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This paper looks at the incorporation of blockchain and Internet of Things (IoT)
technologies into Forest 4.0, a sector that harnesses advanced tools such as
artificial intelligence and big data for e�cient and sustainable forest monitoring
and management. The synergy of blockchain and IoT has gained significant
attention, o�ering a secure and decentralized framework for data management,
traceability, and supply chain oversight. The provided use cases demonstrate
how these technologies improve forest practices, with insight into smart contract
implementation and decentralized systems for sustainable forest management.
The major findings imply that digital technologies such as blockchain, IoT,
AI, WSNs, etc. can help improve forest management sustainability, e�ciency
and transparency, and integration of these technologies can provide significant
information for decision-making and resource allocation, as well as improve
supply chain transparency and sustainable forest practices.
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1 Introduction

1.1 Background

Technology innovations have had a tremendous impact on the way the industry
developed. Initially with the introduction of steam engines, then with the introduction of
electricity and continued after with the introduction of Information and Communication
Technologies (ICT) and robotics, it became economically sustainable research in the
industrialization period (More and More, 2002). In this regard, Forest 4.0 refers to the
fourth industrial revolution of the forest industry (Singh et al., 2022). This transformation,
often referred to as Forest 4.0, is characterized by the integration of technologies such
as blockchain, the Internet of Things (IoT), wireless sensor networks (WSN), artificial
intelligence (AI), etc., into forest operations (Picchi et al., 2021; Pichler et al., 2022). The
purpose of Forest 4.0 is to use technology to improve the efficiency, sustainability, and
profitability of the forest business, including optimizing resource use, reducing waste,
improving, and facilitating decision making. Supply chain management, for example,
can be performed at various stages of the supply chain, from the forest to the mill,
and even beyond to the final wood product (Tzoulis et al., 2014). The integration of
technologies such as Radio-frequency identification (RFID), digital survey tools, and
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intelligent machines into the timber supply chain improved
efficiency and safety (Pichler et al., 2022). These technologies
provide a wealth of data that can help better understand the impacts
of management decisions on forest health, timber quality, and other
aspects (Picchi et al., 2021). Intense international competition is
pushing actors in wood supply chains to implement coordinated
cost-saving strategies. The use of digital technologies can enable
the realization of cost savings by deepening cooperation and
intensifying information exchange (Kogler et al., 2021).

It is clear however, that the forest sector is still undergoing
a significant transformation, driven by the advent of digital
technologies and the need for sustainable forest management.
The context and motivation behind Forest 4.0 lie in the need
for sustainable and efficient forest management in the face of
increasing pressures from global competition and environmental
change. The forest sector faces multiple challenges related to
the level of digital maturity, supply change issues, lack of
digital competence, as well as the needs for service innovation
(Holmström, 2020) and adoption of AI methods (Uddin et al.,
2023). The integration of digital technologies into forest operations
presents significant opportunities to tackle these challenges; as
Forest 4.0 aims to reduce the negative environmental impact
of forest business by encouraging sustainable forest practices,
however, there are still remaining challenges that need to be
overcome (Nižetić et al., 2020; Mondejar et al., 2021).

The aims of this study are to examine the feasibility of
using blockchain, IoT, and AI in Forest 4.0 for sustainable
forest management and conservation, through applications
in the forest industry, such as monitoring and enforcement,
carbon sequestration, biodiversity conservation, and
community participation.

The remaining parts of this paper include the review of the
literature presented in Section 2, an analysis of the technological
frameworks and models in Section 3, and a detailed analysis of
the use cases of Forest 4.0 in Section 4. Paper is summarized with
discussion and conclusions.

