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Leaf and canopy temperature have long been recognized as important indicators

of plant water status because leaves cool when water is transpired and warm up

when leaf stomata close and transpiration is reduced. Unmanned aerial vehicles

(UAVs) open up the possibility to capture high resolution thermal images of

forest canopies at the leaf scale. However, a careful calibration procedure is

required to convert the thermal images to absolute temperatures, in addition,

at high spatial resolution, the complexity of forest canopies leads to challenges

in stitching overlapping thermal images into an orthomosaic of the forest site.

In this study, we present a novel flight planning approach in which the locations

of ground temperature references are directly integrated in the flight plan. Six

UAV flight campaigns were conducted over a tropical dry forest in Costa Rica.

For each flight five di�erent calibration methods were tested. The most accurate

calibration was used to analyze the tree canopy temperature distributions of five

tree species. From the distribution we correlated its mean, variance, 5th and 95th

percentile against individual tree transpiration estimates derived from sapflow

measurements. Our results show that the commonly applied calibration provided

by the cameras manufacturer (factory calibration) and empirical line calibration

were less accurate than the novel repeated empirical line calibration and the

factory calibration including drift correction (MAE 3.5◦C vs. MAE 1.5◦C). We show

that the orthomosaic is computable by directly estimating the thermal image

orientation from the visible images during the structure from motion step. We

found the 5th percentile of the canopy temperature distribution, corresponding

to the shaded leaves within the canopy, to be a better predictor of tree

transpiration than the mean canopy temperature (R² 0.85 vs. R² 0.60). Although
these shaded leaves are not representative of the whole canopy, they may be the

main transpiration site in the heat of the day. Spatially high-resolution, validated

temperature data of forest canopies at the leaf scale have many applications for

ecohydrological questions, e.g., the estimation of transpiration, for comparing

plant traits and modeling of carbon and water fluxes by considering the entire

canopy temperature distribution in mixed-species forests.
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1 Introduction

Forests play a crucial role in the Earth’s climate system by
influencing energy and water exchanges between the land and the
atmosphere. This modulation has a significant impact on surface
temperature and local/regional air temperatures (Novick and
Katul, 2020). Therefore, it is vital to better understand the spatial
and temporal patterns of tree water fluxes and the impact they
have on tree canopy temperature. The sensitivity of tree canopy
temperature to environmental changes varies between species and
tree individuals due to differences in hydraulic traits (e.g., hydraulic
conductivity, rooting depth, stomatal regulation) (McDowell et al.,
2008). For example under drought conditions, a decreasing soil
moisture content and a high vapor pressure deficit will trigger
stomatal closure reducing root water uptake to avoid xylem
cavitation and therefore a loss of hydraulic conductivity. Stomatal
closure will cause transpiration to cease and therefore increase the
canopy temperature, which is detectable within minutes. On the
contrary, any visible symptoms (wilting leaves, leaf discoloration,
premature leaf drop) due to water stress will appear only days
to weeks later (Lawson and Blatt, 2014; Santesteban et al., 2017;
Zhang et al., 2019). Acquiring canopy temperature data in forests
has historically been challenging, with only a limited number
of studies exploring temperature variations among different tree
species (e.g., Leuzinger and Krner, 2007; Leuzinger et al., 2010;
Yi et al., 2020). Other conventional in-situ methods that directly
assess tree water fluxes or water status (e.g., sapflow sensors,
leaf porometers, tensiometers, leaf gas exchange chambers) rely
on a limited number of selected branches/trees and are unable
to cover spatial variability in the crown of one tree or a whole
forest stand.

Given the advancements of Unmanned Aerial Vehicles (UAV)
and thermal sensor technology (i.e., ease of use, cost-effectiveness,
miniaturization of sensors, increase in payload capacity and flight
time), UAV appear to be well-suited for this task. Specifically,
thermal imaging of forests can provide spatially high-resolution
information of individual canopy temperatures while also being
capable of capturing a large spatial area (more than one ha). Such
data can then be of tremendous value for exploring canopy-level
processes in great detail, such as evaluating stomatal behavior
in response to varying environmental conditions (Farella et al.,
2022), detecting stress, or relating in-situ measurements to leaf
temperatures (Easterday et al., 2019). Recently, UAV-based thermal
imaging has increasingly been applied to estimate transpiration
of individual trees and forest stands via resolving the energy
balance (Bulusu et al., 2023; Ellser et al., 2020; Marzahn et al.,
2020). These studies found good correlations between UAV-
based transpiration estimates and those derived from both Eddy-
Covariance and sap flow measurements. Improving the accuracy
of leaf temperatures might further improve such already promising
approaches. UAV-borne land surface temperature estimates are also
used to study the relationships between soil temperatures under
canopies with different degrees of closure and related these to
observed spatial patterns in soil water isotope enrichment and soil
moisture content (Beyer et al., 2025). Hence, the potential of UAV-
based thermal imaging for practice-oriented research and upscaling
is substantial.

