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Sago (Metroxylon spp.), a traditional staple food that naturally grows in Papuan 
forests, plays a vital role in the food security of local inhabitants and is equally 
important in food and non-food industries. Changes in forest cover to other 
land uses might lead to shifts in the sago ecosystem, which could also affect 
sago production and nutrients. Currently, there is a lack of studies correlating 
vegetation changes and nutrient profiles. This research article aims to explore 
the vegetation area changes and their potential relationship to the sago forest 
ecosystem and nutrient profiles of the sago. NDVI information was collected 
from Mappi and Merauke Regency, Papua Province of Indonesia in 1990, 1996, 
2012, 2018, and 2020. Sago samples were gathered from selected sites in Mappi 
and Merauke. No statistically significant changes in NDVI degradation classes or 
sago habitat area classifications were observed over the years in each regency. 
NDVI degradation classes in Merauke showed a significantly higher proportion 
of degraded areas (>76%) and a more pronounced yellowish color than in Mappi 
(8%). Approximately 90% of areas in Mappi were categorized as having an increase 
in trees and no degradation, which was significantly higher than in Merauke 
(<5%). Sago in Merauke exhibited significantly higher macro and micronutrient 
content than Mappi. Findings from GLM predictor analysis showed that higher 
carbohydrate, protein, Ca, Cu, Mg, and Na content of sago samples were positively 
and significantly associated with collected samples in Merauke. An increase in 
carbohydrate levels was also positively associated with a higher percentage of 
NDVI classes related to the yellowish color. The results indicated that sago palms 
in Merauke are more mature, and therefore, the samples were harvested at an 
older age than those in Mappi. NDVI can be used to monitor area degradation 
and predict nutritional quality.
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Introduction

In Asian countries, such as Indonesia, wild sago palms thrive in 
swampy forests and shrub areas, particularly stands in Southern Papua 
forests in Indonesia. Sago (Metroxylon spp.) or so-called “sagu” locally, 
plays a vital role in both food and non-food industries and has other 
beneficial features (Koonlin, 1979; Letsoin et al., 2020). In contrast, 
the expansion of settlements or industrial growth along with an 
increased population might cause a significant decline in forest 
services, as experienced by the Southern Papua Province. In 1990, 
Merauke, one of the regions in Southern Papua Province, was covered 
by approximately 50% forests. Papuan forests consist of a high 
diversity of flora and fauna species. Some of these wild plants are 
considered essential for food consumption of the local people, such as 
wild breadfruit (Artocarpus sp. or “sukun hutan,” paddy oats (Gnetum 
gnemon L. or “melinjo”), wild yam (Dioscorea sp.1 or “umbi hutan”), 
and island lychee (Pometia pinnata or “matoa”), in addition to sago 
(Van Heist et al., 2015; Nurhasan et al., 2022). Sago has been a staple 
in the diet and part of the local cuisine of the population in the studied 
area for generations and plays a pivotal role in various aspects of life 
in sago-growing areas, including rituals, feasting, and other cultural 
activities (Van Heist et al., 2015; Ehara et al., 2018). Furthermore, 
sago-based foods, which are combined with other plant-or animal-
based ingredients, have a significant position in culinary agro-
industries nationally and regionally, such as sago cake and sago bread 
(Mofu and Abbas, 2015). However, by 2019, the forest cover had 
decreased by approximately 8% over the 30-year period. For instance, 
in the Merauke region, among the 20 districts, 12 experienced a loss 
of sago palm habitat as a consequence of the reduced forest cover. 
However, there has been no prior report on the assessment of forest 
cover in that area. These conditions can serve as an indicator of a 
decline in forest ecosystems, thus necessitating an evaluation of 
changes in forest cover and its societal implications (Vogelmann et al., 
2009; Letsoin et al., 2020).

Remote sensing instruments have been used in data acquisition, 
monitoring, and identification through various distant platforms, 
encompassing airborne, spaceborne, and ground-based methods. 
Airborne and spaceborne methods include unmanned aerial vehicles 
(UAVs), manned airplanes, and satellites. Meanwhile, handheld or 
vehicle-mounted devices are included in ground-based platforms 
(Shanahan et al., 2001). Presently, various satellite imageries, such as 
Landsat, Sentinel, Moderate Resolution Imaging Spectroradiometer 
(MODIS), Pleiades, and other applicable satellites, are made for 
different purposes such as natural resources mapping, ocean and 
coastal implementation, assessment of vegetation cover, or detecting 
forest cover changes. For instance, the detection of decreased oak in 
the Mark Twain National Forest in the United States was done using 
Landsat data imagery (Wang et  al., 2007), while in the European 
region, it was achieved through the Coordination of Information on 
the Environment (CORINE) Land Cover (LC) dataset (Ramankutty 
and Foley, 1999; Waser and Schwarz, 2006; Feranec et  al., 2016). 
Forests contribute to a wide range of societal advantages. For example, 
European countries, such as the Czech Republic, covered by ca. 33% 
of woodland, provide not only wood and non-wood products but also 

cultural and social services that encourage a forest bio-economy 
approach (Šodková et  al., 2019; Purwestri et  al., 2020). Forest 
ecosystem services (FES) have become valuable since their function is 
to protect biodiversity for both biotic and abiotic systems and develop 
clean drinking water while regulating the water circulation system for 
flood prevention (Huertas Bernal et al., 2021).

Recently, new opportunities have been established to combine 
remotely sensed data with non-spatial data. Non-spatial data, 
commonly known as attribute data, refer to descriptive information 
about objects or phenomena that lack geographic coordinates 
(Huertas Bernal et al., 2021). Spatial and non-spatial data represent 
fundamental components within contemporary data-driven decision-
making frameworks. Spatial data, fundamentally comprising 
geographical information, provide crucial insights regarding locations, 
distances, and patterns across various areas and landscapes. This form 
of data is indispensable across multiple sectors, including real estate, 
logistics, urban planning, and environmental research, facilitating 
geospatial analysis and visualization to enhance decision-making 
outcomes. Conversely, non-spatial data, which lack geographical 
context, are instrumental in elucidating patterns and correlations 
within datasets such as demographic statistics, transaction records, or 
behavioral information. Non-spatial data serve as the foundational 
element for statistical analysis, data mining, predictive modeling, and 
machine learning applications across a wide array of disciplines. The 
effective integration of both data types can yield comprehensive 
insights that support intelligent, evidence-based decision-making 
solutions. Hence, non-spatial data nowadays, associated with various 
methods and platforms, such as Forest-BioGeochemical Cycles 
(BGC), a lifecycle model to estimate the emissions of carbon, nitrogen, 
and water through the ecosystem, for example, assessment on the 
relationship between land cover land-use changes and water retention 
in the ecosystem (Huang et  al., 2022). Other current studies are 
incorporating biochemical data, for instance, fresh weight moisture 
and chlorophyll content, to evaluate forest stress (Xi et al., 2021), or 
combining AI learning algorithms and spatial indices, for example, 
vegetation indices to estimate the macronutrient category in palm oil 
and the growth of paddy fields using Sentinel, Modis Imagery, and 
vegetation indices (VI) (Ramadhani et al., 2020; Kok et al., 2021). 
Remote sensing images can be processed to generate the Normalized 
Difference Vegetation Index (NDVI), a key parameter for measuring 
vegetation vitality and recognizing modification in forest cover, 
typically using the value 0–1 (Pettorelli et al., 2005; Meneses-Tovar, 
2011). Due to their effectiveness in enhancing signal waves from 
vegetation and eliminating unforeseen discordances such as clouds, 
atmospheric circumstances, or a different angle of observation, NDVI 
has also been widely used in other yield estimation, crop monitoring, 
and forest cover. The selection of preferred vegetation indices (VIs) 
was made by assessing the VIs outlined in a comprehensive review of 
remote sensing and vegetation index studies (Bannari et al., 1995).

