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Severe forest fires have erupted in numerous tropical regions globally, threatening 
carbon storage in tropical ecosystems, the survival of plant species, and human 
health. Consequently, developing more precise prediction models for tropical forest 
fire hazards is essential for establishing effective fire prevention and management 
strategies. Although traditional logistic regression is widely employed for mapping 
forest fire probabilities, machine learning methods such as random forest have 
become more prevalent over the past decade. The applicability of random forest 
and logistic regression in predicting tropical forest fire probabilities has not been 
explored, leading to insufficient understanding of the driving factors of tropical 
forest fires on this tropical continental island with diverse forest types. This study 
integrated ground-based fire statistics from the Hainan Forestry Department 
and moderate resolution imaging spectroradiometer (MODIS) fire point data to 
create a highly accurate forest fire dataset for Hainan Island, spanning 20 years 
(2000–2020). Both logistic regression and random forest were used to develop 
tropical forest fire hazard models and explore the driving mechanisms of fires 
on Hainan Island. The results show that: (1) climatic factors contribute most 
significantly to the tropical forest fire probability, followed by human activities and 
topography, while vegetation factors (i.e., normalized difference vegetation index) 
made no significant contribution; (2) temperature and rainfall are the dominant 
factors influencing fire probability, with rising temperatures and decreasing rainfall 
substantially increasing the forest fire hazard; and (3) both logistic regression and 
random forest are reliable for predicting tropical forest fire hazards, but random 
forest demonstrates greater adaptability. In conclusion, our evidence suggests 
that the probability of tropical forest fires will increase under global warming 
and drought. The logistic regression and random forest models developed in 
this study provide valuable insights for identifying high-hazard forest fire areas 
in tropical regions. These findings have important implications for global tropical 
forest management and fire prevention, aiding in the formulation of targeted 
control strategies.
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1 Introduction

Tropical forests are among the most biodiverse and productive 
terrestrial ecosystems on Earth, harboring over 50% of the planet’s 
plant and animal species while contributing more than one-third of 
global oxygen production (Gatti et  al., 2021; Lewis et  al., 2015). 
Although tropical forests are located in humid environments, wildfires 
remain highly prevalent in these ecosystems (Juárez-Orozco et al., 
2017; Ngoc Thach et al., 2018; Sze et al., 2019). According to reports, 
forest fires (including wildfires and those associated with deforestation 
activities) accounted for 62% of the total burned area across all 
land-use types in equatorial Asia during the period from July 1996 to 
August 2012 (Giglio et al., 2013). These fires not only disrupt natural 
vegetation succession and carbon sequestration capacity in 
ecosystems, but also generate substantial amounts of harmful gases, 
posing significant threats to both the environment and human health 
(Brando et al., 2019; Trang et al., 2023a; Withey et al., 2018). Under 
the background of ongoing climate change, with increasing drought 
frequency and rising mean temperatures, the likelihood of wildfires is 
expected to rise substantially (Goss et al., 2020). In this context, it has 
become critically urgent to identify threshold values of wildfire drivers 
and establish efficient hazard prediction models for tropical forests.

