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A rapid, reliable, cost-effective tree volume calculation is critical for estimating biomass 
and carbon sequestration. This estimation is vital for developing better carbon budgets 
for wetland ecosystems to assess current and future climate scenarios. Portable 
mobile light detection and ranging (LiDAR) systems such as the Apple iPad Pro sensor 
provide an efficient method for capturing 3D shapes of bald cypress (Taxodium 
distichum) pneumatophores, or “knees.” The knee is a rounded conical structure 
growing above the water or land from the roots of bald cypress trees, usually a 
few feet away from the trunk. This study explores remote sensing techniques for 
mapping individual knees to eventually understand their significance in the carbon 
balance of forested wetlands. This project was conducted in the Three Sisters Swamp, 
part of the Black River Reserve in North Carolina, USA. The volume of individual 
tree knees was estimated using multiple geometric algorithms and compared to 
allometric estimates from traditional field measurements derived from the shape of 
a cone. Specifically, we used the convex-hull by slicing (C-hbS) and Canopy-Surface 
Height (CSH) algorithms to estimate the volume of individual knees after LiDAR data 
processing. The volume estimates from the CSH and C-hbS methods are higher than 
the allometric estimates due to the knees’ natural irregular shape and concavities. 
The CSH method returned the largest volume values on average. The discrepancy in 
estimated volume between the allometric equation and the two algorithms became 
more pronounced with increasing knee height. The estimated aboveground mean 
biomass and carbon of the knees are 61.9 ± 23.4 Mg ha−1 and 32.83 ± 12.38 Mg C ha−1, 
respectively. The challenges of algorithmic methods include the time and equipment 
needed to process dense point clouds. However, they better capture irregularities 
in knee shape, ultimately leading to better estimates and an understanding of knee 
structure, which is currently poorly understood.
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1 Introduction

Examining carbon sequestration in wetlands is important for developing carbon budgets, 
which are needed to understand wetlands’ role in the global carbon cycle (Bridgham et al., 
2006). Estimating the amount of forest biomass is critical and essential for calculating biomass 
energy, carbon storage, and sequestration of carbon in a forested ecosystem (Hossain et al., 
2015; Vashum and Jayakumar, 2012), as well as for studying climate change, forest health, 
ecosystem productivity, and nutrient cycling (Dong et al., 2014). An accurate calculation of 
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tree volume is needed to determine biomass estimates. This volume 
can be converted into dry weight using the wood density factor to 
predict the forest’s total biomass and carbon storage (Demol et al., 
2022; Sagang et al., 2018; Yusup et al., 2023).

The bald cypress tree (Taxodium distichum) has been observed to 
tolerate flooded conditions for extended periods (Meyer, 2020). 
Cypress trees provide excellent flood control by absorbing surface 
water runoff over the short term, especially during storms (Parresol, 
2002). The water absorbed during the rainy season can replenish the 
depleted water table during the dry season. It also serves as a habitat 
and breeding ground for wildlife and rare species, and it minimizes 
disturbance from gale and hurricane-force winds (Parresol, 2002; 
Wilhite and Toliver, 1990).

One of the distinct features of bald cypress is the woody 
protrusions of pneumatophores, or knees, growing from its root 
system (Lamborn, 1890). Carbon stock trends of the knees of bald 
cypress vary across climate gradients in the southeastern United States 
(Middleton, 2020). Hence, the knees contribute an unknown quantity 
of “teal” carbon to inland freshwater wetlands (Middleton, 2020). Teal 
carbon is the term used to describe the carbon stored in inland 
freshwater wetlands (Nahlik and Fennessy, 2016). The cypress knees 
often have swollen bases or buttresses (Briand, 2021), and the woody 
conical structures of varying sizes are found around the base of many 
cypress tree stems (see Figure 1A).

On an ecosystem level, these knees are thought to play a 
substantial role in carbon storage by contributing between 5.2 and 
17% of the overall carbon stored in the Mississippi River Alluvial 
Valley (Ketterings et al., 2001; Middleton, 2020). While a standard, 
accepted, and commonly used allometric equation for carbon 
assessments would be valuable, knees vary significantly in size (Brown, 
1984), so a single value representing this species’ carbon contribution 
may be impossible (Middleton, 2020). If the amounts of knee carbon 
are sizable in various swamp environments, a non-destructive 
technique could be  a very useful tool for estimating the carbon 
contribution of these forests to global stocks (Middleton, 2020).

Previous studies have employed a traditional approach to 
estimating the volume and biomass of cypress knees (Middleton, 
2020) using allometric equations that approximate the knee shape or 
form to a geometric cone. Measuring forest biomass through field 
surveys at a large spatial scale is time-consuming and costly 
(Hermosilla et  al., 2014; van Leeuwen and Nieuwenhuis, 2010). 
Remote sensing technology, such as Light Detection and Ranging 
(LiDAR), has proved its potential to provide detailed forest canopy 
characteristics (Cao et al., 2016). Individual tree height with sub-meter 
vertical precision can be extracted from LiDAR data, from which 
diameter estimates can be predicted; both metrics have significant 
advantages in forest aboveground biomass (AGB) estimation (Cao 
et  al., 2016; Hudak et  al., 2012; Lu et  al., 2020). The choice of 
techniques for volume and biomass estimation depends on various 
factors (Shi and Liu, 2017), namely the ecosystem being studied, the 
species or object of interest, the aim of the study, the level of detail 
needed in terms of resolution and scale, and the cost. Fernández-
Sarría et al. (2013) estimated individual tree (P. hispanica) volume and 
biomass from terrestrial laser point clouds and ground-level 
measurements using four different methods: convex-hull, convex-hull 
by slices, triangulation, and voxel modeling. Vauhkonen et al. (2012) 
extracted canopy volume based on Airborne Laser Scanning (ALS) 
data using a 3-dimensional (3D) alpha-shape algorithm. Korhonen 

