
Frontiers in Forests and Global Change 01 frontiersin.org

Transgenic poplar for resistance 
against pest and pathogen attack 
in forests: an overview
Swati Sharan 1, Amrita Chakraborty 2, Amit Roy 2*, 
Indrakant K. Singh 3* and Archana Singh 1,4*
1 Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India, 2 Faculty 
of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia, 
3 Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, 
New Delhi, India, 4 Delhi School of Climate Change and Sustainability, Institution of Eminence, 
Maharishi Kannad Bhawan, University of Delhi, New Delhi, India

Forests are potential habitats for immense terrestrial ecosystems and aquatic 
biodiversity, performing an essential role in ecological preservation and 
regulation of climate. The anthropogenic pressures on the forests lead to 
forest loss, fragmentation and degradation. Requirements for sustainable 
methodologies for forest protection are of utmost priority under the climate 
change regime. Among forest trees, poplar trees (Populus L.) have attracted 
attention in global forestry as a promising material for improving the quality 
and quantity of urban landscapes. These plants provide wood, which can 
be utilized as raw resources for the paper industry and as a potential source 
of biofuel. However, several biotic stresses, such as attacks by pests and 
pathogens, severely affect poplar production and productivity. The improvement 
of Populus trees through conventional tree breeding methods is restricted 
due to their long-life cycles and the lack of suitable donors with resistance 
genes. Populus has been utilized as a model plant for studying gene functions 
due to its highly efficient genetic transformation capabilities. The present 
review will provide a comprehensive overview of pest and pathogen attacks 
on poplar, focusing on their infection mechanisms, transmission routes, and 
control strategies. Additionally, it will examine the most widely used genetic 
transformation methods (gene gun-mediated, Agrobacterium tumefaciens-
mediated, protoplast transformation, micro-RNA mediated and micro-RNA 
clustered regularly interspaced short palindromic repeats (CRISPR)-associated 
(CRISPR-Cas) systems methods and RNA interference) for improving tolerance 
in poplar trees against pest and pathogens attack. Furthermore, it will delve 
into prospects, challenges, and recent advances in molecular biology tools 
and their safe application for genetic transformation to improve insect and 
pest resistance in poplar trees. Finally, the regeneration of transgenic poplar 
trees with enhanced resistance, developed through various genetic engineering 
techniques, is discussed.
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1 Introduction

Forest trees have several pivotal roles, such as maintaining 
ecology, climate regulation, providing raw materials for the 
construction of buildings, greening roads, and being an energy source 
(Trumbore et al., 2015). Among these forest trees, poplar (Populus 
spp.) (known as ‘the people’s tree’) is one of the most widespread trees 
in the world (Xi et  al., 2021; Yevtushenko and Misra, 2019). The 
poplars are essential for maintaining the world’s ecological balance 
and socio-economic wellbeing (Häggman et al., 2013). The first use of 
the poplar cultivar started in 1700–1720 when Populus nigra ‘Italica’ 
(P. nigra, Lombardy nigra) was used in Italy, Europe and North 
America. There was a rapidly increased demand for poplar plants after 
World War II when Europe was devastated by the lack of readily 
available wood for construction and fuel. Consequently, the 
domestication and cultivation of the genus poplar started in Europe 
by introducing eastern cottonwood (Populous deltoides) and followed 
by hybrids black poplar (P. nigra) (a hybrid of P. ×canadensis) for 
fulfilling the increased demands for woods (Stanton et al., 2009).

Poplar trees (family Salicaceae) are tall, deciduous, dioecious, 
paleopolyploids, or ancient polyploids, naturally diverse, fast-growing 
and widely distributed globally (Lubrano, 1992), especially in 
temperate, sub-temperate and sub-tropical regions of Northern 
hemisphere and in tropical Africa also (Tuskan et al., 2006; Guleria 
et al., 2022). These poplars, except aspens and Asian mountain balsam 
poplars, grow widely in several regions like hot-arid and desert-like 
regions of central Asia and Africa, alpine forests in Europe and North 
America, as well as riparian zones like river banks and flood plains 
(Guleria et  al., 2022). Poplars are the dominant species in these 
habitats for tolerating and sustaining in the complete flood. China, 
Turkey, France, India and the Po River plain of Italy are the largest 
poplar farming areas for worldwide wood supply, whereas Italy, Spain, 
France and Hungary provide a landscape of 0.5 out of 0.61 million 
hectares for poplar farming only. Poplars shape global forests and 
woodlands in their natural habitats. Besides being domesticated as an 
agroforestry tree, they provide timber, fuel wood, plywood, industrial 
roundwood, sports materials, pallets, paper pulp for the paper 
industry and fodder (Kollert et al., 2014). In addition, Populus species 
are cultivated as energy crops/biofuel (ethanol) in Europe (England 
and Italy) for carbon sequestration and sustainable bioenergy 
production in USA because of its high biomass production in a 
relatively short time (Dou et  al., 2017). They are also used in the 
phytoremediation of toxins, e.g., heavy metals (Cd, Pb, As, and Hg) 
from contaminated soils, indicating ozone pollution as a bio-indicator, 
rehabilitation of fragile ecosystems and restoration of forest landscapes 
(Alahabadi et al., 2017).

Poplar (Genus: Populus) comprises 32–40 species based on 
taxonomic and morphological traits (Cronk, 2005; Douglas, 2017). 
There is a record of a total 582 Populus species, with more than 100 
species names recognized worldwide. The higher number of species is 
due to the presence of naturally occurring hybrids (The Plant List, 
2013). According to Eckenwalder (1996), the genus Populus is 
classified into six groups including the cottonwoods (Aigeiros), aspens 
(Populus), balsam poplars (Tacamahaca), large-leaf or swamp poplars 
(Leucoides) and (Abaso) and Afro-Asian poplars (Turanga), and but 
the Flora of China recognized 71 species from five sections (except 
Abaso) (Park et al., 2004; Table 1). Species boundaries among poplars 
are sometimes variable as intrasectional and intersectional 

hybridization occurs among them. However, this has not been 
supported by molecular evidence. Hence relationships between these 
sections are reported to be controversial (Wang et al., 2014; Liu et al., 
2017; Zhang et al., 2018). During 1950s, poplar was introduced in 
India from the United States of America. Since then, P. deltioides, have 
been cultivated in India and cover an area of 270,000 ha in India, 
according to the report of the Indian Council of Forestry Research and 
Education (ICFRE, 2016; Eqbal and Ansari, 2024). Several researches 
have proved that the genus populus is a rich source of active 
metabolites, like phenolic compounds, terpenoids, and flavonoids in 
different parts like stems, buds, leaves and bark (Guleria et al., 2022). 
These poplar trees have been used to cure various ailments and have 
several pharmacological properties such as antioxidants, 
antimicrobials, anticancer, and anti-inflammatory (Guleria 
et al., 2022).

Poplar was the first woody perennial tree used as a model/
experimental tree species among forest trees worldwide for 
understanding several aspects such as taxonomy, genetics, evolution 
and the genomics of wood formation for decades because of their 
small genome size, clonal propagation, fast growth, easy 
transformation, and long-life cycle (Taylor, 2002). In addition, poplar 
genome has been completely sequenced after Arabidopsis and rice. 
Moreover, it is the most advanced genomics resource of any forest 
tree, having reference genomes for several tree species. The black 
cottonwood (P. trichocarpa) was the first forest tree whose genome 
was sequenced entirely, and currently, there are massive genomic 
resources available for other poplar species. Interestingly, P. tomentosa 
and P. euphratica genomes have been extensively studied, while others 
have been ignored. All Populus species contain 19 haploid genomes 
(Shi et al., 2024). However, massive rearrangement and diploidization 
of the whole genome of poplar have been reported. The arabidopsis-
poplar genome comparative model approach has been used efficiently 
in many cases (Rottmann et al., 2000; Jansson and Douglas, 2007). 
The genus Populus is an excellent model for studying the molecular 
genetic mechanisms involved in pathogen defense responses in 
several forest trees. The availability of Populus genome sequences 
enhances the efficiency of the substantial molecular tool kit that 
already exists for Populus species, including expressed sequence tags 
(ESTs) collection and microarrays for transcriptome. In addition, 
these tools can be applied with valuable pedigrees and genetic maps 
developed for Populus breeding for decades (Sterky et  al., 1998; 
Frewen et  al., 2000; Hertzberg et  al., 2001; Cervera et  al., 2001; 
Bhalerao, 2003; Andersson Gunnerås et al., 2006). Such pedigrees 
have been proven useful and efficient in revealing Populus loci 
responsible for conferring resistance to fungal pathogens attacks 
(Goué-Mourier et al., 1996). Poplar cultivation is severely affected by 
several ranges of pest insects and pathogens such as fungi, bacteria, 
and viruses, resulting in reduced growth and quantity and quality of 
wood. These biotic stresses comprise the complex interactions 
between hosts, pests, pathogens, and environmental factors, negatively 
affecting the poplar population (Seserman, 2018). The efficiency of 
traditional methods for protecting poplar farming from attack of pests 
and pathogens is hindered by factors like climatic instability, global 
warming, flood, drought, high temperatures and humidity. 
Consequently, new biotechnological approaches like genetic 
transformation and genome editing are required to overcome these 
limitations of traditional breeding. These tools are utilized to increase 
the quality and yield of wood and improve pest and pathogen 
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resistance in forest trees, including poplar (Li P. et al., 2024; Li Y. et al., 
2024; Li Z. et al., 2024). This paper primarily summarized the details 
of pest and pathogen attacks that cause diseases in poplar trees. 
We also examined the mechanism of infection, transmission route, 
the role of lignin in protecting poplar against pests and pathogens and 
the mode of control of diseases in poplar. Here, we also emphasized 
conventional breeding and its limitation for poplar plantations on a 
large scale. The application of different tools of genetic transformation 
and genome editing for developing transgenic poplar resistant to pests 
and pathogens was discussed in detail. Finally, we summarize the 
regeneration of transgenic poplar trees that have been modified by 
incorporating defense genes, such as those conferring pest and 
pathogen resistance.