However, thermal imaging of forests with UAV at a leaf
scale resolution comes with additional challenges. Current systems
measure temperatures with lightweight uncooled thermal sensors,
i.e., to save weight their operational temperature is not stabilized by
additional cooling systems, which makes them sensitive to ambient
conditions during flight operation causing temperature readings to
drift (Kelly et al., 2019; Mesas-Carrascosa et al., 2018), e.g., in the
extreme case a sudden change in ambient conditions can cause a
temperature jump of up to ±10◦C (Niu et al., 2020). In order to
enable the full potential of thermal images, a calibration to absolute
temperatures is desirable as it can be compared with external data
and be further utilized to model evapotranspiration (Niu et al.,
2020), to estimate stomatal conductance (Gago et al., 2015) or to
simulate carbon fluxes (Kim et al., 2016). The calibration of the
thermal sensor to absolute temperatures is commonly done by
including temperature references within the overflight area (Maes
et al., 2017; Torres-Rua, 2017; Pestana et al., 2019). These include,
for example, painted metal sheets, where the surface temperature is
measured by contact temperature sensors, or natural surfaces (e.g.,
bare wet or dry soil), where the surface temperature is monitored
with infrared thermometers. If temperature references are used,
multiple reference measurements are recommended to increase
the calibration accuracy (Kelly et al., 2019). Compared to more
open settings, e.g., plantations, where there is abundant space
between the plants (Gómez-Candón et al., 2016), the visibility of
temperature references on the ground is often limited in forests
and therefore measurements might only be possible directly above
forest clearings. Alternatively, in-situ temperature references can
be omitted, and the thermal sensor is calibrated beforehand in
the laboratory (Aragon et al., 2020). In this case, however, the
ambient conditions during the flight are not accounted for and
a validation of the acquired temperature data without additional
in-situ temperature references is not possible.

To effectively survey larger areas, such as forests, it is essential
to establish a flight plan composed of predefined waypoints. This
plan is autonomously executed by the UAV, capturing numerous
overlapping individual images of the surveyed area. These images
are subsequently processed to generate a single, comprehensive
georeferenced image of the area, known as an orthomosaic. At
higher spatial resolutions (at the leaf scale pixel sizes of 2 -
10 cm are required), heterogeneous forests become inherently
geometrically complex structures, and therefore generating the
thermal orthomosaic remains challenging. This is mainly because
thermal images are of low spatial resolution and low local contrast
compared to visible images (Hartmann et al., 2012) and therefore
provide insufficient image tiepoints (Ribeiro-Gomes et al., 2017)
(i.e., points in one image which represents the same locations in
an adjacent images), which are required to relate the images to each
other in order to form the orthomosaic. Therefore, in some cases,
studies omitted the generation of the thermal orthomosaic and
only use individual thermal images (Maes et al., 2018; Smigaj et al.,
2015). The number of thermal image tiepoints can be increased
by image filtering (Ribeiro-Gomes et al., 2017) or by adjusting for
air temperature changes during the overflight (Maes et al., 2017).
Alternatively, finding the relationships between images can be
improved by initializing the thermal image locations from previous
processed visible images (Maes et al., 2017).
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Overall, the potential of UAV-derived thermal imaging of
forests has been underutilized compared to other remote sensing
techniques (e.g., visible and/or hyperspectral imaging) (Ecke
et al., 2022). In this study, we explore the potential of UAV’s
to analyze leaf temperatures at the leaf scale, with the specific
objectives to (1) improve current flight planning approaches by
incorporating repeated during-flight measurements of temperature
references (Figure 1); (2) calibrate thermal images to absolute
temperatures using different calibration techniques; (3) validate
the calibrations, estimate the potential temperature drift and other
sources of uncertainty, (4) process the high-resolution thermal
images of forest canopies into a thermal orthomosaic, and (5)
compare and interpret the obtained canopy temperatures between
different species. Finally, we (6) utilize the dataset for exploring
the relationships between the calibrated leaf temperatures to
independently determined tree water use data (based on sap flow
measurements).

2 Materials and methods

2.1 Study area

The study was conducted at a tropical dry forest environment
at the Estación Experimental Forestal Horizontes (10◦42′46′′N
85◦35′46′′W, 100 m a.s.l.), which is part of the Área de
Conservación Guanacaste, located in the northwest of Costa Rica.
The site has a mean annual temperature of 25◦C and a mean
annual precipitation of 1575 mm. The precipitation is highly
seasonal, almost all of it occurring between May and November.
The UAV flight campaigns were conducted over forest patch of
0.74 ha consisting of evergreen (e.g., Sideroxylon capiri, Swietenia
macrophylla) and deciduous tree species (e.g., Guazuma ulmifolia,
Astronium graveolens) (Figure 2). Data was collected between May
and July 2021 at the end of the dry season and during the transition
to the rainy season (Table 1).

2.2 UAV platform and sensors

The UAV overflights were carried out with a quadcopter (DJI
Matrice 210) equipped with a combined visible and thermal camera
(Zenmuse XT2). The quadcopter offered amaximum takeoffweight
of 6.14 kg, including a payload up to 1.57 kg and a flight time of 38
min (no payload) to 24 min (full payload). The uncooled thermal
infrared sensor (microbolometer, longwave infrared spectrum 7.5
to 13 µm) was equipped with a fixed focus lens (focal length 19
mm, field of view 32◦ × 26◦) and offered an image resolution of
640 × 512 pixel. The thermal camera was set to the high gain
mode (detectable temperature range from -25◦C to 135◦C) and
the thermal images were saved as radiometric JPEG images (i.e.,
temperature calibration parameters by the manufacture and raw
sensor values were stored within the image metadata). The visible
camera (fixed focal length of 8 mm, field of view 57◦ × 42◦)
offered an image resolution of 4000 × 3000 pixel. When triggered,
the camera captured two individual synchronized images, i.e., a
thermal image and a visible image.

2.3 Flight planning

We introduced a novel, alternative flight planning approach
in order to increase the number of temperature reference
measurements captured in one flight. Multiple measurements
are required to achieve a robust temperature calibration and to
estimate the temperature drift.We extended current flight planning
practices as follows: (1) we repeatedly captured temperature
references located at forest clearings during the overflight by
integrating the reference locations within the flight plan (Figure 2),
(2) the desired image overlap and ground sampling distance is
planned at a defined object height (in our case the average tree
canopy height) instead of at the ground level, in this way we ensured
sufficient image overlap especially at lower flight heights at the
canopy level and (3) provide a graphical and user-friendly interface
to rapidly plan UAV flights for arbitrary sites.

