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Introduction: The unmanned aerial vehicle -based light detection and ranging 
(UAV-LiDAR) can quickly acquire the three-dimensional information of large areas 
of vegetation, and has been widely used in tree species classification.

Methods: UAV-LiDAR point clouds of Populus alba, Populus simonii, Pinus 
sylvestris, and Pinus tabuliformis from 12 sample plots, 2,622 tree in total, were 
obtained in North China, training and testing sets were constructed through data 
pre-processing, individual tree segmentation, feature extraction, Non-uniform 
Grid and Farther Point Sampling (NGFPS), and then four tree species were classified 
efficiently by two machine learning algorithms and two deep learning algorithms.

Results: Results showed that PointMLP achieved the best accuracy for identification 
of the tree species (overall accuracy = 96.94%), followed by RF (overall accuracy 
= 95.62%), SVM (overall accuracy = 94.89%) and PointNet++(overall accuracy = 
85.65%). In addition, the most suitable number of point cloud sampling of single 
tree is between 1,024 and 2048 when using the NGFPS method in the two deep 
learning models. Furthermore, feature value of elev_percentile_99th has an 
important influence on tree species classification and tree species with similar 
crown structures may lead to a higher misidentification rate.

Discussion: The study underscores the efficiency of PointMLP as a robust and 
streamlined solution, which offers a novel technological support for tree species 
classification in forestry resource management.
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1 Introduction

The accurate classification of tree species is crucial for the effective management of forest 
resources and the timely monitoring of species diversity (Tewari, 2016; Shi et al., 2020). Light 
detection and ranging (LiDAR) has emerged as a leading technology for tree species 
classification owing to its advantages in data collection, such as a large detection range, high 
measurement accuracy, and fine temporal and spatial resolution (Drake et al., 2002; Dalponte 
et al., 2012). Notably, the rapid advancements in unmanned aerial vehicle LiDAR (UAV-LiDAR) 
technology, characterized by its superior timeliness and mobility, have established a robust 
foundation for enhancing the efficiency of forest field surveys and the accuracy of tree species 
classification (Kukkonen et  al., 2024). Over the past two decades, researchers have used 
UAV-LiDAR data to explore the possibilities of different classification methods for tree species.
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Machine learning methods, such as Support Vector Machines 
(SVM) (Vaughn et al., 2012; Rust and Stoinski, 2024), Random Forest 
(RF) (Vauhkonen et  al., 2010), and Extreme Gradient Boosting 
(XGBoost) (Lin et al., 2023; Ou et al., 2023) have been extensively used 
for tree species classification using LiDAR data. Rust and Stoinski 
(2024) used four machine learning algorithms based on terrestrial 
laser scanning (TLS) to classify four tree species in Poland. The highest 
overall accuracy (OA) was achieved with XGBoost at 96%, followed 
by SVM at 92%. Yu et al. (2017) employed RF with a selection of 15 
optimal features, including LiDAR height features, laser penetration 
index, and density features, to distinguish between Scots pine, Norway 
spruce, and birch, achieving an OA of 90.5%. Machine learning 
algorithms can achieve a classification accuracy of over 80% (Yao 
et al., 2012; Blomley et al., 2017).

