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Coastal wetlands are important areas with valuable natural resources and diverse 
biodiversity. Due to the influence of both natural factors and human activities, 
the landscape of coastal wetlands undergoes significant changes. It is crucial to 
systematically monitor and analyze the dynamic changes in coastal wetland cover 
over a long-term time series. In this paper, a long-term time series coastal wetland 
remote sensing classification process was proposed, which integrated feature 
selection and sample migration. Utilizing Google Earth Engine (GEE) and Landsat 
TM/ETM/OLI remote sensing image data, the selected feature set is combined 
with the sample migration method to generate the training sample set for each 
target year. The Simple Non-Iterative Clustering-Random Forest (SNIC-RF) model 
was ultimately employed to accurately map wetland classes in the Liaohe Estuary 
from 1985 to 2023 and quantitatively evaluate the spatio-temporal pattern change 
characteristics of wetlands in the study area. The findings indicate that: (1) After 
feature selection, the accuracy of the model reached 0.88, and the separation of 
the selected feature set was good. (2) After sample migration, the overall accuracy 
of sample classification in the target year ranged from 87 to 94%, along with 
Kappa coefficients of 0.84 to 0.92, thereby ensuring the validity of classification 
sample migration. (3) SNIC-RF classification results showed better performance 
of wetland landscape. Compared with RF classification, the overall classification 
accuracy was increased by 0.69–5.82%, and the Kappa coefficient was increased 
by 0.0087–0.0751. (4) From 1985 to 2023, there has been a predominant trend 
of natural wetlands being converted into artificial wetlands. In recent years, this 
transition has occurred more gently. Finally, this study offers valuable insights into 
understanding changes and trends in the surface ecological environment of the 
Liaohe Estuary. The research method can be extended to other types of wetland 
classification and the comprehensive application of coastal wetland in hydrology, 
ecology, meteorology, soil, and environment can be further explored on the basis 
of this research, laying strong groundwork for shaping policies on ecological 
protection and restoration.
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1 Introduction

Coastal wetlands serve as a crucial interface between the sea and 
land, playing a vital role in climate regulation, water filtration, 
shoreline protection, carbon sequestration, and biodiversity 
maintenance. They are an essential natural ecosystem and an integral 
part of the natural ecological landscape. However, in recent years, 
coastal wetlands have faced increasing threats, pollution, overfishing, 
reclamation, invasion of alien species, and infrastructure occupation 
are the primary factors posing a threat to the ecological status of 
wetlands. This has raised significant concerns about the ecological 
environment of wetlands. The Liaohe Estuary wetland is the largest 
coastal reed wetland swamp area in China’s high latitudes, 
characterized by a vast expanse of Suaeda, tidal flats, and shallow seas. 
It forms a typical sea-land intersection wetland landscape dominated 
by ‘shallow sea—bare beach—estuary—Suaeda community—Suaeda-
reed community—reed community’, making it a focal point for coastal 
wetland research. Therefore, it is highly significant to acquire the 
spatial distribution information of fine wetland categories in the 
Liaohe Estuary wetland, as well as to classify and dynamically map the 
wetland vegetation over a long-term time series. This will deepen our 
understanding of the changes and patterns in the surface ecological 
environment in the Liaohe Estuary, and provide a basis for formulating 
ecological protection and restoration policies, as well as scientific 
management in the study area.

Coastal wetlands are sensitive to land-sea interactions, and access 
to wetlands for surveys is challenging in most areas. Remote sensing 
technology plays an important role in the long-term monitoring of 
coastal wetlands (Jiang et  al., 2015). In the process of long-term 
monitoring and classification of wetlands, several problems are 
currently encountered: (1) How to obtain high-quality sample data 
across years. In view of the inherent geographical particularity of 
coastal wetlands, traditional artificial field sampling and visual sample 
selection methods based on high-resolution images are not enough to 
meet the needs of large-scale areas over a long time span (Dong et al., 
2023). (2) How to screen and remove the redundant information of 
satellite remote sensing data. The information of remote sensing image 
data in a region for several decades is too large, and the redundancy 
of satellite remote sensing data will affect the classification accuracy of 
wetlands, so it is necessary to screen and optimize the remote sensing 
image information and features. (3) The classification accuracy of 
coastal wetlands needs to be improved. Classification methods affect 
classification results. At present, most classification methods for 
wetlands are single classification methods, and there are few studies 
on compound classification methods or improved classification 
algorithms, so the accuracy of classification results needs to 
be  improved. This paper focuses on the above three key issues to 
optimize the classification process of coastal wetlands.

In the selection of training samples, to achieve the rapid 
acquisition of reliable samples in a long-term time series, scholars 
proposed the sample migration method, which utilizes the reliable 
samples of a certain reference year as the basis, and migrates the 
unchanged samples to the target year (Yu et al., 2022). The sample 
migration method based on change detection provides methodological 
guidance for the acquisition of sample data over the years. It serves to 
mitigate statistical distribution disparities between the target domain 
image and its source counterpart by identifying invariant regions 
within dual-temporal or multi-temporal imagery. Malila introduced 

Change Vector Analysis (CVA) as a method to discern unaltered 
sample points through the examination of spatial, spectral, and 
structural attributes across remote sensing imagery captured at 
varying time intervals. This analytical approach holds promise for 
facilitating sample migration endeavors focused on monitoring land 
cover transformations (Ye et al., 2021). Moreover, researchers have 
integrated remote sensing-derived feature indicators to enhance the 
efficacy of CVA-based change detection methodologies (Wang et al., 
2022). For example, Rahman and Mesev (2019) incorporated the 
tasseled cap transformation, alongside NDVI and NDWI, into CVA 
magnitude and direction computations to bolster the precision of land 
use change detection. Xu et  al. (2019) introduced the RSEI-CVA 
approach to detect ecological changes in image sequences in Fujian 
Province at different spatial scales.