et al. (2013) used 3D alpha shape and 3D convex hull techniques to 
extract tree crown volumes from ALS data, with the results showing 
that the LiDAR-based estimates were highly correlated with the field-
measured tree crown volumes (best R2 = 0.83) and the convex-hull 
techniques producing the best accuracy. However, one of the 
drawbacks of the convex-hull estimation is overestimation of crown 
volume due to inability to account for gaps with the crown structure 
(Kato et al., 2009; Korhonen et al., 2013).

On the other hand, Chang et al. (2017) estimated the volume of 
objects from a 3D point cloud by cutting them into slices of equal 
thickness along the z-axis, bisecting each slice along the y-axis, and 
integrating the slices to estimate area and volume. Zhi et al. (2016) 
calculated the volume of a 3D point cloud based on the slice method 
where the object was sliced along the z-axis, and each slice was 
projected onto the x-y plane; the area was then estimated using 
Euclidean geometry and volume by multiplying each projected surface 
area by the height of the slice. Combining the slice-based volume 
techniques with the 3D convex hull (Fernández-Sarría et al., 2013) 
shows that convex-hull by slices reduces error in the tree crown 
volume compared to the 3D convex hulls without slicing and voxel 
method. Furthermore, Yan et al. (2019) also showed that a slicing-
based method adapted to the tree crown change rates along the 
vertical direction enhances volume accuracy by aligning the number 
of slices and thickness to the shape and size of the tree crown. To our 
knowledge, no study has examined these approaches to estimate the 
biomass of cypress knees.

A combination of platforms and techniques can accurately 
estimate volume extent and biomass (Swetnam et al., 2018). Remote 
sensing, calibrated by field measurements, addresses these challenges 
and limitations (Gonzalez et  al., 2010). Portable scanning LiDAR 
systems can capture individual trees’ complex shapes and structures 
as a detailed 3-D point-cloud image (Hosoi et al., 2013). We explored 
methods for estimating the volume of bald cypress knees using a 
LiDAR sensor of an Apple iPad Pro. We compared the estimates of the 
convex-hull by slicing (C-hbS) and Canopy Surface Height (CSH)--
based algorithms to those obtained from an allometric equation and 
field measurements. Our study aims to fill a gap in the knowledge of 
the volume and structure of cypress knees and highlight the ecological 
importance of one of the oldest cypress groves in North America, 
found in the Black River Reserve.

2 Materials and methods

2.1 Study area

The Black River is a nutrient-poor blackwater tributary of the 
Cape Fear River, approximately 50 miles long, in southeastern North 
Carolina in the United States (Stahle et al., 1988). As its name suggests, 
the Black River is a slow-moving river within the Blackwater system 
in southern Sampson County (Figure  1). The Black River flows 
through Bladen County southeast toward Pender County, where it 
joins the Cape Fear River (Library of Congress, 2015). A blackwater 
river is a system with slow-moving waterways flowing through 
forested wetlands or swamps. As vegetation decays, tannins leach into 
the water, making transparent, acidic, darkly stained water resembling 
black tea (Janzen, 1974). It is more acidic than other freshwater 
ecosystems because of vegetation decay and the subsequent release of 
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tannins in the water. The nature of this environment makes it 
unfavorable for many hardwood tree species and slows down the 
growth of bald cypress (Stahle et al., 2019).

The climate of the Black River area is characterized by inter-annual 
variability in water levels, intense evapotranspiration demand during 
the growing seasons, and frequently flooded conditions that prevail in 
the forested wetlands in the Southeastern United States (Davidson and 
Janssens, 2006; Stahle et al., 2012). Water levels fluctuate significantly 
throughout the year, with an average water depth of 1.2 meters (m), 
and the river is, on average, 45.7 m wide (North Carolina Division of 
Parks and Recreation (NCDPR), 2018). The highest flow occurs during 
winter and early spring. While summer and fall have somewhat lower 
flows, flow during the dry months is augmented and sustained to some 

extent by the water stored underground and the water held in swamps 
(Bureau of Outdoor Recreation, 1971).

The Black River is home to a grove of old-growth cypress trees, some 
more than 1,700 years old (Stahle et al., 1988). Recent research shows 
that the forested wetlands of the Black River preserve one of the oldest 
living bald cypress trees in southeastern North Carolina at 2,624 years 
old (Stahle et al., 2019). During dry periods, especially throughout the 
summer, fallen logs in the river make maneuvering the river difficult 
(Taylor, 2005). Our study site is located along the Black River at the Three 
Sister Swamp in Bladen County (Figure 1). The swamp is approximately 
1.6 kilometers (km) long and 0.8 km wide, serving as home to the largest 
cluster of ancient cypress trees in the entire Black River Preserve (Horan, 
2020). We accessed the study area by launching kayaks from the Nature 

FIGURE 1

Map of the study area with the boundary indicated in brown, ground control points identified with squares, and the field sampled knees identified with 
circles.
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Conservancy (TNC) landing site. The area sampled in this study is 
relatively small, given the complex nature of the ecosystems.

