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Natural and planted forests, covering approximately 31% of the Earth’s land area,

are crucial for global ecosystems, providing essential services such as regulating

the water cycle, soil conservation, carbon storage, and biodiversity preservation.

However, traditional forest mapping and monitoring methods are often costly

and limited in scale, highlighting the need to develop innovative approaches

for tree detection that can enhance forest management. In this study, we

present a new dataset for tree detection, VHRTrees, derived from very high-

resolution RGB satellite images. This dataset includes approximately 26,000 tree

boundaries derived from 1,496 image patches of different geographical regions,

representing various topographic and climatic conditions. We implemented

various object detection algorithms to evaluate the performance of different

methods, propose the best experimental configurations, and generate a

benchmark analysis for further studies. We conducted our experiments

with different variants and hyperparameter settings of the YOLOv5, YOLOv7,

YOLOv8, and YOLOv9 models. Results from extensive experiments indicate

that, increasing network resolution and batch size led to higher precision and

recall in tree detection. YOLOv8m, optimized with Auto, achieved the highest

F1-score (0.932) and mean Average Precision (mAP)@0.50 Intersection over

Union threshold (0.934), although some other configurations showed higher

mAP@0.50:0.95. These findings underscore the effectiveness of You Only Look

Once (YOLO)-based object detection algorithms for real-time forest monitoring

applications, offering a cost-effective and accurate solution for tree detection

using RGB satellite imagery. The VHRTrees dataset, related source codes, and

pretrained models are available at https://github.com/RSandAI/VHRTrees.
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1 Introduction

Preserving natural forests is crucial for the environment,
as they play a vital role in the global ecosystem, covering
approximately 31% of the Earth’s land area and representing
80% of the terrestrial biodiversity (FAO, 2020). They provide
essential ecosystem services, including water cycle regulation,
soil conservation, carbon storage, and timber production (Beloiu
et al., 2023; Safonova et al., 2022; Zhang et al., 2022). Forests
are facing various threats like the European spruce bark
beetle (Ips typographus), which can cause significant damage
to forests during outbreaks (Safonova et al., 2022). Besides
from natural causes, there are also human-induced risks for
forests, especially with global climate change (Beloiu et al.,
2023). Hence, determining the regions that are under risk, and
evaluating the strategies for protection is important for forest
monitoring (dos Santos et al., 2019). Since traditional forest
monitoring techniques are high-cost, time-consuming, and scale-
limited, developing new methodologies is vital (Beloiu et al.,
2023). Various technologies and methods can be used for forest
monitoring. Optical satellite data, such as Landsat 8 OLI, MODIS,
and Sentinel-2 MSI, provide extensive imagery coverage for
forest applications, particularly when analyzed using machine
learning (ML) approaches. Advanced ML and artificial intelligence
techniques, such as eXtreme Gradient Boosting (XGBoost) and
neural networks, play a critical role in enhancing the accuracy
of forest monitoring metrics within modern forest mapping
methodologies (Aksoy et al., 2023; Estrada et al., 2023). Detailed
and large-scale ecosystem analysis often utilizes deep learning
approaches such as convolutional neural networks (CNNs),
which are widely used for semantic segmentation of individual
trees, classification of tree species, and counting trees (Beloiu
et al., 2023). Unmanned aerial vehicles (UAVs) equipped with
optical cameras can be used to capture high-resolution aerial
imagery for tree detection (Jintasuttisak et al., 2022). Additionally,
optical images obtained from airborne systems can be used to
identify individual tree species. TreeSatAI is a valuable dataset
consisting of data acquired from multiple sensors, including
aerial imagery. It is highly suitable for tree species classification
tasks because it contains multilayer labels that provide detailed
information on tree species across 20 different classes (Ahlswede
et al., 2023). Apart from optical images, light detection and
ranging (LiDAR) data are also widely used for the accurate
assessment and management of forest resources (dos Santos
et al., 2019; Sun et al., 2022). Improvements in computer vision
techniques, such as object based image analysis (OBIA) contribute
to the detection and classification of tree species in natural
forests (Sivanandam and Lucieer, 2022; Weinstein et al., 2019).
Furthermore, tight integration of deep learning technologies in
remote sensing domain, especially with CNNs, lead to more
accurate tree detection and species classification tasks (Zhang et al.,
2022). For example, Faster R-CNN and Mask R-CNN methods
improve the accuracy of object detection and segmentation of
tree canopies from very high spatial resolution imagery (Ocer
et al., 2020). These diverse technologies and methods provide
valuable tools for effectively monitoring and managing forest
ecosystems.

RGB imagery data are also high in demand for research due
to their cost-effectiveness and accessibility, where satellite and
UAV platforms are widely used to collect very high-resolution
(VHR) multi-spectral images. You Only Look Once (YOLO)
models offer promising object detection capabilities identifying
single trees (Beloiu et al., 2023). YOLO models are widely
used due to their speed, computational efficiency, and high
accuracy. This makes them suitable for real-time applications
in various domains, including agriculture, forestry, as well
as geospatial object detection such as ship (Kızılkaya et al.,
2022) and airplane (Bakırman and Sertel, 2023). For example,
the VHRShips and the HRPlanes benchmark datasets utilize
YOLO models to showcase their capabilities and provide
valuable information about deep learning methodologies in
GeoAI applications (Bakırman and Sertel, 2023; Kızılkaya
et al., 2022). According to Jintasuttisak et al. (2022), YOLOv1
to YOLOv5 models have been proven to be capable of
adaptation for diverse domains in terms of their versatility
and effectiveness. Although remote sensing methods often rely
on sensors such as LiDAR or multispectral imagery, recent
advancements in deep learning, particularly with CNNs, have
enabled the development of object detection models using
RGB images only. This offers a cost-effective solution for
monitoring trees and tree species (dos Santos et al., 2019;
Weinstein et al., 2019).

Benchmark datasets are crucial to develop and test new
models or methodologies to create a baseline for the focused
topic. Generating a benchmark dataset for tree detection using
remotely sensed images and automatic quantification of the
trees are important for forestry applications, natural resource
management as well as for ecological and landscape planning.
In the paper by Zamboni et al. (2021), orthophotos with a
resolution of 0.10 m were employed, comprising 220 images and
detecting a total of 3,382 trees using 21 different models, including
both anchor-based and anchor-free deep learning techniques. In
contrast, Zheng and Wu (2022) employed Google Earth (GE)
images with a resolution of 0.27 m across 600 images, utilizing
the YOLOv4-Lite model for tree detection. In the paper by dos
Santos et al. (2019), UAV RGB images with a resolution of
0.82 m were employed, and a total of 392 images were analyzed
using models such as Faster R-CNN, YOLOv3, and RetinaNet.
Furthermore, Beloiu et al. (2023) employed aerial RGB imagery
with a resolution of 0.10 m, detecting over 10,000 trees through
the use of the Faster R-CNN model. The ReforesTree dataset
(Reiersen et al., 2022), comprising solely RGB drone images at
0.02 m resolution, was employed to detect 4,463 trees situated
across six agroforestry sites in the central coastal region of Ecuador.
This was achieved through the utilization of CNNs, ResNet18
model.