The combination of remote sensing features can better distinguish 
the ground objects in the study area, and improve the accuracy of 
sample migration to a certain extent. Nonetheless, the utilization of 
high-dimensional remote sensing features is encumbered by 
challenges including complexity and difficulty of interpretation, 
redundancy of feature data, and large computational volume. 
Therefore, a feature selection method is used to reduce dimension to 
reduce redundancy while maximizing correlation with the identified 
targets (Xing et al., 2023). In general, the feature selection method can 
be divided into three categories: filter method, wrapper method, and 
embedded method (Effrosynidis and Arampatzis, 2021). The filter 
method is simple and efficient, suitable for large data sets, but it lacks 
interaction with the model (Khalid et  al., 2014). The other two 
methods use the performance of the learning algorithm to evaluate a 
subset of features, and when the number of features is the same, the 
results are more accurate than the results of the filter method. 
However, the performance of the embedded model is very sensitive to 
the parameters, and the parameter setting is more complicated 
(Shafiee et al., 2021). In contrast, the wrapper method uses a subset of 
features to train multiple times, which is computationally expensive 
but guarantees model effectiveness (Ramezan, 2022; Lin et al., 2023; 
Zhao et al., 2023). Zhou et al. (2021) designed 10 object-based image 
analysis (OBIA) scenarios to evaluate the contribution of five machine 
learning algorithms to classification accuracy, and the results showed 
that the RF model based on the RF-RFE feature selection results of the 
packaged model performed best in the 10 scenarios. In this study, a 
typical wrapper method, the RF-RFE feature selection algorithm, was 
selected to obtain the wetland classification feature set in the study 
area, which provided help for wetland sample migration and wetland 
remote sensing classification.

At present, coastal wetland as a special area of land-sea 
interaction, have always been a difficult area for remote sensing 
monitoring because of their wide vegetation distribution, complex 
community composition, and high spectral similarity. Although high-
spatial or hyperspectral remote sensing images can achieve better 
classification results, the data cost is large and the coverage area is 
small, so it is difficult to apply in long-term and large-scale dynamic 
monitoring. Therefore, scholars have improved the classification 
method of wetland remote sensing based on medium-spatial-
resolution images of long time series. The traditional wetland 
vegetation classification methods commonly used are visual 
interpretation, supervised classification, and unsupervised 
classification. With the development of automatic remote sensing 
extraction technology, the pixel-based classification method has been 
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widely used, which has the advantages of high computational 
efficiency, less data demand, and strong robustness (Peng et al., 2024). 
However, this method does not take into account the spatial structure 
and morphological characteristics of the ground objects (Jie and 
Wang, 2024). Object-oriented remote sensing image analysis methods 
take a group of pixels as processing primitives, and can effectively 
eliminate the “salt and pepper phenomenon” based on pixel 
classification (Eskandari Damaneh et al., 2022). Xing et al. (2023) 
combined the object-oriented method with optimal feature selection 
to conduct a detailed classification of coastal wetlands in the Yellow 
River Delta based on Sentinel-1, Sentinel-2, and NASADEM datasets. 
The simple non-iterative clustering (SNIC) algorithm is a commonly 
used object-oriented segmentation. The algorithm is very effective in 
grouping similar pixels and identifying potential single objects, which 
can reduce noise (Wang et al., 2024). For example, Cui et al. (2023) 
proposed a random forest classifier that combines superpixel 
segmentation and feature selection. Compared with three classical 
pixel-based machine learning classification methods, the results show 
that the model improves the classification accuracy of wetlands. 
Google Earth Engine (GEE) is a cloud-based geospatial data analysis 
platform that provides multiple object-oriented segmentation 
methods, including SNIC. In recent years, the combination of SNIC 
segmentation and random forest (RF) classification has effectively 
solved large-scale computation problems and has achieved good 
results in wetland remote sensing classification (Tassi and Vizzari, 
2020; Hemati et al., 2021; Zhang et al., 2022). Wang et al. (2023) 
combined the initial object-based random forest classifier with 
subsequent hierarchical decision trees of secondary water types to 
generate the first up-to-date 10-meter resolution map of East 
Asian wetlands.

In summary, given the above three key issues, this paper will 
cooperate with geoscience, environmental science, mathematics, and 
computer science and combine remote sensing technology, GIS 
mapping technology, and computer technology to realize cross-
disciplinary coastal wetland monitoring. With GEE as the main 
platform, satellite remote sensing image data of the key growth stage 
of wetland vegetation over a long period was used as the main data 
source. By combining the sample migration method with the feature 
selection method, the feature set and long-term reliable sample data 
that contribute the most to wetland classification are obtained. Finally, 
SNIC segmentation is combined with the random forest method to 
get the wetland classification map of the Liaohe Estuary from 1985 to 
2023. It provides a reference for the spatial distribution information 
of wetlands in the study area and provides a basis for the formulation 
and scientific management of ecological protection and restoration 
policies in the study area. The specific research objectives of this 
paper include:

 (1) Combining the feature recursive elimination theory and cross-
validation, massive remote sensing features of wetland types in 
the study area were screened to obtain the optimal wetland 
feature data set. It reduces spatial data redundancy, improves 
migration sample performance, and improves the efficiency 
and accuracy of a wetland classification model.

 (2) Combining the theory of distance between spectra, the vector 
change analysis is used to calculate the spectral differences of 
images, and the first three dominant features obtained after 
feature selection are carried out in the next feature threshold 

analysis (FTA). Finally, the reliable sample points of long-term 
sequences and large areas are transferred to the target year.