2.2 Data collection

2.2.1 Field data
We randomly selected 55 knees for measurement in the field on 

May 24, 2023. For each knee, we measured the diameter at water level 
or ground and the slant height, defined as the base to the apex for the 
longest side (Figure 2). Given the conical and irregular shape of the 
knee, actual height cannot be directly measured. It took an average of 
35 s for two people and an average of 80 s for a single person to 
measure an individual knee, including recording the data.

We calculated the actual height in cm Equation 1, from tip (apex) 
to ground or water line using Pythagoras’ theorem:

 
2 2    Actual Height Slant Height Radius of base= −  (1)

The volume in cm3 was calculated using the equation for a cone 
Equation 2. Middleton (2020) has used this equation for cypress knees 
in Florida:

 ( ) ( )= ×1    3Volume Area of Base Actual Height
 

(2)

Based on the field metrics, we found that the minimum radius was 
4.6 cm, and the maximum was 25.3 cm, with an average of 13.3 cm. 
The minimum and maximum heights were 30.14 cm and 201.7 cm, 
respectively, with an average value of 85.7 cm.

Additionally, oven-dry weight refers to the weight of the wood 
materials after completely drying in an oven. To estimate the wood 
density needed for the computation of biomass, we randomly selected 
and cored 15 knees of varying sizes. We placed the harvested knee cores 
in the oven for about 4 days and heated them at a 120-degree 
temperature to remove all the moisture. We calculated the volume (cm3) 
of each core, measured the weight of the dried wood cores [i.e., mass 
(g)], and calculated the wood density (g/cm3) as follows Equation 3:

 
= MassWood Density

Volume  
(3)

2.2.2 LiDAR data
The Apple iPad Pro 12.9″, 256 GB (Apple Inc., Cupertino, CA, USA) 

running iOS 14.6 has an integrated LiDAR sensor that provides cost-
effective alternatives to established techniques in remote sensing with 
possible field applications (Luetzenburg et al., 2021). This hand-held 
mobile device includes a LiDAR module on the rear camera cluster, which 
includes the receptor and emitter (Yoshida, 2020). We used this device to 
derive the 3D point clouds of the knees in the Three Sisters Swamp. 
We covered an area of 822.1 square meters (m2) from three different area 
scans on May 24, 2023. We performed three non-overlapping scans of the 
area, with each containing three ground control points. The first scan 
covered 150 m2 and collected 6.5 million points with 16 knees measured 
in the field (Table 1); the second scan covered approximately 353 m2, 
generating 6.56 million points with 22 knees measured, and the last scan 

covered just over 319 m2 for a total of 6.98 million points with 17 knees 
measured for reference (Table 1). The observed variation in point cloud 
density across the three scanned areas in Table 1 is due to variations in the 
level of details and features scanned (e.g., less scans for ground, downed 
logs, and standing trees).

The Polycam (2023) app (version 3.0.1) was used to obtain point 
cloud data in standard mode, as the app does not provide setting options 
for the scan (Gollob et al., 2021). During scanning, each knee within the 
study site was scanned individually (Figure 3). Rescanning was avoided 
as it can lead to misalignment and mismatches in the point cloud, 
especially if the points are not accurately georeferenced. Mokroš et al. 
(2021) found that reconstructing trees from rescanned data provided 
poor results. We  scanned each area only once to prevent repetitive 
scanning, ensuring that all points were uniquely captured and correctly 
georeferenced. As raw scan data were saved, postprocessing could 
be conducted any time after the completion of the scans upon returning 
from the field. The app provided standard-setting options for 
postprocessing, which we consistently used across all scans. We exported 
the processed point cloud in a LAS format.

TABLE 1 Scanning, point, and field measurement information.

Variable A B C

Total area scanned 

(m2)

150 353 319

Time taken to scan 

(minutes)

16 20 18

Total number of 

points

6,540,000 6,560,000 6,980,000

Density (points/m2) 43,574 18,594 21,855

Total number of 

scanned knees

106 243 149

Number of knees 

measured

16 22 17

FIGURE 2

Field measurements of an individual knee. The slant height was taken 
along the longest external line of the knee from the ground to the 
tip, the radius of the knee was measured at the ground, and the 
actual height was estimated from these two values.
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2.3 Data processing

We used four steps to obtain a knee volume estimate from the LiDAR 
data (Figure 4). First, the LiDAR data went through a pre-processing stage 
(Step 1), which included registering the scanned data so that a final point 
cloud could be exported for processing. We then processed the LiDAR 
point cloud (Step 2) to transform z-values to represent accurate elevation 
and to classify points as either ground or above ground. The aboveground 
points were then segmented (Step 3) into objects representing cypress 
knees. For each object, we used the C-hbS algorithm and CSH method to 
estimate each object’s volume (Step 4). We compared the volume estimates 
from the C-hbS and CSH methods to estimates from allometric equations.

Step 1. After the LiDAR data was collected in the field, the point 
cloud was registered to the three ground control points using the 
WGS84 Universal Transverse Mercator (UTM) Zone 17 N coordinate 
system with units in m using the align function within CloudCompare 
v2.13.alpha, (2023). To ensure that all negative z-values were converted 
to non-negative values, the x, y, and z values were rotated and 
translated. The registration had an average accuracy (RMS – Root 
Mean Square in CloudCompare) of 5–20 cm.