We present a new dataset for tree detection, called VHRTrees,
generated using VHR RGB satellite images. The dataset employs
GE images with a spatial resolution of 50 cm or better, thereby
meeting the high-detail requirements crucial for accurate tree
detection. GE platform hosts huge amount of satellite imagery
with varying spatial and temporal resolutions from multiple-
sensors which is a valuable resource for different applications,
including but not limited to forest monitoring, tree detection, and
forest inventory analysis. Accessibility to this variety of geospatial
big data holds the potential to encourage scalable, large-scale
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applications for both academic research and industrial practices,
particularly in different fields and domains. VHRTrees dataset
comprises 1,471 images, a considerably larger dataset compared to
many others reviewed, thereby providing a robust foundation for
training and testing ML and DL models. Furthermore, the dataset
comprises 25,966 trees, which lends it comprehensive and detailed
tree characteristics, thereby providing extensive data for effective
model training and validation. The VHRTrees dataset employs
four different YOLO models (YOLOv5, YOLOv7, YOLOv8, and
YOLOv9), which provide diverse methodological approaches that
enhance the dataset’s versatility and applicability across various
scenarios. A comparison of the Yolov6 and Yolov7 models, on
the COCO dataset, revealed that the maximum accuracy of the
real-time model YOLOv7-E6E [56.8% Average Precision (AP)]
was 13.6% units higher than that of the current most accurate
Meituan/YOLOv6-s model (43.2% AP) (Wang et al., 2022). In
addition, the Meituan/YOLOv6-n model (35.0% AP, 0.5 ms) is
0.2% lower and 25% slower than the YOLOv7-tiny (35.2% AP,
0.4 ms) model (Wang et al., 2022). The Yolov6 model was not
included in this study due to the its common usage for industrial
applications and lack of adaptability for research settings, and
difficulty detecting small objects like trees because its architecture
places more emphasis on speed and efficiency than accuracy in
detecting fine details, which is essential for recognizing small
trees.

We conducted a comparative analysis of the performance of
different YOLO models on the same dataset, thereby facilitating
a more profound comprehension of their respective strengths
and weaknesses. Our dataset covers various geographical regions
across Türkiye, ensuring the integration of various tree species
from different ecologic conditions into the dataset, which then
fed into the various YOLO models. This contributes to the
generalization and transferability of the trained models to similar
forest domains. This, in turn, enhances the model’s ability to deliver
high performance results. Since the GE platform is an accessible
resource for everyone, researchers can implement our model for
tree detection in different locations by using GE images of similar
resolution. A comparison of the datasets is presented in Table 1.

Our benchmark dataset, comprising delineated individual
canopy crowns derived from VHR GE imagery, is designed to
facilitate comparisons across methods that utilize different tree
canopy types or combinations. It offers flexibility in workflow while
standardizing the output format to represent the boundaries of
individual canopy tree crowns.

To summarize, while LiDAR-based and multispectral
methods have dominated the field of tree detection and forest
monitoring, there is a growing interest in leveraging RGB
imagery and advanced CNN architectures for these tasks.
Object detection algorithms, particularly those based on
YOLO, show promising potential for accurately identifying
individual trees in diverse environments. Our study aims to
contribute to this evolving field by introducing a new tree
detection dataset with annotated bounding boxes and evaluating
the performance of various YOLO versions on this dataset.
Through these efforts, we seek to advance the state-of-the-
art in tree detection methodologies and provide valuable
insights for future research and applications in forestry and
ecological monitoring.

2 Materials and methods

2.1 Study areas

The study areas were selected from five regions in the western
part of Türkiye, specifically from the provinces of Bursa and Ýzmir:
Karacabey, Dikili, Aliağa, Seferihisar, and Selçuk (Table 2).

The climate in Bursa is typically humid subtropical, with hot
summers and mild and rainy winters, while Ýzmir experiences a
Mediterranean climate characterized by hot and dry summers, and
mild and rainy winters. Karacabey features broadleaf-dominated
mixed forest with species such as oak (Quercus spp.) and beech
(Fagus spp.). Dikili, Aliağa, Seferihisar, and Selçuk are characterized
by Mediterranean forests, predominantly comprising pine (Pinus
spp.), olive (Olea europaea), and various shrubs. These regions
possess diverse forest ecosystems rich in tree communities. Despite
the high tree density, individual trees in these areas are easily
distinguishable, making them ideal for tree detection studies. The
study areas are illustrated in Figure 1.

2.2 Data curation

2.2.1 Data collection
In the first step, 218 RGB images were downloaded from

GE, each with a size of 1,920 × 1,080 pixels and a ground
sample distance (GSD) of 0.5 m or better, covering the study
areas of Karacabey, Dikili, Aliağa, Seferihisar, and Selçuk, which
are explained in section “2.1 Study areas.” Subsequently, images
unsuitable for the dataset were carefully filtered out. This included
images where individual trees were not sufficiently visible, could
not be annotated, or were obscured by cloud cover during
acquisition. After visually analyzing these images, we selected 45
that best represented the dataset in terms of the distinctiveness
of individual trees, the number of trees in the image, and overall
image quality. Finally, image patches were generated from these
selected images.

2.2.2 Data labeling
The initial step in creating a dataset for object detection

involved enclosing objects with bounding boxes. Here, the objects
are individual trees of varying density and dimension, since our
focus is on tree detection. Labeling methods can be classified into
three categories: fully manual, semi-automatic, and fully automatic.
Fully manual methods, such as using QGIS (Zamboni et al., 2021),
involve human annotators drawing bounding boxes, ensuring high
accuracy but is labor-intensive. Semi-automatic methods (Lau et al.,
2021; Pordel and Hellström, 2015) combine manual input with
automated processes to enhance efficiency, whereas fully automatic
methods rely entirely on algorithms, such as deep learning-
based segmentation and object detection models, to label objects.
These methods are highly efficient for processing large datasets,
although they may require post-processing to correct inaccuracies.
In this study, an automatic method was utilized to label trees.
Initially, an automatic segmentation process was conducted in
eCognition Developer 64 (Trimble, 2024) on 45 images with a size
of 1,920 × 1,080 to extract the boundaries of individual trees. The
primary aim of this process was to quickly and accurately determine
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TABLE 1 Comparison of datasets used in machine learning models.