To date, research examining the relationship between remote 
sensing data and non-spatial plant nutrient information, particularly, 
is still quite limited. This theoretical connection arises from the fact 
that plants contain chlorophyll, which governs the greenness of their 
leaves and as an indicator of a plant’s health (Gitelson and Merzlyak, 
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1997; Xu et al., 2000; Steele et al., 2008). Yoder and Waring (1994) 
conducted greenhouse experiments on small Douglas-fir seedlings 
and reported that healthy plants absorb more visible light for 
photosynthesis while reflecting more NIR light, resulting in higher 
NDVI (Normalized Difference Vegetation Index) values during the 
growing phase. Conversely, stress, disease, or poor soil conditions can 
reduce a plant’s chlorophyll content, leading to increased reflection of 
visible light and decreased reflection of NIR light, which lowers NDVI 
values (Farrar et al., 1994; Wang et al., 2016; Beisel et al., 2018). While 
many studies linking NDVI with plant greenness and health have been 
conducted in controlled laboratory or plot-specific environments, 
remote sensing-derived NDVI can be  used to assess the level of 
greenness or degradation over larger areas (Pettorelli et  al., 2005; 
Meneses-Tovar, 2011; Yengoh et al., 2015). Additionally, NDVI can 
be correlated with a plant’s nutrient uptake, as plant health is closely 
tied to nutrient availability and absorption. Healthy plants with higher 
NDVI values typically have more efficient nutrient uptake due to 
better-developed root systems and photosynthesis. Therefore, plants 
with higher NDVI values are likely to access essential nutrients such 
as nitrogen, phosphorus, and potassium from the soil, promoting 
growth and development. A drop in NDVI values may signal nutrient 
deficiencies, resulting in poor plant growth (Farias et al., 2023). Thus, 
high NDVI values indicate healthy plants with optimal nutrient 
uptake, which contributes to improved plant tissue nutrient content, 
such as higher protein, vitamin, and mineral concentrations. NDVI 
indirectly aids in improving crop yield and nutritional quality by 
providing insights into the optimization of nutrient uptake from 
the soil.

In the case of sago, studying the relationship between NDVI and 
the nutrient profile of sago presents challenges due to its natural 
growth conditions in the tropical forests of Papua. As such, changes in 
sago-growing areas often need to be manually recorded. Then, the 
production also needs to be manually estimated, however, there is a 
lack of study on the quality of sago in relation to the area changes. 
Recent approaches to monitoring these changes (degradations or 
gains) included predicting potential sago-growing areas through land 
cover class conversions using remote sensing imagery (Letsoin et al., 
2020), and more recently, deep learning techniques have been 
employed to recognize sago palm leaves and flowers over other similar 
palm trees in the Papuan forests (Letsoin et al., 2022b). In this article, 
we explored NDVI class changes (in degradation and potential sago 
habitats) derived from remote sensing imagery over the observed 
years in two selected regions of Papua and associated the NDVI 
classifications with the quality of sago, as indicated by selected nutrient 
profiles of the samples collected from the same areas.

We developed two research questions (RQs) to answer 
this objective:

RQ1: Are there significant changes in NDVI degradation classes 
and NDVI classifications of sago habitat areas over the observed 
years in two selected regions of Papua?

RQ2: What are the potential predictors, besides the NDVI classes 
(degradation and potential sago habitat area), which affect the 
selected nutrient profiles of sago (e.g., carbohydrate, Mg, and Ca)?

We hypothesized, first, that significant shifts in NDVI classes, 
including degradation and potential sago habitat areas, have occurred 

over the observed years. Second, the NDVI classifications are 
significantly associated with the nutrient profiles of sago, which, in 
turn, has implications for people’s wellbeing.

Materials and methods

Study area and research overview

Two regencies located in the southern region of Papua Province 
were selected as study sites due to their distinctive characteristics in 
infrastructure and rural development. Merauke, the easternmost city 
in Indonesia, holds the title of being the largest regency in the Papua 
Province, with 20 districts (Figure 1). Over the past decade, Merauke 
has experienced a population growth of approximately 18.28%, with 
approximately 1.20 million individuals actively engaged in the field of 
agriculture. Based on a previous study (Letsoin et al., 2020), significant 
shifts were found in forested to non-forested regions in Merauke over 
the past two decades. Meanwhile, Mappi, a newly established regency 
(formerly part of Merauke Regency), provides a clearer perspective on 
rural development and land-use changes, particularly forest cover, 
which setting it apart from Merauke.

Mappi Regency, which is positioned between 138°30′ E–140°10′ 
E and 5°10′ S–7°30′ S, has a total area of 24,188.22 km2 and 
encompasses 15 districts with substantial food crops and horticulture 
commodities, such as paddy fields, cassava, sweet potatoes, betel nut, 
and coconuts. The area of sago palm covered approximately 818,178 ha 
in 2019 (BPS-Statistics of Mappi Regency, 2021). Meanwhile, Merauke 
Regency spans from a longitude range of 137°38′52.9692″ E to 
141°0′13.3233″ E and a latitude range of 6°27′50.1456″ S to 
9°10′1.2253″ S. According to weather statistics, the average annual 
temperature varies between 16 and 32°C, and the average annual 
rainfall is 2,900 mm. The relative humidity ranges from 62 to 95% 
(BPS-Statistics of Merauke Regency, 2020; BPS-Statistics of Papua 
Province, 2020).

Native Papuan in Mappi and Merauke primarily engage in hunting 
and fishing wild animals, as well as gathering forest plants. In 
particular, Murdjoko et al. (2016) reported that various forest plants 
are grown wildly in the forests of South Papua, with trees being the 
most abundant, followed by shrubs, herbs, vines, ferns, palms, orchids, 
rattans, and pandan. Among these, sago palms, a traditional staple 
food, have been used by local communities for generations. In 
addition to sago, local people have also gathered from forests and 
traditionally cultivated various tubers for their alternative staples, such 
as wild yam and sweet potato, respectively. Furthermore, Merauke 
experienced an expansion of agriculture, that is, paddy fields and 
transmigration settlements (a national government program to move 
farmers from crowded islands to less developed regions) since 1990, 
as part of an effort to establish this regency as a rice producer. As a 
result, rice has been introduced as an alternative staple food alongside 
sago and tubers. Another significant land cover transformation related 
to land cover in both study regions was the establishment of estate 
crop plantations managed by private companies Appendix Table A1. 
presents land cover shifts in Mappi and Merauke from 1990 to 2020.