Mapping areas with UAVs requires a number of sensor
parameters (the sensor’s image resolution, the size of the image
sensor and the focal length) and flight parameters (the area of
interest, the flight height, the amount of image overlap in forward
and side direction, and the flight speed during image acquisition).
The provided sensor and flight parameters are processed into
a set of mapping parameters (i.e., the footprint of the aerial
image on the ground, the ground sample distance, the distance
between photos in forward and side direction, and the time interval
between photos) from which the final flight plan (GPS waypoints)
is generated (Roth et al., 2018).

We introduced four additional parameters to include reference
measurements in the flight plan; (1) the GPS coordinates of
the ground temperature references, (2) the speed toward and
away from the ground references. Our flight planner determined
if a reference measurement is added to the flight plan by (3)
limiting the maximum distance allowed to travel to a ground
reference and (4) checking the minimum number of images
acquired before a reference measurement is repeated. In this way,
we avoided introducing excessive flight distances in the case a
ground reference is too far away or short flight line cause too many
reference measurements. The flight planner1 generates a list of GPS
waypoints, which describe theUAVflight path to capture images for
the desired area based on the provided parameters (for this study
Table 2). TheGPSwaypoints were imported into the drone’s ground
control application (Litchi flight app, VC Technology Ltd, London,
England) and executed after stabilizing the thermal camera to
ambient temperature for 20 min. Due to a limitation in the drone’s
waypoint functions (DJI Aircraft firmware 01.02.0450), waypoint
actions (e.g., hold position and trigger image acquisition) were
not supported when curved turns were enabled. Disabling curved
turns increased the total flight time drastically (i.e., a full stop was
required for all waypoints) and therefore curved turns were kept
enabled, which required to trigger image acquisition at the ground
temperature reference waypoints manually by the UAV operator

1 The flight planning tool is freely available. Development and version

control is available at https://git.rz.tu-bs.de/m.gerchow/flightplanner,

a running instance is accessible online at https://www.isodrones.de/

flightplanner/.
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FIGURE 1

Classical UAV flight path for mapping areas (left) and proposed flight path including reference measurements during flight operation (right). The

flight planning tool is freely available. Development and version control is available at https://git.rz.tu-bs.de/m.gerchow/flightplanner, a running

instance is accessible online at https://www.isodrones.de/flightplanner/.

(the flight plan and image acquisition of the overflight area was still
executed autonomously).

2.4 Ground temperature references

The thermal camera was calibrated and validated against
three different types of temperature references. The references
reached different temperatures due to different optical absorption
coefficients (e.g., white versus black paint). Two thin steel sheets
(90 cm × 90 cm × 0.75 mm) were painted in white and
black, respectively (All Purpose 2x Flat, Harris Paints, San José,
Costa Rica), and insulated with an expanded polystyrene board
(100 cm × 100 cm × 5 cm). Prior painting, a thermocouple
(Type-T, copper-constantan) was glued to the top side of the
steel sheets using thermally conductive glue (SG100X, Silverbead,
Bremen, Germany). Two coatings of paint were then applied to
ensure that the painted layer was thick enough to be opaque
in the long wave infrared spectrum. During midday sun the
black reference reached temperatures of > 70◦C, which was way
above the target temperature (i.e., leaf temperature). Therefore,
as a third ground reference, a water surface (1 m × 1 m ×

0.3 m) was added. The surface temperature was measured by
submerging a thermocouple just below the surface. The reference
temperatures were measured (CR1000X Datalogger, Campbell
Scientific, Logan, USA) every 10 seconds during the flight. The
emissivity of the painted steel sheets was determined by adjusting
the emissivity of a hand-held IR thermometer (62 MAX+, FLUKE,
Everett, USA) until it reached the temperature measured by
the thermocouple.

We used two ground reference sites, the first consisting of three
and the second of two ground temperature references, installed
in natural forest clearings within the overflight area. The first site
was used for calibration and consisted a black, a white and a
water surface reference. The second site was used to validate the
calibration and consisted of two reference surfaces: A white and a
water reference surface (Figure 2).

2.5 Image processing

The acquired thermal and visible images were processed into
a geometrically corrected and temperature calibrated orthomosaic.
The structure-from-motion (SFM) pipeline was done in a
commercial photogrammetry software (Agisoft Metashape 1.8.4)
and the temperature calibrations were performed by custom
Python scripts. Both images (thermal and visible) were taken
simultaneously with a fixed transformation (translation and
rotation) between the two sensors. Therefore, the extrinsic
parameters (position and orientation) of the thermal images
were inferred from the visible images by applying the fixed
transformation. After the imagine alignment, ground temperature
references were marked in world coordinates and projected into
image coordinates. The coordinates were then used to extract the
raw radiation values of the ground temperature references from
the images.

The image processing steps were as follows:

1. The thermal and visible images were loaded into a multiplane
layout (rigid camera rig data, Agisoft, 2023) to infer the extrinsic
thermal camera parameters from the visible images.
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FIGURE 2

Overview of the study site. The study was conducted at a tropical dry forest in Costa Rica. In order to calibrate and validate the thermal sensor, two

locations consisting of temperature ground references were included in the UAV flight plan. The ground references consisted of a black and white

painted aluminum sheet and water reference surface (zoomed in rectangle). Twelve of highlighted trees were equipped with sapflow sensor to

estimate tree transpiration.

2. The images were aligned to calibrate the intrinsic parameters,
the extrinsic (location and orientation) camera parameters as
well as the lens distortion coefficients.

3. The previous alignment resulted in an initial transformation
from world coordinates to image coordinates. The alignment
was optimized using six ground control points (GCPs). This step
also ensured that subsequent orthomosaics created on different
flights were aligned.

4. A marker for each temperature reference was added to a
thermal image and projected onto the other images. If necessary,
the projections were manually adjusted or removed if the
temperature reference was not clearly visible in one of the
images.