2 Poplar susceptibility to biotic 
stresses

Poplars are frequently impacted by infestations of insect pests 
such as mites, aphids, and caterpillars, as well as bacterial, viral, and 
fungal infections. These pests and pathogens target all parts of the tree, 
damaging buds and leaves, inducing gall formation, sucking sap, 
altering bark structure, and boring into shoots and roots, which 
facilitates the transmission of plant diseases. Over time, these attacks 
can lead to complete defoliation, reduced tree growth, and even tree 
death. As a result, affected poplars become unsuitable for various uses, 
including furniture production, biofuel generation, and veneering 
(Charles et al., 2018).

2.1 Pest attacks on poplar

Insect pests are a limiting factor affecting Populus productivity 
worldwide (Table 2). Globally, outbreaks of pests are boosted due to 

climate change (Fenning, 2013). Around 525 and 300 species of 
insects and mites feeding on Populus have been identified as serious 
threats for causing economic and ecological losses in poplar 
plantations in Europe and North America, respectively (Charles 
et al., 2018). Ahmad and Faisal (2012) documented that around 133 
insect species feed on poplar plantations in India. These pests hinder 
plant growth and increase tree mortality (Dickmann, 2001; Coyle 
et al., 2005). In North America, the cottonwood leaf beetle (CLB) 
(Chrysomela scripta) is reported as the most widespread and severe 
defoliator of young Populus cultivation (Coyle et al., 2005). In the 
Mediterranean, Saperda carcharias (large poplar borer) is reported 
to be one of the most damaging insects for young poplar plantations 
(Biselli et al., 2022). In China, major pest species destroying poplar 
plantations are trunk borers and defoliators such insects of the 
Lepidoptera (Hyphantria cunea Drury), Apocheima cinerarius 
Ershoff, Lymantria dispar Linnaeus, Malacosoma neustria 
Motschulsky, and other moth species belonging to the Notodontidae 
and Limacodidae and Coleoptera (Apriona germari Hope, 
Anoplophora glabripennis Motschulsky, and Plagiodera versicolora 
Laicharting). In addition, up to 40% loss of hybrid Populus 
plantations is reported due to poplar looper (Apochemia cinerarua) 
and the spongy moth (Lymantria dispar) (Hu et al., 2001; Wang 
et al., 2018) in China. Anaplophora glabripennis also causes massive 
destruction of hectares of Chinese poplar (P. simonii) plantations. 
Biselli et  al. (2022) observed that Phloemyzus passerinii [Wooly 
Poplar Aphid (WPA)] causes 10% of production losses of poplar, 
mainly in European and American countries. Other insects, for 
example, Cossus cossus, Agrilus suvorovi, Megaplatypus mutatus, 
Paranthrene tabaniformis, Melanophila picta, and Gypsonoma 
aceriana, also threaten poplar farming. Recently, transcriptomic and 
metabolomic analyses were conducted to investigate the species-
specific defense responses of Populus tremula against herbivores 
such as spongy moths (Lymantria dispar) and aphids (Chaitophorus 
populialbae). The insights gained from these studies could 

TABLE 1 Taxonomic categorization of different species of the genus Populus.

Divisions Names Occurrence References

Turanga Bunge Subtropical Asian poplars (P. lasiocarpa Oliv, Chinese 

necklace poplar), P. ilicifolia (Engl.) Rouleau (Kenyan poplar), 

P. euphratica Oliv (Euphrates poplar)

China, Northeast Africa, Southwest Asia, 

East Africa (subtropical and tropical)

Gai et al. (2021) and Du et al. (2024)

Populus or

Leuce Duby

True white poplars and aspens

P. adenopoda Maxim (Chinese aspen), P. monticola Brandegee 

(White poplar), P. alba L. (White poplar) P. tremuloides 

Michx (Quaking aspen) P. tremula (Japanese aspen)

China, Europe, North Africa, India, 

Mexico, North America, Northeast Asia

Chanda et al. (2010) and Du et al. 

(2024)

Aigeiros Duby Black poplars, P. trichocarpa Torr. (Black cottonwood poplar), 

P. fremontii S. Watson (Fremont’s cottonwood), P. deltoides 

Marshall (Eastern cottonwood)

Europe, Western Asia, Temperate region 

of North America, Central Asia

Gai et al. (2021) and Porth et al. (2024)

Abaso Eckenwalder Endemic Mexican poplars (P. pruinosa Schrenk, Desert 

poplar), P. Mexicana

Mexico Liu et al. (2017), Wang W. et al. 

(2022a), and Wang Y. et al. (2022b)

Leucoides Spach Big leaf poplars (P. heterophylla L., Swamp cottonwood 

poplar), P. jacquemontiana Dode (Sichuan poplar)

Eastern North America (USA), Eastern 

Asia China, India (warm and temperate)

Wang W. et al. (2022a), Wang Y. et al. 

(2022b), and Zhang et al. (2019)

Tacamahaca

Spach

Balsam poplars

P. ciliata Wall. ex-Royle (Himalayan poplar), P. angustifolia E. 

James (Narrow leaf cottonwood poplar), P. suaveolens Fisch. 

ex-Loudon (Asian poplar), P. trichocarpa Torr. (Black 

cottonwood poplar)

North America, Asia [India, Pakistan, 

Bhutan, Nepal, Myanmar (Cool 

temperate), Northeast China, Japan]

Chanda et al. (2010) and Gai et al. 

(2021)
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TABLE 2 List of pests/pathogens/bacteria/viruses affecting poplar plantations.

Plants Pest/pathogens Diseases Affected Countries References

Insects/pests

Populus

fremontii, P. tremula, P. nigra and 

P. angustifolia, P. alba

Aceria parapopuli Soap sucker, galls, 

irregular, warty, 

cauliflower-like growth

North America, Iran McIntyre and Whitham (2003) 

and Mehri et al. (2020)

P. tremula, P. deltoides, P. alba Agrilus suvorov Borer Germany, Greece, Guernsey, Hungary, 

Ireland, Israel, Italy

Cavalcaselle (1972)

P. tacamahaca, P. tremuloides Altica populi Defoliation North America De Tillesse et al. (2007) and 

Ostry et al. (2014)

P. deltoides, P. alba

P. nigra, P. x euramericana hybrids

Leucoma wiltshieri Defoliation Europe, Middle East, Japan, Iran, 

America, China

Sadeghi et al. (2009) and Charles 

et al. (2014)

P. × euroamericana, P. euphratica, 

P. alba, P. nigra L., P. deltoides 

Marsh.

Melanophila picta Wood borer Bulgaria, Southern France, Italy, Spain, 

Portugal, Turkey

Pakistan

Mazhar and Sadeghi (2024)

P. tremuloides, P. purpurea, P. nigra Phratora laticollis Defoliation North

America, Belzium, Germany

Nagaraju et al. (2023)

P. deltoides  × P. nigra 

[P. × euramericana (Dode) 

Guinier], P. alba

Sesia apiformis Borer, root sucker Europe, Canada, Asia Minor, Middle 

East, China, North America

Martín García et al. (2011) and 

Meert (2022)

P. deltoides, P. tremula Byctiscus populi Defoliation Europe Urban (2013) and Schroeder and 

Fladung (2018)

P. tremuloides, P. deltoides, P. 

gradidentata

Choristoneura conflictana Defoliation Canada, Northeastern and Central 

USA, Alaska,

De Tillesse et al. (2007) and 

Charles et al. (2014)

P. deltoides Dasineura salicis Galls Europe, North America De Tillesse et al. (2007) and 

Charles et al. (2014)

Fungus

P. davidiana × P. bollena, P. 

euphratica, P. deltoides.

Alternaria alternata Leaf blight India, China, Iran Osdaghi et al. (2014), Uniyal 

et al. (2018), and Huang et al. 