2 Literature review

2.1 Forest 4.0

Forest 4.0 extends the Industry 4.0 paradigm to the forest
sector, involving the digital transformation of forest operations
with technologies such as IoT, AI, big data analytics and cloud
computing to improve efficiency, productivity, and sustainability
(Müller et al., 2019; Reitz et al., 2019; He and Turner, 2021;
Molinaro and Orzes, 2022). The goal is to create a “smart
forest” by interconnecting and monitoring all aspects of the
ecosystem through digital technologies, including real-time forest
health monitoring with sensors, AI-driven predictive modeling,
and efficient resource management on digital platforms (Lausch
et al., 2018; Rana and Varshney, 2021; Torresan et al., 2021;
Krishnamoorthy et al., 2023). A key aspect of Forest 4.0 is the
digitalization of the wood supply chain, focusing on wood tracking
to improve efficiency and safety. Pichler et al. (2022) advocate the
integration of RFID technology, digital survey tools, and intelligent
machines into the supply chain to facilitate information flow,

maintaining costs at market levels. Smart harvesting operations,
as explored by Picchi et al. (2021), involve sensors and digital
technologies for forest inventories, planning, and execution,
enhancing sustainability through intelligent forest machines.
Furthermore, Kogler et al. (2021) highlight the cost savings
potential of integrated wood supply chains, emphasizing the role of
digitalization in improving cooperation and information exchange.

Digital technology is gaining importance in European forest
management, addressing the challenges of sustainable practices
(Lazdinis et al., 2019). Forest 4.0, a novel management paradigm,
uses digital tools to improve the sustainability, productivity,
and resilience of forest ecosystems (Singh et al., 2022; Högberg
et al., 2023). Blockchain and IoT play a crucial role in
Forest 4.0, offering transformative potential for management
and conservation (Monrat et al., 2019; He and Turner, 2022).
The blockchain ensures secure storage of certification and
traceability data, promoting transparency and integrity in forest
management (zu Ermgassen et al., 2019; Kim and Huh, 2020;
Ahmed et al., 2022). Real-time data from sensors, drones, and
monitoring systems contribute to decision making in sustainable
harvesting, fire management, and wildlife monitoring (Dainelli
et al., 2021). Furthermore, IoT and blockchain help to execute
carbon sequestration and biodiversity conservation programs
(zu Ermgassen et al., 2019; Kim andHuh, 2020; Ahmed et al., 2022).
These technologies improve sustainability, reduce costs, and foster
trust among ecosystem participants, enabling effective global forest
resource management.

Despite these benefits, challenges slow the widespread adoption
of digital technology in forest management. The issues include
lack of standards, interoperability, and high implementation costs
(Baldwin, 2020; Khan et al., 2022). Legislative and governance
obstacles also exist, which require changes in laws and regulations
for technology adoption, with concerns about data privacy
and security on blockchain networks (Aggarwal et al., 2021).
Stakeholder hesitancy due to potential data exposure raises
additional concerns about trust and privacy in the use of
digital technology.

2.2 Artificial intelligence, blockchain, IoT
and WSNs in forest management and
monitoring

AI, integral to Forest 4.0, improves forest monitoring through
improved precision, efficiency, and automation (Holzinger et al.,
2023). Its application requires thorough consideration of the
technical, economic, and ethical implications for sustainable forest
management (Gabrys, 2020). Research and development efforts are
crucial for exploring AI’s advantages and constraints, establishing
best practices, and defining standards in forestry (Ecke et al., 2022).
Machine learning and computer vision process extensive data from
various sources, such as satellite images, drone images, and sensor
networks, providing information on forest health, biodiversity, and
sustainability (Galaz et al., 2021; Ecke et al., 2022). AI automates
traditional monitoring methods, improving the precision of forest
inventories and ground-based observations (McKinley et al., 2017).
This automation increases efficiency, reduces labor, and facilitates
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rapid responses to environmental concerns (McKinley et al., 2017;
Sandino et al., 2018).

Unfortunately, challenges still hinder the implementation of
AI. The issues include the lack of standardization, regulation and
compatibility, coupled with ethical dilemmas and data protection
concerns (Nishant et al., 2020). Technical hurdles such as high-
quality data requirements and algorithm complexity impede
widespread adoption (Nishant et al., 2020). Financial barriers, such
as high costs, pose challenges for organizations and communities
(Johnson et al., 2021). Questions about the precision, dependability,
and ethical implications of the algorithm underscore the need for
global regulatory solutions that address biases for the use of ethical
AI in forest management (Bellamy et al., 2018; Kim et al., 2019;
Zhang et al., 2021).