5. The location of each reference for each image was exported
to an open standard file format (i.e., LabelMe JSON standard,
Russell et al., 2008). From this a dataset consisting of extracted
raw surface radiation values from the thermal images and
corresponding logged surface temperatures in Celsius was
generated.

6. The dataset was used to fit and validate the different temperature
calibration methods.

7. A point cloud was generated from the camera calibration step
and the point cloud was used to generate a digital elevation
model.

8. Before creating the orthomosaic, the original thermal images
were replaced with their temperature-calibrated version. The
final geometrically referenced and temperature calibrated
orthomosaic was exported as GeoTIFF.

The parameters used during image processing are given in the
Supplementary Table S1.

2.6 Thermal camera calibration

Five different approaches to calibrate the thermal camera were
tested to convert the raw sensor values (stored in the thermal image
metadata) to absolute temperature in degree Celsius. As a first step,
the dataset was filtered by removing images with a steep viewing
angle of the temperature references; a viewing angle of less than 45◦

is generally recommended to avoid incorrect temperature readings
(Nunak et al., 2015). To avoid heterogeneous temperature surfaces,
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TABLE 2 Sensor and flight parameters used for the UAV flight planning.

Side Front

Sensors parameters

Image resolution 640 px 512 px

Focal length 19 mm

Sensor size 10.9 mm 8.77 mm

Flight parameters

Flight height 35 m

Overlap 90% 90%

Object height 12 m

Mapping speed 2 m/s

Travel speed 3 m/s

reference surfaces with high standard deviations (>2◦C) were also
excluded (in some images a temperature reference was partially
shaded or occluded and excluded in this way).

We tested two commonly used methods, (1) the camera’s
factory calibration and (2) the empirical line method (i.e., linear
regression between the raw sensor values and logged surface
temperatures), as well as three novel methods, which were based on
the commonly used methods (3) a modified empirical line method
in which the regression is updated each time the set of calibration
references was captured (here: repeated empirical line method),
(4) a modified factory calibration in which the temperature drift
is estimated and corrected (here: factory calibration including drift
correction), (5) a second modified empirical line method in which
the slope is held constant, and only the intercept was repeatedly
updated (here: constant slope repeated empirical line method).

2.6.1 Factory calibration
The factory calibration allowed us to convert the raw

sensor values directly into temperatures. A set of manufacture
precalibrated parameters were stored in the thermal image
metadata, which allowed to convert the raw values to thermal
radiation. We used a radiative transfer model to convert the
thermal radiation to absolute temperatures (Aubrecht et al., 2016;
Tattersall, 2021). In short, the amount of atmospheric absorption
depends on the distance between the camera and the subject,
the air temperature and the air’s relative humidity. Before and
after each flight, the reflected ambient temperature was recorded
and averaged by measuring a piece of crumpled aluminum foil
with the infrared thermometer (emissivity set to 1.0). Atmospheric
parameters (air temperature and relative humidity) were logged by
a weather station (Hobo RX3000, Onset, Bourne, USA) installed
within the forest site. The distance to the subject (i.e., the ground
temperature references) was set to the drones flight height (Table 2).

2.6.2 Empirical line method calibration
The raw sensor values from the thermal camera and the logged

temperatures from the calibration temperature reference surfaces
were used to form a linear regression (Zhou et al., 2005). The
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linear regression model was fitted once per flight by ordinary least
squares and used afterward to convert the raw thermal images to
absolute temperatures.

2.6.3 Repeated empirical line method calibration
During the overflight, the temperature surface references were

captured after each flight line (Figure 2). Rather than performing
the empirical line calibration once per flight, each capture of
the calibration temperature reference surfaces was used to fit
the linear regression model. The fitted slope and intercept were
linearly interpolated in time to convert the thermal images to
absolute temperatures.

2.6.4 Factory calibration including drift
correction

The raw sensor values from each temperature ground reference
were converted to absolute temperatures using the factory
calibration. The difference between the converted temperatures and
measured reference temperatures was then used to estimate the
temperature drift. The difference was linearly interpolated over
time and then subtracted from the initial converted temperatures
to correct for the temperature drift.

2.6.5 Constant slope repeated empirical line
method calibration

Wemodified the repeated empirical line method to update and
interpolate only the intercept. The slope is calibrated once per flight
and was assumed to be a constant, i.e., we assumed that the slope
was independent of the ambient conditions and regarded as a per
sensor value.

2.7 Statistical analysis and comparison of
the calibration methods

The accuracy of each calibration was tested against the
calibration temperature references (i.e., to determine the goodness
of fit of the calibration model, in-sample analysis) and against
the data from the validation temperature reference surfaces (i.e.,
to cross-validate each calibration method, out-sample analysis).
In each case, the accuracy of the calibration and validation was
determined by the root-mean-square error (RMSE), the mean
absolute error (MAE) and the mean difference (MD) for each
flight. In addition, the mean temperature difference over the
flight time was analyzed to assess the method’s robustness against
temperature drift.

2.8 Relationships between canopy
temperatures and plant water use

In order to further validate the estimated leaf temperatures,
we explored the relationships between canopy temperatures and
plant water use. Leaf temperatures for the selected tree individuals

at one flight date (F1, Figure 3) were extracted using the shape of
the canopies, which have been segmented manually using a GIS
(Figure 2). We then calculated a temperature histogram for each
canopy and determined mean, variance, skew, kurtosis, 5th and
95th percentile of the temperature distributions. 11 of the identified
canopies were equipped with sap flow sensors (HPV-06, Implexx
Sense, Melbourne, Australia).