While the development of deep learning algorithms continues 
to progress rapidly, especially those based on multiple perspectives 
and voxel structures, there remains a challenge of potential 
information loss when converting point clouds into structured 
formats like 2D grids or 3D voxels (Bello et al., 2020; Ning et al., 
2023). PointNet, introduced by Qi et al. (2017a), stands out as a deep 
learning classification approach specifically tailored for the direct 
processing of point clouds. However, its ability to classify local, 
finegrained patterns and generalize to complex scenes is somewhat 
limited. In contrast, the enhanced PointNet++ (Qi et al., 2017b), 
which has emerged as an advancement over PointNet, demonstrates 
significant improvement in accuracy when classifying individual 
objects and semantically labeling largescale point clouds. Building 
upon the foundation laid by PointNet and PointNet++, Ma et al. 
(2022) proposed PointMLP, a succinct and efficient deep residual 
multilayer perceptron network. This addresses concerns such as 
intensive computation for local feature extraction and seamless 
memory access. The performance of these models is impressive. The 
PointNet++ model achieved classification accuracy of 90.7% on the 
ModelNet40 dataset and 84.5% on the ScanNet dataset (Qi et al., 
2017b). Meanwhile, the PointMLP model surpassed this, achieving 
classification accuracies of 94.5% on the ModelNet40 dataset and 
85.4% on the ScanObjectNN dataset (Ma et al., 2022). Briechle et al. 
(2020) used the PointNet++ model to perform semantic labeling of 
coniferous and deciduous trees in UAV-LiDAR data, achieving 
classification accuracies of 90 and 81%, respectively. Additionally, Xi 
et al. (2020) conducted a comprehensive analysis comparing seven 
deep learning models and six machine learning models for tree 
species classification. The findings revealed that the PointNet++ 
model exhibited the highest accuracy. Currently, these methods are 
relatively less used in tree classification and exhibit many problems, 
but could automatically learn high-level features and fully exploit the 
three-dimensional structural information of point cloud data, thus 
enhancing the model’s generalization ability and improving the 
classification accuracy. Therefore, direct exploration of deep learning 
tree species classification models based on point clouds holds 
significant research implications.

The classification task based on multilayer perceptron (MLP) 
necessitates a fixed number of points in the single tree sample of the 
input model during each full training and testing session. This 
requirement has led scholars to conduct extensive research on point 
cloud sampling. Seidel et al. (2021) input 2048 points into PointNet to 
classify seven tree species, achieving a classification accuracy of 83% 
for Quercus rubra. Xi et al. (2020) employed K-means clustering to 

reduce the number of points in a single tree to 2048, and the highest 
tree classification accuracy (mIoU of 0.906) was achieved using the 
PointNet++. Chen et al. (2021) utilized an improved farthest point 
sampling method to classify birch and larch species. This method was 
used to downsample the single tree point cloud, and when the 
sampling point density was 2048 points, the accuracy evaluation 
indices reached their maximum value. Lv et al. (2022) proposed a 
feature descriptor based on the convex hull to process individual tree 
point clouds to 2048 points and input it into the PointNet + + model 
for tree species classification. This model expands the input features 
of the sample point cloud, improving the classification accuracy from 
72.7 to 86.6%. Liu et al. (2022) compared the overall classification 
accuracy of tree species classification with various methods, including 
farther point sampling (FPS), K-means, grid average sampling, and 
nonuniform grid and farther point sampling (NGFPS). Among these, 
NGFPS, which reduced the number of points to 2048, achieved the 
best classification accuracy.

A series of comparative trials were designed in the study to 
address the problems and shortcomings of the current reaches. Based 
on UAV-LiDAR data, four key protected forests, Populus alba, Populus 
simmonii, Pinus sylvestris, and Pinus tabulformis were selected as 
research objects, then machine learning and deep learning techniques 
were used to classify four tree species in northern China. The main 
objectives of this paper are as follows: (1) to evaluate the accuracy of 
machine learning and deep learning algorithms in classifying tree 
species using UAV-LiDAR data; (2) to investigate the effect of different 
sampling points of NGFPS on the classification accuracy of deep 
learning; and (3) to classify the optimal machine learning and deep 
learning models through a series of metrics. Overall, this study aims 
to enhance the accuracy and effectiveness of tree species classification 
and to bolster the management of fragile forest ecosystems in the 
study area.