Source Dataset type Resolution(m) No. of
images/
patches

No. of
labeled
trees

Model Landscape

Zamboni et al., 2021 Orthophotos 0.10 220/512× 512 3,382 21 models, including
anchor-based (one
and two-stage) and
anchor-free
deep-learning

Urban plantation

Zheng and Wu, 2022 Google Earth images 0.27 600/416× 416 Not specified YOLOv4-Lite 1-Campus and
orchard
2-Economic
plantation

dos Santos et al., 2019 UAV RGB images 0.82 392/– Not specified Faster R-CNN,
YOLOv3, RetinaNet

Dipteryx alata Vogel
(Fabaceae)

Beloiu et al., 2023 Aerial RGB images 0.10 Not
specified/256× 256

>10,000 Faster R-CNN model Picea abies, Abies
alba, Pinus sylvestris,
Fagus sylvatica

ReforesTree (Reiersen
et al., 2022)

RGB drone images 0.02 –/800× 800 4,463 CNN-based
(ResNet18)

Six agro-forestry
sites in the central
coastal region of
Ecuador

VHRTrees (this study) Google Earth images 0.50 and better 1471/256× 256 25,966 YOLOv5, YOLOv7,
YOLOv8, YOLOv9

Different
geographical regions
of Türkiye

TABLE 2 Selected study areas with forest type, coordinates, and tree counts.

ID Study area Forest type Coordinates Dates No. of trees

a Karacabey/Bursa Broadleaf-dominated mixed forest 40◦6′35′′N,
28◦19′2′′E

26.09.2021 4,191

b Dikili/İzmir Mediterranean forest 38◦57′11′′N,
26◦55′35′′E

18.12.2022 11,767

c Aliağa/İzmir Mediterranean forest 38◦55′56′′N,
27◦3′49′′E

05.06.2023 6,008

d Seferihisar/İzmir Mediterranean forest 38◦10′55′′N,
26◦49′7′′E

03.06.2022 1,385

e Selçuk/İzmir Mediterranean forest 37◦58′49′′N,
27◦21′50′′E

12.09.2023 2,615

Total 25,966

the most suitable boundaries surrounding trees of varying sizes in
the dataset. The principal objective of this process was to rapidly
and accurately ascertain the optimal boundaries surrounding trees
of disparate sizes within the dataset. The segmentation parameters
for this stage were as follows: scale parameter = 30, shape = 0.98,
and compactness = 0.02. Subsequently, the resulting image masks
from the segmentation were divided into 256 × 256-pixel patches
that corresponded to their respective images. The positional
information of the segments was converted into bounding boxes
using a Python program, and each image was stored in the
corresponding vector file. In the final stage, the exact boundaries
of trees that were partially visible at the edges of the 256 × 256
images or too small to be automatically delineated could not be
determined. Manual corrections for these trees were performed by
transferring the images and their corresponding vector labels to the
Roboflow platform. Two independent experts conducted a quality
checks on the final bounding boxes. As a result, a semi-automatic

labeling method was implemented to ensure high accuracy in the
final dataset.

2.2.3 Data preparation for deep learning models
Prior to the training phase, images with corresponding labels

were divided into smaller, manageable patches through a tiling
process to better use the computing resources. The image patches
were generated with a size of 256 × 256 pixels, each with
corresponding bounding boxes. This process resulted in a total
of 2,025 patches. Subsequently, images without label information
(i.e., those lacking data) and non-square samples, specifically those
image patches obtained from the edged of the larger images, were
removed from the dataset as part of the pruning step, resulting
in the elimination of 554 problematic patches. This preprocessing
method further reduced the training load and allowed the YOLO
models to focus on more informative examples. As a result, the final
VHRTrees dataset consisted of 1,471 image patches, which were
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FIGURE 1

General view of the study areas and its surroundings (left-up), the administrative boundaries of five sites used in the research: Karacabey, marked in
golden yellow, panels (A,B), Dikili, marked in light blue, panel (C), Aliağa, marked in purple, panel (D), Seferihisar, marked in bright green, panel (E),
and Selçuk, marked in turquoise, panel (F).

split into 70% (1,023 patches), 15% (226 patches), and 15% (222
patches) for training, validation, and testing, respectively. Sample
images with corresponding bounding boxes for individual trees can
be seen in Figure 2.

2.3 Deep learning models

The proposed VHRTrees dataset was utilized to evaluate a
series of YOLO models, including YOLOv5 (Jocher et al., 2022),
YOLOv7 (Wang et al., 2022), YOLOv8 (Ultralytics, 2024), and
YOLOv9 (Wang et al., 2024). The accuracy of each model in
detecting individual trees was evaluated using the designated test
portion of the dataset (15% of the data), followed by 70% training,
15% validation. Model parameters and characteristics such as
the number of layers, backbone architecture, and computational
efficiency measured in FLOPs are analyzed for each model.
These factors, along with the frameworks used to implement the
models, were comprehensively compared. A detailed comparison
of the general characteristics of the YOLO models, including
their parameters, backbones, and FLOPs, is presented in Table 3.
Experimental setups were designed to test various optimizers (SGD,
Adam, AdamW, and Auto) and input resolutions (640 × 640
and 960 × 960 pixels) across YOLOv5, YOLOv7, YOLOv8,
and YOLOv9 variants. To optimize both performance and
computational efficiency, initial experiments were conducted at

a resolution of 640 × 640 across all models. Among these, the
configurations yielding the highest performance were then tested at
an increased resolution of 960× 960 pixels. This selective approach
allowed a targeted exploration of high-resolution performance
without the extensive time demands of testing all configurations
at 960 × 960. However, for YOLOv8, the availability of the “Auto”
optimizer required a more comprehensive examination of potential
configurations to enable accurate performance comparisons against
other optimizers. Batch sizes were consistently set at 16 for most
models, except for YOLOv9 configurations, where a batch size
of 8 was used due to computational constraints. Each model
configuration was trained for 50 epochs, with the exception of
YOLOv9 models, which were trained for 45 epochs.

2.3.1 YOLOv5
YOLOv5 (Jocher et al., 2022), developed by Ultralytics in 2020,

represents an important evolution in the YOLO series. This new
version, based on PyTorch, uses a genetic evolution algorithm
and k-means clustering to create the groundbreaking AutoAnchor
algorithm, which allows for the structuring of anchor boxes (Terven
and Cordova-Esparza, 2023).