(2022)

Populus× canescens ‘Tower’ Apioplagiostoma populi Bronze lea North America Wijekoon et al. (2021)

P. deltoides × P. nigra Botrydiplodia populea Canker China, Poland Kwaśna et al. (2021b)

P. deltoides, P. tremuloides, P. 

maximowiczii × P. x. berolinensis, 

P. serotina

Ceratocystis fimbriata Black and target canker USA, North America, Alaska, Poland, 

Quebec, India, Poland

Johnson et al. (2017)

P. tremuloides Ciborinia whetzelii Ink-spot disease Northern USA, Canada Zegler et al. (2012) and Kowalski 

(2013)

P. ×euramericana, P. yunnanensis, 

P. deltoides

Corticium salmonicolor Pink disease India Saxena et al. (2017)

P. tremuloides, P. balsamifera, P. 

tremula

Diplodia tumefaciens Bark alterations, woody 

gall

Canada, Europe, Northern USA Kwaśna et al. (2021b)

P. trichocarpa ×P. deltoides, P. 

tremula,

P. alba, P. grandidentata, P. 

tremuloides

Linospora tetraspora Leaf blight USA, Canada Zobrist et al. (2023)

P. deltoides Melampsora medusae Leaf rust Europe, New Zealand, Australia, South

Africa, Argentina, North America, 

India, Canada, Japan

Zeng et al. (2023)

P. deltoides Septoria musiva Canker and leaf spot Europe, North America Feau et al. (2010) and Dunnell 

and LeBoldus (2017)

P. alba Venturia tremulae Spring leaf, shoot blight North America, China, Africa Martínez-Arias et al. (2019)

(Continued)
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be valuable for developing transgenic poplar varieties with enhanced 
resistance to pest attacks (Pastierovič et al., 2024).

2.2 Pathogen attacks on poplar

Poplar trees are also constantly challenged by various pathogens 
like fungi, bacteria and viruses (Table 2). These pathogens inhibit the 
growth of poplar, impacting the quality and quantity of wood biomass. 
The different poplar culture practices and the introduction of exotic 
pathogens promote the widespread distribution of some specific 
pathogens (Newcombe et al., 1996).

2.2.1 Fungal attack on poplar
Fungi are usually considered as “primary parasites.” They infect 

healthy plants, which can eventually affect poplar growth and hence 
decrease the quality and production of wood. The diseased poplars 
can exhibit reduced leaf photosynthetic areas. Leaf scars created allows 
entry of secondary pathogens. Repeated infections and premature 
poplar defoliation may weaken plants, making them susceptible to 
insect attack, high temperatures and drought (Kebert et al., 2022). 
Generally, plant pathogens are categorized into three groups: (a) 
biotrophs (feed on living plant tissue), (b) necrotrophs (feed on dead 
plant tissue), and (c) hemibiotrophs (first infect living plant tissue and 
make them dead and then feed on dead tissues) (McCombe et al., 
2023). Examples of biotrophs infecting poplar are powdery mildews 

by Phyllactinia spp. or Uncinula spp., leaf rust by fungus Melampsora 
spp., while necrotrophs including leaf blight by Septoria spp. and leaf 
spot by Coryneum spp. and Marssonina spp., canker (Septoria spp.) 
(Feau et  al., 2010; Zeng et  al., 2023). Among fungi, the genus 
Melamspora (biotrophic rust fungi), especially (Melamspora. larici-
populina) is reported as the most severe and widespread fungi in 
poplar plantations (Polle et al., 2013). Infection with this genus is 
characterized by premature defoliation and reduced photosynthetic 
ability, resulting in loss of wood production (Polle et  al., 2013). 
Moreover, M. larici-populina is also responsible for severe economic 
poplar losses in Europe and America (Duplessis et al., 2009), while 
Melamspora medusae caused leaf rust in P. deltoides in East-North 
America and the North-West USA (Newcombe et al., 1996). The other 
primary poplar diseases like stem canker and leaf spot in North 
America and Europe are caused by fungus Septoria musiva (also 
known as Sphaerulina musiva) (Zhao et al., 2023). Venturia spp. are 
found to cause shoot and leaf blight in poplar plantations in Asia, 
Europe and North America (Gennaro and Giorcelli, 2019). Other 
major fungal pathogens of Populus affecting leaf are Apioplagiostoma 
populi (causing bronze leaf disease) and Taphrina spp. (causing yellow 
blister of leaves), Entoleuca mammata (causing Hypoxylon canker), 
Cytospora chrysosperma, (causing canker) and Phellinus tremulae 
(causing aspen bracket) (Duplessis et al., 2009). The poplar blister 
canker disease develops upon infection with the Botryosphaeria 
pathogen during drought stress, commonly observed in southern 
China (Xing et al., 2022). Recently, black spot disease in poplar has 

TABLE 2 (Continued)

Plants Pest/pathogens Diseases Affected Countries References

Bacteria

P. alba, P. trichocarpa, P. deltoides Erwinia herbicola, 

Erwinia carotovora

Bacterial twig canker with 

gall like formations

Europe, North America Fabi et al. (2008)

P. tremula L. 70 × (Populus × 

canescens)

Phytophtora. cactorum 

and P. plurivora.

Root rot Asia, Europe, Africa, USA, Australia, 

New Zealand, Serbia

Cerny et al. (2022)

P. ×euramericana Lonsdalea populi Bark canker China, Europe Li and He (2019)

P. trichocarpa Pseudomonas syringae Bacterial blight Worldwide Saint-Vincent, et al. (2020)

P. tomentosa, P × euramericana Sphingomonas sanguinis Bark canker Worldwide Deng et al. (2023), Li P. et al. 

(2024), Li Y. et al., (2024), and Li 

Z. et al. (2024)

P. trichocarpa Xanthomonas populi Canker Europe and America Kwaśna et al. (2021b)

Virus

P. nigra, P. trichocarpa, P. deltoides, 

P. candicans, P. ×euramericana

Poplar mosaic virus Leaf mosaic Worldwide Smith and Campbell (2004)

P. tremuloides Tobacco necrosis virus Necrosis of leaf Worldwide Shen et al. (2015)

P. ×euramericana Arabis mosaic virus Leaf mosaic Japan, New Zealand, America, Europe von Bargen et al. (2020), Li P. 

et al. (2024), Li Y. et al., (2024), 

and Li Z. et al. (2024)

P. tremuloides Potato virus Y Mottling/yellowing of leaf, 

leaf drop leaf crinkling

Worldwide Lawrence and Novak (2006)

P. euphratica and P. × canescens Tobacco rattle virus Mottling, chlorotic or 

necrotic local lesion, 

ringspots or line patterns, 

necrosis

Worldwide Shen et al. (2015)

P. balsamifera Tomato black ring virus Mottling, deformation, 

leaf necrosis

Worldwide Li P. et al. (2024), Li Y. et al., 

(2024), and Li Z. et al. (2024)
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been reported to be one of the major diseases in China affected by 
fungi such as Marssonina castagnei, Marssonina populi, and 
Marssonina brunnea (Xiong et al., 2021).

2.2.2 Bacterial diseases in poplar
A few bacteria also negatively affect the growth of poplar 

plantations. The attack of bacteria (Xanthomonas populi, Erwinia genus 
and Lonsdalea populi) causes canker, resulting in reduced wood 
biomass yield of poplar (Li et al., 2019). Xanthomonas populi (Ridé) 
Ridé and Ridé and Pseudomonas syringae Van Hall are responsible for 
necrosis, wilting, injury, cankers, rots and tumors in poplar vegetations 
(Kalinichenko et  al., 2017). The fluctuating temperatures cause 
P. syringae growth in poplar bark (Ramstedt et al., 1994). Lonsdalea 
quercina caused bark canker in Populus×euramericana (Tóth et al., 
2013). Recently, Pseudomonas aeruginosa (Schröter) Migula was 
reported to cause disease in poplar plants. It causes rot, resulting in fast 
wilting, with trees dying within 48 h. Agrobacterium radiobacter 
Beijerinck and van Delden and Agrobacterium tumefaciens cause 
crown gall disease upon transfer and integration of the bacterial 
transfer DNA (T-DNA) into the plant genome (Kwaśna et al., 2021a). 
Currently, the large population of the hybrid poplar 
Populus × euramericana in Hungary and China is severely affected by 
Lonsdalea populi (Zlatković et al., 2020). Bacterial wetwood of poplar 
(Populus alba L.) by Lelliottia nimipressuralis has been common in the 
territory of Ukraine since 1974. The poplar wetwood disease was also 
reported in Bulgaria, USA, and other countries. The primary bacterial 
pathogens of poplar are Xanthomonas populi, Pseudomonas syringae, 
Enterobacter cancerogenus in the coastal zone of Western Europe, 
Eastern Europe and Central Europe, respectively (Goychuk et al., 2023).

2.2.3 Viral attack in poplar
Viral pathogens such as the poplar mosaic virus, poplar decline 

virus, tobacco necrosis virus, tobacco mosaic virus, rhabdoviruses, 
cucumber mosaic virus, tobacco rattle virus, arabis mosaic virus and 
tomato black ring virus are also severe threats to the poplar 
population other than fungus and bacteria (Table 2; Wang P. et al., 
2023; Wang S. et al., 2023). Poplar mosaic virus (PopMV), with a 
single-stranded RNA, is the most common dangerous filamentous 
plant virus and is widespread worldwide (UK, “former Czechoslovakia 
and former Yugoslavia” Holland, France, Germany, Switzerland, 
Denmark, Italy, Bulgaria, USA and Canada) where poplar is grown 
at large scale. It attacks almost all the poplar plants in the Aigeiros 
section, including several clones of P. x euramericana. Members of 
the Tacamahaca section and crosses between these species and the 
Aigeiros section are also affected by viruses. The symptoms of a viral 
attack on poplar include stunted growth, leaf discoloration, necrosis, 
wilting and deformities in poplar. It causes severe losses in the 
quantity and quality of wood (Smith et al., 2004; Naylor et al., 2005; 
Smith et al., 2009). The virus is generally spread by cutting diseased 
parts (Berg, 1964).