Step  2. The point cloud was further classified using the Cloth 
Simulation Filter (CSF, Zhang et al., 2016) algorithm in R (RStudio Team, 
2019), while all other processes related to volume estimation were 
implemented in Python using Jupyter Notebook (Kluyver et al., 2016). 
CSF algorithm simulates a piece of cloth draped over an inverted point 
cloud. This method turns the point cloud upside down to derive a 
smoothed, inverted surface. The default parameter values for this 
algorithm initially classified points as ground points when they were not. 
Additional parameters were explored with the following values providing 
the most accurate results: a classification threshold of 0.05, a max iteration 
value of 500 s, and a cloth resolution value of 0.01 m.

Step 3. We filtered the classified knee points to remove all ground 
points, outliers, and non-knee points. Filtering the ground points helps 
isolate the individual knees in the point cloud, facilitating individual 
knee clustering and segmentation. The Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) algorithm is a 

machine learning algorithm for grouping the data points close to each 
other in a high-dimensional space (Ester et al., 1996). For each point 
within a cluster, a neighborhood radius, or maximum distance, is 
identified such that it contains a minimum number of points (Ahmed 
and Razak, 2016). We  used the DBSCAN algorithm to segment 
individual knees in the filtered points. DBSCAN was selected as it does 
not require predetermined cluster counts to cluster datasets with 
arbitrary shapes and find outliers and noise, making it more flexible 
than algorithms like k-means (Chen et  al., 2011). The scikit-learn 
library in Jupiter Notebook (Pedregosa et al., 2011) helps automate the 
volume estimation process.

Step 4. We estimated the volume of the individually segmented 
knees using the C-hbS and CSH algorithms. A convex hull is a concept 
in computational geometry that refers to a convex polygon that 
encloses a given set of points in a geometric space. At the same time, 
a slice-based convex-hull algorithm involves partitioning the 3D point 
clouds into horizontal slices and computing the convex hull of each 
slice individually (Li et al., 2009; Kyriazis et al., 2007). This technique 
was employed to estimate the volume of each knee by slicing knee 
objects along the vertical axis into sections, or slices, at a uniform 
interval of equal thickness (0.02 m) and projecting each slice onto a 
horizontal plane to compute the convex hull Equation 4. Once the 
convex hull has been built, its vertices are arranged counterclockwise 
to ensure consistent orientation. A section curve function was 
developed for each slice area boundary in a two-dimensional plane.

Given the vertex coordinates ( ) ( ) ( )……1 1 2 2, , , , , ,i ix y x y x y , the 
formula for calculating the convex hull area is:

 
( )( )

−

+ +
=

= + +∑
1

1 1
1

1
2

n

i i i i i
i

S y y x x
 

(4)

Where Si in cm2 is the area of the i-th point cloud slice calculated 
based on the convex hull algorithm ( ),i ix y  are the coordinates in cm 
of the i-th vertex of the convex hull formed by the knee point cloud 
slice, and n is the number of vertices.

FIGURE 3

Example of a single knee as seen from a (A) photograph and (B) the point cloud data.
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We then calculated the volume of each slice Equation 5 based on 
the uniform slice thickness of ( )= = ………0 1,2, ,ih h i m  as follows:

 
++

= ∆1
2

i i
i i

S SV h
 

(5)

Where iV  is the volume of the i-th slice of the interval, iS and +1iS
are the areas in cm2 of the lower and upper borders of the section-
volume and ∆ ih  is the slice thickness at the i-th layer.

A bias may arise within the convex hull (without slicing) when 
dealing with concave-shaped objects, causing the convex hull to 
deviate from closely aligned with the object’s boundaries. We corrected 
this by slicing the knees to ensure that the thickness of each slice and 
the number of slice layers were well-adapted to the shape and size of 
the object. This method does not consider irregularities or inward 
curvatures in slices or sections, which can lead to overestimation. 
We then calculated the total volume as the sum of the individual slice 
volumes between interval lines a-b:

 
= ∫

b
k ia

V V
 

(6)

Where kV  is the total volume of the k-th knee in cm3 Equation 6.
The other volume estimation method we explored in this study is 

the CSH method (Fallah and Onur, 2011; Schulze- Brüninghoff et al., 
2019), which directly estimates the volume of each knee by 
partitioning the 3D space into small square grid cells, computing the 
volume for each grid cell, and summing the contributions across all 
grid cells within the CSH. We derived the volume by converting points 
for each knee to a surface using a nearest neighbor interpolation. The 
accuracy of the interpolation to generate the 3D reconstructed CSH 
depends on the density of the point cloud and its ability to create 
stepped or blocky surfaces (Fallah and Onur, 2011). Exploring 

different resolutions ranging from 0.005 m to 0.05 m, we examined 
the accuracy of the CSH method in estimating the knees’ volume 
(Schulze- Brüninghoff et al., 2019).

2.4 Knee density, biomass, and carbon 
estimation

To obtain an estimate for total biomass, we calculated the biomass 
of each knee as a function of the specific gravity (wood density) and 
the volume. To determine the number of knees per hectare, 
we randomly overlayed a series of 2-meter fixed-radius plots across 
the study area and counted the number of knees identified from the 
LiDAR per plot. We multiplied the mean knee biomass by the mean 
knee density to estimate biomass (Mg) and carbon (Mg C) on a 
per-hectare basis. Carbon was assumed to be  53.1% of the wood 
biomass (Middleton, 2020; Woodall et al., 2011).