A comprehensive overview of the data collection and analysis 
process for the sago nutrient and NDVI study is displayed in Figure 2, 
which illustrates the multistep process involved in the remote sensing 
study of sago palm habitats and nutrient profiling in South Papua. 
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Starting with field measurement, GPS data are collected to identify 
specific sampling points, which informs the NDVI analysis conducted 
via satellite imagery processed with Google Earth Engine and ArcGIS 
for enhanced spatial analysis. Concurrently, sago starch is collected 
from selected regions. The samples were analyzed in the laboratory to 
determine their micro and macronutrient content. This rigorous 
process ensures a thorough validation of NDVI class changes 
(Meneses-Tovar, 2011; Santillan et al., 2012a, 2012b; Yengoh et al., 
2015; Farias et al., 2023) and investigates the potential correlation with 
nutrient variations in sago palms, providing insight into land cover’s 
impact on sago quality.

Data imagery

In this study, supervised classification of multitemporal 
Landsat images, including Thematic Mapper (TM), Enhanced 
Thematic Mapper (ETM+), and Operational Land Imager (OLI), 
at a resolution of 30 m, was used to construct remote sensing data. 
The data were collected with a cloud cover of less than 50% at a 
height of 705 km. For image acquisition, various Landsat were used 

for this study, namely Landsat-4, Landsat-5, Landsat-7, and 8 
Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) 
imaging (Table 1). The Landsat-8 satellite, which was introduced 
in 2013, is equipped with a Thermal Infrared Sensor and an 
Operational Land Imager, providing image scenes in nine spectral 
bands. These bands include Band-1 (blue: 0.45–0.51 m), Band-2 
(blue-green: 0.45–0.51 m), Band-3 (green: 0.53–0.59 m), Band-4 
(red: 0.64–0.67 m), Band-5 (near infrared, NIR: 0.85–0.88 m), 
Band-6 (shortwave infrared 1, SWIR1: 1.57–1.65 m), and Band-7 
(SWIR2: 2.11–2.29 m). These spectral bands give spatial resolutions 
of 30 m, 15 m for panchromatic wavelengths (pan), and 100 m for 
thermal infrared (IR).

The United States Geological Survey (USGS) archives, which are 
reachable at https://earthexplorer.usgs.gov, provided all the Landsat 
data used in this study. In addition to the present investigation, the 
Google Earth Engine played an instrumental role in acquiring, 
processing, and analyzing satellite imagery data with a particular 
emphasis on the Landsat missions and analyzing vegetation density. 
These images were processed to generate the NDVI. To add this, 
global positioning system (GPS) technology was employed during 
fieldwork to ensure precise spatial accuracy. Global positioning system 

FIGURE 1

Map of the study areas.
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(GPS) apparatuses were utilized to systematically capture the accurate 
coordinates of sago palm specimens and various relevant land cover 
classifications, thus supplying vital ground-truth information. The 
GPS data were integrated into Geographical Software Systems to 
produce comprehensive maps, thereby creating a spatial framework 
for interpreting the implications of land cover transformations on 
sago nutrients.

The workflow for vegetation mapping using Landsat data was 
divided into five distinct stages (Appendix Figure A1). First, in the 
Data Input stage, Landsat-4 and Landsat-5 data from the years 
1990–2000 were used, while Landsat-7 data were used for the years 
2000–2012 and Landsat-8 OLI/TIRS data were used for the years 
2013–2020. The Landsat satellite recording data encompass the 
period from January 1 to December 31 of the specific year. Remote 
sensing information, including regional maps, ground truth 
information (Appendix Figure A2), and land cover classification 
data, as detailed in (Letsoin et al., 2020), that is, from the Ministry 
of Forestry and Environment from the years 1990–2020 were also 
incorporated. Following this, in the Data Preprocessing stage, 

activities such as data retrieval, radiometric calibration, and 
geometric correction were carried out to prepare and refine the 
Landsat data for use. In the Data Processing stage, after obtaining 
image data and ground-truth samples, shape files were imported 
into Geographical Software Systems (GSS) such as ArcMap, ArcGIS, 
and QGIS. QGIS and SAGA were the primary tools used for all data 
processing, involving supervised classification, followed by 
vegetation index (VI) calculations and classification. In the Data 
Validation stage, every site used 450 ground-truth samples to 
distinguish land cover classes. The ground-truth sample is depicted 
in Appendix A. In the field data, the geographic coordinates, which 
include latitude and longitude, were collected as ground truth, also 
the starch of sago and sago waste specifically sago rough hampas, 
while Google Earth Engine (GEE) aided in the interpretation of 
classifications and validation of results. Finally, in the Analysis stage, 
the aim was to conduct statistical evaluations of the outcomes. Land 
cover (LC) refers to the physical material presents on the surface of 
the earth, which includes various types of vegetation, water bodies, 
urban areas, bare soil, and other surface features. In the study, LC 

FIGURE 2

Methodological pipeline for correlating NDVI and sago palm nutrient variability in Mappi and Merauke.
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denotes the classification of different types of land cover observed 
in the study regions, such as forested areas, agricultural land, or sago 
palm habitats. Understanding the LC is crucial for assessing how 
changes in the landscape, such as deforestation or agricultural 
expansion, impact the environment and local ecosystems. 
Vegetation index (VI) is a quantitative measure that assesses the 
presence, density, and health of vegetation in a specific area. VI 
values are used to monitor vegetation dynamics, detect changes in 
land cover, and assess the health of plant life in the study area. Clip 
band means that specific spectral bands of satellite imagery are 
being extracted and restricted to a defined geographic area. This 
allows us to investigate only the relevant part of the data.

The NDVI was classified using the following formula (Wiegand 
et al., 1991):

 

( )
( )
NIR i RED j

mNDVI
NIR i RED j

−
=

+

NIRi represents the reflectance of band i within the NIR spectral 
range, spanning from 760 nm to 900 nm for Landsat data from 4 to 
5 and 7. For Landsat 8, which has a 30-m ground resolution, the NIR 
range is 850–880 nm. REDj denotes the reflectance of band j within 
the red spectral region, and m denotes NDVI measured to obtain 
the NDVI levels. Six degradation levels from NDVI values in 1990, 
1996, 2012, 2018, and 2020 were categorized in this research, 
as follows:

 (1) Less than and equal to 0 = no vegetation = artificial areas
 (2) More than 0–0.2 = severe degradation
 (3) More than 0.2–0.4 = moderate degradation
 (4) More than 0.4–0.6 = slight degradation
 (5) More than 0.6–0.8 = addition of vegetation
 (6) More than 0.8 = no degradation

Land cover classes, that is, primary and secondary dryland forest, 
primary and secondary swamp forest, bush/shrub, grassland, swamp 

TABLE 1 Spatial and spectral resolution of different landsat programs.