2 Materials

2.1 Study area

The study area is located in the Yunxi State-owned Forest Farm in 
Datong City, Shanxi Province (112°14′ E ~ 112°59′ E, 39°40′ 
N ~ 40°04′ N), which is a part of the northern of China, as depicted 
in Figure 1. This region has a temperate semiarid climate, characterized 
by an annual average temperature of 6.1°C, a frost-free period of 
110 days, and an annual average rainfall of 390 mm, primarily 
concentrated from July to September. The area experiences windy and 
sandy conditions in spring, severe cold with minimal snowfall in 
winter, and severe drought. The predominant soil types are chestnut 
soil and chestnut cinnamon soil, which are mostly alkaline with a pH 
range of 7.5–9.0. The tree species in the study area are mainly Populus 
alba, Populus simonii, Pinus sylvestris, and Pinus tabuliformis. They are 
all planted for blocking wind and dust storm, also the important 
ecological barrier in North China. Populus simonii is 31 years old and 
has already entered the mature stage in the sample plots. Due to the 
occurrence of diseases and pests, the physiological function has 
declined, and the phenomenon of dry and dying shoots has appeared, 
which is called “small old tree.” Populus alba crown is narrow cylinder 
or spire- shaped, tall and straight, growing well. The trees of Pinus 
sylvestris and Pinus tabuliformis are 25 years old and 28 years old 
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respectively, which belong to middle-aged forests and enter the 
vigorous growth stage. The tree shape of the two trees is slightly 
different, the crown of Pinus sylvestris is spire shaped, while that of 
Pinus tabuliformis is tower shaped, with obvious tree rings and large 
branches spreading out.

2.2 Data collection and preprocessing

2.2.1 Field data
The sample plot survey data were collected in August 2023. A total 

of 12 sample plots of 20 m × 30 m were established according to the 
distribution of Populus alba, Populus simonii, Pinus sylvestris, and 
Pinus tabuliformis. Within each sample plot, all trees with a diameter 
at breast height (DBH) greater than 5 cm were measured, during 
which important indicators such as DBH, tree height, and crown 
width were recorded. In addition, the absolute positions of the four 
corners in each sample plot and the coordinates of each tree were 
marked using a real-time kinetic (RTK) GNSS (CHCNAV K80, 
Shanghai, China). There were 2,622 trees measured in the plot (see 
Table 1).

2.2.2 UAV-LiDAR data
The LiDAR data utilized in the experiment was acquired using 

a Zenmuse L1 laser radar mounted on a DJI M300 RTK. A 
continuous rectangular area containing three tree species was 
chosen as the data collection site. The scanning was conducted on 
August 1, 2023 in the morning when the weather was clear and there 

was no wind. We did not set up a base station because the drone has 
its own network RTK. A normal flight pattern was adopted, with the 
altitude of the simulated flight route set to 50 m. The vehicle speed 
was maintained at 1.9 m/s, and the laser side overlap rate was 80% 
to maximize efficiency during data acquisition. The sample rate was 
set at 160 kHz, and a three-echo mode was adopted. The scanning 
mode was repetitive, and the point cloud density was 4,063 points/
m2. A repetitive scanning mode was set to generate a color point 
cloud. The original data obtained comprised a set of files, including 
laser data, RTK data, camera calibration data, etc. The standard 
format file of LiDAR (*. LAS) can be  obtained through the 
reconstruction of DJI Terra. The details of the parameters are shown 
in Table 2.

3 Methods

The overall flowchart of the study is shown in Figure 2. The study 
first preprocessed the raw UAV-LiDAR data by using LiDAR360. This 
process yields a single-timber point cloud and extracts single-timber 
features, including height and intensity features, totaling 101. A 
downsampling strategy, NGFPS, which combines nonuniform grid 
and farthest point sampling, is implemented using Python and 
MATLAB. Tree species classification using machine learning and 
deep learning models of single tree point cloud data. The final step 
involves analyzing and evaluating the classification results.

The deep learning framework and machine learning framework 
used for the experiments was PyTorch (2.1.2 + CUDA 12.1). Windows 

FIGURE 1

Location of the study area and some of the LiDAR data collected in the field.
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10 was used for the experiments, and the computer configuration was 
as follows: Intel Xeon Gold 5,218 CPU, 128 GB of RAM, and an 
NVIDIA RTX A4000 (16 GB).