3 Transmission route, infection, and 
defense mechanism in poplar attacked 
by pest and pathogens and their 
control

The vast diversity of insect pests and pathogens poses significant 
challenges to forest trees, severely impacting their health and 

productivity. These threats are particularly serious for poplar 
plantations worldwide. Climate change also plays a crucial role in 
altering the occurrence and spread of native and invasive insect 
outbreaks. Insects typically target susceptible trees for feeding or 
establishing habitats, further exacerbating the problem. These insects 
attack and affect all tree parts like shoot, xylem, phloem leaves, 
flowers, barks, and roots (Balla et al., 2021). In addition, most insects 
are generally introduced into a non-native area other than their native 
range and spread rapidly across the country. Imported alive plants and 
wood materials can act as carriers for introducing many pests (Dara 
et al., 2019). Fungi, the most common disease agent of poplar trees, 
have several invasion mechanisms and an array of virulent factors. In 
root rot disease, rhizomorphs (clusters of intertwining fungal hyphae) 
and secondary metabolites play a crucial role in infection. The 
rhizomorphs aggregate around the tree roots, feeding on the host 
tissues, and can persist in the dead tissues of infected plants for 
extended periods. This disease is marked by root decay, premature 
defoliation, wilting, and the production of dwarf fruits and leaves 
(Balla et  al., 2021). Warmer winters, due to climate change, have 
increased the frequency of sporulation and the rate of fungal 
infections. Notably, poplar’s defense mechanisms vary depending on 
the type of fungus involved. Rust diseases caused by the Melampsora 
spp. are the most common diseases in forest trees, such as poplar. 
Cankers are mainly caused by attacks of fungal pathogens which affect 
tree branches, shoots, and twigs. It has been noticed that canker-
related diseases occur because of functional failure of the cambium 
and phloem, carbon starvation, and hydraulic failure. For instance, the 
fungus inoculations Botryosphaeria disease in poplar (P. alba var. 
pyramidalis = Populus bolleana) arrested the regeneration of callus and 
phloem and decreased the rate of photosynthesis and transpiration, as 
well as arrested the opening of the stomatal aperture and disrupted 
electron transport (Xing et al., 2022). Bacteria affect plants by forming 
colonies on their surface or within their tissues. Unlike fungi, they 
cannot penetrate host cells directly. Instead, they typically enter 
through natural openings like stomata or through wounded areas. 
Once inside, these bacteria secrete extracellular enzymes that break 
down host cells, allowing them to colonize plant tissues. Additionally, 
they produce polysaccharides that clog the plant’s vascular system, 
reducing water transport through the xylem. Beetles and leafhoppers 
can also act as vectors, carrying pathogens and transmitting diseases 
to plants. Bacterial infections often manifest through symptoms such 
as spots, cankers, burns, tissue rot, and hormonal imbalances, which 
can lead to excessive root branching and leaf epinasty (Chatterjee 
et al., 2008). Certain bacteria, like Agrobacterium tumefaciens and 
Agrobacterium rhizogenes, inject their plasmids into plant host cells 
through wounded areas, integrating them into the host genome. This 
results in tumor gall diseases and the production of hairy roots, 
respectively (Sharan et al., 2019). Viral pathogens are widespread in 
plant ecosystems, serving two roles: as agents of plant diseases and as 
natural enemies of pests and tree pathogens, offering indirect 
protection to trees. Viral infections often cause significant tissue 
damage and can lead to symptoms like yellowing, chlorotic lesions, 
necrotic spots, and ring spots on plant parts. Some stable viruses, such 
as tobacco mosaic virus, do not require vectors to spread, while other 
viruses rely on vectors, such as aphids, mites, leafhoppers, fungi, 
beetles and nematodes, soil, water, other plants and debris for 
transmission (Balla et al., 2021). Smith and Campbell (2004) reported 
that the poplar mosaic virus (PopMV) infection and spread depend 
on the poplar genotypes.
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Insects are typically controlled by the release of toxic 
phytochemicals from plants, which either inhibit pest growth or kill 
the insects (Fernandez-Conradi et  al., 2021). To defend against 
pathogen attacks, poplars utilize two types of defense mechanisms: 
induced and constitutive defenses. Induced defenses are activated in 
response to external stimuli and involve complex processes, while 
constitutive defenses, the first line of defense, involve non-host 
resistance through physical barriers and the accumulation of 
phytochemicals in the plant (Alkan and Fortes, 2015; Zeng et al., 
2023). Induced resistance can be further classified into locally induced 
resistance and systemic induced resistance (SIR). SIR provides broad-
spectrum, long-lasting protection against secondary infections. The 
exogenous application of signal molecules that trigger these defenses 
can enhance plant immunity and help manage pest populations (Balla 
et al., 2021). Some observations demonstrate that signal molecules 
such as salicylic acid (SA) and methyl jasmonate (MeJA) are involved 
in local and systemic defense responses. Recent research proved that 
both SA and MeJA pathways are induced in leaves of poplar upon 
infection with the fungus M. larici-populina proving that both 
hormone pathways are essential for defense response (Ullah et al., 
2019; Chen et al., 2021). Upon fungus attack, the poplar trees activates 
constitutive defenses involving several processes such as recognition 
of the fungus by receptor proteins and resistance (R) proteins (PR) 
resulting into pattern-triggered immunity (PTI) (receptors of plant 
membranes recognize molecular patterns (PAMPs) of pathogens) and 
effector-triggered immunity (ETI) (intracellular receptors, (a 
nucleotide-binding leucine-rich repeat (NLR) class recognize effectors 
released by pests and pathogens) as well as noncoding RNA (ncRNA)-
mediated defense (non-coding RNA having more than 200 nucleotides 
in length with having role in plant growth and development, and stress 
responses), initiation of hormone signaling network pathways 
(mitogen-activated protein kinase (MAPK) cascades and calcium-
dependent protein kinase (CDPK) involved in plant growth and 
development and stress response), activation of defense-related genes 
and transcription factors (TFs) involved in controlling gene expression 
by binding DNA elements at 5′ non-coding regions (promoters) of 
desired genes and modulating transcription rate) and accumulation 
of phytoconstituents (De Kesel et  al., 2021; Zeng et  al., 2023). In 
addition, the pathogen-associated protein 1 (PR1) gets activated as a 
plant response to abiotic and biotic stresses. Total 17 PtPR1 genes were 
found in Populus trichocarpa (Wang P. et al., 2023; Wang S. et al., 
2023). A total of 1888 lncRNAs and 52,810 mRNAs were recognized 
in poplar coma (Song et al., 2024). The 30 CDPK genes and 20 closely 
related kinase genes were identified in Populous spp. (Zuo et al., 2013), 
The 11 MAPKKs (PtMKKs) and 21 MAPKs (PtMPKs) were identified 
in the Populus trichocarpa (Hamel, 2006). A total of 104 WRKYs (TFs) 
have been identified in poplar (He et al., 2012). Recently, the integrated 
transcriptomic and transgenic analyses were applied to understand 
mechanisms of poplar resistance against Alternaria alternata attack 
(Wang W. et al., 2022; Wang Y. et al., 2022).

The most effective method for preventing leaf diseases caused by 
pests, fungi, bacteria, and viruses is selecting and planting pathogen-
resistant poplar clones. Another approach involves using fungicides, 
such as copper- and carbamide-based treatments, to prevent 
infections. Fungal diseases can also be  managed by maintaining 
proper spacing between poplars, reducing weed competition, and 
optimizing plant density, as high relative humidity contributes to 
disease development. Infected leaves, roots, stems, and branches 
should be  pruned, particularly during the dormant season, to 