 (3) Combining the super-pixel segmentation and machine learning 
theory based on the sample set and feature set obtained by 
sample migration and feature selection. With GEE as the main 
platform, the SNIC-RF classification method was adopted to 
establish an efficient classification process and accurately draw 
the type map of coastal wetlands in the study area.

2 Materials and methods

2.1 Materials

2.1.1 Study area
The study area of this paper is located in the Liaohe Estuary of 

Panjin City, Liaoning Province, China. To ensure the 
comprehensiveness, representativeness, and completeness of the main 
distribution types of wetlands in the region, the Liaohe Estuary and 
Daling Estuary areas are selected (Figure 1). It is located at 121°60 
‘W ~ 121°95’W and 40°98 ‘N ~ 40°78’N. As the northernmost 
estuarine wetland in China, Liaohekou National Nature Reserve is one 
of the most well-protected wetlands in the world, known as “the 
world’s largest reed field,” and plays an important role in international 
wetland research and protection. The wetland of the Liaohe Estuary is 
low and flat, and the landform type is mainly alluvial and marine 
plain. The ground elevation is less than 7 m, the ground slope is 0.02%, 
and the soil is mainly marsh soil, saline soil, and tidal flat soil. The 
main vegetation communities in the area are reeds and Suaeda salsa. 
They play an extremely important role in habitat maintenance, wave 
reduction, flood storage and drought prevention, environmental 
purification, and blue carbon sequestration, and reflect the basic 
characteristics of a wetland ecological environment (Wang et  al., 
2021). At the same time, the “Red Beach “landscape formed by the 
large area of Suaeda heteroptera in the wetland is a famous tourist 
attraction at home and abroad. It has extremely high humanistic 
tourism value and commercial value. This area is an important 
production base for agricultural products such as oil, sea salt, rice, and 
reed in China, and it is also the route and habitat of migratory birds 
in East Asia. However, in recent years, reclamation and unreasonable 
beach aquaculture in the study area have blocked the hydrological 
connectivity of the Liaohe Estuary wetland. The exchange of fresh and 
saline water is blocked, causing the degradation of the estuary habitat, 
the atrophy of the reed and Suaeda salsa communities, the inhibition 
of the primary productivity of the plant community, the decrease of 
the deposition rate of the tidal flat wetland, and the decrease of the 
continuous accumulation ability of the estuary wetland organic 
carbon. Therefore, it is a typical area for the study of long-term 
sequence estuary wetlands. It is of great significance to classify the 
Liaohe Estuary wetland and analyze the dynamic changes of 
the wetland.

2.1.2 Data source
The remote sensing data used in this study include Landsat 5 TM 

and Landsat 8 atmospheric correction surface reflectivity image data 
(SR), which can be obtained by directly calling the official data of the 
United  States Geological Survey (USGS) online on the GEE 
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platform. Data covering the study area in 1985, 1995, 2005, 2015, 
and 2023 were selected to construct the feature dataset. In GEE, the 
cloud and cloud shadow are identified by the band of “pixel_qa” in 
Landsat data, and the CFMask cloud mask is constructed to filter out 
clouds. In a few summer images, when there is a large cloud and no 
complete image, images from nearby years or months are used 
instead. Part of the sample data in this paper also includes 
multispectral images with a spatial resolution of 4 cm obtained by 
the DJI Genie 4RTK multispectral version UAV in May 2023 and 
Sentinel-2 remote sensing image data from the same period. The 
Sentinel-2 remote sensing images were selected as L2A class data 
with atmospheric correction, with a total of 12 spectral bands, and 
the image data with a resolution of 10 meters was selected in 
this paper.

According to the research purpose and the natural conditions 
of the study area, and with reference to the current classification 
standards, the main cover types of the study area were divided into 
3 categories: natural wetland (Water, Suaeda, Reed, Naked beach), 
constructed wetland (Mariculture area, Farmland), and 
non-wetland (Built-up area, Bare soil), with a total of 8 
subcategories. According to the field survey, combined with the 
visual interpretation results of the high-resolution UAV multi-
spectral image and the 10 m Sentinel-2 image, a total of 1844 sample 
points in the reference year 2023 are determined, of which 400 have 
been verified in the field. In order to avoid an insufficient number 
of training samples for migration due to the increase of samples that 
do not meet the threshold, this paper should generate more 
reference samples at the initial stage to meet the required number 
of training samples for sample migration. Specifics about wetland 
land cover types and site surveys is provided in the 
Supplementary material.

2.2 Methods

The main research content and technical roadmap of this paper 
are shown in Figure  2. After data collection and pre-processing, 
feature selection is carried out based on the RF-RFE model; Sample 
migration based on CVA and FTA; wetland classification and mapping 
were carried out by SNIC-RF method based on the GEE platform.

2.2.1 Wetland feature selection
The feature set constructed on the GEE platform includes 

vegetation index, water index, soil index, building index, Kauth-
Thomas transformation features, and texture features (Table  1). 
According to the growth characteristics of different wetland vegetation 
types in the study area (Zhang et al., 2021; Chen et al., 2023), the 
remote sensing images of 4 months from July to October were used to 
establish an initial remote sensing feature set of 40 * 4 = 160 features, 
and the spatial sample points were given to all remote sensing feature 
attribute values. Specifics about the methods of analysis undertaken 
are presented in the Supplementary material.

In this paper, RF was used as a supervised learning estimator of 
feature importance and combined with recursive feature elimination 
(RFE) to construct the RF-RFE feature selection algorithm, which 
finally determined the feature subset after selection to avoid the 
influence of human factors. Firstly, before feature elimination, Grid 
Search CV is selected to grid the variable region, traverse all grid 
points, and solve and compare the value of the objective function 
satisfying the constraint function to select the parameters of the 
optimal point, so as to reduce the complexity of the RF tree model. In 
the next step, the RF model is used for feature importance ranking, 
and the stratified KFold cross-validation method is combined to 
gradually iteratively delete the features with the least feature 

FIGURE 1

Location map of the study area.
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importance, and a new feature importance ranking is obtained. The 
steps are repeated, and the optimized feature set is finally obtained 
(Sung et al., 2022).