3.1 Lidar data preprocessing

3.1.1 Denoising
The K-nearest neighbor (KNN) denoising method searches for 

adjacent points within a specified neighborhood for each point. It 
calculates the mean distance (D) from the point to its neighbors, as 
well as the median (DMean) and standard deviation (S). If D exceeds the 
maximum distance (DMax), it is classified as noise and removed (Zhao 
et  al., 2016). The neighborhood consists of 10 points, and the 
difference multiple was set at 5.

3.1.2 Ground point classification
For effective execution of subsequent experiments, it is crucial to 

separate the ground points. The traditional filtering algorithm uses 
slope and elevation differences to distinguish between ground and 
nonground points. However, this approach results in subpar filtering 
in complex scenes and steep terrain areas. The cloth simulation filter 
(CSF) is a simple physical simulation-based solution (Zhang et al., 
2016). It inverts the original LiDAR point cloud, and a cloth falls onto 
the inverted point cloud surface. The final shape of the cloth, 
determined by the interaction between the nodes, cloth, and 
corresponding LiDAR points, helps divide the original point cloud 
into ground and nonground points. The algorithm relies on two key 
parameters: grid size and classification threshold. In order to take 
into account the efficiency and the integrity of the ground retention 
details, the grid size is set at 1.0 m. The classification threshold is 
affected by the slope. According to the investigation, the classification 
threshold is finally set at 0.8 m after many tests. Figure 3 illustrates 
the ground and high vegetation points.

3.1.3 Canopy height model
Canopy Height Model (CHM) is derived by subtracting the raster 

values of a digital elevation model from those of a digital surface 
model. This provides a direct representation of the vegetation canopy 
height distribution above the ground (Yang et al., 2020). The CHM 
resolution was set at 0.5 m.

3.2 Individual tree segmentation

The watershed algorithm (WA) was employed for individual tree 
segmentation in the study. WA is an image segmentation algorithm 
that can detect subtle changes in the gray level of a CHM and generate 
closed contour lines around target objects (Lu et al., 2014; Hovi et al., 
2016). The algorithm automatically constructs a barrier at canopy 
boundaries to prevent the merging of water from two adjacent tree 
models. Sigma is a crucial parameter of the algorithm, affecting the 
number of trees segmented. A small sigma value (Sigma <0.5) can lead 
to over-segmentation, while a larger value (Sigma >1.5) can result in 
under-segmentation. Sigma was set to 1, and other parameters in the 
algorithm took default values.

After obtaining the seed points of individual tree segmentation 
based on the WA, they are matched with the coordinates and number 
of measured trees. Over-segmented and under-segmented individual 
trees are further amended and corrected to obtain high quality 
individual tree point cloud data.

3.3 Data set creation

After obtaining point clouds of individual tree, the study manually 
labeled each point cloud file with the specie name of the tree, in 
conjunction with the records of the field investigation. Eventually, 2,622 
individual tree point cloud samples for four tree species in the study 
area were obtained. A stratified random sampling method was 
employed within each species, with 80% of each tree species randomly 
selected as the training data set and the remaining 20% as the test set. 
The training and test sets were independent and mutually exclusive in 
all validations.

3.4 Downsampling algorithm

The farthest point sampling (FPS) in the MLP-based deep learning 
algorithm is a downsampling method based on an even point cloud. 
As the point cloud density of collected LiDAR data is not uniformly 
distributed, the points representing the details of objects cannot 

TABLE 1 Overview of the primary tree species in north China.

Species Type Canopy 
Density

Average 
height of 
trees (m)

Average 
DBH(cm)

Average crown width (m) Age(a) Total

East–West North–South

Populus alba Broad-leaved 

Tree

0.7498 17.20 23.75 4.67 5.66 27 556

Populus simonii 0.7545 6.93 14.56 2.57 2.86 31 675

Pinus sylvestris Coniferous 

Tree

0.7378 14.85 11.47 2.62 4.01 25 608

Pinus tabuliformis 0.7354 12.54 8.79 2.93 3.71 28 783

TABLE 2 Zenmuse L1 instrument parameters.