Blockchain technology, with its potential to improve
traceability and transparency between value chains, is gaining
attention in various sectors, including forest management (Zeadally
and Abdo, 2019; Lobovikov et al., 2021; Molinaro and Orzes, 2022).
In Forest 4.0, the blockchain offers a secure, decentralized platform
to store and manage critical forest management information
(Molinaro and Orzes, 2022). A key advantage of blockchain in
forest management lies in its ability to establish a tamper-proof
ledger for certification and traceability data (Pan et al., 2019; Vilkov
and Tian, 2019). This ledger can include information on the origin,
transportation, and management techniques of forest products,
promoting transparency and integrity. Another example of using
blockchain across the forest value chain is the implementation of
the digital product passport in the furniture sector (Dalipi et al.,
2024). The application of blockchain can enforce regulations,
deter illegal activities such as logging, and support conservation
initiatives (Kiptum, 2021). In addition, blockchain helps in the
execution of carbon sequestration and biodiversity conservation
programs by tracking and verifying credits and offsets (Bose et al.,
2019; Wang et al., 2020).

However, there are unsolved obstacles to the widespread
adoption of blockchain in forest management. Issues such as lack
of standardization, compatibility, and high implementation costs
pose challenges (Lima, 2018; Kouhizadeh et al., 2019; Prewett et al.,
2020). Legislative and governance adjustments are often necessary
considering concerns about data privacy and security in blockchain
networks (Zhang et al., 2019). Addressing these hurdles is crucial
to realize the full potential of blockchain in advancing sustainable
forest management.

IoT technologies (Yunana et al., 2021) play a crucial
role in Forest 4.0, providing valuable information on forest
health, improving safety and efficiency, and automating forest
management (Nitoslawski et al., 2019). However, challenges must
be addressed, including technical, financial, privacy, security,
and ethical considerations (Yadav et al., 2020), to ensure a
responsible and effective implementation (Zhao et al., 2023). A
key benefit of IoT in forest management is the collection and
analysis of real-time data, with sensors monitoring environmental
parameters such as temperature, humidity, and soil moisture
(Krishnamoorthy et al., 2023). This information informs decisions
about planting, harvesting, and conservation. In addition, IoT
helps to detect animals, providing crucial insights into forest
ecosystem richness and health. Safety and efficiency are improved

by real-time monitoring of equipment and personnel in remote
or hazardous areas, reducing response times to emergencies
and minimizing risks (Reitz et al., 2019). Furthermore, the IoT
automates and optimizes processes such as harvesting and planting
trees, improving operational efficiency (Salam, 2019).

Despite these advantages, barriers to the adoption of IoT in
forest management persist (Lakhwani et al., 2018). Issues such
as the lack of device standardization (Saleem et al., 2018) and
high implementation costs pose challenges. Privacy and security
concerns arise due to the sensitive nature of data, which requires
careful preservation (Frustaci et al., 2017). Ethical considerations
include the responsible and sustainable use of IoT technologies
in the collection of wildlife and forest data (Atlam and Wills,
2019). Overcoming these challenges is crucial for the successful and
responsible integration of IoT into Forest 4.0.

Wireless Sensor Networks (WSN; Jino Ramson and Moni,
2017) are integral to Forest 4.0, utilizing numerous low-power
sensors to wirelessly interact and share data with central nodes
(Kandris et al., 2020). They play a crucial role in improving
forest management operations by providing real-time data on
health, conditions, and environmental factors such as temperature,
humidity, and soil moisture levels (Alsayyari et al., 2017;
Jino Ramson andMoni, 2017; Zhang et al., 2017). This information
informs decision making for activities such as planting, harvesting,
and conservation. WSNs also contribute to safety and efficiency
by monitoring equipment and personnel in remote or hazardous
areas, offering real-time location and status updates to mitigate
emergencies and reduce risks (Damaševičius et al., 2023).

However, challenges remain to be solved toward the
implementation of WSN in forest management (Yang et al., 2019).
Technical limitations, such as restricted wireless communication
range, and concerns about data privacy and security, pose obstacles
(Yue and He, 2018; Li, 2019). Financial barriers, including
high investment and implementation costs, further complicate
widespread adoption. Initiatives should begin with small-scale
experimentation before expanding or standardizing. Ethical
considerations surrounding data collection from wildlife and
forests must be addressed to ensure a responsible and sustainable
use of WSN technologies (Ergunsah et al., 2022). Comprehensive
studies are still essential to develop practical solutions for the
successful application of WSN in forest management (Kumar et al.,
2019).