Landsat information Wavelength (in nm) Resolution (in m)

Landsat 4–5 TM

Band 1: Blue 450–520

30 m for visible and IR, 120 m for thermal

Band 2: Green 520–600

Band 3: Red 630–690

Band 4: NIR 760–900

Band 5: SWIR1 1,550–1,750

Band 6: Thermal 10,400–12,500

Band 7: SWIR2 2,080–2,350

Landsat 7 ETM+

Band 1: Blue 450–520 30 m for visible, and IR,

Band 2: Green 520–600 15 m for Pan,

Band 3: Red 630–690 60 m for thermal

Band 4: NIR 770–900

Band 5: SWIR1 1,550–1,750

Band 6: Thermal 10,400–12,500

Band 7: SWIR2 2,090–2,350

Band 8: Pan 520–900

Landsat 8 OLI/TIRS

Band 1: Coastal aerosol 430–450 30 m for visible and IR,

Band 2: Blue 450–510 15 m for Pan,

Band 3: Green 530–590 100 m for thermal infrared (IR)

Band 4: Red 640–670

Band 5: Near Infrared 850–880

Band 6: SWIR1 1,570–1,650

Band 7: SWIR2 2,110–2,290

Band 8: Pan 500–680

Band 9: Cirrus 1,360–1,380

Band 10: TIRS1 10,600–11,190

Band 11: TIRS2 11,500–12,510
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shrub, and swamp were identified as suitable ecosystems of sago 
(Bintoro et al., 2018; Letsoin et al., 2020). According to the land cover 
data for Merauke from 1990 to 2019, the greatest loss occurred in 
primary swamp forests (approximately 40%), followed by primary 
dryland forests (approximately 27%) (Letsoin et  al., 2020). When 
overlaying the land cover results with the NDVI classifications, areas 
with moderate degradation corresponded to a loss of green, 
particularly forest areas, between 20 and 40%, while severe 
degradation referred to more than 40%. Thus, a reduction in green 
areas by less than 20% is classified as slight degradation.

In this article, no vegetation is defined as artificial areas. The 
addition of vegetation refers to areas that have been planted or have 
naturally grown in addition to the existing vegetation, or areas where 
reforestation or afforestation efforts have taken place and where 
natural tree growth has occurred due to favorable environmental 
conditions or changes in land-use practices. Hereafter, additional trees 
pertain to trees that are not included within the original or preexisting 
vegetation cover. This encompasses three categories, namely newly 
planted trees, that is, trees that have been intentionally introduced as 
components of reforestation or afforestation initiatives. Then, naturally 
regenerated trees define trees that have emerged spontaneously, 
without direct human involvement, potentially due to alterations in 
environmental conditions that promote natural regeneration. Thus, 
increased tree density includes regions where the concentration of 
trees has augmented, either through natural processes or 
anthropogenic activities, resulting in a greater number of trees than 
previously existed.

Furthermore, prediction on sago habitat areas was also derived 
from collected data points in 1990 and 2020. Four classes of sago 
habitat areas in this article were as follows:

 (1) Less than and equal to 0 = non-potential sago habitat
 (2) More than 0–0.3 = degraded sago habitat
 (3) More than 0.3–0.6 = newly established sago habitat
 (4) More than 0.6 = potential sago habitat

Potential sago habitat is derived from all land classes suitable for 
the growth of sago, in contrast to non-potential sago forests, such as 
rice-field, estate crop plantations, and artificial areas. The green area 
or potential sago habitat refers to areas where ecological conditions 
favor the growth of sago palm, signifying that these sites have the 
necessary hydrological resources, for instance, in swampy areas, soil 
properties, and climatic attributes crucial for the natural expansion of 
sago forests.

The research incorporated secondary data sources to enhance the 
accuracy and scope of the demarcation process. These data sources 
encompassed historical satellite imagery, climate data, and land-use 
maps, which were accessible in diverse formats, including raster 
(spatial) and tabular (non-spatial) datasets. The raster datasets 
delivered spatially explicit information regarding vegetation cover, 
whereas the tabular data provided valuable insights into environmental 
conditions and land-use practices. The combination of these data 
types allowed for an extensive exploration of sago forest areas, 
addressing both present and historical patterns. The demarcation 
methodology utilized an integration of NDVI maps in conjunction 
with the Land cover map, applying established thresholds to 
differentiate areas marked by increased NDVI values that signify sago 
forests, concurrently validating these insights with empirical field data 

and historical references. This approach guaranteed that the identified 
sago forests were not merely accurate in their present extent but also 
representative of their ecological importance across historical 
timelines. Information on land-use classification areas was gathered 
from remote sensing secondary data reported by the INTSIA 
Foundation of Papua Province.

Selected macro and micronutrient analysis 
of sago and the nutrient fulfillment

The sago palm tree primarily serves as a source of starch for food 
production. Sago starch is derived from the Metroxylon spp. plant, 
which comprises two species: Thorny Sago (Metroxylon rumpii) and 
Spineless Sago (Metroxylon sago). The process of obtaining starch 
from these trees involves several stages. The readiness of sago palms 
for harvest can be determined by observing changes in their leaves, 
shoots, stems, and thorns. Sago plants are often ready for harvesting 
when the leaves are slightly swelled but they have not yet blossomed. 
In addition, compared to young trees, the thorns diminish, and the 
leaf sheaths become cleaner and smoother. Cutting, bark removal, 
and trunk collection are the steps involved in harvesting suitable 
trees. Sago starch is typically extracted from the stem’s pith by 
crushing and kneading the stem to liberate the starch, then washing 
and filtering the mixture to remove the fibrous residue (Fetriyuna 
et al., 2024). After being suspended in water, the raw starch is allowed 
to settle before being dried. Figure  3 depicts traditional sago 
processing resulting in sago starch and sago waste.

Sago starch samples, manually extracted by sago farmers (Figure 3), 
were collected according to the habitats. In this study, four main sago 
habitats were selected: dryland and swamp forests, as well as swamp 
and bushland (Bintoro et al., 2018; Letsoin et al., 2020). Approximately 
1 kg of sago starch was collected from each selected habitat within the 
study regencies, during the summer period from August to September 
2020. After collection, sago samples were packed in plastic, sealed, and 
stored in a refrigerator, before being transported to the laboratory.

The packed and sealed samples were analyzed for macronutrients 
at the Central Laboratory of Life Sciences (Laboratorium Sentral Ilmu 
Hayati), Universitas Brawijaya, Indonesia. Moisture, fat, and ash content 
analyses were conducted in duplicate following the national standards 
of Indonesia, as outlined in the “Standard Nasional Indonesia” (Badan 
Standarisasi Nasional, 1992). Protein content was analyzed using the 
Inhouse Method (IKP/1.0.4.04/LSIH), while carbohydrate content was 
calculated by subtracting the total volume of macronutrients from the 
initial sample volume of macronutrients (MacLean et al., 2003).