Estimating tree transpiration from sap flow measurements
necessitates modeling, particularly when using the heat pulse
method, as applied in this study. This method models heat
velocity based on convection within the transpirational stream
of the trunk. To estimate tree transpiration, heat velocity must
be integrated across the conductive sapwood. This procedure is
error-prone due to the radial variability in sapwood conductivity,
which is challenging to accurately assess, potentially leading
to significant errors in transpiration estimates (Gerchow et al.,
2023). Information on the processing of the sap flow data can
be found in Khnhammer et al. (2023). We extracted total sap
flow for the respective hour when the overflight took place
[L/h] and the complete data of the overflight [L/day] for each
monitored tree. We then performed a correlation analysis of
the data from the two temporal representations of sap flow,
respectively, and the statistical measures of the calibrated leaf
temperatures. Finally, these relationships were evaluated and
interpreted in terms of coefficient of determination of the fit,
statistical significance and plausibility in terms of water transport
and stomatal regulation processes.

3 Results

3.1 Flight planning

The flight plan generated for the study area resulted in seven
approaches to the calibration and validation temperature references
after each flight line. The average distance between calibration and
validation location was 93 m, which took approx. 60 s of flight time
(Figure 2). The total flight time was 21 min covering a distance
of 1.8 km and an area of 1.1 ha. In comparison, not including
temperature ground reference would result in an estimated flight
time of 16 min and a distance of 1.4 km (estimations were provided
by the ground control app). On average 72 thermal images of
the temperature references were acquired per flight, resulting in
an average of 180 references measurements (after filtering, 83
measurements were used for the calibration and 33 measurements
for the validation).

3.2 Thermal image calibration

The calibration methods exhibited variations in accuracy. The
common methods (i.e., factory calibration and empirical line
method) overall achieved a lower calibration accuracy compared
to the modified methods (i.e., repeated empirical line method,
factory calibration including drift correction and constant slope
repeated empirical line method). The lowest overall calibration
error was obtained using the repeated empirical line method
(MAE 0.6◦C, Table 3). The commonly used calibration methods
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FIGURE 3

Boxplot of the calculated statistical parameters (5th percentile, mean and 95th percentile) from the whole canopy temperature distribution grouped

by each investigated species.

produced significantly larger calibration errors (MAE > 2.8◦C)
when compared to the modified methods where the calibration
was updated during the flight (MAE < 1.1◦C). The factory camera
calibration achieved the lowest calibration error of the common
methods (MAE 2.8◦C). The common methods showed a large
temperature drift during the overflight (MAE of 4.2◦C at 5 min
after liftoff), which decreased to an MAE of 1.8◦C at 12 min after
liftoff (Figure 4).

3.3 Validation of the thermal camera
calibration

The validation of the calibrationmethods was done out-sample,
i.e., each calibration was cross validated against temperature
references not used during calibration. If the calibration was not
updated during the overflight we observed significantly larger
validation errors (MAE > 3.5◦C) compared to the updated
methods (MAE < 1.3◦C) (Table 4). All calibration techniques
showed a temperature drift in the validation result, i.e., the
validation error was larger at the beginning of the flight and
reduced over time. By applying a repeated calibration method
the temperature drift was reduced on average overall flights to a
maximum MAE of 2.1◦C compared to max. MAE of 5.5◦C for
the non-repeated calibration approaches (Figure 5). The lowest
validation error was achieved by the repeated empirical linemethod

(MAE 1.5◦C) and the factory camera calibration including drift
correction (MAE 1.6◦C) (Table 4).

3.4 Image processing: photogrammetric
camera calibration and thermal
orthomosaic generation

Image alignment and thermal orthomosaic generation was
successful for all flights. On average overall flights, a total of 380,000
tiepoints were detected in 866 images (433 visible images and 433
thermal images), 320,000 tiepoints (740 per image, 86% of total)
were used for the photogrammetric calibration of the visible sensor,
and 46,000 tiepoints (100 per image, 13% of total) were used for
the thermal sensor. An average of 4,600 tiepoints (10 per image,
1% of total) were identified and matched between the two sensors.
These tiepoints were used to estimate the rotational transformation
(omega, phi, kappa) between the two image coordinate systems of
the visible and thermal sensors. The mean and standard deviation
averaged over all flights were -1.16 ± 0.30◦, 0.84 ± 0.75◦, 0.23 ±

0.07◦, respectively. The average re-projection error across flights
was 1.10 px, while the thermal camera re-projection error was
0.97 px, compared to a re-projection error of 1.23 px of the
visible cameras (Table 5). The orthomosaic alignment between the
visible and thermal bands was validated by manually matching 10
corresponding points in the visible and thermal bands, the average
alignment over all flights was 6.09± 3.32 cm (Table 5).
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TABLE 3 Comparison of the accuracy of di�erent calibration methods based on in-sample analysis.

Mean signed
error [◦C]

Mean standard
error [◦C]

Mean absolute
error [◦C]

Mean squared
error [◦C]

Root mean
squared error [◦C]

Calibration method

Factory 1.6 0.3 2.8 12.2 3.3

Empirical 2.4 0.5 3.9 32.6 5.2

Repeated empirical 0.1 0.1 0.6 0.9 0.9

Factory drift -0.8 0.2 1.0 3.3 1.6

Repeated empirical
constant offset

0.7 0.2 1.1 2.4 1.5

Results are averaged over six flights.

FIGURE 4

Calibration error averaged over all flights for each calibration methods. Commonly applied method (factory, empirical) result in higher calibration

errors and temperature drift compared to proposed approaches (repeated empirical, factory drift, repeated empirical constant o�set).

TABLE 4 Comparison of the accuracy of di�erent calibration methods based on out-sample analysis (cross validation).

