2024) demonstrated decreased 
resistance of P. abies to the infection of bark beetle fungal mutualists in 
response to simulated drought conditions. Outbreaks of insect pests are 
expected to become more frequent and more severe, for direct (i.e., 
greater swarming activity and development rate, reduced overwintering 
mortality) as well as indirect (i.e., drought, more susceptible host trees 
due to increased wind disturbances) reasons (Lange et al., 2006; Jönsson 
A M, et al., 2007; Seidl et al., 2008; Hart et al., 2014). Since 2000, the 
magnitude of bark beetle disturbance has increased drastically, doubling 
its share of the total disturbance damage, evidencing the amplifying 
effect of climate change (Patacca et  al., 2023). Several pests and 
pathogens may expand their range and colonize new areas due to 
climate warming (Dale et al., 2001; Lange et al., 2006). For example, the 
mountain pine beetle (Dendroctonus ponderosae) has already spread 
from its historic range and now affects boreal Pinus forests in North 
America (Safranyik et  al., 2010). Moreover, introduced pests or 
pathogens can shift hosts, threatening local species, whereas genetic 
resistance of the new host to such diseases might be limited or absent 
due to the lack of coevolutionary history (Budde et al., 2016). As a result, 
past outbreak management methods will not be sufficient to counteract 
climate-mediated increases in bark beetle disturbance (Dobor 
et al., 2020).

Single disturbance events, unless of extreme intensity, severity, or 
both, tend to leave plentiful ecosystem legacies that ensure continuity 

of composition (Turner et al., 1998; Frelich et al., 2020). Compounding 
disturbances, however, not only lessen the effect of initial survivors on 
ecosystem dynamics, but the agents are themselves affected by the 
amount and distribution of legacies from previous disturbances (Seidl 
et al., 2014b).

Although there is much evidence for interactive effects when the 
first disturbance increases the probability or severity of a subsequent 
disturbance (e.g., Paine et al., 1998), disturbance legacies may also 
increase ecosystem resistance or resilience to a subsequent disturbance 
(Simard et al., 2011; Buma, 2015; Cannon et al., 2017). For instance, 
the presence of wind-damaged trees may increase the risk of wildfire 
due to greater potential fuel load, but at the same time, the storm 
legacy might reduce the risk of crown fires (Gardiner, 2021). The 
extent to which the changes in disturbance regimes and concomitant 
interactions will affect forest ecosystems is uncertain. Disturbance 
legacies, including surviving remnant trees, determine the recovery 
dynamics and successional pathway of the stand (Seidl et al., 2014b). 
However, due to changed disturbance regimes under climate change 
and intensive disturbance management practices, resilience-
enhancing legacies can be lost or diminished (Johnstone et al., 2016; 
Frelich et al., 2020).

5 Managing remnant stands after wind 
disturbance

Forest management practices such as planting conifer 
monocultures, increasing growing stock, thinning operations etc. can 
have considerable influence on the susceptibility of forests to strong 
winds (Gardiner et al., 1997, 2010; Jactel et al., 2017). Part of the recent 
intensification of disturbance regimes in Europe can be related to 
management-driven changes in forest structure and composition 
(Seidl et al., 2011b). For instance, trees in a dense stand experience a 
smaller turning moment (i.e., are less vulnerable) for a given wind 
speed than more exposed trees (Hale et al., 2012). In dense stands, 
however, trees generally allocate few resources to radial growth that 
provides mechanical stability while they allocate more resources in 
maximizing upwards growth to access light (Dekker et  al., 2009; 
Bigler, 2016). For this reason, extensive damage can occur in formerly 
dense stands that are heavily thinned, especially if dominants are 
removed and the residual trees are tall and slender (Stathers et al., 
1994). While naturally developing stands usually also go through a 
self-thinning (i.e., stem-exclusion) phase (Oliver et al., 1996; Chen and 
Popadiouk, 2002), the process proceeds slowly, allowing the surviving 
trees time to adapt to new conditions. Similarly, weakened spruce trees 
in overstocked, monospecific plantations established outside of 
P. abies’ natural range provide perfect conditions for bark beetle 
outbreaks (Hlásny et al., 2021). Thus, promoting concepts that emulate 
development and functioning of natural systems is of great importance.