minimize pest and pathogen attacks. Additionally, poplars should 
be planted in appropriate soil conditions within nurseries to promote 
healthy growth. Additionally, the soil from infected areas must not 
be used and moved with equipment (Kebert et al., 2022). Proteomic 
and genomic technologies offer valuable tools for precisely identifying 
and characterizing bacterial infections by analyzing their genetic and 
protein markers (Zubair et al., 2022). Recent studies have shown that 
lactic acid bacteria (LAB) can effectively combat plant pathogens due 
to their high biosecurity and ability to promote plant growth (Jaffar 
et al., 2023). Quorum sensing (QS) molecules, such as 3-OH PAME, 
regulate the virulence genes in bacteria and fungi, making the 
identification and development of QS-quenching genes and enzymes 
promising for disease control (Wang P. et al., 2023; Wang S. et al., 
2023). Additionally, eucalyptus oil, known for its antibacterial 
properties and ability to stimulate plant defense mechanisms, has been 
shown to reduce plant diseases and could be used to protect poplar in 
the future (Montesinos et al., 2023). A few genes have been reported 
whose expression can impart disease resistance in poplar trees. For 
example, the overexpression of PdbLOX2 was able to induce the 
resistance in P. davidiana × P. bollena against A. alternata attack, while 
silencing this gene increased the susceptibility of the poplar tree to 
A. alternata infection (Huang et al., 2022). Furthermore, the study 
reported that PtoMYB142 can regulate transcription of wax 
biosynthesis genes [fatty acid hydroxylase (CER4) and 3-ketoacyl CoA 
synthase (KCS6)] mediating adaption of poplars against drought 
conditions were highly expressed upon infection with fungal 
pathogens (Song et al., 2022). In addition, lignin has a vital role in 
protecting poplar from pest and pathogen attacks. It is a primary 
three-dimensional phenolic biopolymer of the secondary cell wall in 
vascular plants (Ma et  al., 2024). It imparts strength and 
imperviousness to cell walls, mediating long-distance water transport 
in vascular tissues. In addition, it acts as a barrier to the spread of 
invading pathogens as it is non-degradable to pathogens, thereby 
preventing their penetration into the plant cell wall and the supply of 
water and nutrients from plant cells to pathogens. It is noticed that the 
gene expression of lignin increased with higher lignin content upon 
pathogen infection. The genes (phenylalanine ammonia lyase (PAL), 
HCT4-Coumarate: coenzyme A ligase (4CL), cinnamate 
4-hydroxylase (C4H), cinnamoyl-CoA reductase (CCR), cinnamyl 
alcohol dehydrogenase (CAD) and hydroxycinnamoyl transferase) are 
involved in lignin biosynthesis and highly expressed during fungal 
infection leading to increase in lignin content (Lee et al., 2019; Zeng 
et al., 2023; Ma et al., 2024; Riseh et al., 2024). Hence, regulating the 
lignin biosynthesis pathway may be  critical for improving poplar 
resistance against pathogen attacks (Polle et al., 2013). It is reported 
that the higher expression of Pto4CL1 of P. tomentosa increased the 
lignin content from 33.11 to 46.65%, leading to the decreased 
formation of cellulose, hemicellulose, and pectin (Hu et al., 2019). 
RNAi technology was used to down-regulate the expression of 4CL 
gene to modify lignin biosynthesis in P. tremula (Kovalitskaya et al., 
2016). A significant 30% reduction in lignin content has been observed 
in poplars due to the downregulation of cinnamate 4-hydroxylase 
(C4H) genes (Bjurhager et al., 2010). Similarly, the downregulation of 
CAD genes in Populus tremula × Populus alba led to reduced lignin 
levels (Özparpucu et al., 2017). Dirigent (DIR) proteins have also been 
identified as crucial players in lignin biosynthesis. Li et al. (2022) 
reported that the overexpression of PtDIR11  in poplars enhanced 
lignin biosynthesis, thereby increasing the trees’ resistance to Septotis 
populiperda. Hence, gene editing can be  utilized to regulate the 
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expression of these genes to enhance lignin biosynthesis, which 
confers pest and pathogen resistance in poplar trees.

4 Conventional breeding in poplar

The recent global temperature, drought, humidity and climate 
instability render poplar plants vulnerable to pests and pathogens, 
severely affecting wood quality and quantity (Gullino et  al., 2022). 
Plants have physical and physiological barriers against microbial 
pathogens, preventing their access to plants (Kumudini et al., 2018). 
Plants produce antimicrobial peptides and other molecules that cause 
detoxification and the inhibition of virulence factors (Silva et al., 2016). 
Moreover, plants also apply RNA interference (RNAi), which detects 
invading viruses and cleaves the RNAs of viruses (Bocos-Asenjo et al., 
2022). However, these pathogens have evolved to cope with the defense 
systems of their plant cells by secreting cell-wall degrading enzymes, 
which gain access for molecules into plant cytoplasm, inhibiting host 
defenses and promoting susceptibility of plants toward pathogens (Kaur 
et al., 2022). Some viral pathogens are also reported to attack and silence 
the host RNAi system, promoting viral pathogenicity (Leonetti et al., 
2021). The increased demand for wood and its sustainability requires 
approaches to improve efficient production even under environmental 
constraints and minimize the threats due to pests affecting wood 
properties for industrial purposes (Polle et  al., 2013). However, 
controlling pests and pathogens with chemicals is increasingly 
considered unsafe due to their high toxicity, environmental 
accumulation, and harmful impacts on beneficial insects, non-target 
organisms, and humans (Ahmad et al., 2024). The commonly adopted 
traditional methods for the protection of plants from attack of poplar 
pests and pathogens are the use of resistant clones that have good 
adaptability to different soil (salinity, calcium level and pH), drought 
and climatic conditions coupled with the adoption of proper cultivation 
practices (i.e., fertilization, low plant density and irrigation) (Biselli 
et al., 2022). Enormous progress has been made in enhancing traits such 
as plant growth rate, pest and pathogen resistance, and environmental 
adaptations in poplar plantations by applying conventional breeding 
practices (Ye et al., 2011). However, these traditional methods are time-
consuming because of their long-life span, costly land demand, and 
high labor costs. In addition, because of the heterozygosity of most 
Populus genotypes and inbreeding depression, it is difficult to estimate 
the genetic control of particular traits (Ye et  al., 2011). Genetic 
engineering and molecular breeding methods for developing transgenic 
poplar plants can address the limitations of traditional breeding, such 
as the challenges of distant hybridisation, the complexity of cultivation, 
and issues with interspecific hybridisation (Begna, 2021).

These tools have enormous potential to improve two or more 
traits simultaneously by introducing desired exogenous genes of 
donor plant or non-plant origin into a particular plant genome, 
enabling the improvement of poplar against pests and pathogens, 
herbicide resistance, abiotic stress, wood properties, flowering 
regulation and phytoremediation (Thomas, 2022).

5 Genetic engineering and different 
transformation methods in poplar

Genetic transformation has been widely employed in research on 
various forest trees. This process involves introducing exogenous 

genes into tree cells, thereby altering their genetic traits (Li et al., 
2023). Poplar trees were among the first forest trees used successfully 
for genetic engineering for gene research (Ye et al., 2011). For more 
than 20 years, several progress has been made in Populus 
transformation. The most widely used transgenic tools involve 
vector-mediated transformation, such as Agrobacterium tumefaciens-
mediated and A. rhizogenes mediated and non-vector mediated 
transformation (Gene gun-mediated, pollen tube pathway, and 
protoplast transformation methods). The Genome editing method is 
an advanced approach for adding, deleting, or modifying genes 
within the specific genome (Li et al., 2023). Mobile genome editing 
techniques, such as clustered regularly interspaced short palindromic 
repeats (CRISPR)-associated (CRISPR-Cas) systems, RNA 
interference (RNAi), and nanoparticle-meditated gene 
transformation have been recently applied to improve poplar tree 
(Yin et al., 2021; Figure 1). Among these methods, Agrobacterium-
mediated and gene gun-mediated transformations are the most 
widely used techniques for forest trees (Lv et al., 2020).

5.1 Agrobacterium tumefaciens-mediated 
transformations: basic mechanisms

Agrobacterium tumefaciens-mediated transformation is the most 
preferred method for the genetic transformation of forest trees. 
A. tumefaciens (a gram-negative soil bacteria) infects the wounded sites 
in many dicotyledons, gymnosperms and a few angiosperms. It delivers 
its transfer DNA (T-DNA) molecules into plant cells and then 
integrates them into the plant genome (Chilton et al., 1980; Sekine and 
Shinmyo, 2020). The Agrobacterium-mediated transformation method 
involves removing oncogenes causing tumorigenesis, inserting 
exogenous genes in disarmed T-DNA, and delivering and integrating 
foreign genes into the plant genome (Pratiwi and Surya, 2020). The 
success of Agrobacterium-mediated transformation depends on 
different parameters such as the virulence of Agrobacterium cells, 
explant types and plant genotypes and regeneration of transgenic 
populations. Agrobacterium rhizogenes is also a relative of 
A. tumefaciens, which develops hairy root at the wounded site of plant 
cells (also known as “hairy root disease”) and can be used to transfer 
the T-DNA into a binary vector into developing root cells (Limpens 
et  al., 2004; Sharan et  al., 2019). Various wild-type strains of 
A. tumefaciens and A. rhizogenes have transformed various trees. 
A. tumefaciens-mediated genetic transformation system has been 
widely applied in various poplars, such as Populus alba × Populus 
glandulosa, Populus simonii × Populus nigra, and Populus tomentosa. 
Several attempts were made to improve A. tumefaciens-mediated 
transformation in poplar by optimizing several parameters such as 
types of explants, different strains of Agrobacterium and culture 
densities, incubation time and concentration of acetosyringone and 
sucrose (Movahedi et al., 2014, Sharan et al., 2019). Pest infestation and 
bacterial, fungal and viral diseases are limiting factors which affect the 
healthy growth of poplar trees (Li P. et al., 2024; Li Y. et al., 2024; Li 
Z. et al., 2024). By introducing insect and disease-resistance genes into 
poplar trees using A. tumefaciens, these trees can protect themselves 
from invading pests and diseases, enhancing their survival rate and 
disease-resistance capabilities. However, Agrobacterium-mediated 
transformation has been done in several poplars, but many other 
poplars remain recalcitrant to Agrobacterium-mediated transformation 
(Song et al., 2019).