Main parameters Value setting

Point cloud density 4,063 point/m2

Flying height 50 m

Flying speed 1.9 m/s

Echoes mode Triple

Sampling rate 160 kHz

Ranging accuracy 100 ± 0.03 m

Scan mode Repeat

https://doi.org/10.3389/ffgc.2025.1431603
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Zhang et al. 10.3389/ffgc.2025.1431603

Frontiers in Forests and Global Change 05 frontiersin.org

be fully preserved in tree species classification using only the PFS 
method. Nonuniform grid sampling (NGS) calculates the normal 
vector of each point before sampling the point cloud, allowing 
representative points to be  selected from grids of different sizes. 
Therefore, this study used a downsampling strategy combining a 
nonuniform grid and farther point sampling (NGFPS) (Liu et al., 

2022). The NGS method is first used to obtain the single-point cloud 
closest to the specified number of points in the single-point cloud. 
After obtaining a sample with sufficient detail retention, FPS is used 
to standardize the number of points in the single-point cloud. The 
number of samples was set to 1,024, 2048, 3,072, 4,096, 5,120, 
and 6,144.

FIGURE 2

An overview of the workflow for individual tree points cloud-based tree species classification.

FIGURE 3

Schematic of ground point classification, with ground points in yellow and high vegetation points in green (A); CSF filtered ground points (B).
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3.5 Deep learning methods

Two deep learning algorithms (PointNet++ and PointMLP) are 
used, both of which are tree classification methods based on 
downsampling. PointMLP and PointNet++ have similar design 
concepts, but PointMLP has a simpler network architecture.

PointNet++, as illustrated in Figure  4, the Set Abstraction 
component of PointNet++ partitions the input point cloud into several 
local point sets. It then extracts the global features of each set, thereby 
obtaining higher-dimensional features. These data are subsequently 
processed by a unit PointNet to reduce the feature dimensions. This 
reduction not only decreases the computational load but also enhances 
the network’s nonlinearity, thereby improving the model’s 
generalization ability. The final step involves the softmax layer, which 
assigns a category score to each point (Qi et al., 2017b).

PointMLP is a deep residual MLP network. Its architecture 
includes a geometric affine module, a local weighted learning module, 
and a deep feature aggregation module, all of which adhere to the 
generic design guidelines depicted in Figure 4. In each stage of the 
process, local points are first transformed using a geometric affine 
module, and features are extracted both before and after the 
aggregation operation. By repeating these stages multiple times, 
PointMLP progressively expands the receptive field and models the 
complete geometric information of the point cloud (Ma et al., 2022).

3.6 Machine learning methods

Two machine learning algorithms (RF and SVM) were used to 
classify tree species based on all extracted features. RF is based on 

decision trees, reduces overfitting through random attribute selection, 
and is suitable for high-dimensional data. SVM simplifies 
complex problems with its nonlinear mapping and maximum 
marginal characteristics.

RF is an ensemble algorithm that integrates multiple decision 
trees, offering stronger generalization ability compared to a single 
decision tree. RF employs a resampling meth-od to draw multiple 
samples from the original dataset. It first performs decision tree 
modeling on these samples. Subsequently, it makes predictions using 
these multiple decision trees and determines the final prediction result 
through a voting mechanism (Wu and Zhang, 2019).

SVM is a machine learning algorithm used to address binary 
classification problems (Zhang et  al., 2013). It maps the original 
vectors into a higher-dimensional space and constructs a hyperplane 
with maximum spacing in this space. The aim is to maximize the 
distance between the two planes that are separated by the middle 
hyperplane, thereby achieving optimal separation.

3.7 Accuracy evaluation

According to the calculation results of the confusion matrix, 
overall accuracy (OA, Equation 1), producer accuracy (PA, 
Equation 2), user accuracy (UA, Equation 3) and Kappa coefficient 
(Equation 4) were used to evaluate the classification results of 
the model.