The samples were also subjected to freeze-drying for 24 h using a 
LyoQuest-85 apparatus from Azbil Telstar Technologies S.L.U., Spain, 
until a stable weight was achieved. Subsequently, they were transferred 
to Falcon tubes and stored in a freezer at -80°C. These freeze-dried 
samples were sent to the Institute of Nutritional Science at the 
University of Hohenheim, Germany, where they were analyzed in 
duplicate for their micronutrient content. Selected minerals, including 
iron (Fe), zinc (Zn), magnesium (Mg), potassium (K), calcium (Ca), 
sodium (Na), phosphorus (P), and copper (Cu), were analyzed 
following the regulations set by the European Commission (EC) 
(European Commission, 2009). The minerals Ca, Mg, K, Na, P, Fe, Zn, 
and Cu were analyzed using atomic-emission spectrometers 
(VistaPRO ICP-OES from Varian Inc., Palo Alto, CA, United States). 
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Meanwhile, iodine content was measured using the ICP-MS NexION 
300X instrument from PerkinElmer, Inc., Boston, MA, United States.

Data analysis

The Kolmogorov–Smirnov normality test was initially used to 
examine the data distribution. The general characteristics of vegetation 
index classification for Mappi and Merauke Regency were presented 
in terms of total area and percentage. The paired t-test was employed 
to compare all areas and the percentage of NDVI classes across the 
observed years within each regency. Moreover, NDVI values 
indicating degradation (in degradation classes) were combined and 
compared between two regencies using the independent t-test. The 
relationship between the NDVI values of potential sago habitat and 
NDVI degradation level areas was assessed using Spearman’s rank 
correlation test.

Sago nutrients and their fulfillment in Mappi and Merauke were 
compared using the Mann–Whitney non-parametric test. The selected 

nutrients from 100 g of sago samples were compared with that of the 
daily recommended nutrient intake of Indonesian non-lactating and 
non-pregnant women (aged 19–64 years), which was considered as 
young and middle-aged adults (Ministry of Health of Republic of 
Indonesia, 2019). Women were selected because of their significant 
roles in the family life cycle (United Nation System Standing 
Committee on Nutrition, 2006; Langer et  al., 2015). The analysis 
principally assessed the percentage of daily fulfillment of these 
selected nutrients when consuming 100 g of sago.

Furthermore, predictors of selected nutrients in sago samples 
(non-categorical and non-normally distributed data) were associated 
using the generalized linear model (GLM) (Dobson and Barnett, 
2002). For macronutrients, carbohydrate and protein content in sago 
samples were selected as the independent variables (Grace and Henry, 
2020; Setiawan et  al., 2022). Additionally, minerals related to the 
growth of sago, that is, Ca, Cu, Fe, Mg, Na, and P were included as the 
outcome variables (Yadav and Mahyuddin, 1991; Stenbaek and Jensen, 
2010; Grace and Henry, 2020). Based on the examination of the sago 
growth stage, NDVI values ≤0.4 indicate fruit ripening (Santillan 

FIGURE 3

Traditional sago starch production (developed by author: S.M.A. Letsoin).
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et al., 2012b; Letsoin et al., 2022b). In this article, NDVI values equal 
to and less than 4 were in between moderate and severe degradation 
levels. Moreover, the percentage of NDVI classes was used as one of 
the predictors, instead of its absolute values due to the differences in 
the total areas of the study regencies, as the area of the Merauke 
Regency is approximately double the size of Mappi. Only information 
from 2020 was used for the predictor analysis, as the sago samples 
were collected during this year. Hence, independent variables included 
in the first predictor analysis were the regency (1 = Merauke), NDVI 
classes (1 = combined moderate and severe degradation, toward 
yellowish color), and percentage of areas in NDVI degradation classes. 
The second predictor analysis of selected nutrients in sago samples 
was conducted using similar methods, except that the NDVI classes 
and percentages used were related to the potential of sago habitat 
areas. Only independent variables with significant association with the 
selected nutrients were presented. All analyses were considered 
statistically significant if the p-value was less than 0.10, using the IBM 
SPSS statistics version 27 (IBM Corp., Armonk, NY, United States).

Results

Over the years, Mappi and Merauke have experienced land-use 
transformation because of population and economic growth. Between 
2003 and 2017/2018, the population in Mappi increased by 
approximately 27% to 96,671 persons, while the population in Merauke 
increased by approximately 23% to 223,289 persons. An increase in 
population density was also observed from 2.90 to 3.32/km2 in Mappi 

and from 3.77 to 4.77/km2  in Merauke (BPS-Statistics of Merauke 
Regency, 2003, 2018; BPS-Statistics of Mappi Regency, 2006, 2018). 
Approximately, in 1990, the total natural forest and non-forest areas 
(cropland, grassland, settlements, water and barren land) in Mappi 
were 1,554,724 and 615,211 ha, respectively; meanwhile, the areas in 
Merauke were 2,440,396 and 2,411,320 ha, respectively. The larger 
areas of Merauke than Mappi are also shown on the total estimated 
sago habitat region, 4,074,407 vs. 1,909,358 ha in 1990, as well as 
3,476,030 vs. 1,940,267 ha in 2020, respectively (Appendix Table A1).

After the introduction of rice to the local people, consumption of 
sago has decreased in the last few decades. Unlike sago and some tubers 
that are naturally grown or cultivated, rice is primarily distributed 
regularly as food aid by the government or should be bought in the 
local market. This condition has caused a dependency on rice, 
especially among the new generations (Purwestri et al., 2019; Nurhasan 
et  al., 2022). With the growing population, the local government’s 
promotion of consuming diverse staple foods (Food Security Agency, 
2020), and the supporting food security among local households, it is 
crucial to monitor sago forest area changes and predict the production.

Vegetation indices in Mappi and Merauke 
during the observed years

Table  2 presents the vegetation index changes in Mappi and 
Merauke that were recorded from Landsat satellite data, 
encompassing the period from January 1 to December 31 of 1990, 
1996, 2012, 2018, and 2020. No statistically significant differences in 

TABLE 2 NDVI degradation area changes in Mappi and Merauke Regencies in the observed years1.