Following wind disturbance, disturbance legacies are important 
as they provide possibilities for ecosystem reorganization and recovery 
(Franklin et  al., 2000; Vodde et  al., 2011; Jõgiste et  al., 2017) and 
facilitate sustaining biodiversity within the ecosystem (Lindenmayer 
et al., 2004; Swanson et al., 2011; Bāders et al., 2021; Mitchell et al., 
2023). However, disturbance legacies can also increase vulnerability 
to subsequent disturbances. Large quantities of deadwood that 
accompany wind disturbances greatly enhance the risk of intense bark 
beetle attack and fire hazard, which might lead the ecosystem beyond 

https://doi.org/10.3389/ffgc.2024.1405430
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Palm-Hellenurm et al. 10.3389/ffgc.2024.1405430

Frontiers in Forests and Global Change 16 frontiersin.org

the point of no return, i.e., to lose its resilience. For instance, following 
a strong windstorm, uncleared wind-damaged sites triggered a serious 
bark beetle outbreak in the Tatra National Park; additional damage 
caused by the beetles eventually exceeded that of the storm (Nikolov 
et al., 2014).

Salvage logging of disturbed forests is thought to be indispensable 
to control population levels of bark beetles (Gandhi et  al., 2007). 
However, salvage logging does not necessarily ensure total prevention 
of bark beetle damage (Ravn, 1985; Schroeder and Lindelöw, 2002; 
Kautz et al., 2013). Salvage cutting is effective for pest control only 
when conducted in time. To decrease the risk of a spruce bark beetle 
outbreak, wind-felled spruces should be removed from the area before 
the following midsummer, and potential breeding substrate at the 
edges of larger storm gaps should be  given the highest priority 
(Göthlin et al., 2000). Dobor et al. (2020) found that salvage logging 
in the vicinity of roads created a “fire break effect” on bark beetle 
spread and was moderately efficient in reducing landscape-scale bark 
beetle disturbance. They further suggested that in Central Europe, 
removal of >80% of all wind-felled trees is required to substantially 
reduce bark beetle disturbances.

Management may be needed at different times after a medium-
severity disturbance due to several pulses of tree dieback (Vogt et al., 
2020). When the disturbance is too catastrophic for harvesting all the 
windthrown trees during the first year, sanitation operations should 
first be applied in small gaps and scattered treefalls, because in large, 
sunlit gaps, downed trees dry more quickly than in small gaps, thus 
becoming unattractive for beetles (Bouget and Duelli, 2004). Wind-
felled trees are suitable as breeding material for bark beetles for a 
limited time period only (Wermelinger, 2004), whereas uprooted trees 
(as opposed to broken trees) may remain habitable for a longer time 
(Göthlin et al., 2000). Dead trees remain attractive to bark beetles for 
1–3 years, depending on the weather, altitude and latitude 
(Wermelinger, 2002; Modlinger and Novotný, 2015). Thus, when the 
bark of the dead trees has become too dry for beetle colonization, 
foresters should focus on salvage cutting of newly attacked living trees 
and leave the older stems for the benefit of saproxylic organisms 
(Wermelinger, 2002).

However, outbreaks of severe forest pests like I. typographus or 
D. rufipennis do not always occur following a wind disturbance, even 
if the area is categorically at high risk of beetle outbreak, as other 
factors (e.g., occurrence of drought at the time of wind disturbance, 
timing of the disturbance event in relation to the beetle flight period) 
determine infestation initiation as well (Kulakowski and Veblen, 
2003; Wermelinger, 2004; Hart et  al., 2014; Dodds et  al., 2019). 
Eriksson et  al. (2007) suggest that in Finland, at endemic 
I. typographus population levels, it is safe to leave fewer than 20 
wind-felled spruces in a managed forest. The risk of bark beetle 
infestation can be reduced by using some of the wind-felled host 
trees as trap trees (Schroeder and Lindelöw, 2002). Kulakowski and 
Veblen (2007) also state that mitigation efforts such as salvage 
logging following wind disturbance do not always reduce the 
likelihood of extensive and severe fires. The threat of further wind 
damage should be  considered as well. Salvaging that results in 
exposing previously protected stand edges to strong winds may lead 
to windfall events, which in turn may intensify or prolong a bark 
beetle outbreak (Modlinger and Novotný, 2015).