2.5 Model assessment

Although the C-hbS and CSH algorithms have been used for tree 
volume estimation (e.g., Hosoi et al., 2013; Li et al., 2009; Yan et al., 
2019), the accuracy of their estimates for knee volume has not been 
studied. To evaluate the accuracy of the LiDAR height estimates, 
we compared the calculated height from the field measurements to the 
estimate from the LiDAR point cloud data. We created a scatterplot of 
the allometric volume estimates versus the LiDAR estimates to 
visualize the differences and assess measurement error. Additionally, 
the volume difference estimates, which compared the field volume to 
the LiDAR estimates (C-hbS and CSH methods), were calculated 
using 30-centimeter height and 20-centimeter diameter classes. These 
30 cm height and 20 cm diameter thresholds were chosen as practical 
considerations to help segment the knees effectively, allowing for a 

FIGURE 4

Workflow diagram of the analysis.
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more precise analysis of distribution patterns and distinctions between 
smaller and larger knees.

3 Results

3.1 Findings from postprocessing

Figure 5 highlights the comparison of different default parameters 
for classifying ground points. When the default values proposed by 
Zhang et al. (2016) were used (Figure 5A), more than half the points 
were classified as ground points for this specific knee. Point cloud 
density, topography, and the distribution of non-ground points are 
some factors that influence the ground-filtering performance. 
Adjusting the class resolution from 0.5 to 0.05 m and the cloth 
resolution from 0.5 m to 0.05 m produced a more accurate ground 
point classification (Figure 5B). Additionally, Figures 5C,D provide a 
visual example of the segmentation process using the DBSCAN 
algorithm to identify individual knees. Modifying the parameters for 
the DBSCAN algorithm influences the number of individual knees 
that were identified. When we  modified the parameters for the 
DBSCAN algorithm to a maximum distance of 0.05 m, only four 
individual knees were identified (Figure  5C), while reducing the 
maximum distance to 0.015 m allows for all five knees to be identified 
(Figure 5D). As Ester et al. (1996) reported, using global values for 
maximum distance and minimum points may merge two clusters of 
different densities that are close to each other.

3.2 Volume estimation

When implementing the C-hbS algorithm, we explored different 
slicing heights and computed their convex hull. Slicing heights from 
0.02 to 0.4 m were explored based on the range of height values found 
from the field estimates (Figures 6C–F). This ensures that the number 
of slice layers is well adapted to the shape and size of the actual knees 
(Yan et al., 2019). We overlaid a conical geometry on the point cloud 
to enhance the visualization and understand the relationship between 
the field measurements and the point cloud, as depicted in 
Figure 6A. The convex-hull-without-slicing does not align with the 
shape of the geometry, leading to an overestimation of volume, as seen 
in Figure 6B. The results further indicate that a high number of slices 
per knee (i.e., small slicing height) provides volume estimates that 
capture the 3D geometric shape in finer detail, allowing for the 
identification of slight variations in the shape of the objects 
(Figures 6C–F). Others have found that slicing the convex hull into 
multiple sections improves the accuracy of the volume calculation 
compared to a single calculation of the convex hull without slicing 
(Yan et al., 2019; Zhi et al., 2016).

For a regular conical-shaped structure, the slicing method 
surrounds the points without exaggeration because the outline is 
curved to the exterior of a circle or sphere (i.e., convex). Figure 6G 
provides a visual for this scenario where the red broken line represents 
the convex hull. While the number of points and slice shape change 
along the gradient of a knee, the figure shows the circumferences of 
the slice containing each point at 0.4 m for two different knees. For the 
knee with a concave shape (Figure 6G, knee 4), the slicing method 
does not capture the inward irregularities and tends to simplify the 

shape slightly. Knee 4, on the other hand, in Figure 6G, has both 
concavities and cavities on its surface, which leads to overestimation 
in some sections and a subsequent overestimation of total volume. The 
convex line (represented in red) does not capture the complexity of 
the cavities within the irregular shape. The level of overestimation is 
dependent upon the degree of concavity. In this example, the level of 
concavity decreases the higher up the knee.

Figure 7 represents an example of applying the CSH algorithm for 
a single knee, where 0.05 m, 0.01 m, and 0.005 m resolutions were 
used to compute the volume. Figure 7A provides a comparison of the 
point cloud to a cone created from the field measurements. In relation 
to the allometric volume estimates, the volume from the 0.005 m 
resolution is slightly lower (0.05604 m3, Figure 7A) compared to the 
one obtained from the 0.01 m (0.05613 m3, Figure 7B) and 0.05 m 
(0.05690 m3, Figure  7C) resolutions. The volume using the three 
resolutions was larger compared to the allometric method. Although 
the difference in volume estimates across all three resolutions is not 
significant, the finer resolution provides more detail and has the 
potential to capture the shapes and estimate volume accurately; hence, 
we selected the 0.005 m resolution for the volume estimation process.

3.3 Model assessment

The results presented in Figure  8A indicate that the height 
estimates from the LiDAR point cloud and the field measurements 
are highly correlated (r = 0.98). However, the LiDAR estimates are 
slightly higher for the small knees. Factors such as filtering of 
ground points and slight leaning of knees could influence the 
LiDAR estimates.