3 Concept behind the Forest 4.0

Forest 4.0 involves a wide range of multifaceted and
interconnected concepts, from digital technologies such as IoT
and AI to forestry practices such as forest management and
conservation. Figure 1 shows a mind map for such concepts
applied in the Forest 4.0 domain. Forest management concept is
the overarching framework for the use of digital technologies in
the forest sector, as it includes the conservation and sustainable
development of forests and the management of forest health,
biodiversity, and deforestation. Digital technologies are the key
enablers of Forest 4.0, as they include big data analytics, IoT,
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FIGURE 1

Mindmap of Forest 4.0. Synthesized by authors of the paper.

FIGURE 2

Conceptual taxonomy of Forest 4.0. Synthesized by authors of the paper.

WSN, AI, and blockchain, which can be used to support decision-
making, improve forest management efficiency and accuracy, and
provide valuable data and insights into forest conditions. Smart

forestry concept refers to the use of digital technologies to
enhance the management of forests. It includes precision forest,
predictive analytics, decision-making support and assessment of
ecosystem services, which can help organizations make better
informed decisions, reduce the impact of environmental challenges
and threats, and improve the sustainability of forests. Forest

monitoring concept refers to the use of remote sensing, drones,
satellite imagery, and in-situ monitoring to assess the health and
conditions of forests.

We suggest inextricably linking the main elements in the
Forest 4.0 domain, as effective use of digital technology in the
forest sector requires a comprehensive and integrated approach to
forest management that takes into account the interaction of these
concepts and their interdependence.

Forest 4.0 can also be defined using a conceptual taxonomy
of a classification and categorization of the different concepts and
technologies that comprise the Forest 4.0 paradigm. Blockchain,
the Internet of Things, wireless sensor networks, AI and big data
are all examples of the digital technologies used in Forest 4.0.
Forest Monitoring and Management includes the use of digital
technologies to monitor and manage forests, such as remote
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Damaševičius et al. 10.3389/�gc.2024.1424327

FIGURE 3

A Forest 4.0 reference model. Synthesized by authors of the paper.

sensing, mapping, and monitoring of forest resources, as well as
monitoring of forest health, biotic pressure, and deforestation.
Forest conservation is concerned with forest conservation,
including monitoring and enforcing forest conservation policies,
carbon sequestration, and biodiversity monitoring. Forest 4.0
Enabling elements comprise the enabling elements required for
effective Forest 4.0 adoption, such as technological, financial,
regulatory, and governance constraints, as well as security and
privacy concerns.

This taxonomy (see Figure 2) provides an understanding of
the different ideas and technologies used in Forest 4.0 while also
emphasizing their interdependence and links. By categorizing these
concepts and technologies, researchers and practitioners can better
understand the Forest 4.0 paradigm and how it can be used to
improve forest management and conservation.

A Forest 4.0 reference model (see Figure 3) explains the
composition of a multilayered approach that includes advanced
digital technologies such as blockchain, IoT, AI and big data
to create a smart and sustainable forest management system.
Data Collection and Management Layer is responsible for
gathering and handling data from diverse sources such as in-
situ monitoring systems, remote sensing, and wireless sensor
networks. The Data Analytics layer uses big data analytics to
derive insights from the data acquired in the Data Collection
and Management layer and helps to make a decision-making
assistance by utilizing approaches such as predictive analytics and
machine learning. Monitoring and Assessment Layer monitors and
assesses the health of forests, biodiversity, carbon sequestration,
and ecosystem services using data analytics findings. It can also

help decision making by visualizing and analyzing outcomes.
The Forest Management Layer incorporates the Monitoring and
Assessment Layer’s outputs to assist forest management tasks such
as inventory management, deforestation monitoring, replanting,
and conservation. The technological infrastructure layer provides
the underlying technological infrastructure to support the other
levels of the architecture, such as wireless sensor networks, the
Internet of Things, and the blockchain.

3.1 Reference architecture

A proposed reference architecture for Forest 4.0 (see Figure 4)
includes the following components:

• A smart forest monitoring and management system, which
involves the use of IoT, wireless sensor networks, artificial
intelligence, and big data for real-time forest monitoring and
optimized management practices (Torresan et al., 2021).