No NDVI classes Mappi Merauke

1990 1996 2012 2018 2020 1990 1996 2012 2018 2020

Actual values, in ha

1. No vegetation 45,982 43,114 52,781 51,065 51,508 267,787 269,882 265,050 267,917 267,975

2. Severe degradation 10,867 11,047 6,211 7,377 8,824 75,414 112,291 78,712 50,920 35,121

3. Moderate degradation 10,863 14,559 7,361 6,462 4,663 1,576,552 2,667,903 2,471,410 1,636,173 1,034,132

4. Slight degradation 114,788 138,151 68,837 75,282 55,421 2,233,810 1,100,608 1,326,390 2,167,941 2,618,730

5. Areas with degradation 136,518b 163,757b 82,410b 89,121b 68,908b 3,885,775a 3,880,802a 3,876,512a 3,855,033a 3,687,982a

6. Addition of vegetation 612,132 353,467 1,433,012 1,502,011 1,580,199 360 3,239 12,361 30,973 197,965

No degradation 1,375,381 1,600,789 599,874 527,815 468,479 – – – – –

Areas without degradation 1,987,513b 1,987,513b 1,954,256b 2,032,886b 2,029,826b 360a 3,239a 12,361a 30,972a 197,965a

Percentage, %

1. No Vegetation 2.12 1.99 2.43 2.35 2.37 5.52 5.56 5.46 5.52 5.52

2. Severe Degradation 0.50 0.51 0.29 0.34 0.41 1.55 2.31 1.62 1.05 0.72

3. Moderate Degradation 0.50 0.67 0.34 0.30 0.21 32.49 54.99 50.94 33.72 21.31

4. Slight Degradation 5.29 6.37 3.17 3.47 2.55 46.04 22.68 27.34 44.68 53.98

Areas with degradation 6.29b 7.55b 3.80b 4.11b 3.18b 80.09a 79.99a 79.90a 79.46a 76.01a

5. Addition of Vegetation 28.21 16.29 66.04 69.22 72.82 0.01 0.07 0.25 0.64 4.08

6. No Degradation 63.38 73.77 27.64 24.32 21.59 – – – – –

Areas without degradation 91.59b 91.59b 90.06b 93.68b 94.41b 0.01a 0.07a 0.25a 0.64a 4.08a

1Data are presented as sum and percentage; data comparison between two regencies was analyzed using the independent t-test; a = significant difference (p < 0.10) with Mappi Regency in a 
similar observed year; b = significant difference (p < 0.10) with Merauke Regency in a similar observed year.
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NDVI class area conversions across the observed years were found in 
each regency.

More than 76% of the total area in Merauke experienced 
degradation (slight, moderate, or severe) over the observed years, 
which was significantly higher than in Mappi, where less than 8% of 
the area was affected (p < 0.10). In Merauke Regency, moderate 
degradation was more prominent in 1996 and 2012 (approximately 55 
and 50%, respectively), whereas slight degradation became more 
pronounced in 2018 and 2020 (approximately 33 and 21%, 
respectively), indicating a decrease in degradation level, as also 
depicted in Figure 4.

Although Merauke occupies a larger forested region, 
percentages of NDVI classes without degradation in Mappi were 
higher (approximately 90%) than that in Merauke (less than 5%) 
(p < 0.10; Table 2). The degraded forested regions in 2012, 2018, 
and 2020 in Mappi were approximately two times less than in 1990 
and 1996, resulting in a darker green color (The NDVI value 
approaching 1) of the NDVI image in the later years (Figure 5). In 
Merauke, approximately 700,000 ha, or approximately 14% of the 
total area, could not be captured due to cloud cover. In contrast, 
areas with no data in Mappi accounted for less than 5% of the 
total area.

As a consequence of the larger forested landscape, the total potential 
sago areas in Merauke were almost doubled than in Mappi 
(Appendix Table A1). Overall, approximately 80% of sago habitats were 
preserved, with the rate of sago area degradation ranging from 3.4 to 4.7% 
over the 30-year period. Table 3 shows the conversion of potential sago 

habitat areas and their proportions over the observed years (1990 vs. 2020) 
and between the study regions (Mappi vs. Merauke) based on the NDVI 
classifications. Although statistically significant differences between the 
examined years and the two regencies were not established, a trend of 
decreasing sago areas can be observed, as also depicted in Figure 6.

The results from the overlayed analysis showed that, of the total 
2,494,309 ha of potential sago forests in 1990  in Mappi, 
approximately 100 thousand hectares have been degraded 
(Table 3). Meanwhile, of the 275,972 ha of non-potential areas, 
nearly 70 thousand hectares were newly established as sago forests 
by 2020. Furthermore, 277,849 ha of sago forests in Merauke have 
been degraded, while about 86 thousand hectares of non-potential 
areas became sago forests. There was no significant association 
between the changes in estimated sago habitat regions (Table 3) 
and degradation level based on NDVI (Table  2), based on the 
results of Spearman’s rank correlation test.

The blue area, or additional sago habitat, represents regions 
acknowledged as nascent or developing sites where sago palms 
could potentially prosper, despite their previous designation as 
inappropriate environments for sago cultivation. The 
advancement of these regions may arise from either natural 
growth or human-induced factors, encompassing reforestation 
projects or endeavors aimed at transforming non-sago territories 
into sago plantations. However, regions where the environmental 
conditions are not conducive to sago palm growth, which could 
be due to poor soil quality, water supply, or climatic conditions 
that do not support the growth of sago, are represented by orange 

FIGURE 4

Changes of NDVI degradation classes in Mappi Regency from 1990 to 2020.
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areas or no potential sago habitat. Meanwhile, regions that were 
previously conducive to the cultivation of sago palms have 
experienced environmental degradation, making them less 
capable of supporting sago palm populations. This degradation 
may be attributed to deforestation and the conversion of land for 
agricultural or plantation purposes.

Nutritional profile of sago

Table 4 presents the macro and micronutrient content of sago 
starch from Mappi, compared to that from Merauke Regency. Sago 
from both sites presented high carbohydrate content but very low 
levels of carotenoids and riboflavin. The protein, Ca, Cu, Mg, Na, and 

FIGURE 5

Changes of NDVI degradation classes in Merauke Regency from 1990 to 2020.

TABLE 3 NDVI potential sago habitat changes in Mappi and Merauke Regencies in the observed years1.

No NDVI classes Mappi Merauke

1990 2020 1990 2020

Actual values, in ha

1. Non-potential sago habitat 275,972 205,590 516,446 430,206

2. Degraded sago habitat 100,131 227,849

3. Newly grown sago habitat 2,494,309 69,892 4,000,054 86,160

4. Potential sago habitat 2,394,758 3,772,233

Total areas 2,770,281 2,770,370 4,516,500 4,516,448

Percentage, %

1. Non-potential sago habitat 9.96 10.71 11.43 13.67

2. Degraded sago habitat 3.39 4.71

3. Newly grown sago habitat 90.04 2.37 88.57 1.78

4. Potential sago habitat 83.53 79.84

Total areas 100 100 100 100

1Data are presented as sum and percentage.
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K content of sago from Mappi were significantly lower than those 
from Merauke.

Sago is recognized as a carbohydrate source, with 100 g of sago 
fulfilling approximately 24–27% of the recommended daily intake for 
adult Indonesian women (Table 4). The sago samples contain between 
1 and 2 mg of iron per 100 g, fulfilling approximately 9–15% of the 

daily iron requirement for adult women. The protein, fat, and selected 
vitamins, as well as most mineral content, do not provide sufficient 
amounts for the recommended intake per day.