The average volume estimates across the three methods differ, 
ranging from 22,110 to 27,450 cm3, with a 24% difference between 
the lowest and highest values (Table 2). The minimum volume for 
the allometric equation method is 660 cm3, and the maximum 
estimate is 118,130 cm3, with a standard deviation of 24,820 cm3. 
The minimum and maximum volume from the C-hbS method are 
800 cm3 and 227,200 cm3, respectively, with a standard deviation of 
34.19 cm3, while the minimum and maximum volume for the CSH 
method are 930 m3 and 249.51 cm3, respectively. Additionally, the 
total volume of all samples using the C-hbS method is 
1,335,710  cm3, 9.8% higher than the allometric total volume 
estimates. In contrast, the CSH method is 21% higher than the 
allometric estimates.

The volume estimates using allometric equations are highly 
correlated to the C-hbS (r = 0.90) and the CSH methods (r = 0.88). 
Figure 8B indicates that the CSH method has higher estimates for very 
small knees and lower estimates for large knees than the allometric 
method, with the largest knee exception. While we  see the same 
pattern between the C-hbS and the allometric method, the 
discrepancies for the smaller knees were not as substantial. For both 
algorithmic methods (C-hbS and CSH), the volume differences, when 
compared to the allometric method, become greater as the knee 
size increases.

The biggest knee has the largest difference between the C-hbS and 
CSH methods compared to the allometric method. This knee is the 
tallest and contains the largest base buttress (Figure 9). The volume 
estimate for this knee is much greater for the CSH method than the 
C-hbS method. We  calculated the volume for this knee to 
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be 227,207 cm3 using the C-hbS method and 249,510 cm3 for the CSH 
method, or a 92 and 111% increase in volume, respectively, compared 
to the allometric estimate of 118,130 cm3.

We estimated the bias for model comparison as the difference 
between the allometric estimate and those from the C-hbS and CSH 
methods for four specific height classes. The CSH method has a lower 

FIGURE 5

(A) The extracted classified single knee points using the default parameters of the CSF algorithm and, (B) the adjusted parameters in the CSF algorithm, 
(C) segmented individual knees based on a 0.05-meter maximum distance, and (D) segmented individual knees based on a 0.015-meter maximum 
distance.

TABLE 2 Summary statistics for individual knee volume based on each method.

Method Minimum Mean Maximum Standard deviation Total

Allometric equation 660 22,110 118,130 24,820 1,216,290

Convex-hull by slicing 800 24,290 227,200 34,190 1,335,710

Canopy-surface height 930 27,450 249,510 37,310 1,482,750

All measurements listed are in cm.
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median value than the C-hbS method, regardless of height class. The 
C-hbS method shows an increase in differences as the height class 
increases (Figure 10A), with most knees exceeding 95 centimeters 

(cm) generating larger volume estimates compared to the allometric 
method, while knees <65 cm in height produced slightly similar 
estimates as the allometric method. The spread in the data also 

FIGURE 6

Example of the slicing algorithm applied to an individual knee where (A) illustrates the point cloud as compared to a cone derived from the field 
measurements, and (B–F) Illustrates differences found from varying slicing heights (m) and (G) shows the cross-section of knee 2 and knee 4 slices at 
height 0.40 m elevation from the knee base.

FIGURE 7

Example of applying the CSH algorithm to an individual knee, where (A) represents the comparison of the point cloud to a cone with dimensions 
determined from field measurements and (B) through (D) provide visual examples of three different resolutions, (B) 0.05 m, (C) 0.01 m, and 
(D) 0.005 m.
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increases for both methods as the height class increases, with a more 
extensive spread seen for the CSH method. The two data points that 
stand out represent the tallest knee and a knee with a large base 
buttress with a narrow stem to the tip after the basal swell.

We also investigated the bias for four diameter classes 
(Figure 10B). The CSH method has a lower median value than the 
C-hbS method, regardless of the diameter class. The CSH and C-hbS 
methods show an increase in difference as the diameter class increases. 
The spread of the data is largest for the largest diameter class, with the 

data points that are very different, representing the largest knees and 
another knee with a large base buttress and a small auxiliary (see 
Figure 3).

The average wood density of the bald cypress knees is 0.32 g/
cm3, with a standard error of 0.02. Stiller (2009) found similar 
ranges for the wood density of bald cypress, 0.31 g/cm3 – 0.34 g/
cm3. Based on the wood density, the estimated total biomass of 
all sampled knees using the C-hbS is 416,769 g with an average 
biomass of 7577.25 ± 2,858 g. The results indicate a 10.5% 
difference in total biomass estimates using the C-hbS algorithm 
and a 21.9% difference using the CSH algorithm when compared 
to the allometric estimates. The mean knee biomass is 
61.94 ± 23.4 Mg ha–1, while the average knee carbon stock is 
32.83 ± 12.38 Mg C ha−1.