 
100%iiXOA

N
= ×

 
(1)

FIGURE 4

PointNet++ network structure (A); PointMLP network structure (B).

https://doi.org/10.3389/ffgc.2025.1431603
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Zhang et al. 10.3389/ffgc.2025.1431603

Frontiers in Forests and Global Change 07 frontiersin.org

 
100%ii

i

XPA
X+

= ×
 

(2)

 
100%ii

i

XUA
X +

= ×
 

(3)

 

( )
( )

1 1
2

1

r r
ii i ii i

r
i ii

N X X X
Kappa

N X X

+ += =

+ +=

−
=

−

∑ ∑
∑  

(4)

where iiX  is the total number of correct classifications of the ith 
tree species in the test samples; iX+ is the total number of test samples 
classified into the ith tree species; iX +  is the total number of test 
samples for the ith tree species; N  is the total number of test samples; 
r is the number of tree species.

4 Results

4.1 Classification accuracy of deep learning 
methods based on different sampling 
points

As displayed in Figure 5, classification accuracy curves were drawn 
based on different sampling points of NGFPS. The overall accuracy of 
PointMLP remains stable between 95 and 97% across varying numbers 
of sampling points, achieving peak accuracy at 5120. The user accuracy 
for four tree species exceeds 95%. Conversely, PointNet++ achieves 
optimal classification accuracy at 1024 sampling points, with OA 
decreasing as the number of sampling points increases. The 
classification accuracy of Pinus sylvestris initially increases and then 
stabilizes with the increase of sampling points, while other tree species 
show a decrease in accuracy with the increase of sampling points.

4.2 Classification accuracy of different tree 
species in the confusion matrix

This study classified Populus alba, Populus simonii, Pinus sylvestris, 
and Pinus tabuliformis using PointNet++, PointMLP, RF, and 
SVM. For PointNet++ and PointMLP, the number of sampling points 
was set between 1,024 and 6,144, respectively. Furthermore, this study 
compared the accuracy of the RF and SVM algorithms. The 
classification results of the four algorithms are presented in Figure 6. 
A confusion matrix approach was adopted to visualize the 
classification results, where rows represent the actual categories and 
columns represent the predicted categories.

The OA and Kappa coefficients of different models are calculated 
based on the confusion matrix (Table  3), and the PA and UA are 
obtained similarly (Table 4). The results show that among the four 
models PointMLP has the highest overall accuracy, which is better than 
the remaining three models, and PointNet++ has the lowest overall 
accuracy with OA and Kappa coefficients of 85.65% and 0.8083, 
respectively. The classification accuracy of PointMLP was higher than 
94%, RF was higher than 89%, and SVM was higher than 88%, 
indicating that the three models had low misidentification rates in tree 
species classification. Using PointNet++ classification, Pinus sylvestris 

of PA was 70%, Pinus tabuliformis of UA was 78%, the confusion matrix 
is shown as there are 33 Pinus tabuliformis was mistakenly classified as 
Pinus sylvestris. It shows that PointNet++ has a high misrecognition 
rate when classifying Pinus sylvestris and Pinus tabuliformis, which 
affects the overall accuracy of PointNet++ (see Tables 5, 6).

5 Discussion

The application of two machine learning models (RF and SVM) 
and two deep learning models (PointNet++ and PointMLP) to tree 
species classification was studied. The results, which align with the 
findings of Fan et al. (2023), Qian et al. (2023), and McGaughey et al. 
(2024), demonstrated high accuracy. The overall accuracy of the 
models was ranked as follows: PointMLP achieved the highest 
accuracy at 96.94%, followed by RF, SVM, and PointNet++, 
PointNet++ had the lowest accuracy at 85.65%.