• The traceability and Compliance System, based on blockchain
technology, ensures safe and transparent forest product
tracking, promoting legal and sustainable trade to improve
governance in the forest sector (Dddder and Ross, 2017).

• A predictive analytics and Decision Support System, driven
by machine learning, helps in forest management decision
making, including early warning systems for forest fires,
pests, diseases, forest growth issues, and forest resources
optimization (Hefeeda and Bagheri, 2007; Zhang et al., 2008;
De Meo et al., 2013; Mongus et al., 2018).
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FIGURE 4

Reference architecture of Forest 4.0. Synthesized by authors of the paper.

• The forest resource management system integrates data for
an end-to-end view of forest resources, supporting planning,
execution, and monitoring. It includes tools for resource
allocation, budgeting, and activity tracking (Johnson and
Geldner, 2019).

• A stakeholder engagement and collaboration platform
provides a secure platform for forest stakeholders to exchange
information and collaborate, fostering a collective approach
to forest management (MacDicken et al., 2015).

3.2 Deployment model

A Distributed Deployment Model for Forest 4.0 was developed
(Figure 5) to use key digital technologies, including blockchain, IoT,
and AI (Bécue et al., 2021), at various levels of forest management:
local communities, state / private forest managers and international
organizations (Friedman et al., 2020). Each level is assigned specific
tasks based on its experience and resources. This deployment
model helps optimize the strengths of different management levels,
enhancing the robustness and efficiency of the system. For example,
local communities use IoT sensors for real-time forest health

monitoring, while forest departments employ AI algorithms to
analyze sensor data and predict potential threats, or, for example,
international organizations use blockchain to secure data storage.

4 Uses cases of Forest 4.0

4.1 Carbon sequestration

Carbon sequestration, capture, and storage of atmospheric
carbon dioxide (CO2), is critical for climate mitigation (Yen and
Wang, 2013; Pais et al., 2020). Example state-of-the-art Forest 4.0
applications in carbon sequestration uses advanced technologies
such as AI and remote sensing to accurately measure and enhance
the carbon storage capabilities of forests (Güler, 2024). Using high-
resolution satellite imagery and LiDAR data, these applications
can create detailed 3D models of forest biomass (Xu et al., 2021),
allowing for precise quantification of carbon stocks (Araujo et al.,
2023). In Forest 4.0, digital technologies enhance this process by
providing real-time data on forest carbon stocks. Modern sensors
and IoT devices collect vital information on tree growth, mortality,
and biomass. Machine learning algorithms analyze growth patterns
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FIGURE 5

Deployment model of Forest 4.0. Synthesized by authors of the paper.

and predict future carbon sequestration potential, while IoT-
enabled sensors provide real-time data on forest health and
environmental conditions (An, 2024). Aerial and satellite images
offer a comprehensive view of forest cover, helping to monitor
changes and estimate carbon emissions from deforestation (DeFries
et al., 2007). Blockchain can be used to create a decentralized
system (see Figure 6) to track and verify carbon credits from
sequestration (Kotsialou et al., 2022), increasing transparency and
deterring fraud. This incentivizes investment in forest conservation
and carbon sequestration.

4.2 Biodiversity monitoring

Digital technology in biodiversity monitoring offers rapid and
accurate collection and real-time analysis of extensive forest-related
data. Examples of Forest 4.0 applications include a combination
of remote sensing, big data analytics, and AI to track and
analyze the variety of species within forest ecosystems (Raihan,
2023). Sensors placed in the forest can monitor environmental
factors such as temperature, rainfall, and soil moisture, helping
to assess species populations and their changes over time (Pimm
et al., 2015; Salle et al., 2016). Automated systems using drones
and camera traps capture images and videos, which are then
processed by machine learning algorithms to identify species and
monitor their populations (Petso et al., 2022). Genetic analysis and
environmental DNA (eDNA) sampling provide additional layers of
data, enabling the detection of even elusive or nocturnal species
(Beng and Corlett, 2020). Such data are invaluable for evaluating

ecosystem health, identifying conservation needs, and employing
conservation initiatives. AI further enhances monitoring by
automatically identifying and counting species in forest imagery
data (Silvestro et al., 2022). The diagram (Figure 7) represents a
high-level architecture of a Biodiversity Monitoring System.