After using RF-RFE to output the result of the feature set, Jeffris-
Matusita distance (JM distance) was used to conduct the separation 
analysis of the selected feature set (Equation 1), and the separability 
of features among major wetland land classes was analyzed 
(Chowdhury et al., 2017). The first three dominant features of the 
feature set are used for the feature threshold analysis of 
sample migration.
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Jij represent the JM distance, m mi j,  represents the feature mean 
values of two different wetland cover types, Class i  and Class j 
respectively, v vi j,  represents the feature variance of two different 
wetland cover types, Class i and Class j respectively.

2.2.2 Migration of wetland samples
This paper uses Transductive Transfer Learning (TTL), which is a 

transfer learning method for target domain samples based on the 
similarity between source tasks and target tasks and a large amount of 
sample labeling data in the source domain.

The specific process of transfer learning in this study is as follows: 
at Level 1, vector transform analysis (CVA) is used to calculate the 
change images of Euclidean distance (ED) and spectral angle distance 
(SAD) in reference year and target year; The two indexes ED and SAD 
are defined as the degree of change of a given pixel at time t1 and time 
t2 through the vector size of the two phases, which is the best amplitude 
and similarity measure for the detection of two-phase spectral change 
(Guo et al., 2017; Zhu et al., 2023). ED is expressed as the square root 
of the sum of squares of the difference along the band (Equation 2), 
and if the spectrum of a pixel in the two-phase is the same, ED is 
calculated as 0. SAD refers to the cosine of the Angle between two 
spectral vectors (Equation 3), and the greater the SAD, the higher the 
similarity. At the same time, in order to determine the optimal 
threshold of variable and invariant training samples, the maximum 
inter-class threshold method (OTSU) is used to automatically segment 
the threshold and screen the unchanged sample points (Liu et al., 2020).
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X and Y are the reference spectrum and the target spectrum, t1 
and t2 are the time phase, N is the total band number.

FIGURE 2

Technology roadmap.
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Level 2: Conduct feature threshold analysis (FTA) according to 
the top three dominant features obtained from RF-RFE feature 
selection, conduct secondary sample point screening, and further 
obtain the unchanged sample point set. Taking the migration to 2015 
as an example, on the remote sensing images of the study area in 2015 
and 2023, the sample points were divided into 8 wetland types, and 
the remote sensing index eigenvalues of the corresponding sample 
points were calculated according to the 8 land types. After that, the 
remote sensing index feature value set of the sample point set of 8 
wetland types in 2015 and 2023 was obtained. Based on the threshold 
interval of the remote sensing index in the reference year 2023, the 
index outliers of the target year 2015 are removed, and the sample 
point set of the target year 2015 within the appropriate threshold is 
finally obtained. Specifics about the methods of analysis undertaken 
are presented in the Supplementary material.

Finally, the sample set screened at Level 1 and the sample set 
screened at Level 2 were used to calculate the overall accuracy (OA) 
and Kappa coefficient (KC) of wetland classification, respectively, to 
verify the validity of the sample migration process in this paper 
(Ghorbanian et al., 2020; Fekri et al., 2021). In addition, given the 
insufficient sample size caused by the large period and the drastic 

changes in some land types in this study, artificial adjustment was 
considered to generate new reference samples.

2.2.3 Wetland classification and accuracy 
assessment

In the pre-experiment, based on the Sentinel 2A data in the study 
area in 2021, this study compared and invoked the pixel-based 
classification methods commonly used in GEE, namely random forest 
(RF) method and support vector machine (SVM) method (Figure 3). 
The RF classification results were more stable than the SVM 
classification results. The confusion matrix (Table 2) shows that the 
overall accuracy of RF classification is 86%, and the Kappa coefficient is 
0.8257; the overall accuracy of SVM classification is 74%, and the Kappa 
coefficient is 0.6742. In terms of user accuracy and producer accuracy, 
there is little difference between the two algorithms in the four land 
classes of water, Suaeda, reed, and farmland, all of which are above 80%, 
but in the naked beach, mariculture area, built-up area and bare soil, 
SVM classification accuracy is poor, some even less than 50%. Finally, 
RF classifiers with better performance were selected to participate in the 
wetland classification process in this experiment (the pre-experimental 
study area was included in this experimental study area).

TABLE 1 Remote sensing features.