4 Discussion

Our results show that LiDAR is a cost-effective and reliable 
method to capture detailed information on the shape and volume of 
bald cypress knees. Postprocessing the data allows for distinguishing 
between ground and non-ground points and creating models and 
measurements of intricate 3D geometric features. This is achievable 
based on the distribution of points in the vertical direction (Zhao 
et al., 2018). It is crucial to select the right resolution during ground 
classification based on the average distance or spacing between points 
in the point cloud dataset and including user-defined parameter 
values (Yilmaz and Karakus, 2013). The DBSCAN algorithm used in 
the analysis is a density-based clustering algorithm that identifies 
clusters of arbitrary shape, size, and varying densities. The terrain 
within the study site is slightly uneven, containing protruding surfaces 

FIGURE 8

(A) Comparison of height determined from the LiDAR point cloud and the direct field measurements, (B) comparison between the allometric estimate 
calculated from the field measurements and both the CSH and C-hbS algorithms.

FIGURE 9

The largest knee is represented as (A) an image and (B) the 
corresponding point cloud.
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such as hummock, leaf piles, and other soil protrusions in relation to 
the knees.

In some cases, DBSCAN identified these protruding surfaces as 
knee clusters during the clustering analysis, considering that the knees 
are closer to the ground compared to the tree. To resolve this, we had 
to remove the non-knee points manually. The classified point cloud 
needed to be further segmented into individual knee clusters when 
knees were found next to each other. This individual clustering was 
necessary to ensure volume estimates were available for individual 
knees and to automate the volume estimation process.

Disparities in height measurements using the Pythagoras theorem 
are due to some knee shapes not satisfying the Pythagoras theorem 
rules well enough (Morin, 2021). For some knees, the slant height was 
not a straight line from the tip to the ground, as the knees contained 
irregularities such as concavities or large buttresses. In some instances, 
the knee buttresses were stout and left a very narrow stem to the tip 
after the basal swell. A study by Rogers (2021) described them as 
woody outgrowths with varying sizes and shapes but majorly are 
either “vaguely conical-club-shaped” or have multiple blunt growing 
points (Rogers, 2021). In these scenarios, the Pythagoras theorem 
method will produce a bias leading to overestimation or 
underestimation of the height and, subsequently, the volume. Defining 
the base and the leaning height for the small knees was also 
challenging. In contrast, the estimated height from the LiDAR point 
cloud is based on subtracting the lowest vertical value from the highest 
vertical points, a more accurate method.

Previous studies have estimated the biomass and carbon stock of 
the bald cypress knees using a simple procedure that relates the knees’ 
shape to a cone volume and subsequently estimates biomass using 
conversion factors for wood density and carbon (Middleton, 2020). 
The usefulness of LiDAR data in estimating forest characteristics has 
been proven in many studies to estimate tree volume and biomass 
across different species and regions (Bortolot and Wynne, 2005; 
Demol et al., 2022; Omasa et al., 2006). However, no studies were 
found to propose using LiDAR data from the iPad Pro 12.9 to estimate 
the knee volume of bald cypress. Previous studies have shown the high 

precision of using this device for tree mapping, such as stem counts 
with a detection rate of 97.3% and diameter measurements with 
efficient labor effort compared to the traditional approaches (Gollob 
et al., 2021; Wang et al., 2021). Relating the time taken to measure each 
knee in the field (approximately 40 s per individual) to scanning 
individual knees, the remote sensing method is more efficient. 
However, considering the processing and post-processing procedures, 
cleaning the data, and performing the volume computation is more 
time-consuming. Regardless, the LiDAR captures the changes in the 
surface along the vertical height and irregularities of the knees. The 
total number of knees per area can also be estimated from the LiDAR 
data. It also provides a 3D digital representation of each knee, which 
can be further studied and used to estimate the volume and biomass 
of all the knees in the area scanned.

When using LiDAR to estimate knee volume, the C-hbS method 
produced a precise result for knees that followed each slice’s cone-like 
shape and convex structures. This is in line with a study by Chang et al. 
(2017), which shows that slicing produces 0 % error in volume for the 
cubical geometric object. Taller knees will have more slices compared 
to short knees. The slicing height also determines the accuracy of this 
method, as thinner and higher numbers of slices have more ability to 
partition the change in knee height in relation to the diameter and 
subsequently address shape irregularities. This method further helps 
address the issue of overestimation of volume, as the surface area of 
the knee is a key component of determining the volume within each 
slice. Visualizing the shapes of each slice aids in understanding its 
internal structure and gaining insights into variations along the 
vertical axis. Most importantly, this approach helps identify potential 
voids or cavities and analyze the volume distribution across different 
sections. Hence, for knees with geometric irregularities around some 
slices, this method overestimates their volume as the 3D convex 
geometry does not align with the boundary and edge points of each 
slice, which overestimates the volume of slices that included gaps and 
holes (Fernández-Sarría et al., 2013; Yan et al., 2019). The value of the 
tallest knee is comparable to that found in Louisiana, 288,856 cm3 
(Middleton, 2020).

FIGURE 10

Boxplots of bias values for both the C-hbS and CSH methods as compared to the allometric method across (A) four height classes and (B) three 
diameter classes.

https://doi.org/10.3389/ffgc.2025.1427376
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Tajudeen et al. 10.3389/ffgc.2025.1427376

Frontiers in Forests and Global Change 12 frontiersin.org

On the other hand, the CSH method produced slightly higher volume 
estimates than the allometric and Canopy-Surface Height methods. 
Comparing this result to that of Schulze- Brüninghoff et al. (2019), the 
CSH method was reported to be the most accurate method for biomass 
estimating grassland from 3D point clouds. With the availability of dense 
data, nearest neighbors, a rapid interpolation method, is preferred for 
forest areas surfaces (Vazirabad and Karslioglu, 2010), hence it was used 
also in this study. However, there is a significant variation in knee size and 
shape irregularities. Therefore, the CSH method needs to be adopted to 
reconstruct the knee structures, calculate the volume, and effectively 
capture each knee’s details. Another issue to consider when using the CSH 
method is that it requires more computational time to perform the 
calculations depending on the resolution; the higher the resolution, the 
higher the processing time, with this analysis showing an approximate 
3–6% increase in computational time when compared to the convex-
hull algorithm.