4.3 Sustainable forest management

Forest 4.0, built on sustainable forest management principles
(Sheppard and Meitner, 2005), uses digital technologies, including
IoT sensors, wireless networks, and blockchain, for real-time forest
monitoring and effective management (Sharma and Verma, 2022).
Sample applications on Sustainable forest management in the
context of Forest 4.0 involves integrating digital technologies to
balance ecological, economic, and social objectives (Bastos et al.,
2024). Precision forestry techniques utilize GIS, remote sensing,
and IoT sensors to optimize timber harvests, ensuring minimal
environmental impact and promoting regeneration (Venanzi
et al., 2023). Big data analytics support decision-making by
predicting the outcomes of various management strategies, while
blockchain technology ensures transparency and traceability in
logging activities (He and Turner, 2021). The deployment of
sensors in forests captures data on temperature, soil moisture,
light intensity, and air quality, transmitted to a central server via
Zigbee (Safaric and Malaric, 2006) or LoRaWAN (Ertürk et al.,
2019; Osorio et al., 2020; Almuhaya et al., 2022). The often employs
machine learning and AI for data analysis, pattern detection,
and real-time alert or recommendation generation. For example,
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FIGURE 6

Architecture of carbon sequestration system. Synthesized by authors of the paper.

a significant decrease in soil moisture can trigger suggestions
for additional water sources to prevent drought conditions.
Blockchain ensures data integrity, security, and transparency,
allowing secure access and verification by stakeholders, such
as forest managers and conservationists. It also manages rights
and duties, ensuring sustainable forest use in compliance with
regulations. Beyond monitoring, the system aids in carbon
sequestration, biodiversity tracking, and enforcement, quantifying
carbon footprints, and providing evidence for certification. It also
monitors endangered species, habitats, andmigration patterns. The
diagram in Figure 8 illustrates how IoT, Wireless Sensor Networks
(WSN), blockchain and AI contribute to real-time monitoring,
decision-making, and policy compliance in sustainable forest
management and conservation.

4.4 Carbon credits tracking

Carbon tracking in smart forests, facilitated by Forest 4.0, uses
digital technologies to accurately monitor carbon sequestration
(Sterck et al., 2021; Bowditch et al., 2022), contributing to the
design of carbon credit systems, the management of greenhouse
gas emissions and the combating of climate change (Corbera

et al., 2010; Haites, 2018). Carbon credits tracking applications are
revolutioning Forest 4.0 through the use of blockchain technology
and smart contracts, which ensure transparency and security in
carbon trading markets (Marke et al., 2022). Some of applications
use blockchain to secure and decentralized monitor carbon credits,
integrating IoT, wireless sensor networks, and blockchain for
data collection, analysis, and storage (Saurabh and Dey, 2021).
Wireless sensors measure forest characteristics by transferring
data through the IoT to a blockchain-based database. Machine
learning analyzes the data, offering insight for sustainable forest
management. Advanced sensors, data analytics and remote sensing
technologies provide accurate and verifiable measurements of
carbon sequestration, essential for issuing and validating carbon
credits (Smith et al., 2020). Blockchain records every transaction,
from the issuance of credits based on verified carbon sequestration
to their sale and transfer, reducing fraud and double-counting risks
(Marchant et al., 2022). Key characteristics here include carbon
sequestration rates, tree growth metrics such as height, diameter,
and canopy cover, as well as biomass accumulation. Soil carbon
content and tree health indicators such as leaf chlorophyll content
and vitality are also tracked. The composition of the forest, which
includes the diversity, distribution and age distribution of species
of trees, is monitored along with environmental conditions such
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FIGURE 7

Architecture of Biodiversity Monitoring System. Synthesized by authors of the paper.

as temperature, humidity, rainfall, and soil moisture levels. In
addition, land use changes are observed, including deforestation
and reforestation rates, land cover, and land use patterns. Carbon
emissions from forest fires and management activities, as well
as biodiversity metrics such as the presence and abundance of
various flora and fauna species, are further critical components.
Forest density, ecosystem services such as water filtration and
habitat provision, and air quality, including greenhouse gas
concentration, are also typically measured (Bussotti and Pollastrini,
2017). The concept architecture of the system includes modules
for data collection, storage, processing, analysis, and reporting
(see Figure 9).