Features Calculation formula Features Calculation formula

BANDS
B G R NIR SWIR SWIR, , , , , ,1 2

LWIR L Coastal L5 8� � � �,

EWI G NIR SWIR� �� �� �1
/ G NIR SWIR� �� �� �1

NDVI NIR R NIR R�� � �� �/ NWI B NIR SWIR SWIR� � �� �� �1 2

/ B NIR SWIR SWIR� � �� �� �1 2

GNDVI NIR G NIR G�� � �� �/ TWI R SWIR− 1

EVI 2 5. � �� �NIR R

/ .NIR R B� � � � �� �6 7 5 1

LSWI NIR SWIR NIR SWIR�� � �� �1 1/

RVI R NIR/ NDSI SWIR NIR SWIR NIR1 1�� � �� �/

DVI NIR R− BSI SWIR R NIR B1�� � � �� �� �
/ SWIR R NIR B1�� � � �� �� �

PSRI R B NIR�� � / EBSI BSI MNDWI BSI MNDWI�� � �� �/

CRVI R G NIR�� � / NDBI SWIR NIR SWIR NIR1 1�� � �� �/

SAVI NIR R L NIR R L�� � � �� � � �� �1 / NDBBI 1 5 1 2. /� � �� �� �SWIR NIR G

/ . /1 5 1 2� � �� �� �SWIR NIR G

OSAVI NIR R NIR R�� � � �� �/ .0 16 IBI NDBI SAVI MNDWI� �� �� �/ 2
/ /NDBI SAVI MNDWI� �� �� �2

MSAVI
(2 1� � �NIR

2 1 8 2
2� �� � � � �� �NIR NIR R ) /

EIBI NDBBI EBSI SAVI MNDWI� � � �� �� �4 6/

/ /NDBBI EBSI SAVI MNDWI� � � �� �� �4 6

ARVI
NIR R B NIR R B� � �� �� � � � �� �� �2 2/

Brightness

Y C� �XNDWI G NIR G NIR�� � �� �/ Greenness

MNDWI G SWIR G SWIR�� � �� �1 1/ Wetness

L is a parameter that changes with the change of vegetation density, and its value ranges from 0 to 1. Brightness, Greenness, and Wetness are, respectively, the brightness component, greenness 
component, and humidity component of the hat transformation. Y is the component in the multispectral space after the transformation, X corresponds to the multispectral band before the 
transformation, and C is the transformation coefficient, which is related to the sensor on the satellite.

https://doi.org/10.3389/ffgc.2024.1406473
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Ke et al. 10.3389/ffgc.2024.1406473

Frontiers in Forests and Global Change 07 frontiersin.org

The RF model has a small error, strong robustness, and a strong 
anti-noise ability to conduct supervision and classification of coastal 
wetlands (Rodriguez-Galiano et  al., 2012). RF models can use 
out-of-bag data (OOB) to predict model accuracy or assess feature 
importance (Belgiu and Drăguţ, 2016). Invoking an RF classifier in 
GEE usually requires setting two parameters: the number of variables 
considered at each split (mtry) and the number of tree classifiers 
(ntrees) (Hu et al., 2020). “mtry” uniformly uses the square root of 
the feature numbers involved in the classification. “ntree” is adjusted 
by parameter tuning.

Based on the experience of the preliminary experiment, SNIC 
superpixel segmentation combined with RF model of GEE platform 
was adopted in the process of wetland classification, that is, 
SNIC-RF classification method. The main parameters of SNIC 
segmentation are “seed size,” “compactness,” “connectivity,” and 
“neighborhood size.” In this study, red, green, blue, and near-
infrared bands are used as the input of image segmentation, and 
each parameter is adjusted according to the separability of ground 
objects in different areas of the study area. The majority voting 
method is used to superimpose pixel-based classification results 
with object-based classification results, reduce the impact of 
misclassified pixels in the segmentation patch unit, create object-
based classification, and effectively avoid the “pepper and salt 
phenomenon” with good integrity. In this paper, a confusion matrix 
was used to evaluate classification accuracy, and evaluation indexes 
included overall accuracy (OA), Kappa coefficient (KC), producer 
accuracy (PA), and user accuracy (UA).

3 Results and analysis

3.1 Feature selection results

In this paper, through RF-RFE feature selection, the top 25 features 
in importance ranking were selected for wetland classification so as to 
improve the performance of migration samples and the efficiency and 
accuracy of the wetland classification model, with the model accuracy 
reaching 0.88, as shown in Figure 4. Among the 25 features, vegetation 
index and water body index accounted for the highest proportion, with 
7 in each, among which DVI and GNDVI, NDWI, TWI, and EWI 
appeared more frequently, playing a greater role in the classification of 
wetlands in this study. In addition, there are up to 12 features in October 
after feature selection, among which the top three features are DVI_10, 
NWI_10, and greenness_10, respectively, indicating that October is a 
season with significant spectral differences of wetland vegetation in the 
study area and a key month for selecting wetland remote sensing data.

In Figure 5, the JM distance is used to analyze the separability of 
all features in the selected feature set. The JM distances and mean 
values of the following 7 types of cover are listed for the main types of 
adjacent cover that are difficult to distinguish in this research area. The 
JM distance is between 0 and 2, and the closer to 2, the better the 
separability between the two categories. Among all the 25 features, the 
ones with the highest degree of separation are DVI_10, NWI_10, 
greenness_10, PSRI_07, etc., and the average JM distance is more than 
1.6. Among the categories listed, D1 (Water/Suaeda), D3 (Suaeda/
Reed), and D5 (Reed/Naked beach) are relatively easy to distinguish, 

FIGURE 3

SVM (A) and RF (B) machine learning algorithm classification diagram comparison [(C) represents the manual interpretation].

TABLE 2 Comparison of classification accuracy between SVM and RF machine learning algorithms [Producer accuracy(PA)/User accuracy(UA)].

Method Water Suaeda Reed Naked 
beach

Mariculture 
area

Farmland Built-up 
area

Bare 
soil

RF PA 89.27 92.00 89.72 81.61 81.01 88.99 65.00 53.85

SVM PA 92.86 70.83 86.24 48.75 60 58.62 48.57 22.22

RF UA 93.69 92.00 93.66 78.89 66.67 81.51 78.79 70.00

SVM UA 83.2 65.38 81.74 72.22 75 82.93 22.67 26.67
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and the JM distance of each feature is generally large, up to 1.9, 
followed by D2 (Water/Mariculture), D4 (Suaeda/Naked beach), and 
D6 (Reed/Farmland). In the D7 (Built-up area/Bare soil), the 
separation degree is lower, and the JM distance is about 1.2 to 1.5.