Wildfires are commonly associated with meteorological 
conditions, vegetation types, topography, and human activities (Guo 
et al., 2020; Haas et al., 2024; Juárez-Orozco et al., 2017; Mohammadi 
et  al., 2014). Globally, researchers have employed a variety of 
quantitative methods to examine the drivers of forest fires. Early 
studies predominantly relied on traditional statistical and knowledge-
based methods, such as logistic regression (Mohammadi et al., 2014) 
and generalized linear models (Guo et al., 2015). With technological 
advances, more powerful machine learning algorithms, including 
random forests, support vector machines, and artificial neural 
networks, have been applied to this field (Abid, 2021; Alkhatib et al., 
2023). In Canada, scholars utilized an improved logistic regression 
model to predict coniferous crown fire probability, demonstrating that 
the final model incorporating wind speed, fuel layer spacing, litter 
moisture, and surface fuel consumption factors achieved superior 
accuracy (Perrakis et al., 2023). In Jilin Province, northern China, Gao 
et  al. compared three traditional methods (logistic regression, 
geographically weighted logistic regression, and Lasso regression) 
with two machine learning approaches (random forest and support 
vector machines) for temperate forest fire prediction, revealing that 
the machine learning models outperformed the generalized linear 
regression models in predictive accuracy (Gao et al., 2024). In the 
Mediterranean region, Milanovic et al. applied random forest and 
logistic regression models to assess forest fire occurrence probability 
in eastern Serbia, finding that the random forest model exhibited 
superior overall predictive capability (Milanovic et  al., 2021). In 
Vietnam, Tehrany et al. implemented the LogitBoost ensemble-based 
decision tree method for spatial prediction of tropical forest fire 
susceptibility, demonstrating optimal performance (92% predictive 
accuracy) across both training and validation datasets (Tehrany et al., 
2019). Despite these advances in fire risk modeling across various 
ecosystems, current research lacks a systematic comparison of the 
applicability of Random Forest and Logistic Regression models for 
predicting fire occurrence probability in tropical moist forests.

Data regarding forest fires and their drivers are critical for drawing 
accurate conclusions on forest fire prediction modeling. Major sources 

of such data include ground-based surveys and remote sensing. Ground 
surveys, which depend on fire monitoring stations equipped with 
sensors, collect data on meteorological conditions, fuel moisture, fire 
locations, and fire extent (Barmpoutis et al., 2020). While ground-based 
surveys provide high precision, they are often spatially limited due to 
funding constraints. In contrast, satellite remote sensing offers a faster, 
more cost-effective way to collect fire event, climate, vegetation, 
topography, and socioeconomic data over larger areas (Szpakowski and 
Jensen, 2019). However, the accuracy of satellite remote sensing is 
constrained in tropical regions due to frequent cloud cover (Miettinen 
et al., 2013). As ground fire data are often unavailable, most existing 
studies rely solely on remote sensing to explore the drivers of tropical 
forest fires (Su et al., 2021; Trang et al., 2022; Trang et al., 2023b). This 
limits the reliability of research findings. Therefore, we argue that the 
combined analysis of both ground and satellite data is essential for 
obtaining a comprehensive understanding of the causes of tropical 
forest fires. Furthermore, most existing studies on tropical forest fire 
drivers focus on single forest types, such as natural forests in the 
Amazon, plantations in southeast Asia, or savannas in central Africa 
(Dwomoh et al., 2019; Fonseca et al., 2017; Kouassi et al., 2020; Trang 
et al., 2023a). A comprehensive analysis of ecosystems with multiple 
forest types is lacking, hindering a full understanding of global tropical 
forest fire dynamics. Hainan Island, a continental island located at the 
intersection of the Asian tropical rainforest and the global monsoon 
evergreen broad-leaved forest, hosts diverse tropical forest types, 
including primary natural forests, plantations, shrublands, and 
mangroves (Huang et al., 2021; Jiang et al., 2016). This mosaic of forest 
ecosystems interspersed with agricultural land and a dense population 
makes Hainan Island an ideal location for the comprehensive study of 
the drivers of tropical forest fires. However, the knowledge of the 
driving factors of forest fires on Hainan Island remains limited. Thus, a 
detailed study of forest fire drivers on Hainan Island could provide 
valuable insights for global tropical forest fire prevention 
and management.

Here, we  integrated fire statistics from the Hainan Forestry 
Department and moderate resolution imaging spectroradiometer 
(MODIS) fire point data to develop a comprehensive 20-year (2000–
2020) forest fire dataset for Hainan Island. Two approaches were 
employed to predict the probability of forest fire occurrence: a 
traditional statistical method and an emerging machine-learning 
technique. Initially, this study utilized logistic regression, a widely 
adopted method in forest fire prediction research that is renowned for 
its interpretability and robust performance in predicting binary 
outcomes. To achieve enhanced predictive capacity and capture the 
complex nonlinear relationships among variables, this study 
subsequently implemented a random forest model. The two main 
objectives of the present study were to (1) construct higher-accuracy 
predictive models for fire occurrence probability in tropical forests, 
and (2) identify threshold values of tropical forest wildfire drivers. To 
this end, this study addressed the following research questions: (1) 
which method, logistic regression or random forest, demonstrates 
greater applicability in constructing predictive models for the 
probability of tropical forest fires in Hainan Island? (2) What are the 
critical thresholds of key environmental drivers affecting tropical 
forest wildfire probability? We consider that this information holds 
significant value in the context of increasing wildfire incidence driven 
by climate change and rapid socioeconomic development in 
tropical regions.
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2 Materials and methods