4.5 Supply chain tracking

The process of tracking the movement of forest products
from forest to consumer, known as supply chain tracking in
smart forest management (Feng and Audy, 2020), involves various
stakeholders: forest managers, loggers, transportation firms,
processors, and merchants. Supply chain tracking applications
in forestry has been significantly enhanced by the application

of IoT, blockchain, and big data analytics. These technologies
provide end-to-end visibility of timber and forest products from
harvest to final sale. Blockchain technology, an example of a
supply chain tracking system in smart forests (Cueva-Sánchez
et al., 2020), establishes an immutable record of transactions
and product movements. Each transaction is recorded as a block
in the chain, creating an unalterable travel record that ensures
compliance with legal, environmental, and social requirements
(Felipe Munoz et al., 2021). Forest 4.0 improves transparency
of the wood and paper supply chain, using blockchain to
secure, decentralized, and tamper-proof provenance tracking from
sustainably managed forests (Gonczol et al., 2020; Hoeben et al.,
2023). Figure 10 illustrates this high-level architecture of the supply
chain tracking system.

RFID technology (Björk et al., 2011) involves the attachment
of RFID tags to forest products for real-time tracking, providing
data on location, temperature, and other details. Additional
technologies, including the Internet of Things (Zhao et al., 2011),
wireless sensor networks (Jino Ramson and Moni, 2017), and
artificial intelligence (Sharma et al., 2022; Shivaprakash et al.,
2022), improve supply chain monitoring in smart forests. These
technologies contribute new data and insights, improving decision
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FIGURE 8

Architecture of sustainable forest inventory management system. Synthesized by authors of the paper.

making and mitigating risks such as illegal logging and conflicting
timber trafficking (Pichler et al., 2022).

4.6 Deforestation monitoring

Application on Deforestation monitoring are starting to
become more precise and proactive with the adoption of
advanced Forest 4.0 technologies (Gao et al., 2020). High-
resolution satellite imagery and AI-driven analytics allow for
real-time detection of deforestation activities, providing early
warnings and enabling swift action. Using digital technology, such
as the Internet of Things (IoT), blockchain, and AI, improves
the accuracy and efficiency of these efforts (Pahari and Murai,
1999; Tucker and Townshend, 2000; Shimabukuro et al., 2019;
Alzubi and Alsmadi, 2022). Forest 4.0 facilitates real-time tracking
of deforestation, using IoT sensors and blockchain to create
a secure and tamper-proof data repository (Chowdhury, 2006;
Achard et al., 2007; Perbet et al., 2019). Wireless sensors in
forests capture environmental data, while high-resolution satellite
imagery, processed bymachine learning, identifies deforested areas.

Local populations and rangers contribute through smartphone
apps, reporting deforestation incidents (da Luz et al., 2014). Drones
equipped with multispectral cameras survey large forest areas,
identifying changes in vegetation cover and land use (Nuwantha
et al., 2022). A centralized dashboard integrates data from wireless
sensors, satellites, and mobile apps, allowing real-time monitoring
and rapid response to deforestation. The blockchain ensures
secure data management (Taskinsoy, 2019; Mechik and von Hauff,
2021), making manipulation impossible. AI algorithms analyze
data for trends and provide real-time warnings, empowering forest
managers to take proactive measures. Figure 11 depicts such a
high-level architecture of the Deforestation Monitoring system.

5 Discussion and conclusions

Forest 4.0, with its potential to address industry challenges,
offers substantial scalability (Verkerk et al., 2020). It holds promise
for improving forest resource management and monitoring on
a large scale through real-time data, increased transparency,
efficiency, and support for sustainable practices. However, Forest
4.0 scaling faces challenges, including the need for investment
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FIGURE 9

Architecture of carbon tracking system. Synthesized by authors of the paper.

in technical infrastructure, the establishment of standard data
management protocols (Duncanson et al., 2019), and training
for practitioners and policy makers. Collaborative efforts with
governments, the commercial sector, civil society, and academic
institutions are essential to overcome technical, financial, and
institutional challenges to scaling (Weiss et al., 2021). The potential
for scalability in Forest 4.0 is significant, requiring collaborative
efforts to ensure effective implementation and acceptance among
all stakeholders (Marchi et al., 2018).