3.2 Sample migration results

3.2.1 Level 1
Before vector change analysis, the mean and standard deviation of 

images “2015img” and “2023img” need to be calculated (Figure 6), and 
normalized processing is performed to obtain two time-phase images 
“2015nor” and “2023nor.” To eliminate radiation inconsistencies. The 

ED and SAD of the spectral changes between the corresponding pixels 
of the two images with the same phenological period are calculated. 
The ED value close to 1 indicates that the spectral similarities between 
the two images are smaller, while the SAD value is on the contrary. The 
SAD value closer to 1 indicates that the two images are more similar. 
As shown in the figure after OTSU binarization segmentation, 0 
represents the unchanged region and 1 represents the changed region; 
that is, the sample points in the changed region can be removed.

3.2.2 Level 2
The feature threshold analysis is carried out by land class. 

Figure 7A shows the OA and Kappa coefficients obtained during the 
classification of the sample set after screening at Level 1, and the OA 

FIGURE 4

The number of features after selection (A), and importance of feature selection results (B).

FIGURE 5

JM distance hotspot map of selected feature set in main wetland cover (D1, Water/ Suaeda; D2, Water/Mariculture area; D3, Suaeda/ Reed; D4, 
Suaeda/Naked beach; D5, Reed/Naked beach; D6, Reed/Farmland; D7, Built-up area/Bare soil; D8, Mean).
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and Kappa coefficients corresponding to the classification of the 
sample set after threshold analysis and sample point screening using 
dominant feature variables at Level 2. OA and Kappa coefficients were 
slightly increased, and the accuracy of sample migration was 
improved. This indicates that the first three features selected by the 
feature selection algorithm, DVI_10, NWI_10, and greenness_10, play 
a role in the process of feature threshold analysis of sample migration, 
which further improves the accuracy of sample migration. Figure 7B 
shows the changes in sample size of various wetland types in 1985, 
1995, 2005, 2015, and 2023. As the time span becomes longer, more 
sample points are removed, and the sample size of some land classes 
is insufficient. In this paper, new reference samples are manually 
added to the study to maintain the proportion of samples from 
different places so that the sample number is sufficient for classification.

In the process of sample acquisition, a manual traditional field 
survey can obtain high-quality sample sets, but it lacks historical 
sample data. Although manual interpretation can supplement the lack 
of historical sample data, it is more subjective and costs more for large-
scale, multi-year sample sets. In this paper, the sample migration 
method is used to calculate the spectral difference of the same pixel 

on different simultaneous images and distinguish the changing region 
from the unchanged region in this period. The sample points of the 
unchanged area can be  migrated to the target year, and then the 
threshold analysis of the dominant feature index is carried out to 
remove the sample points with an abnormal index, finally, the sample 
data sets of each wetland type in 1985, 1995, 2005, 2015, and 2023 are 
obtained. In addition to improving the efficiency of sample acquisition, 
the accuracy of sample migration is further improved, and the high 
quality of samples also has a positive impact on the results of 
wetland classification.

3.3 Wetland classification and accuracy 
evaluation results

Firstly, an object-oriented method is used to obtain the best 
segmented object based on the GEE platform. SNIC parameters are 
set as follows: “seeds size” =15, “compactness” =0, “connectivity” =4, 
“neighborhood size” =2* “seeds size.” The process diagram for some 
areas is shown in Figure 8. A represents SNIC segmentation results. B 

FIGURE 6

CVA change detection results schematic diagram.

FIGURE 7

The comparison of OA and KC in Level 1 and Level 2 (A) and the change of sample number of each wetland type after migration (B).
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indicates that the RF classification map is obtained by using the 
optimized feature set obtained from RF-RFE feature selection. C 
represents the result of classification by most voting methods. The 
SNIC-RF classification method reduces the “pepper and salt 
phenomenon” in the classification effect and maintains the integrity 
of the wetland landscape. It can be seen from Table 3 that OA is above 
90% and KC is above 0.87, which improves the classification accuracy.

The final classification results and accuracy verification of the 
study area obtained in this paper are shown in Figures 9, 10. During 
1985–2023, the water area and reed area were relatively stable, and the 
distribution of the Suaeda was in the estuaries of the Daling River and 
the Liaohe River. The specific growth area changes greatly, and the 
farmland and mariculture area show a substantial increase. The overall 
accuracy of the classification is between 90 and 97%, and the Kappa 
coefficient is between 0.89 and 0.96. The user accuracy and producer 
accuracy of local objects are mostly higher than 85%, and the 
classification accuracy of water area and reed is the highest, while the 
classification accuracy of built-up area and bare soil is low, which is 
easy to mix with other land classes.

3.4 Wetland cover change in the Liaohe 
Estuary

From Figure 9 and Table 4, it can be seen that from 1985 to 1995, 
the mariculture area rapidly expanded from 12.16 km2 to 113.38km2, 
occupying the naked beach and reducing the area of the naked beach 
from 393.73km2 to 137.98km2. In 1990, the Liaohe Estuary damp-
proof levees were built. Tidal flat siltation occurred on the west coast 
of the damp-resistant levees, and habitat changes resulted in a 

substantial increase in the community of Suaeda, from 20.62 km2 to 
33.03km2, in the reed community, from 314.82km2 to 410.48km2. At 
the same time, farmland construction began on the east bank of the 
Liaohe River, and the area of farmland and built-up area increased 
significantly. The bare soil area is relatively reduced.

From 1995 to 2005, the coastal mariculture area continued to 
expand to 154.28km2, and when the construction of farmland and a 
delta reservoir on the east bank of the Liaohe River was completed, the 
farmland area increased from 60.69km2 to 82.40km2. In addition, 
under the interaction from runoff of the Liaohe River and tidal current, 
the sedimentary landform of the estuary developed significantly. The 
naked beach increased from 137.98km2 to 166.99km2. The dramatic 
changes in the estuarine environment caused the community of 
Suaeda to decrease to 4.57km2 and the reed to 394.78km2.