Considering the YOLOv5 architecture, it is safe to say that it
is built on an enhanced CSPDarknet53 backbone. This backbone
includes a stem layer with spatial pyramid pooling fast (SPPF). This
stem layer improves computational speed as well as efficiency. The
model uses mosaic and mixing (Zhang et al., 2018), techniques
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FIGURE 2

The following sample images, taken from the VHRTrees dataset, are accompanied by corresponding bounding boxes for individual trees from the
Karacabey (A,B), Dikili (C), Aliağa (D), Seferihisar (E), and Selçuk (F) regions, respectively with patch sizes of 256 × 256 pixels.

TABLE 3 General characteristics of YOLO models used in this study.

Model Parameter (million) Framework Backbone FLOPs (G)

YOLOv5s (Jocher et al., 2022) 1.9 PyTorch CSPDarknet 4.5

YOLOv5m (Jocher et al., 2022) 7.2 PyTorch CSPDarknet 16.5

YOLOv5l (Jocher et al., 2022) 21.2 PyTorch CSPDarknet 49.0

YOLOv7 (Wang et al., 2022) 36.9 PyTorch Extended CSPDarknet 104.7

YOLOv7x (Wang et al., 2022) 71.3 PyTorch Extended CSPDarknet 189.9

YOLOv8s (Ultralytics, 2024) 11.2 PyTorch CSPDarknet53 28.6

YOLOv8m (Ultralytics, 2024) 25.9 PyTorch CSPDarknet53 78.9

YOLOv8l (Ultralytics, 2024) 43.7 PyTorch CSPDarknet53 165.2

YOLOv9c (Wang et al., 2024) 25.3 PyTorch GELAN 102.1

YOLOv9gc (Wang et al., 2024) 25.3 PyTorch GELAN 102.1

to improve training stability as well as performance. YOLOv5
not only meets the needs of many different applications but is
also available in different sizes. This scalability, i.e., nano, small,
medium, large, and extra-large sizes, is seen as a feature that
improves the performance of YOLOv5 in a wide range of object
detection missions. In this way, it can be used in resource-
constrained environments. Increasing the model size increases
the performance in proportion. This shows the compatibility of
YOLOv5 in various use cases.

2.3.2 YOLOv7
One of the significant innovations in the architecture of

YOLOv7 (Wang et al., 2022) is the extended efficient layer
aggregation network (E-ELAN). Building on the principles of

the original ELAN, E-ELAN enhances the network’s learning
capabilities through techniques such as expanding, shuffling, and
merging cardinality within computational blocks. This approach
maintains the integrity of gradient paths, allowing for effective and
stable learning as the network deepens. E-ELAN utilizes group
convolution to increase channel capacity, shuffles map features into
groups, and merges them, enabling diverse feature extraction while
keeping the transition layers unchanged.

Model scaling in YOLOv7 is designed to adjust model
attributes to balance inference speed and computational efficiency.
Traditional scaling methods, like those used in EfficientNet
(Tan and Le, 2020) and scaled-YOLOv4 (Wang et al., 2021),
independently adjust width, depth, and resolution. However, for
concatenation-based models like YOLOv7, scaling depth affects
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the input-output channel ratio of subsequent layers, requiring a
compound scaling approach. This method simultaneously adjusts
both depth and width factors to maintain model efficiency and
structural balance. By scaling computational blocks and transition
layers in tandem, YOLOv7 ensures optimal performance and
hardware utilization across various model sizes. This compound
scaling preserves the model’s initial properties, ensuring robust and
efficient network performance.

2.3.3 YOLOv8
Ultralytics introduced YOLOv8 (Ultralytics, 2024) in 2023,

marking a significant advancement in the YOLO series following
YOLOv5. YOLOv8 is available in five versions: nano (YOLOv8n),
small (YOLOv8s), medium (YOLOv8m), large (YOLOv8l),
and extra-large (YOLOv8x). Its architecture builds upon the
YOLOv5 backbone with notable enhancements, including the
C2f module, which is a cross-stage partial bottleneck featuring
dual convolutions. This module enhances detection accuracy by
integrating high-level features with contextual data. YOLOv8
adopts an anchor-free approach with a decoupled head that
independently processes object detection, classification, and
regression tasks, thereby improving overall accuracy through
specialized focus on each branch.

In the output layer, YOLOv8 uses a sigmoid activation
function for object detection scores and a softmax function for
class probabilities, which enhances precision in object detection.
The model employs Complete Intersection over Union (CIoU)
(Zheng et al., 2020) and distance focal loss (DFL) (Li et al.,
2020) for bounding box loss, along with binary cross-entropy for
classification loss, significantly boosting performance, especially for
smaller objects. Additionally, YOLOv8 introduces the YOLOv8-
Seg model for semantic segmentation, utilizing a CSPDarknet53
backbone and the C2f module instead of the traditional YOLO
neck. This setup includes two segmentation heads for predicting
semantic segmentation masks. The model’s detection heads,
comprising five detection modules and a prediction layer, deliver
state-of-the-art results across multiple benchmarks, maintaining
high speed and efficiency.

2.3.4 YOLOv9
YOLOv9 (Wang et al., 2024) represents the second latest

iteration in the YOLO series and is an advanced object detection
model. Recently introduced, YOLOv9 builds upon its predecessors
by incorporating innovative architectural improvements
and refined training techniques. Derived from the YOLOv7
architectural framework, the objective of YOLOv9 is to enhance
the accuracy of object detection while maintaining real-time
inference speeds.

The model architecture is based on a backbone network
with an efficient layer aggregation mechanism known as the
generalized efficient layer aggregation network (GELAN). This
design enables YOLOv9 to achieve superior parameter utilization
in comparison to earlier YOLO models, effectively leveraging
conventional convolution operators.

The principal innovation introduced by YOLOv9 is the
integration of programmable gradient information (PGI), a novel
framework that ensures robust gradient propagation and addresses
the issue of information loss in deep neural networks. PGI

optimizes the training process by providing comprehensive input
information for the target task, facilitating better parameter
learning and improving overall model performance.

As a consequence of these innovations and improvements,
YOLOv9 demonstrably outperforms previous YOLO models in
terms of both speed and accuracy. In this study, we evaluated
the performance of the YOLOv9 GELAN and the YOLOv9
GELAN-C models (referred to YOLOv9g and YOLOv9gc) on our
dataset, both of which yielded effective results compared to other
models, especially in challenging scenarios such as overlapping
areas of tree crowns.