https://doi.org/10.3389/ffgc.2024.1490562
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Sharan et al. 10.3389/ffgc.2024.1490562

Frontiers in Forests and Global Change 09 frontiersin.org

5.2 Agrobacterium-mediated 
transformation for pest resistance in poplar

Several transgenic poplars have been developed that overexpress 
genes encoding different serine proteinase inhibitor proteins (Heuchelin 
et al., 1997; Confalonieri et al., 1998) and Bacillus thuringiensis-derived 
genes (Cry/Bt genes) (McCown et  al., 1991; Wang et  al., 1996), 
Androctonus australis hector insect toxin, Kunitz trypsin inhibitor (KTI) 
and chitinase gene for conferring pests resistance (Clemente et al., 2019; 
Ren et al., 2021; Table 3). However, Bt gene is the most widely used for 
generating pest-resistant poplar trees. The first stable transfer of Bt was 
reported in Populus nigra (McCown et  al., 1991). Recently, the 
simultaneous introduction of two Bt genes into the trees’ genomes 
expanded the scope of insect resistance in transgenic forest trees (Dong 
et  al., 2015; Wang et  al., 2018). China has been the first nation to 
generate and commercialize two transgenic lepidopteran-resistant 
poplar lines since 2002 (Thakur et  al., 2021). The plant 
P. alba×P. glandulosa was transformed with a Bt Gene (CRY3A) using 
Agrobacterium-mediated transformation method, which resulted in the 
development of transgenic line BGA-5 and toxic to the larvae of 
Anoplophora glabripennis with a growth inhibition rate of 78.6% (Zhang 
et  al., 2006). P. × euramericana was transformed with Cry1AC and 
Cry3A genes to confer resistance to the poplar plants against H. cunea 
exhibiting mortality rate of 42.2–66.1 and 100% of Plagiodera versicolora 
larvae of L1 and L2 stages, respectively (Yang et al., 2016). Transgenic 

poplar lines ‘Shanxin’ (Populus davidiana×Populus bolleana) were 
developed through Agrobacterium-mediated transformation method 
carrying Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3, respectively against 
fall webworm (Hyphantria cunea) and gypsy moth (Lymantria dispar) 
as these genes Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3 were toxic to the 
larvae of both insects (Ding et al., 2017). Two Bt toxin genes, Cry1Ac 
and Cry3A, were simultaneously integrated into the genome of Populus 
× euramericana ‘Neva’ with the help of Agrobacterium tumefaciens, to 
develop transgenic poplar, which was highly resistance to Lepidopteran 
and Coleopteran pests (Satish et al., 2021). Other than Bt, many other 
genes, such as cowpea trypsin inhibitor (CPTI), cysteine proteinase 
inhibitor (Atcys) gene, glycine max trypsin proteinase inhibitor (KTi3 
and PtdPP01 genes, etc.) were inserted into Populus species, which 
conferred some degree of resistance against insect pests (Table 3). La 
Mantia et al. (2018) observed that the overexpression of Arabidopsis 
AlgolS3 (AtGolS3) and Cucumber sativus Raffinose synthase (CsRFS) 
in Populus alba × P. grandidentata antagonizes leaf rust defense 
mechanism by inhibiting reactive oxygen species (ROS) and attenuating 
phosphatidic acid and calcium signaling pathways leading to salicylic 
acid (SA) defense. Lin et  al. (2006) generated transgenic 
P. simonii×P. nigra plants by inserting the spider neurotoxin gene along 
with C-terminal of CryIA(B) gene resistance against Lymantria dispar. 
Moreover, the scorpion neurotoxin AaIT expression in hybrid Populus 
was responsible for developing resistance against the spongy moth (Lin 
et al., 2006).

FIGURE 1

Summarizing forest protection using genetic engineering. Increasing biotic stressors (i.e., pests and pathogens) cause dramatic tree mortality in the 
forests worldwide. The conventional breeding method is time-consuming and fails to cope with the demands. Transgenic pest and disease resistance 
trees (i.e., Poplar) can potentially mitigate the challenges. Transgenic trees can be generated using various transformation techniques such as 
(A) agrobacterium-mediated transformation, (B) gene-gun mediated transformation, (C) protoplast-mediated transformation, (D) mi-RNA or RNAi-
mediated transformation, and (E) CRISPR-mediated transformation techniques. (The figure is prepared using biorender.com).
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5.3 Agrobacterium-mediated 
transformation for disease resistance in 
poplar

A diverse array of bacterial and fungal attacks and viral infestation 
causes significant losses in the poplar yield. Transgenic poplars have 

various antibacterial and antifungal genes encoding proteins capable 
of breaking down mycotoxins and inhibiting cell-wall-degrading 
enzymes such as rabbit defensin (NP-1), osmotin, glucanases, 
chitinases (CH5B), lysozyme and thaumatin were able to combat 
pathogens mentioned in Table  4 (Zhao et  al., 1999; Juge, 2006; 
Karlovsky, 2011; Thakur et al., 2021). Noël et al. (2005) generated 

TABLE 3 Agrobacterium-mediated transformation for imparting pest resistance in poplar species.

Poplar species Gene Targets Percentage of 
transformation

Percentage of 
tolerance

References

P. alba ×P. grandidentat Maize Ac transposable 

element and Bt

– 67–100% with Ac gene

67–75% with Bt gene

– Howe et al. (1994)

P. alba×P. 

grandidentata

Cry1A Spongy moth – 91.9% Kleiner et al. (1995)

P. deltoides × P. simonii Bt Lymantria dispar and 

Clostera anchoreta

17.8% 45% Rao et al. (2001)

P. tremula × P. 

tremuloides

Cry3Aa Chrysomela tremulae – 100% Génissel et al. (2003)

P. simonii × P. nigra Spider insecticidal 

peptide and Bt

Lymantria dispar – 92% Cao et al. (2010)

P. tomentosa Carr Cry1Ac; API L. dispar and C. 

anachoreta larvae

39.3% 80% Yang et al. (2006)

P. euramericana cry1AC-cry3A-NTHK1 Hyphantria cunea and 

Plagiodera versicolora

– 60% (Hyphantria cunea)

100% (Plagiodera 

versicolora)

Liu et al. (2016)

P. euramericana cry1Ac, cry3A, Hyphantria cunea and 

Plagiodera versicolora

– 42.2–66.7% (for 

Hyphantria cunea 100%) 

(for Plagiodera Versicolora)

Yang et al. (2016)

P. davidiana × P. 

bolleana

cry1Ac + SCK, cry1Ah3, 

cry9Aa3

Lymantria dispar and 

Hyphantria cunea

– 97% (for Lymantria dispar)

91% (for Hyphantria 

cunea)

Ding et al. (2017)

P. deltoides×P. 

euramericana

Cry1Ah1 Hyphantria cunea – 90% Xu et al. (2019)

Populus × 

euramericana ‘Neva’

Cry1Ac Cry3A Lepidopteran and 

Coleopteran pests

– 100% Ren et al. (2021)

P. nigra L. mtlD Cry3A, Cry1Ac Hyphantria cunea

larvae and Plagiodera 

versicolora larvae

– More than 80% (for 

Hyphantria cunea)

larvae

100% for Plagiodera 

versicolora

Zhou et al. (2020)

P. simonii × P. nigra spider neurotoxin gene 

fused with C-terminal 

of cryIA(B) gene

Lymantria dispar – 37 and 92% Lin et al. (2006)

P. alba ATCYS Chrysomela populi 11% 77–100% Delledonne et al. (2001)

P. alba × P. 

grandidentata

Arabidopsis AlgolS3 

(AtGolS3) and 

Cucumber sativus 

Raffinose synthase 

(CsRFS)

Leaf rust – 100% La Mantia et al. (2018)

P. tremula × P. alba PtdPPO1 Malacosoma disstria – 50-fold greater PPO 

activity relative to 

untransformed controls

Wang and Constabel 

(2004)

P. tomentosa × P. 

bolleana × P. tomentosa

CPTI Malacosoma disstria 

and Stilpnotia candida

– 40–55% Zhang et al. (2005)
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transgenic hybrid poplar plants harboring the ECH42 (Trichoderma 
harzianum endochitinase) gene responsible for imparting an 
enhanced level of resistance against Melampsora medusa, a leaf rust 
pathogen of poplar. Levée et al. (2009) functionally identified and 
characterized the transcription factor PtWRKY23 gene in P. tomentosa 
× P. alba whose silencing is responsible for enhanced susceptibility of 
transgenic poplars toward Melampsora infection. In addition, the 
overexpression of a transcription factor PtoWRKY60 in P. tomentosa 
clone 741 was noticed for conferring resistance to the fungal pathogen 
Dothiorella gregaria (Ye et al., 2014). Jiang et al. (2017) observed that 
over-expression of PtrWRKY18 and PtrWRKY35 transcription 
factors increased resistance in poplar transgenics against Melampsora 
rust. Hybrid Populus having over-expressed a wheat (Triticum 
aestivum) germin-like oxalate oxidase gene encoding enzyme 
responsible for metabolizing the oxalic acid molecules secreted by 
fungal pathogen Septoria musiva, showed delayed infection by the 
fungal pathogen (Liang et  al., 2001). Interestingly, developing 
genetically engineered transgenic poplar resistant to bacterial 
pathogens is less common as bacterial damage is rare in poplar 
plantations. However, severe infections by Xanthomonas spp. on 
poplar plantations are reported (Ye et al., 2011). Mentag et al. (2003) 
generated transgenic P. tremula × P. alba having a gene encoding a 
synthetic antimicrobial peptide D4E1 imparting resistance to several 
fungal and bacterial pathogens. The nucleotide MsrA2 [N-terminally 
modified amphibian host defense peptide (HDPs) from the skin 
secretion of arboreal frogs] was inserted into the hybrid poplar Populus 
nigra L. × P. maximowiczii A through Agrobacterium-mediated 

transformation method. The peptide was reported to inhibit S. musiva 
conidia germination but is non-toxic to poplar (Yevtushenko and 
Misra, 2019). Certain viruses, such as the poplar decline virus, poplar 
mosaic virus, and arabis mosaic virus, pose significant threats to the 
poplar population by stunting plant growth and severely impacting 
wood biomass and quality (Pinon and Frey, 2005). To date, there have 
been no reports of developing transgenic poplar plants with improved 
viral resistance using the Agrobacterium tumefaciens-mediated 
transformation method. Therefore, this method holds potential for 
future use in enhancing viral resistance in poplar.