From 2005 to 2015, the mariculture area on the west bank of the 
Liaohe River further expanded to 179.89km2, and the area of the 
mariculture area under construction was large, which made the 
built-up area increase from 74.69km2 to 121.73km2, and the farmland 
area continued to increase to 109.68km2. The engineering construction 
changed the hydrodynamic characteristics of the Liaohe Estuary, 
resulting in accelerated siltation and elevation of the topography, and 
the emergence of a community of Suaeda on the island. The area of 
Suaeda increased from 4.57km2 to 33.87km2, and the area of the naked 
beach decreased from 166.99km2 to 60.29km2.

From 2015 to 2023, the construction of the mariculture area on 
the west bank of the Daling River was completed, the built-up area was 
reduced, and the mariculture area increased to 210.89km2. Part of the 
old mariculture area on the west bank of the Liaohe Estuary stopped 
mariculture activities, no more water was added, then converted back 
to the naked beach with the growth of Suaeda, and the area of the 
naked beach increased from 60.29km2 to 107.79km2. In addition, the 
farmland area continued to increase to 125.74km2, and the reed area 
decreased slightly from 390.44km2 to 372.21km2.

According to Figure 11, the main conversion types between 1985 
and 2023 are from natural wetlands to constructed wetlands and 
non-wetland types, which are mainly naked beach to mariculture 
area, naked beach to farmland and built-up area, and reed to 
farmland. Part of the mariculture area or farmland under 
construction will be identified as built-up area, that is, to achieve the 
transformation of naked beach - built-up area - mariculture area/

FIGURE 8

Comparison of two classification effects [(A) represents the SNIC segmentation result, and (B) represents the classification map obtained by RF 
classification using the selected feature set obtained from the RF-RFE model. (C) Represents the result of SNIC-RF classification by using majority 
voting method].

TABLE 3 Accuracy comparison of different classification methods.

Accuracy 
evaluation

2023 2015 2005 1995 1985

RF
OA 90.17% 93.54% 90.43% 90.00% 90.50%

KC 0.8821 0.9212 0.8832 0.8769 0.8777

SNIC-

RF

OA 92.03% 94.60% 91.12% 92.54% 96.32%

KC 0.9045 0.9340 0.8919 0.9080 0.9528
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farmland. In conclusion, under the influence of the expansion of the 
mariculture area, the construction of a moisture-proof dam, and the 
reclamation of sea ports, the landscape near the coasts of the Daling 
River and Liao River has undergone major changes from 1985 to 
2023. The water and reed remained stable and changed little, the 
changes are mainly concentrated in the coastal mariculture area, 
farmland, and built-up area. The growth area of Suaeda also changed 
with the construction of engineering and the accumulation of silt in 

the shoal. The area of constructed wetlands in the study area showed 
an increasing trend, an increase of 310.44 km2, the area of natural 
wetlands showed a decreasing trend, a decrease of 288.66 km2, and 
the area of non-wetlands decreased by 21.68 km2. In recent years, this 
change has tended to be gentle. This is due to the “retire and return 
to wet “project carried out in Panjin City in 2018, as well as the 
protection and development of the estuary and coast by the state and 
the formulation of stricter policies.

FIGURE 9

1985 (A), 1995 (B), 2005 (C), 2015 (D), and 2023 (E) wetland classification map of Liaohe Estuary.

FIGURE 10

Accuracy and Kappa coefficient (A), PA and UA corresponding to ground objects (B) (1–8 represents, Water, Suaeda, Reed, Naked beach, Mariculture 
area, Farmland, Built-up area, Bare soil).

TABLE 4 The area of each wetland type in Liaohe Estuary wetland from 1985 to 2023 (km2).

Water Suaeda Reed Naked 
beach

Mariculture 
area

Farmland Built-up 
area

Bare soil

1985 465.71 20.62 314.82 393.73 12.16 14.03 49.13 46.34

1995 475.33 33.03 410.48 137.98 113.38 60.69 81.92 3.50

2005 435.56 4.57 394.78 166.99 154.28 82.40 74.69 2.92

2015 419.13 33.87 390.44 60.29 179.89 109.68 121.73 1.64

2023 382.67 43.55 372.21 107.79 210.89 125.74 68.58 5.21
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4 Discussion

4.1 The coupling of sample migration and 
feature selection

In order to improve the efficiency and accuracy of long-term 
wetland mapping, this paper proposes a long-term coastal wetland 
classification method based on sample migration and feature selection 
from three aspects: the selection of training samples, the extraction of 
remote sensing features, and the development and selection of 
classification algorithms. This algorithm adeptly captures spectral 
variations among wetland categories by computing Euclidean Distance 
(ED) and Spectral Angular Distance (SAD). These metrics are integrated 
within a comprehensive change detection framework to leverage their 
respective strengths. The automatic threshold segmentation method 
OTSU was adopted to determine the threshold to reduce the uncertainty 
of manual intervention. Sample migration greatly improves the 
efficiency of sample set acquisition and reduces the workload of manual 
interpretation. At the same time, in the process of rigorous sample set 
production and migration, combined with feature selection, samples are 
classified into different types of remote sensing index thresholds for 
screening, which, to a certain extent, improve the accuracy of sample 
migration, make the sample acquisition basis, ensure the reliability of 
sample quality, and further improve the accuracy of wetland classification.