2.4 Accuracy assessment

In the model evaluation stage, we used Precision (1), Recall
(2), F1-score (3) (Goutte and Gaussier, 2005), and mean Average
Precision (mAP) (4) (Everingham et al., 2010) metrics as follows.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1−score = 2 ×
Precision × Recall
Precision+ Recall

(3)

mAP =
1
N

N∑
i = 1

APi (4)

Here, TP, FP, FN, N, and AP represent the total number of
true positives, false positives, false negatives, class count, and AP,
respectively. Precision measures a model’s ability in accurately
pinpointing a specific object from a multitude, thereby enhancing
its reliability. Conversely, recall assesses a model’s capacity to
correctly identify an individual object irrespective of other
elements, thereby augmenting its efficiency (Temenos et al., 2023).
The F1-score, which combines the Precision and Recall, provides an
overall measure of the model’s accuracy in object detection (Casas
et al., 2023). This metric is the harmonic mean of Precision and
Recall, which both range between 0 and 1 (Zhao and Li, 2020).
The mAP value is also a widely adopted evaluation metric in object
detection, assessing the trade-off between Precision and Recall
(Casas et al., 2023). It computes the AP for each class and then
averages these values across all classes (Casas et al., 2023; Zhu et al.,
2020). The value of mAP@0.50:0.95 represents the average of mAP
values from IoU of 0.50 to IoU of 0.95 with an increment of 0.05.

3 Results

3.1 Statistical results

Experiments were conducted on Kaggle P100, Colab A100,
and NVIDIA Quadro P6000 graphics processing units (GPUs). We
conducted an initial experiment in which we tested the impact
of different network sizes, such as 416 × 416, 640 × 640, and
960 × 960 pixels on the performance of different YOLO models.
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The original dataset is comprised 256 × 256 pixels image patches.
To accommodate larger network sizes, the aforementioned image
patches were resized by stretching them to 640 × 640 pixels, thus
aligning them with the input resolution required by the network.
This resampling process effectively increases the number of pixels
within the patch, thereby enabling the model to process larger input
sizes. We observed that the increase in network size improved
the model performance. However, the maximum network size that
we can use with the available computational power is 960 × 960.
Further experiments were, therefore, pursued with the network size
of 640× 640 and 960× 960 only.

In our problem-specific initial experiments, increasing the
batch size did not result in a notable alteration in the performance
of the model. Furthermore, due to the considerable number of
experiments and computational limitations, the batch size was fixed
at 16 for the YOLOv5, YOLOv7, and YOLOv8 models, whereas
for YOLOv9, the batch size was set to 8. In the preprocessing
stage, three data augmentation techniques were applied: random
horizontal flip, rotation between −15◦ and +15◦, and mosaic.
These augmentation strategies contributed to improved training
outcomes by diversifying the dataset and enhancing model
robustness. All experiments were conducted on high-performance
GPUs and executed concurrently, resulting in similar durations.
The results of the evaluation are presented in Table 4, which depicts
the outcomes of experiments conducted without augmentation,
and in Table 5, which depicts the outcomes of experiments
conducted with augmentation. The tables present the results for
Precision, Recall, F1-score, mAP@0.50, mAP@0.50:0.95, and the
total time for training (Time) in hours.

The experimental results demonstrated that the network
size is a critical factor influencing model performance. Models
trained with a network size of 960 × 960 generally exhibit
higher performance metrics compared to those trained with a
network size of 640 × 640. For example, the YOLOv8m model
optimized with Auto achieved the highest F1-score of 0.932 and
the highest mAP@0.50 of 0.934 with augmentation (Table 5, no.
28). Furthermore, the consistency in high Precision and Recall
values across the 960 × 960 network size models is noteworthy.
As an illustration, the YOLOv8s model, when optimized with
stochastic gradient descent (SGD), exhibits high Precision (0.929)
and Recall (0.932), resulting in a high mAP@0.50 IoU of 0.935
(Table 5, no. 29). In contrast, the 640 × 640 network size
models, while exhibiting reduced accuracy in certain metrics,
nevertheless demonstrate commendable results. The YOLOv8m
model with SGD optimization achieves a high F1-score of 0.916
and a mAP@0.50 of 0.923 in the absence of augmentation (Table 4,
no. 23). The YOLOv9-GELAN (YOLOv9g) and YOLOv9-GELAN-
C (YOLOv9gc) models also demonstrate satisfactory performance,
with YOLOv9gc achieving an F1-score of 0.928 and mAP@0.50
of 0.936 (Table 5, no. 37). These findings suggest that, while
larger network sizes tend to result in superior overall performance,
smaller network sizes can also be highly effective, particularly when
optimized correctly.

The selection of an optimizer can have a substantial impact on
the performance of a given model. SGD consistently demonstrates
superior performance across both network sizes, particularly in
the context of YOLOv8 models. The YOLOv8s (640 × 640) and
YOLOv8m (960 × 960) models demonstrate high F1-score and
mAP values, which serve to reinforce the efficacy of SGD in training

these models. Furthermore, YOLOv9gc models optimized with
SGD demonstrate comparable performance, as evidenced by the
YOLOv9gc (640 × 640) model, which achieved an F1-score of
0.924 and a mAP@0.50 of 0.934 (Table 4, no. 38). The YOLOv9g
models with Adam optimizer, however, generally show lower F1-
score and mAP values compared to SGD, indicating that Adam may
be less optimal for this configuration. Models optimized with Auto
and AdamW also show strong results in both network sizes. The
YOLOv8m (960 × 960) with Auto achieves high scores across all
metrics, while AdamW performs well with YOLOv5 models.

The batch size and the number of epochs are also critical
factors. The YOLOv8m (960× 960) with a batch size of 16 achieves
an F1-score of 0.932 and mAP@0.50 of 0.934 (Table 5, no. 28).
Increasing the batch size generally improves model performance,
but the difference is not substantial beyond batch size 16 for
most models. Similarly, models trained for 50 epochs generally
perform better compared to those trained for 45 epochs. For
example, the YOLOv8m (960× 960) trained for 50 epochs achieves
higher mAP@0.50 (0.934) compared to similar models trained for
fewer epochs. This indicates that longer training times can lead to
better model performance, although the improvement may plateau
beyond a certain point.

In the experiments conducted with the VHRTrees dataset, the
accuracy evaluations for each YOLO model across five regions,
were analyzed in detail to assess how various terrain and climatic
conditions impact model performance. In the Karacabey region,
all models consistently achieved precision (P) and recall (R)
values above 0.97. YOLOv8 demonstrated the highest mAP@50
(0.992) and mAP@50:95 (0.624), indicating its strong adaptability
to the relatively uniform terrain of this region. In contrast, model
performance in the Dikili region was significantly lower, likely
due to complex terrain or mixed vegetation cover. YOLOv8
outperformed the others in this region, achieving mAP@50 of
0.818 and a mAP@50:95 of 0.535. The challenging environmental
conditions in Dikili highlight areas where model optimization
or dataset augmentation could improve performance. In the
Aliağa region, performance metrics were higher than in Dikili but
still demonstrated variability. YOLOv8 showed resilience under
moderately challenging conditions, achieving the highest mAP@50
(0.976) and mAP@50:95 (0.73). In Seferihisar, models exhibited
stable performance, with precision exceeding 0.93 and recall above
0.94 across all models. However, in the Selçuk region, the metrics
resembled those of Dikili, with significant drops in performance.
YOLOv5 and YOLOv7 recorded the lowest mAP@50:95 scores
(0.471 and 0.502, respectively), while YOLOv8 performed slightly
better, achieving a mAP@50:95 of 0.521.