Generally, allometric estimates are consistently smaller after 
comparing them with the estimates from the two methods because 
they are underestimating and oversimplifying the complexity of the 
shape of the knees. Hence, with a better representation of the knee 
geometry, it is possible to infer that the volume from the LiDAR using 
the two algorithms is more accurate.

The knee density ha−1 (8174.78 ha−1) in this study is comparable 
to the densities obtainable in the Mississippi River Alluvial Valley 
(7,870 ± 814 ha−1, Brown, 1984) and floodplain forests near 
Gainesville, Florida (10,100 ha−1, Middleton, 2020). Using the volume 
estimated from the 2 cm C-hbS method, the aboveground mean 
biomass of the knees in the Three Sisters Swamp is 
61.94 ± 23.4 Mg ha−1. Assuming that carbon is 53.1% of wood 
biomass, the mean carbon biomass represented by the bald cypress 
knees in this study was substantial (32.83 ± 12.38 Mg C ha−1). This 
result is similar to what was obtained in the MRAV for flooded sites 
(33.7 ± 6.4 Mg C ha−1) and flooded swamps in White River 
(18.1 ± 3.7 Mg C ha−1), which is much higher than the sites not 
exposed to floods sites (2.9 ± 0.7 Mg C ha−1).

Lastly, this study indicates that using LiDAR increases biomass 
and carbon estimates by 1–17% for the C-hbS and 10–28% for the 
CSH method as compared to the allometric method, which could have 
significant implications for biomass and carbon accounting. This 
difference is a result of several factors contributing to the volume 
estimates ranging from proper capture of the knees’ complete 3D/
vertical structure by the LiDAR point cloud and the presence of voids 
and concavities in some knees. Also, oversimplification of the knee 
shape due to approximation of the knee shape with a cone using the 
traditional method does not accurately capture all the nuances and 
complexities of the knee shape. Additionally, the lack of a very clear 
definition of ground during field measurements contributes to the 
underestimation of biomass and carbon.

Future research should explore new, advanced point cloud 
algorithm methods, such as adaptive voxel-based and concave k-nearest 
algorithms, which could account for structural irregularities in knees 
and other tree species to provide optimum and precise options. There is 
also a need to compare the time needed for sampling individual knees 
using manual field measurements to estimates from LiDAR data. Lastly, 
using LiDAR to collect data provides an opportunity to minimize 
laborious fieldwork, thereby maximizing the number of sampled knees 
and providing data at finer scales. However, processing the data and 
model development can be time-consuming and require additional 

technical skills; therefore, traditional techniques are deemed more 
feasible for quick estimation when shape considerations are not essential.

5 Conclusion

Allometric equations for estimating bald cypress knee volume 
from traditional field measurements are based on the volume of a 
cone. This approach does not assume the variability in knee shape, can 
underestimate the volume of knees with large slants, and overestimates 
the volume of knees with concavities. We found that volume estimates 
from allometric equations and traditional field methods were smaller 
compared to those obtained from algorithm methods applied to the 
iPhone-derived point cloud. This was due to the ability of the LiDAR 
point cloud to capture the complexity of knee shapes. Our results 
indicate that modification of the parameters in the DBSCAN 
algorithm influenced the number of individual knee segmentations 
determined from the LiDAR point cloud. Increasing the number of 
segmentations can allow for greater volume estimation accuracy, 
especially for small, very close to each other, and steep-leaning objects.

We evaluated the volume estimation of bald cypress knees from the 
point clouds obtained using iPhone LiDAR technology for bald cypress 
knees. The high correlation (r = 0.98) between height estimates derived 
from the LiDAR point cloud and direct field measurements indicates that 
this technology is a valid alternative to traditional field measurements. 
In areas where direct field measurements from measuring tapes are 
difficult, such as areas where the water level is high or it is dangerous to 
stand in water, using a device such as an iPhone can be a great advantage. 
While a laser rangefinder provides another alternative to direct field 
measurements using tape, LiDAR point clouds provide detailed 
information about the shape of an object, leading to more accurate 
estimates of volume. When choosing between these options, data 
processing time and computing needs should be considered.

Our study further highlights the importance of bald cypress knees 
in contributing to biomass and carbon estimates for these old-growth 
sites. The estimated knee density (8,174 knees per hectare), 
aboveground biomass (62 ± 23 Mg per hectare), and carbon 
(32.83 ± 12.38 Mg C per hectare) in this study site are significant, 
demonstrating that cypress knees are vital in the teal carbon balance 
of wetlands in North Carolina. Overall, this study demonstrates a cost-
effective remote sensing method for sampling complex conical 
structures such as bald cypress knees, which can be replicated in other 
locations. It also provides an alternative to assessing more accurate 
estimates of volume needed to inform carbon accounting.
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