Sanitary clear-cutting after moderate- or high-severity natural 
events such as windstorms can have a negative impact on a forest 

ecosystem, due to the cumulative severity of the two events and 
because of the loss of disturbance legacies (Peterson and Leach, 2008). 
For instance, the regulating effect of antagonistic species of insect 
pests may be inhibited in salvaged stands (Bouget and Duelli, 2004). 
Retaining the survivors after wind disturbance enables formation or 
maintenance of structurally complex stands (Meigs and Keeton, 2018; 
Peterson, 2019b) that are more resilient to disturbances and climate 
change (Messier et al., 2013). Windthrow legacies may also impede 
ungulate access, thereby protecting survivors and saplings from 
browsing damage (Rammig et al., 2007; Bosley-Smith et al., 2024). 
Moreover, in mountain forests, not removing logs after a storm can 
temporarily protect against natural hazards (e.g., rockfall and 
avalanches; Wohlgemuth et al., 2017) while root systems of surviving 
trees are important for stabilizing soils developed on unstable parent 
material or steep slopes (Reubens et al., 2007). Root systems of the 
survivors also sustain and support the re-establishment of 
belowground life and function; retaining the survivors may mitigate 
soil carbon losses as well (Seidl et  al., 2014a; Prescott and 
Grayston, 2023).

Regardless of the numerous benefits of maintaining remnant 
trees, several other aspects need to be considered. Depending on site 
conditions and severity of the disturbance, surviving canopy trees may 
facilitate germination, but they may also limit light levels (along with 
shading by upwards-turned root plates and fallen stems) and reduce 
the availability of soil resources due to root competition, making 
establishment conditions suitable only for shade-tolerant and frugal 
species (Cooper-Ellis et al., 1999; Palik et al., 2003). In recreational 
areas, retaining damaged trees can be a safety hazard (Royo et al., 
2016). Thus, the decision whether, when and to what extent to salvage 
the windthrow should be  carefully considered, with aspects like 
severity, delayed mortality, possibility of sprouting and recovering of 
damaged trees, possibility of secondary disturbances and their 
potential influence on nearby stands, public safety, ecologic and 
economic expediency in mind. If the wind-disturbed forest is affected 
by a pathogen or pest with a restricted or defined host range, it may 
be  possible to increase the percentage of trees more resistant to 
the agent.

6 Conclusion

The risk of tree mortality due to wind disturbance, as well as its 
susceptibility to a subsequent disturbance, is influenced by multiple 
interacting factors. Besides severity of the initial event, contingency 
along with numerous contributing factors interrelating at tree, stand 
and landscape scales (e.g., species composition of the survivors, local 
pest and pathogen context, weather conditions during and after the 
wind event) that influence the onward turn of events make it difficult 
to suggest valid outcome patterns or quantify risk dynamics for 
variable forest types occurring in boreal and temperate biomes. More 
conclusive findings could be detected for a set of narrower predefined 
factors, but currently the data regarding the fate of remnant trees is 
very limited.

We found that in areas with severe wind damage (SR), the location 
of the remaining trees largely determines their onward fate, whereas 
the survivors are generally more susceptible to subsequent mortality 
compared to trees that survived moderate to low severity damage (PR 
and FS). Highly dispersed trees have higher mortality than the trees 
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clustered in aggregates and the survivors situated in the wind gap 
interior are more susceptible to subsequent disturbance agents than 
the trees along the gap edges.

In a forest stand that has experienced a moderate-severity wind 
disturbance (PR), the characteristics of the remnant stand largely 
determine the onward fate of the survivors. If the remnant stand 
displays high variability in terms of age, size and species, the survivors 
are more resistant to subsequent disturbance agents. Coniferous 
remnant trees have a higher risk of mortality, as in boreal and 
temperate biomes, most of the destructive insect pests strongly 
associated with wind disturbance have coniferous hosts.

Following a fine-scale gap disturbance (FS), the trees situated 
along gap edges can be  more likely to die, compared to the trees 
situated in stand interior, but the mortality-causing processes operate 
on a longer time scale, often allowing the initial gap to close before the 
delayed mortality occurs.

Differences in the duration or magnitude of windstorms in future 
climates could affect the severity and propagation of wind damage, 
with concurrent impacts on biological legacies, thus possibly 
changing post-disturbance successional trajectories. The impact of 
more frequent and compounded disturbances on post-windthrow 
stand development requires further study to find the best 
management methods, as past management methods may no longer 
be appropriate. There is little opportunity for humans to alter wind 
disturbance regimes directly, but the impact of wind may be changed 
by altering stand and landscape characteristics. More heterogeneous 
patterns in terms of tree age and species will make the ecosystem 
more resistant to disturbances or at least increase recovery 
opportunities. Survivors play important roles in stand recovery and 
buildup of future resilience. The fate of remnant trees and salvage 
retention (similar aspects to retention forestry) need to be further 
investigated to find a balance between the threat that CWD presents, 
timber management plans, and goals for ecosystem services set by 
society at large, such as biodiversity, wildlife habitat and 
carbon sequestration.
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