Successful integration of digital technology in Forest 4.0
for effective forest management requires addressing regulatory
and governance challenges (Cashore and Stone, 2012; Dlamini
and Montouroy, 2017). A multi-stakeholder strategy is crucial,
necessitating the establishment of international standards, legal
frameworks, and governance models (Tegegne et al., 2016).
The adoption process is complex and requires a comprehensive
approach to overcome governance and regulatory constraints
(Bernhard et al., 2020). To maximize the benefits, roles, and
obligations for parties involved in digital technology management
must be clearly defined. Financial barriers also add up to

the costs associated with the adoption and implementation
of digital technologies in forest management (Müller et al.,
2019). Furthermore, Forest 4.0 must support sustainable forest
management by identifying areas that need attention and
promoting eco-friendly practices. Real-time data on forest
conditions aid in the adoption of practices that reduce the impact of
human activities on forest resources (Zhang et al., 2022). In essence,
Forest 4.0 revolutionizes forest management and conservation
through real-time data provision, enhanced accountability, and the
promotion of sustainable practices.

Forest 4.0, which uses digital technologies such as blockchain,
IoT, wireless sensor networks, AI, and big data, has transformative
implications for forest management and conservation (Zhang
et al., 2022). Enhanced data management and decision making
(Prato, 2019) are key benefits. By providing real-time data on
forest resources and conditions, Forest 4.0 empowers managers
and policy makers to make well-informed decisions (Zhang et al.,
2022). In addition, it promotes openness and accountability in
forest management through technologies such as blockchain,
ensuring secure and accessible information for stakeholders, thus
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FIGURE 10

Architecture of supply chain tracking system. Synthesized by authors of the paper.

promoting trust and collaboration while mitigating corruption
risks (Liubachyna et al., 2017).

The adoption of digital technologies in forest management,
including Forest 4.0, faces a number of technical barriers that must
be addressed to ensure their successful implementation (Holzinger
et al., 2022). The problems of standardization and interoperability
in digital technology pose significant obstacles in the forest
sector. This hinders seamless data flow among stakeholders,
leading to redundant efforts (Scholz et al., 2018). Addressing
this challenge requires the development and implementation of
international guidelines for the integration of digital technology
into forest management. Inclusive decision making involving
local communities and indigenous people, who possess valuable
knowledge of the forest, is essential for the effective and sustainable
use of digital technologies in Forest 4.0. A global perspective,
exemplified by technologies such as blockchain, emphasizes the
need for widespread adoption and coordinated regulation between
regions, particularly in areas less digitized like the supply chain
(Dilyard et al., 2021). Data privacy and security pose another set
of critical challenges in the implementation of digital technologies
within Forest 4.0 (Jagatheesaperumal et al., 2021). The integration

of blockchain and IoT in forest management, involving sensitive
data and transactions, requires robust legislative and technical
frameworks to protect this information. These data include details
about the ownership and transactions of forest assets, along with
personal information about the parties involved in themanagement
process (Bettinger et al., 2016).

The major findings imply that digital technologies such
as blockchain, IoT, AI, WSNs, etc. can help improve forest
management sustainability, efficiency and transparency, and
integration of these technologies can provide significant
information for decision-making and resource allocation, as
well as improve supply chain transparency and sustainable
forest practices (Torresan et al., 2021). Forest 4.0 uses examples
and real-world applications that illustrate the potential of
these technologies to improve forest resource management and
monitoring. Furthermore, the use of blockchain and IoT in forest
management could open up new avenues for more secure and
effective data handling (He and Turner, 2021).

Future research should focus on creating and testing novel
ways to increase forest management sustainability and efficiency.
The use of innovative digital technology in forest management
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FIGURE 11

Architecture of deforestation monitoring system. Synthesized by authors of the paper.

and bioeconomy is a once-in-a-lifetime opportunity to improve
the sustainability, efficiency, and transparency of the industry, and
policy makers and practitioners must collaborate to capitalize on
these innovations for the benefit of forests and society (Jankovskỳ
et al., 2021).
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