The results of GLM predictor analyses indicated that higher values 
of the nutrients, such as carbohydrates, Ca, Cu, Mg, and Na, were 
positively and significantly associated with the location of the collected 

TABLE 4 Nutrient profiles of sago samples and the fulfillment based on the recommended dietary intake of Indonesian adult women aged 19–64 years 
(Ministry of Health of Republic of Indonesia, 2019).

Nutrients Sago samples p- value Percent fulfillment p- value

Mappi Merauke Mappi Merauke

Macronutrients

  Carbohydrate (g) 75.67 ± 0.26 84.62 ± 0.15 0.476 24.49 ± 0.09 27.74 ± 0.02 0.133

  Protein (g) 0.17 ± 0.05 0.56 ± 0.02 0.010 0.29 ± 0.08 0.98 ± 0.04 0.060

  Fat (g) 0.10 ± 0.01 0.09 ± 0.02 0.257 0.16 ± 0.01 0.014 ± 0.03 0.533

Micronutrients

  Ca (mg) 10.68 ± 0 0.75 11.77 ± 0.70 0.019 1.01 ± 0.07 1.11 ± 0.07 0.267

  Cu (mg) 0.02 ± 0.01 0.05 ± 0.00 0.010 0.02 ± 0.00 0.06 ± 0.00 1.333

  Fe (mg) 2.00 ± 1.65 1.18 ± 0.25 0.114 15.49 ± 13.0 9.3 ± 1.98 1.000

  K (mg) 50.77 ± 6.9 32.62 ± 0.39 0.476 1.08 ± 0.15 0.69 ± 0.01 0.133

  Mg (mg) 4.15 ± 1.90 6.09 ± 0.15 0.010 1.22 ± 0.56 1.79 ± 0.45 0.133

  Na (mg) 3.70 ± 0.05 18.67 ± 0.11 0.010 0.25 ± 0.00 1.27 ± 0.01 0.064

  P (mg) 9.79 ± 3.07 8.95 ± 0.13 0.114 1.40 ± 0.44 1.28 ± 0.02 1.000

  I (mg) <0.05 <0.05 –

Vitamin A (RE)

 Beta-carotene (mg) <0.04 <0.04 –

 Lutein (mg) <0.04 <0.04 –

Riboflavin (mg) <0.02 <0.02 –

1Data are presented as mean ± sd; non-categorical and non-normally distributed nutrient data comparisons between Mappi and Merauke were analyzed using the Mann–Whitney test; 
statistical significance: p < 0.05.

FIGURE 6

Changes in potential sago habitat: (A) Mappi Regency and (B) Merauke Regency.

https://doi.org/10.3389/ffgc.2025.1373768
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Fetriyuna et al. 10.3389/ffgc.2025.1373768

Frontiers in Forests and Global Change 13 frontiersin.org

sago samples (Merauke) (Table 5). Changes in carbohydrate levels 
were positively associated with the percentage of NDVI combined 
degradation classes (towards yellowish color) (p = 0.078). No 
significant association was found between the selected predictors and 
Fe or P. Only those factors with p < 0.10 are shown in Table 5.

Discussion

Papuan forests, similar to those in most other Asian and African 
countries, play a crucial role in the wellbeing and food security of local 
communities by providing a rich variety of nutrient-dense wild animals 
and plants (Ickowitz et al., 2014; Powell et al., 2015; Setiawan et al., 2022; 
Nurhasan et al., 2022; Fetriyuna et al., 2022). Sago serves as a staple food 
in the local communities of Papua Island and other regions in the 
eastern part of Indonesia (Sonia et  al., 2015), holding considerable 
socio-cultural and economic importance, particularly in the Papua 
region (Hisa et al., 2019). Between 2018 and 2019, sago palms grown on 
approximately 818 hectares (ha) in Mappi produced 0.82 tons per year 
(BPS-Statistics of Mappi Regency, 2021). Meanwhile, to date, there is no 
available information concerning the sago production in Merauke. As 
sago palms in Papuan forests grow wildly (Bintoro et  al., 2018), 
production information was mostly not recorded; hence, monitoring 
forest cover information becomes essential to track the potential forest 
provision, both in quantity and quality of sago.

The definition of degradation level using NDVI values typically 
involves assessing changes in vegetation health and density over time, as 
well as assessing ecological responses to environmental changes 
(Pettorelli et al., 2005). It provides essential insights into how climate 
fluctuations, habitat degradation, and other environmental factors 
impact ecosystems (Pettorelli et al., 2005; Meneses-Tovar, 2011). Linking 
NDVI to vegetation dynamics and trophic interactions underscores the 
importance of predicting future ecological changes and guiding effective 
environmental management. It is applied to establish correlations 
between NDVI’s impact on population growth and the environment, as 
demonstrated by studies such as Li et al. (2022) and Xue et al. (2023).

Overall, the NDVI dynamic changes in Mappi Regency displayed 
an improvement toward greening (Figure 5) from 1990 to 2020 implying 
that the regency is covered by healthy plants (Yengoh et al., 2015), 
especially during their growth phase indicated by high chlorophyll level 
(Yoder and Waring, 1994; Kizilgeci et al., 2021). Conversely, in Merauke 
Regency, slight and moderate degradation classes have significantly 
taken place since 1990 (Table  2). The barren land and forest areas 
converted into settlements for housing or industry may have affected a 
consolidation of green areas in Merauke (Letsoin et al., 2022a).

NDVI derived from remote sensing data has also been employed to 
generate a sago map in the Philippines (Santillan et al., 2012a). The sago 
maps created were used to determine the availability of sago to support 
an extensive commercial industry of sago starch in the region. NDVI is 
also used to detect sago areas in another region of Indonesia (Hidayat 
et al., 2018). In our study, the NDVI was also used to monitor potential 
sago habitat areas that can be used for managing forests and preventing 
them from further forest cover degradation. No statistically significant 
changes were found in NDVI for potential sago habitats, although an 
additional habitat area was observed over the examined years in Mappi 
and Merauke (Table 3). In contrast, Letsoin et al. (2020) revealed a 
considerable decrease in natural forest classes in Merauke and an 
increase in estate crop plantation, indicating that NDVI could detect the 
changes in greenness, but not the type of land use related to sago 
habitats, or the species of the vegetation.

Optical remote sensing frequently has a considerable amount of 
missing information due to extreme atmospheric conditions, such as 
clouds (Letsoin et al., 2023a, 2023b). As radar data are unaffected by 
clouds, they can be combined with the NDVI to be computed optically 
by satellite, which also underscores the limitation of this study.