In conclusion, the results of the experiments demonstrate
that larger network sizes (960 × 960) generally provide better
performance metrics, in some cases the difference is marginal.
SGD remains the most consistent optimizer, delivering high
Precision, Recall, and mAP values across various models. YOLOv8
models have been observed to exhibit superior performance, when
utilizing the 960 × 960 network size and SGD optimization.
Nevertheless, the more recent YOLOv9g models demonstrate
considerable promise, particularly when optimized with SGD.
The optimal configuration for achieving high performance across
different models and network sizes appears to be a batch size of
16 and 50 epochs.
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TABLE 4 Experiment results without augmentation (top five results are shown in bold).

No. Model Optimizer Network Batch size Epoch Precision Recall F1-score mAP@0.50 mAP@0.50:
0.95

Time
(hour)

1 YOLOv5s SGD 640× 640 16 50 0.932 0.923 0.927 0.933 0.559 0.293

2 YOLOv5m SGD 640× 640 16 50 0.933 0.922 0.927 0.931 0.564 0.774

3 YOLOv5l SGD 640× 640 16 50 0.928 0.922 0.925 0.931 0.565 0.780

4 YOLOv5s Adam 640× 640 16 50 0.931 0.920 0.925 0.931 0.558 0.277

5 YOLOv5m Adam 640× 640 16 50 0.929 0.924 0.926 0.932 0.561 0.495

6 YOLOv5l Adam 640× 640 16 50 0.928 0.926 0.927 0.932 0.562 0.765

7 YOLOv5s AdamW 640× 640 16 50 0.930 0.925 0.927 0.933 0.562 0.276

8 YOLOv5m AdamW 640× 640 16 50 0.927 0.928 0.927 0.933 0.561 0.498

9 YOLOv5m SGD 960× 960 16 50 0.932 0.926 0.929 0.934 0.569 0.929

10 YOLOv5m AdamW 960× 960 16 50 0.927 0.926 0.926 0.932 0.564 0.925

12 YOLOv7 SGD 640× 640 16 50 0.926 0.923 0.924 0.903 0.526 0.954

13 YOLOv7 Adam 640× 640 16 50 0.915 0.923 0.919 0.899 0.514 0.962

14 YOLOv7x SGD 640× 640 16 50 0.923 0.909 0.916 0.893 0.500 1.334

15 YOLOv7 SGD 960× 960 16 50 0.930 0.928 0.929 0.908 0.549 11.75

16 YOLOv7x SGD 960× 960 16 50 0.923 0.937 0.930 0.912 0.552 13.78

17 YOLOv7 Adam 960× 960 16 50 0.924 0.916 0.920 0.898 0.522 11.69

18 YOLOv7x Adam 960× 960 16 50 0.923 0.916 0.919 0.895 0.521 13.77

19 YOLOv8s Auto 640× 640 16 50 0.938 0.857 0.896 0.894 0.569 0.362

20 YOLOv8m Auto 640× 640 16 50 0.928 0.899 0.913 0.915 0.582 0.655

21 YOLOv8l Auto 640× 640 16 50 0.924 0.914 0.919 0.920 0.582 0.958

22 YOLOv8s SGD 640× 640 16 50 0.931 0.891 0.911 0.915 0.581 0.358

23 YOLOv8m SGD 640× 640 16 50 0.932 0.901 0.916 0.923 0.590 0.654

24 YOLOv8l SGD 640× 640 16 50 0.932 0.838 0.883 0.877 0.562 0.945

25 YOLOv8s Adam 640× 640 16 50 0.925 0.923 0.924 0.934 0.580 0.362

26 YOLOv8m Adam 640× 640 16 50 0.926 0.907 0.916 0.922 0.574 0.658

27 YOLOv8l Adam 640× 640 16 50 0.926 0.908 0.917 0.925 0.579 0.962

28 YOLOv8s Auto 960× 960 16 50 0.941 0.850 0.893 0.889 0.566 0.657

29 YOLOv8m Auto 960× 960 16 50 0.929 0.924 0.926 0.934 0.593 1.470
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3.2 Visual results

In order to facilitate a comparison of the visual performance,
consideration was given to the experiment, which represented
the highest level of performance for each of the four different
YOLO models. Accordingly, our investigation concentrated on
four experiments designated as 9 (YOLOv5) and 15 (YOLOv7) in
Table 4, and 30 (YOLOv8) and 37 (YOLOv9) in Table 5. Figure 3
illustrates the optimal tree detection results for each the four
models. Green boxes represent YOLOv5, purple boxes represent
YOLOv7, red boxes represent YOLOv8, and blue boxes represent
YOLOv9. Karacabey (A1–A4) is a region with regular and densely
spaced trees. This may present a challenge for the models in terms
of prediction, but there are certain distinguishing factors present
in each image patch (e.g., shadow effect, contrast difference at the
borders). Therefore, all four models correctly identified all labeled
trees.

YOLOv8 provided the highest overall accuracy, followed by
YOLOv9, YOLOv7, and YOLOv5, respectively. In Dikili (B1–B4),
trees have a somewhat regular and sparse distribution, but this
region also contains complex tree clusters. While YOLOv5 and
YOLOv8 tend to overlook intermediate trees within complex tree
groups, YOLOv7, which has the lowest accuracy compared to the
other three models, provided relatively better results by accurately
predicting these boundaries. YOLOv9, on the other hand, achieved
high accuracy by not ignoring any small trees or complex tree
groups. A similar situation is observed in Aliağa (C1–C4). Although
the trees here are rarely found in groups, the models yield similar
results as in the case with complex tree clusters. Seferihisar (D1–
D4) and Selçuk (E1–E4) regions can be evaluated together due
to their similar characteristics, i.e., the trees are small, uniform in
size, and distributed densely and regularly. However, in Selçuk,
the trees are more distinct compared to Seferihisar, which allows
the model to achieve higher accuracy in its predictions. In the
first example of complex tree community shown in Figures 4A,
D, G, I, YOLOv8 demonstrated the best performance by providing
generally accurate tree detection with higher precision values. Here,
while YOLOv9 labeled every detail as a tree, its accuracy was lower
compared to YOLOv7. YOLOv5, on the other hand, missed some
trees. In the second example (B, E, H, K), neither YOLOv5 nor
YOLOv8 were able to detect the combined trees in the yellow-
marked box at the top left, whereas YOLOv7 identified the entire
cluster as an individual tree. YOLOv9 managed to separately detect
one of the trees. In the same example, in the other yellow-marked
box, all models except YOLOv8 identified the paired trees as
individual trees, but nevertheless YOLOv8 achieved the highest
accuracy among the four models. In the third and final example,
although YOLOv8 generally exhibited higher accuracy than the
other models, it failed to detect some small trees and, as illustrated
here, also misidentified certain small trees.