5.4 Gene gun-mediated transformations

The gene gum method (biolistic particle delivery system) has 
excellent potential in forest tree research. This physical method is 
commonly applied for genetic transformations of several plants. This 
method was first developed by Sanford and colleagues in 1982. The 
process involves the transfer of gold or tungsten microparticles (or 
microcarriers) coated with exogenous donor genes into receptor cells 
or tissues or organs with the help of accelerators like pressurized 
helium (He) gas and integration of genes into receptor genome and 
expression of the genes (Zhang et al., 2014; Cunningham et al., 2018). 
The efficiency of gene gun-mediated transformation depends on the 
factors, for example, types of receptors, culture and transformation 
conditions (Wang et al., 2018). In addition, this method is independent 
of plant genotypes compared to A. tumefaciens-mediated 

TABLE 4 Agrobacterium-mediated transformation for imparting disease resistance in poplar species.

Plant Genes Target
Percentage 

transformation
Percentage 
resistance

References

P. trichocarpa×P. 

deltoides and P. 

trichocarpa×P. nigra

Bacterio-opsin 

resistance

Melampsora occidentalis 

and Septoria populicola

– Ineffective Mohamed et al. (2001)

P. euramericana × P. 

canadensis and P. 

nigra× P. maximowiczii

AcAMP1,2 and ESF12 Septoria musiva – 40% Liang et al. (2002)

P. tremula×P. alba 

against

D4E1 resistance Xanthomonas populi – 57% Mentag et al. (2003)

P. alba BS Melampsora 

pulcherrima

2.5% 40–63% Giorcelli et al. (2004)

P. nigra × P. 

maximowiczii

ECH42 Melampsora medusae – Noël et al. (2005)

P. tomentosa × P. alba Antisense and sense 

PtWRKY23

Melampsora species – Expression level was of 

10-fold after infection

Boyle et al. (2010)

P. tomentosa LJAMP2 Alternaria alternata and 

Colletotrichum 

gloeosporioides (Penz.)

– – Jia et al. (2010)

P. trichocarpa Torr. and 

P. tomentosa Carr

PtrWRKY18 and 

PtrWRKY35 

transcription factors

Melampsora rust – Enhanced expression level 

of these genes

Jiang et al. (2017)

P. nigra L. × P. 

maximowiczii A. Henry 

(NM6)

MsrA2, N-terminally 

modified amphibian 

host defense peptide 

(HDPs)

S. musiva – 95% Yevtushenko and Misra 

(2019)
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transformation. This method is commonly applied to generate 
transgenic poplars, as mentioned in Table 5 (Ozyigit and Yucebilgili 
Kurtoglu, 2020). The insect resistance Bt gene was co-transformed 
into P. nigra through gene gun mediated transformation protocol (Li 
et al., 2000). The Bt gene (cry3Bb) gene was successfully incorporated 
into the genome of poplar plastid through biolistic bombardment, 
generating transformed poplar with a mortality rate of 100% to 
Plagiodera versicolora (Xu et al., 2020). Wang et al. (2007) inserted 
three foreign Bacillus subtilis genes vitreoscilla hemoglobin (vgb), 
fructan sucrase (SacB), and bivalent stem borer resistance 
(BtCry3A + OC-I), and the regulatory gene (JERF3) into Populus × 
euramericacana ‘Guariento’ through particle bombardment method. 
No incorporation of pathogen and disease-resistant genes in poplar 
trees with the help of gene gun mediated transformation tools has 
been reported. The disadvantages of this gene gun-mediated 
transformation are low efficiency, silencing the transformed genes, 
inserting multiple gene copies and unstable expression of exogenous 
genes (Yin et al., 2021).

5.5 Protoplast transformation

The use of protoplasts for genetic transformation in plants has 
grown significantly in recent years. This technique involves 
introducing and incorporating exogenous genes into plant protoplasts, 
leading to the generation of transgenic plants with stable gene 
expression. The protoplast method has proven to be easy, fast, and 
efficient, with minimal or no interference from surrounding cells or 
the microenvironment (Yin et al., 2021; Adjei et al., 2023). Because of 
their versatility and efficiency, protoplast transformation systems have 
been optimized, established and applied to many recalcitrant 
non-model plants, along with the efficient delivery of several genes 
(Rehman et al., 2016; Naing et al., 2021; Ojuederie et al., 2022). This 
method is affected by several parameters such as explant types, tissue 
types, the composition of the digestion solutions, the pH of the 
digestion solution, the digestion time, the concentration of polyethene 
glycol (PEG) and the transformation time (Rezazadeh et al., 2011, 
Biswas et al., 2022). The protoplast transformation method is easy and 
efficient in annual herbaceous plants such as Oryza sativa, Arabidopsis 
thaliana and Nicotiana tabaccum (Jiang et al., 2013; Sun et al., 2018). 
The separation and transformation of protoplasts and regeneration 
from transformed protoplasts are difficult in forest trees. Advances 

have been made in PEG-mediated transformation method by applying 
liposome-mediated shock perforation and A. tumefaciens co-culture 
transformation method (Wu et al., 2014). The PEG-mediated method 
is the widely used protoplast transformation system in plants 
(Lenaghan and Neal Stewart, 2019). In addition, protoplasts can 
be  transformed directly by imbibing DNA followed by PEG 
pre-treatment, microinjection, and electroporation. However, 
protoplast isolation and its transformation are complex and 
challenging for woody trees like poplar and have not been fully 
optimized and developed. Xu et al. (2020) used the leaf protoplast of 
poplar (P. davidiana *P. bollaena) to introduce cry3Bb genes for 
developing insect-resistant transgenic poplar. This method has not yet 
been utilized to generate transgenic poplar with pathogen-
resistant genes.

5.6 Micro RNA mediated transformation

MicroRNAs (miRNAs) are endogenous, short, single-stranded, 
non-coding RNAs of 20–24 nucleotides, processed from hairpin RNA 
precursors by Dicer-like (DCL) enzymes. These are found in all 
eukaryotic cells and negatively regulate gene expression. After their 
discovery in plants, several miRNAs have been recognized with the 
help of high-throughput sequencing technology and bioinformatics 
and for there essential roles in regulating critical genes involved in 
plant-pathogen interactions at the transcriptional or post-
transcriptional levels (Islam et  al., 2022; Nizamani et  al., 2023). 
According to the host and the specific pathogen, miRNAs can be up- 
or down-regulated, thereby promoting plant disease resistance by 
participating in hormone signaling and regulating and moderating 
resistance (R) genes (Yang et  al., 2021). The first report of plant 
microRNAs was reported in Arabidopsis by Llave et al. (2002). Several 
studies established the pivotal roles of microRNAs in regulating biotic 
and abiotic stresses in several plants (Kar and Raichaudhuri, 2021). 
Transgenic poplar overexpressing miR159a (OX-159) showed 
enhanced resistance to necrotrophic fungi C. chrysosperma while 
enhanced susceptibility to infection by L. populi (bacterial canker) and 
hemi-biotrophic fungi C. gloeosporioides (Yang et  al., 2023). 
Furthermore, in transgenic poplar (P. trichocarpa), miR472a positively 
regulated resistance to Colletotrichum gloeosporioides by targeting 
nucleotide-binding site and leucine-rich repeat domains (largest R 
proteins, NBS-LRR) and regulated negatively resistance to Cytospora 

TABLE 5 Gene gun mediated transformation in poplar species.