5.1 Impact of feature value numbers and 
elev_percentile_99 value on the 
classification of tree species

Generally, feature values are selected when applying machine 
learning algorithms for tree species classification. This can aid in 
dimensionality reduction, reduce training time, and enhance the 
model’s generalization ability to mitigate overfitting. Better results are 
typically achieved by manually selecting features using algorithms such 
as RF and RFE-CV (Hakula et al., 2023). However, sometimes the 
classification results after selecting features are not satisfactory. Ba et al. 
(2020) selected eight features, such as tree height, echo count, and laser 
penetration index, for tree classification by the sQDA (Quadratic 
Discriminant Analysis), achieving a relatively low accuracy of 82.02%. 
A machine learning algorithm based on the complete set of features was 
used to classify the main tree species in the study, which achieved a high 
classification accuracy, with an OA higher than 90%. From the study, it 
can be seen that feature value selection has no significant effect on OA 
and Kappa, which is consistent with the results of Viinikka et al. (2020).

McGaughey et al. (2024) used RF to classify Western hemlock and 
Douglas fir, showing that elev_percentile_99th value was the most 
significant indicator. Western hemlock, compared to Douglas fir, has 
a higher leaf proportion at elev_percentile_99th (near the tree 
canopy), leading to more laser returns and thus higher classification 
accuracy. In contrast, Populus simonii achieved the highest accuracy 
when RF and SVM algorithms were used to classify four tree species 
in the study. This may be due to drought and insufficient soil moisture 
leading to the degradation of Populus simonii in the area, resulting in 
elev_percentile_99th (top of the canopy) defoliation and death, with 
significant lower proportion of leaves and reduced LiDAR returns. 
Therefore, it is considered that elev_percentile_99th has an important 
impact on the classification of tree species.

5.2 Impact of sampling point density on the 
classification accuracy of deep learning

NGFPS method was used to obtain different sampling points 
in both deep learning models. The accuracy of two deep learning 
models kept high and stable when the number of sampling points 
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TABLE 3 Hyperparameters of the model and parameters of the optimal configuration.

Hyperparameter PointNet++ PointMLP Declaration

BATCH_SIZE 24 24 The number of batches in each epoch

NUM_POINT 1,024, 2048, 3,072, 4,096, 5,120, 6,144 1,024, 2048, 3,072, 4,096, 5,120, 6,144 The number of points per individual tree sample

NUM_CATEGORY 4 4 The number of categories of objects

EPOCH 300 300 The number of training rates

OPTIMIZER Adam SGD Optimizer algorithm

WEIGHT_ DECAY 0.0001 0.0002 The decay rate of learning rate

LEARNING_RATE 0.001 0.1 Learning rate

FIGURE 5

Comparison of the overall accuracy of PointNet++ and PointMLP (A), Comparison of the accuracy of PointNet++ for users with different number of 
sampling points (B), Comparison of the accuracy of PointMLP for users with different number of sampling points (C).
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were between 1,024 and 2048. The classification accuracy of 
PointNet++ gradually decreased as the number of sampling 

points increased from 1,024 to 6,144, consistent with Liu et al. 
(2021). In addition, based on TLS data, Liu et al. (2022) and Fan 
et al. (2023) also proved that with an increase in the number of 
sample points, the classification accuracy of the model will 
decrease. The reason may be that with the increase in the number 
of sample points, the noise and outliers will also increase, 
resulting in a reduction in classification accuracy, which in turn 
will reduce the ability of the model to generalize to new data, 
resulting in an overfitting phenomenon. However, as shown in 
Figure 5, the overall accuracy of PointMLP in classifying the four 
tree species remains high and does not significantly change with 
the increase in the number of sampling points. This may 
be because PointMLP introduces a local geometric affine module 
to transform points in the local neighborhood, the local geometry 
information can be effectively captured. Therefore, to effectively 
process point cloud data and reduce overfitting, it is 
recommended to keep the number of points in the two deep 
learning models between 1,024 and 2048 when using the NGFPS 
method for single tree sampling.

FIGURE 6

Confusion matrix for tree species classification of PointNet++ (A), PointMLP (B), RF (C), and SVM (D).

TABLE 4 Optimal parameter configuration of machine learning 
algorithms.

Model Hyperparameter Value

RF n_estimators 40

criterion entropy

random_state 42

SVM kernel linear

random_state None

TABLE 5 Comparison of classification accuracy of four models.