Mean signed
error [◦C]

Mean standard
error [◦C]

Mean absolute
error [◦C]

Mean squared
error [◦C]

Root mean
squared error [◦C]

Calibration method

Factory 3.6 0.3 3.8 18.3 4.1

Empirical 2.8 0.5 3.5 25.9 4.2

Repeated empirical 1.1 0.3 1.5 4.5 2.0

Factory drift 1.0 0.3 1.6 4.5 2.0

Repeated empirical
constant offset

1.3 0.3 1.7 5.4 2.2

Results are averaged over six flights.

The effect of the temperature drift is particularly evident
in the thermal band generated by the non-updated calibration

methods For example, the initial flight lines appear colder and

the resulting orthomosaic (e.g., flight F1, Figure 6) shows a

temperature gradient perpendicular to the main flight direction.

The gradient also resulted in a stretched histogram of the

thermal band when compared to the histogram of a calibration
method that included a temperature drift correction. Individual
leaves are clearly identifiable in the visible band and temperature

variations at the leaf scale in the temperature band are
detectable (Figure 6).

3.5 Relationship between canopy
temperatures and plant water use

For an additional assessment of the derived leaf temperatures,
we analyzed the relationships between canopy temperature and sap
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FIGURE 5

Validation of each applied calibration method. Commonly applied method (factory, empirical) result in higher validation errors and temperature drift

when compared to proposed approaches (repeated empirical, factory drift, repeated empirical constant o�set).

flow at the time when the UAV overflight took place. Figure 7 shows
the results for the highest linear and exponential relationships,
respectively, between the leaf temperature statistical measures
and sap flow. The linear and exponential fits for all investigated
statistical parameters of the leaf canopy temperatures are depicted
in Supplementary Figure S1.

The correlation analysis reveals that the relationship between
canopy temperature and sap flow is generally better represented by
an exponential relationship rather than a linear. For the analysis
of the linear relationship between statistical parameters of the
canopy temperature distributions and sap flow we obtained the
highest correlations for the 5th percentile, with a coefficient of
determination (R²) of 0.85 (p < 0.001) (Figure 7). This is followed
by themean canopy temperature (R² 0.60, p< 0.05), 95th percentile
(R² 0.55, p-value < 0.05) (Supplementary Figure S1). We found no
significant linear relationships for the variance, standard deviation,
skew and kurtosis of the canopy temperature distribution. The
highest R² for the exponential fit is found for the variance of
the leaf temperature distributions, reaching an R² as high as 0.82
and a p-value lower than 0.001 (Figure 7, right). Furthermore,
std (R² 0.63, p < 0.05) and the 95th percentile (R² 0.71, p <

0.01) of the leaf temperature distributions correlate well with sap
flow (Supplementary Figure S1). The relationship of mean canopy
temperature and sap flow is still acceptable, reaching an R² of 0.62
and a p-value < 0.05.

4 Discussion

In this study we developed a new flight planning approach to
improve UAV-based thermal infrared temperature measurements,
in which the locations of temperature ground references are
included within the UAV flight planning and are repeatedly
captured during the overflight. Especially in dense forest canopies,
where a ground reference can only been captured directly from
above, this allows for sufficient reference measurements. We tested
five different methods to convert the thermal images to absolute
temperatures and validated each calibration against the reference

measurements. Further, we correlated the absolute temperatures to
sapflow measurements of 11 selected trees.

4.1 Thermal image calibration and
orthomosaic generation

The new flight-planning approach includes temperature
ground references within the UAV flight plan. This enabled
us to adjust and validate the UAVs thermal sensor calibration
roughly every minute. In contrast, if temperature references are
used without being included in the flight plan, they are only
captured on fly over, which - depending on the flight path
- significantly limits the number of reference measurements.
For example, a study conducted over a peatland, where the
references were not occluded due to taller objects, resulted in
a total of six reference measurements per flight (Kelly et al.,
2019). Alternatively, references are captured manually once at
the start, on fly over, and before landing resulting in three
reference measurements (Gómez-Candón et al., 2016). While our
approach increases the number of reference measurements, it also
increases the flight time and therefore reduces the maximum
coverage of the study site. We applied a simple heuristic to decide
when to add reference measurements to the flight path. In the
future, a more sophisticated path planning approach using the
desired photo positions, constrained by the acquisition of reference
measurements and a user-defined spatial or temporal limit, should
be implemented into our flight planning approach to minimize the
total travel distance and thus reduce the flight time.

We tested five approaches to calibrate the thermal sensor to
absolute temperatures. The two commonly used methods (namely,
the camera’s factory calibration and the empirical line method)
suffered from significant temperature drift and proved inaccurate
within the initial 12 min (roughly half of the total flight time), with
average validated MAE values of 3.8◦C and 3.5◦C, respectively. The
results of the factory calibration are consistent with the findings
of Sagan et al. (2019), who reported RMSE values of 3.39◦C for
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the factory calibration. We believe that the inaccuracies are caused
by the unstable ambient temperature of the thermal sensor during
the initial 12 minutes, as it changes from its initial temperature
on the ground to the ambient condition during the flight. In
some cases, the thermal images from the first 15 minutes are
discarded or extra flight time is added without acquiring thermal
images to exclude most of the temperature drift and increase the
overall accuracy (Kelly et al., 2019). For our study site, this would
effectively halve the useable data. Another approach is to estimate
the temperature drift from corresponding pixels matched in
sequentially taken thermal images (Mesas-Carrascosa et al., 2018).
While this approach potentially reduces the drift, it would still
require temperature references to validate absolute temperature
measurements. Also, matching corresponding pixels in thermal
images remains challenging (Maes et al., 2017) and temperature
readings depend on the viewpoint and the respective surface type
(Aubrecht et al., 2016), which would affect drift estimations.