Multi-feature combinations can greatly improve classification 
accuracy, but high-dimensional features can reduce the efficiency of 
classification models. For feature selection using the wrapper method 
RF-RFE model, RF is able to capture nonlinear relationships and 
interactions between features, which is advantageous when dealing with 
complex data sets, and RFE helps to identify a compact set of features 
that collectively contribute the most to predictive performance. RF-RFE 
can reveal not only the importance of individual features but also how 
they interact, giving insight into the relationships in the data set. The 
top three advantage indices, DVI_10, NWI_10, and greenness_10, were 
concentrated in October, and the time range of sample migration was 
also selected around October. A total of 25 features were selected. In the 

last, the vegetation index DVI, GNDVI, and water index NDWI, TWI, 
and EWI constructed in RGB, near-infrared, and short-wave infrared 
contributed a lot to wetland classification.

4.2 Coastal wetland classification 
supported by GEE

GEE has significant advantages in classifying coastal wetlands 
over long time series, storing and analyzing RS images based on 
pyramid and tiling concepts such that each image has its own pyramid 
at different pixel resolutions, and in addition, each tool used in GEE 
processes images on 256 × 256 tiles. Therefore, the different scales of 
the pyramid are used for different zoom levels, and can simultaneously 
process data from multiple sensors, multiple bands, and multiple time 
points, supporting the visual processing and analysis of a large range 
of regions and long time series.

The built-in segmentation algorithm and classification algorithm 
of GEE are widely used in remote sensing image analysis. In the 
SNIC-RF classification method used in this paper, the superpixels 
generated by SNIC provide visual interpretable segmentation that 
adapts to local image features, so that it can effectively deal with 
spatial variability in data. Using a majority voting method that 
intersects the results of pixel-based classification with object-based 
classification can help mitigate the effects of misclassified pixels in the 
segmentation patch unit. Instead of relying solely on the classification 
of individual pixels, the majority of categories in each object are 
considered, resulting in more robust results that allow wetland 
classification results to provide a more comprehensive representation 
of the landscape. At the same time, all operations on the GEE 
platform are automatically executed in batch parallel on the Google 
CPU and GPU; the complexity of parallel computing is hidden due 
to the automation in this process; and implementing wetland 
classification makes the method framework more operable, giving it 
great potential for practical applications elsewhere.

FIGURE 11

Sangji map of wetland type change in Liaohe Estuary from 1985 to 2023 (1–8 represents, Water, Suaeda, Reed, Naked beach, Mariculture area, 
Farmland, Built-up area, Bare soil).
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4.3 Limitation and prospects

In this paper, the production of training samples, the use of 
transfer methods, and the verification of results are strictly controlled, 
but there are still some uncertainties. For example, when training 
samples are obtained through visual interpretation of high-resolution 
drone images and Sentinel-2 images, certain errors may 
be introduced; When setting migration rules for sample migration, it 
is also possible to introduce some errors into the migrated samples. 
Such errors will directly lead to occasional misclassifications in the 
final classification result. In the feature selection algorithm, the 
effectiveness of RF-RFE depends on the features of the data set and 
the specific classification task, and other feature selection methods 
and parameters can be considered according to the nature of the data 
and the modeling goal. And in the process of wetland classification, 
SNIC hyperpixel segmentation results are sensitive to changes in 
compactness parameters, and finding the right balance point is 
crucial for achieving meaningful hyperpixels.

In addition, to fully understand the complex dynamic changes of 
the wetland under the influence of natural and human factors in the 
past 38 years, the Landsat data with the longest time series was 
selected in this study, which also made the data resolution need to 
be improved. To further enhance the accuracy of wetland mapping, 
the following studies should consider using hyperspectral (such as 
MODIS, etc.), high-resolution (such as GF-1, GF-2, etc.) satellite 
images, or multi-source data fusion and coordination of active and 
passive images. The improvement of the classification accuracy of 
wetlands can also correspondingly refine the classification system of 
wetlands, such as water bodies that can be divided into rivers, sea 
areas, reservoirs, and other types. Under the refined wetland 
classification system, more research content on coastal wetlands can 
be deeply discussed from macro to micro and combined with multi-
scale perspectives, such as ecosystem quality and service assessment, 
biodiversity assessment, coupled hydrological, ecological, 
meteorological, soil, and environmental models to predict the 
degradation trend of coastal wetlands, and wetland ecosystem 
restoration and reconstruction.

5 Conclusion

In this study, the coastal wetland of Liaohe Estuary was taken 
as the research object, and a wetland classification method 
combining sample migration method, feature selection algorithm 
and machine learning was proposed to study the dynamic changes 
of wetland and promote wetland protection decision-making. The 
results show that: Combined with the sample migration method of 
RF-RFE feature selection and CVA change detection, the changes 
between reference year and target year were captured from the 
perspective of spectral distance and dominant feature variables. The 
OA of the sample point set classification in the target year was 
between 87 and 94%. It can be used as a potential solution to the 
shortage of training samples for wetland monitoring applications. 
With the support of the GEE cloud platform, spectral and spatial 
information can be integrated by combining the majority voting 
classification results of SNIC and RF models. Compared with the 
single RF classification result, the classification accuracy of OA 

increased by 0.69–5.82%. During the period from 1985 to 2023, the 
wetland landscape of Liaohe Estuary has undergone drastic changes 
under the influence of reclamation projects, mainly manifested as 
the transformation from natural wetland to constructed wetland. In 
recent years, under the protection policy of wetland, the change of 
wetland has gradually slowed down.

Overall, this study provides technical support for wetland 
ecological protection and sustainable development management and 
can also be applied to other types of wetlands, providing a new idea 
for large-scale wetland mapping in the future. At the same time, based 
on this study, multiple applications of coastal wetlands can be further 
explored in the future. For example, excavating the driving factors of 
wetland dynamic change, assessing wetland ecosystem service 
functions and ecological risks, carrying out ecological zoning, and 
building ecological corridors for ecological restoration and protection. 
These research directions can provide important information for 
wetland ecosystem management and promote the implementation of 
sustainable development goals.
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