PointNet++ PointMLP RF SVM

‘OA 0.8565 0.9694 0.9562 0.9489

Kappa 0.8083 0.9589 0.9329 0.9221
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5.3 Impact of tree structure on 
classification accuracy of model

PointNet++ misclassified eight Populus alba as Pinus sylvestris, six 
Populus alba as Pinus tabuliformis, and 33 Pinus sylvestris as Pinus 
tabuliformis when classifying tree species using four models. 
Furthermore, Allen et al. (2023) found the misclassification of Pinus 
pinaster into the same spcie as Pinus nigra and Pinus sylvestris, aligning 
with the findings of the study. Supplementary Figure S1 illustrates the 
spire-shaped crowns of Populus alba, Pinus sylvestris, and Pinus 
tabuliformis, which, due to their similarity, may yield similar point 
cloud features, increasing likelihood of misidentification. 
Furthermore, Pinus sylvestris and Pinus tabuliformis in the study, both 
from the Pinus genus, share similarities in crown and leaf shape, 
further enhancing misidentification potential. PointNet++ may have 
difficulty distinguishing between species with similar morphology or 
characteristics. The other three models-PointMLP, RF, and SVM—
though exhibited misidentification and misclassification, also with 
higher accuracies. Thus, for classifying tree species with similar crown 
structures, these three models are recommended.

5.4 Impact of different data sources on tree 
species classification

Currently, ALS and TLS data sources are frequently employed 
for tree species classification. The differences in these data sources 
may influence classification accuracy. TLS capable of automatically 
capturing the three-dimensional structure of vegetation at high 
resolution is particularly advantageous for acquiring diameter at 
breast height (DBH) and height under branch data, thereby 
enhancing tree species classification. Conversely, UAV-LiDAR has 
limitations in collecting subcanopy point cloud information and 
capturing the complete structural features of individual trees, which 
can lead to a decrease in tree species classification accuracy (Terryn 
et al., 2020). Comparatively, TLS data outperforms ALS data in tree 
species classification. Liu et al. (2021) used a deep neural network 
(LayerNet) model to classify birch and larch trees based on TLS and 
UAV-LiDAR data sources, respectively, achieving an OA of 92.5% 
with TLS data and 88.8% with UAV-LiDAR data. Similar 
conclusions were drawn by Chen et  al. (2021). The highest 
classification accuracy of 96.94% was achieved when using 
UAV-LiDAR data to classify the four major tree species in the study. 
This may be  attributed to the fact that the point cloud data 
originated from a stand with a canopy density of about 0.75, most 
point clouds below the canopy level of single trees were obtained, 
which improved the classification accuracy.

6 Conclusion

This study employed deep learning algorithms (PointNet++ and 
PointMLP) and complete feature-set machine learning algorithms (RF 
and SVM) for tree species classification. The main conclusions are as 
follows: The sampling points should be selected between 1,024 and 
2048 points in both deep learning models when using the NGFPS 
method for single tree sampling and PointMLP demonstrated high 
stability and consistency in classification accuracy at different 
sampling points, with OA ranging between 95 and 97%, PointMLP 
emerged as the most optimal model. RF and SVM also performed 
well, with OA higher than 88 and 89%, respectively. While PointNet++ 
showed the lowest OA and Kappa coefficient, suggesting that its 
performance may not be  optimal. The study shows that machine 
learning and deep learning algorithms can accurately classify tree 
species using individual tree point clouds, and the operation process 
of PointMLP is more concise and efficient, providing a new solution 
for accurately classifying tree species and efficiently investigating 
forest resources. In addition, feature value of elev_percentile_99th has 
an important influence on tree species classification and tree species 
with similar crown structures may lead to a higher misidentification 
rate, in this case PointMLP, RF and SVM model are recommended.

Though the study achieved high accuracy for tree species 
classification based on small sample data, there may be limitations for 
large-scale application and promotion of the model. Future research 
will aim to expand the scale and further verify the model, enabling the 
use of model over larger areas for better classification accuracy.
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