By updating the calibration frequently (namely, the repeated
empirical line method and factory calibration including drift
correction) we are able to reduce the temperature drift. In the
repeated empirical line method the calibration parameters are
updated with each measurement of the temperature references,
which reduced the average validated MAE to 1.5◦C and the RMSE
to 2.0◦C compared to the factory calibration, which resulted in
a RMSE of 4.1◦C. Alternatively, the thermal sensor can be pre-
calibrated against a black body target, achieving a validated in-situ

accuracy of 2.6◦C (Ribeiro-Gomes et al., 2017). Ideally, the target
emissivity must be close to the used reference emissivity to achieve
the highest possible accuracy, as a change in emissivity from 0.95 to
0.94 results in roughly a 1◦C error (Aubrecht et al., 2016).

As an alternative, we tested a new approach using one
temperature reference to estimate the drift of the factory
calibration. In the factory calibration including drift correction we
achieve the same accuracy as the updated empirical line method
calibration, 1.5◦C MAE versus 1.6◦C MAE. The advantage is
that a difference between target and reference emissivity can be
included in the temperature calibration. On the other hand, the
atmospheric absorption of the target’s thermal radiance is modeled,
requiring additional environmental parameters and introducing
additional uncertainties into the calibration. On the upside, this
approach only requires one temperature reference to estimate the
temperature drift. In contrast, the empirical methods require at
least two references differing in temperature, e.g., a white and a
black painted sheet, to create a sufficient temperature span for the
line fitting step. The painted temperature references do not generate
a temperature span without sufficient solar radiations and therefore
can not be used during low irradiance conditions (pre-dawn). As
an alternative, more costly actively heated ground references could
be used to create a defined stabilized temperature span (Han et al.,
2020).

In the case a factory calibration is not available, i.e., the factory
calibration normally comes with additional expenses, and only one
temperature reference is available, which could already be available
in the study site, e.g., snow (Pestana et al., 2019) or a natural
water body, that usually provides a stable reference in the time
span of the overflight and therefore does not need to be measured
continuously. In this scenario, we suggest to use the constant slope
repeated empirical line method. In which, the slope (gain) needs
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FIGURE 6

Thermal orthomosaic of the study site at high spatial resolution. Thermal camera temperature drift is visible in the generated orthomosaic (upper

orthomosaic revealed a temperature gradient orthogonal to the main flight direction and a stretched histogram). The temperature drift was reduced

by the repeated empirical line calibration (no obvious gradient or cold spots in the generated orthomosaic and a narrow histogram).
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FIGURE 7

Linear and exponential regression analyses evaluating the relationships between mean canopy temperature, 5th percentile of canopy temperature

distribution, and variance of canopy temperature, against sapflow rates.

to be estimated once in the laboratory, or alternatively in the
field against a minimum of two references; afterwards the slope is
kept constant as it is independent of the thermal sensors ambient
conditions. The one available reference is included using our flight
planning approach to repeatedly estimate the intercept (offset). The
constant slope updated empirical line method achieves the same
accuracy as the factory calibration including drift correction and
the updated empirical line method with an MAE value of 1.7◦C.

Overall - if available - we recommend using the factory
calibration with drift correction as it allows accounting for
differences in target and calibration emissivity and can be
applied using only once reference. While it requires additional
environmental parameters to model radiance absorption, the
amount of thermal radiation absorption from the atmosphere
at lower flight remains low (Melis et al., 2020) and should
not affect the accuracy of the calibration significantly. From
our results, we conclude that the biggest challenge to achieve
accurate temperature measurements is the estimation and
correction of a temperature drift. Therefore, it is crucial
that the end user is aware of an occurring temperature
drift, which might be less profound in temperate climates,
where the change in the ambient condition from the sensor
stabilization time on the ground to the ambient condition
during the flight might not cause a temperature change
of the thermal sensor (Perich et al., 2020). However, if a
temperature drift is detected, it needs to be correct to achieve
reliable temperature measurements. By using ground reference
with a dedicated flight planning we can account for the
temperature drift, improve the overall accuracy and validate
the temperature calibration.

The thermal images were aligned by transforming their pose
from the high resolution visible images, this enabled us to create
high resolution thermal orthomosaics of the forest canopies for
all flights. While it has been shown that pre aligning thermal
images from visible improves their alignment (Maes et al., 2017),
we could demonstrate that sufficient tiepoints between the visible
and thermal images are detectable to estimate the transformation
between the visible and thermal sensor. This allowed us to align

both bands in one step, without the need of additional filtering of
the thermal images (Ribeiro-Gomes et al., 2017) or an additional
alignment step of two independently processed bands (Awais et al.,
2022), thereby reducing the overall complexity and processing time
during post processing. Although the results of the orthomosaic are
satisfactory on a bigger scale (canopy scale) at smaller scales (leaf
scale) the thermal and visible bands showed a small spatial offset of
6 cm. The error might be caused by an imperfect synchronization
between the two sensors, also suspected in Sledz andHeipke (2022).
This result limits the possibility to extract single leaf temperature
by identifying leaves within the visible band, nevertheless the
identification of single leaves in the temperature band is possible.

4.2 Relationship between canopy
temperatures and plant water use

We performed a statistical analysis of the estimated
leaf temperatures with the water use of 12 trees at the
study site which were equipped with sap flow sensors. We
hypothesized that a relationship between the estimated leaf
temperatures and sap flow should be observable, following
the physical principle that increasing transpiration of water
cools plant leaves, all else equal. Since for each tree, the
UAV-based high resolution leaf temperature estimates
provide a spatially distributed view over the entire canopy,
we were able to explore various measures of the entire
distribution of temperatures for each canopy, as opposed to
one single temperature value for each canopy. This allows
for a discussion of both species-specific- and within-tree
temperature distributions.