The comparative analysis of YOLOv5, YOLOv7, YOLOv8,
and YOLOv9 models for tree detection in Table 6 provides
detailed insights into their respective strengths and limitations. For
instance, in the (A1–A4) region, characterized by high tree density
and large trees, YOLOv8 and YOLO v7 achieved the best balance
between precision (0.96) and recall (0.94), demonstrating their
capability to accurately detect individual trees while minimizing
false positives and false negatives. Similarly, YOLOv5 performed
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TABLE 5 Experiment results with augmentation using random horizontal flip, 15◦ rotation, and mosaic augmentation (top five results are shown in bold).

No. Model Optimizer Network Batch size Epoch Precision Recall F1-score mAP@0.50 mAP@0.50:
0.95

Time
(hour)

1 YOLOv5s SGD 640× 640 16 50 0.934 0.922 0.928 0.931 0.556 0.496

2 YOLOv5m SGD 640× 640 16 50 0.932 0.927 0.929 0.932 0.562 0.896

3 YOLOv5l SGD 640× 640 16 50 0.934 0.926 0.930 0.933 0.569 1.450

4 YOLOv5s Adam 640× 640 16 50 0.934 0.924 0.929 0.931 0.563 0.501

5 YOLOv5m Adam 640× 640 16 50 0.927 0.924 0.925 0.932 0.564 0.896

6 YOLOv5l Adam 640× 640 16 50 0.928 0.928 0.928 0.934 0.561 1.411

7 YOLOv5s AdamW 640× 640 16 50 0.935 0.927 0.931 0.933 0.568 0.487

8 YOLOv5m SGD 960× 960 16 50 0.929 0.829 0.876 0.845 0.523 0.430

9 YOLOv5m AdamW 960× 960 16 50 0.923 0.831 0.875 0.844 0.525 0.431

10 YOLOv5s SGD 960× 960 16 50 0.930 0.933 0.931 0.933 0.567 0.868

12 YOLOv7 SGD 640× 640 16 50 0.930 0.920 0.925 0.908 0.531 1.105

13 YOLOv7 Adam 640× 640 16 50 0.921 0.916 0.918 0.904 0.512 1.100

14 YOLOv7x SGD 640× 640 16 50 0.933 0.912 0.922 0.908 0.516 1.025

15 YOLOv7 SGD 960× 960 16 50 0.926 0.924 0.925 0.905 0.536 1.422

16 YOLOv7x SGD 960× 960 16 50 0.935 0.920 0.927 0.903 0.535 1.626

17 YOLOv7 Adam 960× 960 16 50 0.919 0.912 0.915 0.882 0.510 1.260

18 YOLOv8s Auto 640× 640 16 50 0.933 0.859 0.894 0.887 0.564 0.661

19 YOLOv8m Auto 640× 640 16 50 0.925 0.936 0.930 0.933 0.595 1.226

20 YOLOv8l Auto 640× 640 16 50 0.932 0.884 0.907 0.903 0.582 1.788

21 YOLOv8s SGD 640× 640 16 50 0.941 0.844 0.890 0.883 0.567 0.651

22 YOLOv8m SGD 640× 640 16 50 0.936 0.902 0.919 0.918 0.597 1.218

23 YOLOv8l SGD 640× 640 16 50 0.943 0.790 0.860 0.845 0.565 1.780

24 YOLOv8s Adam 640× 640 16 50 0.942 0.856 0.897 0.896 0.570 0.666

25 YOLOv8m Adam 640× 640 16 50 0.935 0.806 0.866 0.854 0.544 1.222

26 YOLOv8l Adam 640× 640 16 50 0.936 0.775 0.848 0.822 0.526 1.790

27 YOLOv8s Auto 960× 960 16 50 0.928 0.932 0.929 0.934 0.604 1.459

(Continued)
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strongly in this region, achieving a comparable precision of 0.95,
though its slightly lower recall (0.93) suggests it missed a few tree
detections. In the sparsely populated (B1–B4) region, YOLOv7
and YOLOv9 stood out with the highest recall (0.96), effectively
capturing most trees despite the dispersed distribution. However,
YOLOv9 has lower precision (0.78) indicating an increased number
of false positives, which could lead to over-detection in such
scenarios. YOLOv5 and YOLOv7 both maintained a better balance,
with precision and recall values of around 0.83–0.84 and 0.91–
0.96, making them more suitable for areas with sparse vegetation.
The (C1–C4) region, with moderate tree density, revealed
notable variations. YOLOv7 continued to perform consistently,
with precision and recall values of 0.81 and 0.89, respectively.
Meanwhile, YOLOv9 showed a significant improvement in recall
(0.96), surpassing the other models, but this came at the cost of
lower precision (0.74). YOLOv5 and YOLOv8 achieved comparable
results, but both exhibited slightly reduced recall, reflecting
challenges in detecting certain tree instances in moderately dense
environments. Finally, in the uniformly distributed and small trees
(D1–D4) region, all models performed exceptionally well, with
YOLOv5 and YOLOv7 achieving precision values of 0.96 and 0.95,
respectively. YOLOv9 achieved perfect recall (1.00), indicating it
successfully detected all trees in this area. However, its precision
(0.93) was slightly lower than YOLOv5, reflecting a small number
of false positives.

Overall, the results indicate that YOLOv7 consistently performs
well across various scenarios, making it the most versatile choice for
tree detection tasks. YOLOv5 offers similar reliability, particularly
in uniformly distributed or densely vegetated regions. YOLOv9,
with its outstanding recall in most cases, may be better suited for
tasks requiring exhaustive detection, although its precision may
need refinement to reduce over-detection.

4 Discussion

In this study, various YOLO models with different
hyperparameter combinations were applied to the newly created
VHRTrees dataset to identify the best-performing designs for
tree detection. A total of 81 experiments were conducted using
the YOLOv5 and YOLOv7–YOLOv9 models with different sizes,
network configurations, and optimizers. The experimental results
were evaluated using Precision, Recall, F1-Score, mAP@0.50,
and mAP@0.50:0.95 metrics. The top five results, shown in
Table 5, are from experiments 27, 28, 29, 30, and 37. These results
predominantly belong to the YOLOv8 model. To facilitate visual
comparison and evaluate performance across different models, the
best visual results for each model are shown in Figures 3, 4.