Various studies have included NDVI with a chlorophyll index for 
agricultural applications (Kizilgeci et al., 2021; Kim et al., 2022). NDVI 
information has also been correlated with leaf-tissue nutrients to predict 
sugarcane yield (Pinheiro Lisboa et al., 2018). To our knowledge, this is 
the first article that connected NDVI values on a regional scale with the 
nutrient content of sago. When the association between NDVI and the 
vegetation phase of sago was examined, Letsoin et al. (2022b) found that 

TABLE 5 Results of predictors analysis of selected nutrients of sago assessed by the generalized linear model.

Predictors and responses Beta Standard error 95% Confidence interval p- value

NDVI degradation classes

1. Regency (1 = Merauke)

  Carbohydrate (mg) 9.553 0.178 9.097–10.009 <0.001

  Protein (mg) 0.388 0.018 0.347–0.430 <0.001

  Ca (mg) 1.092 0.363 0.255–1.928 0.017

  Cu (mg) 0.035 0.003 0.029–0.041 <0.001

  Mg (mg) 1.934 0.670 0.389–3.479 0.020

  Na (mg) 14.995 0.043 14.895–15.094 <0.001

2. % of NDVI combined degradation classes

  Carbohydrate (mg) 0.009 0.004 −0.001-0.019 0.078

NDVI potential sago habitat classes

Regency (1 = Merauke)

  Carbohydrate (mg) 0.939 0.176 9.554–10.216 <0.001

  Protein (mg) 0.390 0.019 0.337–0.443 <0.001

  Cu (mg) 0.032 0.002 0.026–0.045 <0.001

  Na (mg) 14.985 0.075 14.866–15.146 <0.001
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the harvested age of sago was indicated by less green color due to flowering 
and fruit ripening. Additionally, NDVI values for the fruit ripening were 
found to be 0.4 or lower, trending toward a yellowish color (Santillan et al., 
2012b). Consistent with these findings, the results from the GLM analysis 
presented that higher values in carbohydrates were significantly associated 
with the sample collection location (Merauke) (Table 5) and an increased 
percentage of NDVI classes, specifically the yellowish areas (Table 2; 
Figure  6). Moreover, based on a study in Malaysia, amylose and 
amylopectin, two primary sources of carbohydrates in sago starch found 
in the samples of sago in different growth stages, gradually increased 
together with age (Tie et al., 2008). Sago palm maturity is characterized by 
the attainment of the highest starch content in the trunk, typically 
occurring at the age of 9–12 years (Bintoro et al., 2018).

The results from the nutrient profile of sago also showed a 
considerably higher Mg content in sago samples from Merauke than in 
those from Mappi (p = 0.010), as confirmed by the findings from GLM 
analysis (Table 5), indicating the abundant chlorophyll that was shown 
by the green color of leaves. Chlorophyll has Mg as its core mineral 
content (Stenbaek and Jensen, 2010). Chlorophyll activity in binding 
protein might influence the protein in sago, contributing to considerably 
higher protein content in sago from Merauke than from Mappi 
(p = 0.010; Stenbaek and Jensen, 2010). Furthermore, significantly 
higher Ca, Cu, and Na content (Ca, Cu, and Na) in sago from Merauke 
than in those from Mappi (Table 4), which was corroborated by GLM 
predictor analysis (Table 5), was likely due to the different growth stages 
of the collected samples (Matsumoto et al., 1998).

Laboratory findings in nutrient profiling of sago implied that 
harvesting sago at an appropriate harvested age might result in a better 
carbohydrate and selected mineral content. Sago palm takes various 
age ranges, between 8 and 12 years, to reach maturity (Jong, 2018; 
Ming et al., 2018). Sago palms in the Papuan forests are wild stands 
and not managed (Bintoro et al., 2018); therefore, the NDVI results 
implied the more mature age of collected sago samples in Merauke 
than in Mappi, indicating the importance of monitoring to ensure the 
sago production in quantity and quality. In connection with the 
nutrient content of sago, our findings showed that areas with a high 
proportion of yellowish color (Merauke) can indicate a mature stage 
of sago palms ready for harvest (Santillan et al., 2012b); hence, the 
NDVI application proves to be practical for use in large areas, like the 
two study regions. Moreover, NDVI has been utilized to investigate 
factors such as crop yield production, biomass, and chlorophyll 
content (Naser et al., 2020; Savasli et al., 2023). In this case, as sago 
palms grow wild in the forests, there is limited information on their 
production, especially in Merauke. Therefore, ongoing monitoring of 
the sago habitat using NDVI is recommended not only to detect the 
degradation but also to predict the production.

Sago starch has a carbohydrate content per 100 g that is 
approximately 75–85%, about similar to sweet potatoes (86%) 
(Grace and Henry, 2020), yet considerably higher than white rice 
(34%). Uthumporn et  al. (2014) found that sago starch 
concentration can reach 97.9% during specific growth phases, 
indicating a rich starch composition. The starch has a greater 
resistant starch concentration than tapioca or wheat starch (Hisa 
et al., 2019). Sago is also gluten-free and can be used for those who 
are intolerant to gluten, unlike rice and corn (Kumari, 2019). As 
sago is a carbohydrate-rich staple food but low in other 
macronutrients, the higher value in, for example, the protein of 
sago from Merauke than from Mappi is considered insignificant 
(Grace and Henry, 2020).

Applying NDVI to examine the potential nutrient content of 
harvested sago at various stages to enhance its nutritional values can 
be beneficial to improve the quality. However, the high carbohydrate 
content and low presence of other nutrients in sago samples (Table 4) 
suggest that consuming sago should be complemented with other 
animal-and plant-based foods (such as beans, vegetables, and fruits) 
to meet the daily recommended intake for local women.

Conclusion

Overall, no statistically significant changes were found in NDVI 
degradation classes or sago habitat area classifications over the 
observed years within each regency. However, a significantly higher 
proportion of degraded areas (>76%) in Merauke was found, with a 
more pronounced yellowish color than in Mappi (8%). Meanwhile, 
approximately 90% of areas in Mappi were categorized as having an 
increase in trees and no degradation, indicating a healthier forested 
region, than in Merauke (less than 5%).

Despite having categorization under less green areas, findings from 
GLM predictor analyses showed that higher carbohydrate, protein, Ca, 
Cu, Mg, and Na content of sago samples were positively and significantly 
associated with collected samples in Merauke. An increase in carbohydrate 
levels was also positively and significantly associated with a higher 
percentage of NDVI classes related to the yellowish color. The results 
indicated that sago palms in Merauke are more likely from a more mature 
growth stage, and therefore, the samples were harvested at an older age 
than those in Mappi. Thus, sago harvested at its mature age is associated 
with a higher level of carbohydrate, protein, and the selected minerals.

NDVI could indicate the presence of degradation or addition of 
trees in Mappi and Merauke Regency; however, it could not differentiate 
between primary forests with mature stages of estate crop plants, nor 
could it identify certain species. Nevertheless, we  suggest ongoing 
monitoring of the sago habitat using NDVI to detect degradation, 
predict production, and examine the potential nutrient content of 
harvested sago at various stages to enhance its nutritional quality.
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