Using the mean temperature value for each canopy resulted
in acceptable R² for both the linear and exponential fit (R²
of 0.60 and 0.62, respectively and p-values of < 0.05) when
correlated against sapflow (Figure 7, Supplementary material S1).
However, the leaf temperatures showed substantial variation within
their canopy and were highly specific to each tree (Figure 3).
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FIGURE 8

Cropped canopy image extracted from the orthomosaic, generated using calibrated thermal images in absolute temperatures (A). Histogram

displaying the distribution of temperature pixels within the delineated canopy (B). Visible light image of the canopy highlighting regions

corresponding to the 5th percentile and 95th percentile of the canopy temperature distribution (C). Three examples out of the 21 delineated

canopies are shown.
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The lowest mean leaf temperatures were found for H. courbaril

(34.7◦C) followed by S.capiri (35.8◦C) and G. ulmifolia (36.2◦C).
Both tree species are evergreens, believed to have access to deep-
seated water resources (Hasselquist et al., 2010; Khnhammer et al.,
2023). A. graveolens (37.8◦C) and S. macrophylla (37.2◦C) had the
highest mean leaf temperatures. A. graveolens and S. macrophylla

are deciduous (or facultative deciduous) tree species, shedding
their leaves regularly during the dry season. At the time of the
overflights, A. graveolens and some trees of S. macrophylla were
starting to shed their leaves and had low measured stomatal
conductances (data not shown), indicating decreasing transpiration
rates. It is further noted, that for all observed tree species
the mean estimated leaf temperatures are greater than recorded
air temperature (Figure 3), suggesting little or no transpiration
based on the mean canopy temperatures. Indeed, the two species
with the highest mean canopy temperatures, A. graveolens and
S. macrophylla, also had very low sap flow rates (Figure 7),
supporting this notion. In contrast, the 5th percentile of the
leaf temperature distributions per species (Figure 3) show that
a proportion of leaves of H. courbaril (mean of p5 = 33.7◦C),
G. ulmifolia (34.2◦C) and S. capiri (33.5◦C) are clearly below
air temperature (Figure 3). For A. graveolens (35.7◦C) and S.

macrophylla (35.2◦C), even the 5th percentile mean temperatures
are above air temperature. We interpret this as differences in
stomatal traits, i.e., while some species already have most of
their stomata closed, others keep certain parts of their canopy
transpiring. This is confirmed by the regression analysis presented
in Figure 7, where it is shown that canopy temperature correlates
best with sap flow when using p5 (R² of 0.85, P < 0.001).
The species-specific variability of leaf temperatures also differs
between the studied species. H. courbaril has the overall lowest
variability of leaf temperatures, with standard deviations of
0.5◦C, 0.4◦C and 0.7◦C for mean canopy temperature, the 5th
percentile and the 95th percentile, respectively. This shows that
the individual trees of H. courbaril behave relatively similar. In
contrast, individual trees of S.capiri (Figure 3) behave differently
(std of 1.3◦C, 1.2◦C and 1.6◦C for mean canopy temperature,
the 5th percentile and the 95th percentile, respectively). A
similar pattern, but less pronounced variability was found for
G. ulmifolia, A. graveolens and S. macrophylla. As all trees
included in this study have a similar age and all trees within
each species have similar size and assuming the derived canopy
temperatures are correct, one interpretation might be that S. capiri
and G. ulmifolia had different water availability and stomatal
regulation traits compared to the other investigated species. In
future studies, an extended database (temporally, spatially) of sap
flow data vs. leaf temperatures and further plant physiological
parameters (e.g., stomatal conductance, leaf water potential)
could be used to investigate such species-specific relationships in
greater detail.

Looking at within-tree temperature distributions, it can be
observed that leaf temperatures are variable not only between
individual trees and species (Figure 3) but also within each
tree (Figure 8). We try to demonstrate the utility of such
individual canopy temperature distribution analysis with the
three examples shown in Figure 8, where the temperature
distributions for one tree of S. capiri, S. macrophylla and H.

courbaril are shown. First, it can be seen here that for all
examples, p5 and p95 correspond to the most shaded and most
sun-exposed leaves, respectively. The question here is whether
the low temperatures observed are caused by transpiration or
simply shading. The difficulty here is that in such an extreme
climate (i.e., end of the dry season), shaded leaves might be
the ones transpiring most. The existence of good correlations
between p5 and sap flow might support this relationship. Second,
the temperature distributions presented here can facilitate the
analysis of the coupling between leaf and air temperatures
within a single canopy. These results suggest that an improved
understanding of this coupling will be crucial for linking leaf
temperature measurements with estimates of transpiration and
more generally for understanding tree physiology in the context of
global climate.

4.3 Outlook

Acquiring absolute temperature with high resolution in mixed-
species forest opens up the possibility of single leaf temperature
extraction and detailed analysis of canopy temperature distribution.
Early stress might affect only parts of the canopy (Pineda et al.,
2020), which requires a detailed temperature analysis. In this study,
less dense, exposed parts of the canopy reached higher temperatures
than densely shaded regions (Figure 8). Many commonly measured
tree measurements are carried out at the leaf scale and suffer from
several disadvantages: i.) they are strongly affected by the sampling
location (e.g., shaded vs sunlit leaves); ii.) it is often difficult to
obtain a representative number of replicates; iii.) it is difficult
to decide which parts of the canopy are representative for the
whole canopy. Hence, such measurements often do not represent
the spatial variability of the canopy and fail when upscaled from
the measured leaves to the whole canopy. For example, the
transpiration of plants is commonly estimated by the Penman-
Monteith equation, for which the plant canopy is assumed to be
one big leaf. The big leaf assumption, which abstracts the whole
canopy into a one-layer source is in conflict with the complex
structures of real canopies, where the temperature distribution
varies, and consequently influence the canopy transpiration rates.
The complexity of real canopies might be better captured by
dividing in into sunlit and shaded leaf groups (Luo et al., 2018).
High-resolution thermal images enable correlation with local leaf
temperatures and might improve scaling to the real canopy.
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