The experimental results highlight the significant impact
of data augmentation on the performance of various YOLO
models. Augmentation consistently improved Precision, Recall,
F1-score, and mAP values across different models and optimizer
configurations. This underscores the importance of incorporating
data augmentation into the training pipeline to enhance model
robustness and accuracy. Different optimization techniques also
played a crucial role in model performance. This indicates that
the choice of optimizer, along with augmentation strategies,
can significantly influence model outcomes. Models with
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FIGURE 3

Visual results of Karacabey (A1–A4), Dikili (B1–B4), Aliağa (C1–C4), Seferihisar (D1–D4), and Selçuk (E1–E4) with the four best YOLO results; YOLOv5
(orange), YOLOv7 (blue), YOLOv8 (red), and YOLOv9 (pink).

larger network sizes, such as 960 × 960, generally resulted
in higher accuracy, but at the cost of increased inference
time. This trade-off must be carefully considered, especially
in applications requiring real-time processing. However, the
substantial improvements in detection metrics with larger
networks suggest that the increased computational demand

may be justified for applications where accuracy is paramount.
Moreover, the results from the YOLOv9gc model with the SGD
optimizer and data augmentation demonstrate the model’s
adaptability and better performance, achieving the highest
F1-score and mAP@0.50:0.95 scores in its series. This finding
highlights the potential of the YOLOv9 series in complex
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FIGURE 4

Visual results of Dikili (A–D), Aliağa (E–H), and Karacabey (I–L) regions.

TABLE 6 Statistical evaluation for different regions.

Row Metrics YOLOv5 YOLOv7 YOLOv8 YOLOv9

1 (A1–A4) TP 81 82 82 83

FP 4 3 3 9

FN 6 5 5 4

Precision 0.95 0.96 0.96 0.90

Recall 0.93 0.94 0.94 0.95

2 (B1–B4) TP 85 89 87 89

FP 18 19 22 25

FN 8 4 6 4

Precision 0.83 0.82 0.80 0.78

Recall 0.91 0.96 0.94 0.96

3 (C1–C4) TP 73 74 70 80

FP 17 17 17 28

FN 10 9 13 3

Precision 0.81 0.81 0.80 0.74

Recall 0.88 0.89 0.84 0.96

4 (D1–D4) TP 228 226 229 223

FP 10 13 16 18

FN 5 7 4 0

Precision 0.96 0.95 0.93 0.93

Recall 0.98 0.97 0.98 1.00

5 (E1–E4) TP 168 170 169 168

FP 3 3 3 6

FN 3 1 2 3

Precision 0.98 0.98 0.98 0.97

Recall 0.98 0.99 0.99 0.98
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detection tasks where augmented data can provide significant
performance benefits.

In the literature, numerous tree detection datasets have been
documented. These datasets are typically evaluated based on UAV
usage, resolution, number of images or patches, and number
of trees covering a specific area, as detailed in Table 1. In
addition to Table 1 datasets, case studies can be also found
in the literature. For example, Liu et al. (2024) is focused
on tree detection with species classification using the YOLOv7
model. In terms of mAP@0.50:0.95, they get 0.781. In another
example, Durgut and Ünsalan (2024) focused on improving
YOLO by using a transformer architecture. They improved the
results by 13.1% and got a 0.854 mAP:0.50 score. However, our
dataset stands out not only from the documented datasets by
also from case studies by incorporating images from different
regions with diverse topographic and climatic characteristics
and comprises a substantial total of 25,966 tree samples. This
extensive variety and volume make our dataset significantly
distinct from others. The YOLOv5, YOLOv7, YOLOv8, and
YOLOv9 models and their variants with different dimensions
were successfully applied to these datasets, achieving a highest
mAP@0.50 value of 93.8% (Table 4, no. 30). This dataset enhances
detection performance in regions with diverse topographic and
climatic characteristics by balancing resolution, image volume, and
methodological diversity. The comparison of these datasets reveals
several advantages offered by VHRTrees. Firstly, the integration
of multiple YOLO versions (YOLOv5, YOLOv7, YOLOv8, and
YOLOv9) provides a robust detection framework that can adapt
to various detection scenarios and improve overall accuracy.
This multi-method approach aligns with the findings in the
paper by Casas et al. (2023), which suggest that combining
multiple detection algorithms can significantly enhance detection
robustness in complex environments. Additionally, the use of high-
resolution GE imagery in the VHRTrees dataset allows for more
precise detection of diverse tree structures.

In summary, the VHRTrees dataset offers a comprehensive
and effective approach to individual tree detection in orchard
environments. Its very high resolution, extensive image volume,
and integration of multiple sophisticated detection methods make
it a superior choice compared to existing datasets. The balanced
approach of the VHRTrees dataset not only enhances detection
accuracy, but also ensures its applicability across varied orchard
environments, making it a valuable resource for precise and reliable
tree detection tasks.

5 Conclusion

This study has demonstrated the efficacy of the YOLOv5,
YOLOv7, YOLOv8, and YOLOv9 architectures in markedly
enhancing the accuracy of tree detection in diverse environmental
contexts, including varying topographic and climatic conditions.
Through rigorous experimentation on the VHRTrees dataset,
the importance of meticulous model selection and optimization
strategies, such as varying network configurations and advanced
optimizers like SGD, has been underscored for achieving superior
performance metrics. The application of robust data augmentation
techniques consistently resulted in improved model robustness and
enhanced key detection metrics, thereby underscoring their pivotal

role in optimizing overall accuracy. Moreover, the incorporation
of high-resolution imagery from a multitude of topographically
and climatically diverse regions within the VHRTrees dataset,
comprising 25,966 annotated tree samples, constituted a robust
platform for the evaluation of multiple YOLO architectures and the
assessment of their adaptability across a spectrum of environmental
conditions. This dataset not only facilitated insights into the
scalability and transferability of these models, but also advanced
AI-driven tree detection, species identification, and broader
applications in forest management. The incorporation of deep
learning methodologies with remote sensing data has illustrated
considerable potential across a range of applications. For example,
the application of basic RGB digital imagery using advanced deep
learning techniques represents a cost-effective solution for the
efficient mapping and monitoring of tree and tree species. In
the future, research should focus on investigating the scalability
and transferability of these models across different geographical
regions and diverse datasets. The incorporation of data from
additional geographic regions and diverse tree species into existing
benchmark datasets would enhance the generalizability of findings
and facilitate the development of universally applicable tree
detection frameworks.

This study makes a significant contribution to the advancement
of AI-driven forest monitoring and management, emphasizing
the potential for enhancing environmental sustainability and
conservation efforts through innovative technological applications.
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