Plant Gene Target
Percentage of 
transformation

Percentage of 
tolerance

References

P. alba× P. 

grandidentata and P. 

nigra× P. trichocarpa

Bt Malacosoma disstria 

and Lymantria dispar

– 60% (for Malacosoma 

disstria) 24% (for 

Lymantria dispar)

McCown et al. (1991)

P. nigra Chimaeric TA29-

barnase gene

Insect 16.1 – Li et al. (2000)

P. euramericana

‘Guariento

SacB/vgb/BtCry3A, 

OC-I/JERF36/NPT II

Coleopterus insect – – Wang et al. (2007)

P. davidiana ×P. 

bollaena

(Bt) cry3Bb Plagiodera versicolora – 100% Xu et al. (2020)
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chrysosperma (Su et al., 2018). miR156a was found to be the most 
stable miRNA examined as a reference gene in P. tomentosa under 
canker pathogen stress (Zhang et al., 2021). Several evidences proved 
that miRNAs can regulate and mediate biological processes during 
plant-insect and plant-viral interactions, ultimately conferring pest/
viral resistance in plants (Zhang et al., 2022; Satish et al., 2021). To 
date, miRNA molecules have not yet been used to generate transgenic 
poplar with pest and viral resistance genes. We believe that with the 
growing recognition of miRNA molecules, as highlighted by the 2024 
Nobel Prize, artificial mi-RNA holds the potential to be  used for 
manipulating tree traits in the future.

5.7 RNA interference-mediated 
transformation

RNA interference (RNAi) is a naturally occurring cellular 
defense system in most eucaryotic cells. It is mediated by double-
stranded RNA (dsRNA) as either a source of virus infection or 
because of transposon activity, both seeking need to be suppressed 
(Obbard et  al., 2009). RNAi pathway involves the formation of 
several interfering molecules, i.e., small interfering RNAs (siRNAs) 
and microRNAs (miRNAs), generated through the activity of a dicer 
enzyme. These interfering molecules are then loaded on an 
RNA-induced silencing complex (RISC) containing argonaute 
protein (AGO). RISC directs the interfering molecules to their target 
gene, and homology-based cleavage of target mRNA occurs in the 
cells (Mamta and Rajam, 2017). RNAi has an important role in 
functional genomics research and is also a promising species-specific 
pest/pathogen management strategy in agroforestry (Mamta and 
Rajam, 2017; Joga et al., 2021; Mogilicherla et al., 2023; Sandal et al., 
2023; Sellamuthu et al., 2024). RNAi tool is a sequence-based method 
that suppresses target gene expression for pest growth, development, 
and reproduction without affecting non-targeting other pest species 
(Whyard et al., 2009; Christiaens et al., 2020). Transgenic poplar 
plants harboring dsRNA targeting CYP6B53 from Lymantria dispar 
via A. tumefaciens-mediated transformation exhibited inhibited 
larval feeding and delayed growth (Sun et al., 2022). Such studies 
endorse the potential for using trees expressing dsRNA against target 
forest pests. RNAi-mediated lignin modification has also been 
successfully applied in poplar. The overexpression of microRNA, 
such as miR6443 reduces S lignin biosynthesis during shoot 
development in Populus tomentosa, making the plant susceptible to 
pathogens (Fan et al., 2020). Thus, RNAi can be utilized to modulate 
gene expression miR6443 to produce more lignin in poplar to confer 
resistance against pathogens.

5.8 Microparticle-mediated CRISPR DNA 
delivery for genome editing in poplar

The clustered regularly interspaced palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (Cas9) system is the most promising 
technique used for precise genetic engineering in plants, including 
poplar (Bewg et al., 2018; Anders et al., 2023; Sulis et al., 2023). This 
method is harnessed to improve sustainable production and introduce 
precise alterations at target sites, thereby altering plant architecture and 
floral development and developing biotic/abiotic resistance in trees 

(Borthakur et al., 2022). This method does not introduce foreign genes 
into the forest trees, making it safer than other genetic engineering 
methods. In this process, CRISPR gene-editing reagents, i.e., Cas9 
protein and the guide RNA (gRNA), are generally delivered through 
A. tumefaciens, resulting in the stable genome integration and expression 
of the transfer DNA (T-DNA) in the plant genome (Hoengenaert et al., 
2023). Alternative strategies other than Agrobacterium-mediated method 
for the delivery of gene-editing reagents into plant genomes are either 
through the expression of a gRNA- and Cas9-coding DNA/RNA or 
ribonucleoproteins (RNPs) into callus or protoplasts (Lin et al., 2018). 
However, this approach has drawbacks, such as inducing somaclonal 
variation and large genome rearrangements resulting in altered 
phenotype of plants (Serres et al., 1991; Fossi et al., 2019). Another 
commonly used method applies mechanical force like a gene gun to 
deliver gene-editing reagents coated with microparticles into plant tissue. 
Several researchers applied CRISPR-mediated gene editing for wood 
quality improvement and drought/pest/disease resistance in forest trees 
(Dort et al., 2020). In addition, microparticle-mediated DNA delivery 
technology has previously been used to deliver the CRISPR gene in 
poplar trees (Devantier et al., 1993; Nowak et al., 2004; Canto, 2016). Jang 
et al. (2021) and Huang et al. (2022) utilized this method for knocking 
out caffeoyl shikimate esterase (CSE) to improve lignocellulose biomass 
and root growth transcription factor PDNF-YB21 for repression of root 
and inducing drought resistance in transgenic poplar, respectively. 
However, it has not yet been applied to develop pest and pathogen 
resistance in poplar trees.

6 Regeneration methods used in 
Populus species

An efficient regeneration system is crucial for successful genetic 
transformation, as it enables the development of transgenic plants 
from a single cell carrying the desired genes. However, genetic 
transformation and regeneration remain significant challenges in 
many forest trees, including poplar. Various plant regeneration 
methods have been developed for poplars (Thakur et al., 2005; Li et al., 
2017), which can be  employed to produce transgenic trees with 
resistance to pests and diseases. In recent decades, significant research 
efforts have focused on creating transgenic poplars with enhanced 
resistance to abiotic stress and improved wood quantity and quality. 
There have been a few reports on regenerating transgenic poplar trees 
with biotic stress resistance. The established suspension cultures of 
P. alba x P. grandidentata cv. ‘Crandon’ were transformed with vectors 
A. tumefaciens carrying the maize Ac transposable element and an 
insect toxin gene isolated from Bacillus thuringiensis (Bt). These 
transgenic plants were regenerated by subculturing the transformed 
callus on the medium, supplemented with a growth regulator 
Thidiazuron (TDZ) of 0.11–27.0 μM (Howe et  al., 1994). 
A. tumefaciens mediated genetic transformation and regeneration of 
hybrid poplar (P. alba x P. grandidentata) and transgenic quaking 
aspen from cuttings from young leaves were also readily achieved 
(Tsai et al., 1994). A. tumefaciens-mediated transformation of leaf 
explants of P. nigra L. was done with a Kunitz trypsin proteinase 
inhibitor (KTi3) gene for pest resistance, and regeneration of this 
transgenic leaf explants was successfully achieved (Confalonieri et al., 
1998). The stems and petioles of transformed hybrid aspen (Populus 
tremula × P. alba) clones containing PtdPPO1 genes (conferring pest 
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and pathogens resistant in plants) of in vitro plantlets were used for 
regeneration (Wang and Constabel, 2004). Further research is needed 
to establish a protocol for regenerating transgenic poplars with 
enhanced resistance to pests and pathogens from modified cells.

7 Conclusion and future perspectives

Poplars play a crucial role in supporting global ecological and 
socioeconomic wellbeing. The growing demand for poplar products has 
driven genetic engineering efforts to enhance various traits, particularly 
pest and disease resistance, as these trees are highly susceptible to 
numerous pests, fungi, and viruses. Considering the long growth cycle 
with low transformation tendency in forest trees, including poplar trees, 
it is necessary to establish a stable and efficient transformation system. 
Adopting pest and disease-resistant transgenic poplar plants to minimize 
yield loss and pesticide consumption has been successful. Many 
researchers have employed genetic transformation methods, including 
Agrobacterium tumefaciens, protoplast, gene gun, RNA interference, and 
miRNA-mediated transformations, to improve poplar resistance to pests 
and pathogens. These techniques, along with genome editing to 
introduce pest resistance genes and modulate lignin biosynthesis, offer 
promising avenues for developing transgenic poplar trees capable of 
withstanding pest and disease attacks, thus improving their survival 
rates. However, no research has been conducted on the pollen tube 
method, A. rhizogenes mediated and nanoparticle-mediated 
transformation to enhance pest/pathogen or virus resistance in Populus 
species. Further efforts are required to establish transgenic poplars with 
single/multiple genes for increasing biotic stress tolerance limits (pest/
pathogens infestations) using nanoparticles, A. rhizogenes, and the pollen 
tube method. It will be optimal if the methods developed in poplar can 
be used in other forest trees to make them resistant to biotic and abiotic 
stresses. The use of omics technologies (i.e., genomics, transcriptomics, 
and proteomics), along with high-throughput screening and selection 
methods, accelerates the identification of successful transgenic poplar 
lines. Integrating big data, machine learning, and artificial intelligence 
(AI) into poplar breeding programs (i.e., data-driven breeding) can 
enhance the accuracy of predicting genetic alteration outcomes (Farooq 
et al., 2024), enabling more targeted and efficient transgenic strategies for 
trees. A key factor for success is the competence to regenerate transgenic 
plants from modified cells. Addressing the genotype dependency in 
poplar transformation is crucial for expanding the applicability of 
transgenic approaches. Developing “transgene-free” or non-GMO 

techniques, such as transient CRISPR expression, could alleviate 
regulatory and public concerns, facilitating the adoption of genetically 
improved poplar.
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