2.1 Study area

The tropical island of Hainan, located in China, was selected as 
the study area (Figure  1a). Hainan Island is a continental island 
situated between 18.80°N–20.10°N latitude and 108.37°E–111.03°E 
longitude, covering an area of 33,900 km2. The island belongs to the 
monsoon tropical climate zone, with an annual average temperature 
of 25°C and annual average rainfall exceeding 1,600 mm. The 
southwestern part of the island tends to be drier, with the annual 
rainfall being around 1,000 mm. The island experiences distinct wet 
and dry seasons, with the dry season spanning from November to 
April and the wet season spanning from May through October. 
Rainfall during the wet season accounts for 70–90% of the total 
annual precipitation.

Hainan Island’s topography is characterized by higher elevations 
at the center, with the terrain gradually sloping downwards toward the 
coastal plains. The landscape includes mid-mountains, low mountains, 
and coastal plains. Forests are mainly concentrated in the central part 
of the island, covering over 60% of the total area and amounting to 
21,976 km2. Hainan Island has diverse forest types, including primary 
tropical rainforests, mangroves, and various types of economically 
cultivated plantations. The government places great importance on 
forest fire prevention and management in this area. The designated 
forest fire prevention period runs from December 1 through May 31, 
with a high-hazard period from March 1 to May 31.

2.2 Data

2.2.1 Forest fire data
All forest fire statistical data for the past two decades (2000–2020) 

on Hainan Island were obtained from the Forestry Department of 

Hainan Province (FDHP). Experts from the FDHP collected data on 
the time and location of each forest fire occurrence in the field from 
2000 to 2020. Following each fire incident, FDHP experts used 
handheld global positioning system (GPS) devices (UniStrong, 
China) to record the location of each fire as the center of the burned 
area. Furthermore, to supplement potentially missed recorded fire 
point data, MODIS fire locations were downloaded from the National 
Aeronautics and Space Administration (NASA). Only forest fires 
occurring on Hainan Island were extracted from the MODIS data to 
ensure that fires in agricultural fields and industrial areas were not 
included in the analysis. This study compared the two datasets and 
prioritized using the fire point data from the FDHP. Finally, a forest 
fire dataset for Hainan Island over the past two decades (2000–2020) 
was compiled. This dataset consists of 1,526 fire points, with 744 fire 
points from the FDHP and 782 fire points from MODIS data 
(Figure 1b). This dataset represents the closest approximation to the 
actual occurrences of forest fires.

2.2.2 Climate, topography, and human activity 
data

For this study, climate data were selected based on four 
indicators (the average temperature, average wind speed, average 
rainfall, and minimum relative humidity). The selection of these 
climate indicators was based on previous research findings and data 
availability (Eskandari et al., 2020; Wang et al., 2023). These climate 
indicator data were provided by the National Meteorological 
Information Center (NMIC) and were collected from meteorological 
stations located on Hainan Island. The inverse distance weight 
(IDW) method in ArcMap 10.81 was employed to perform spatial 
interpolation on the obtained meteorological data (Xiao et  al., 

1 https://www.esri.com/en-us/home

FIGURE 1

Map showing the location of Hainan Island (a) and the location of forest fires in Hainan Island (b).
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2016), thereby obtaining spatial distribution data for the entire 
island (Supplementary Figure S1). The formulas used for inverse 
distance weighting are as follows:
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where ( )ˆ
oZ s  represents the interpolated result at point os ; 

( )jZ s  represents the observed value at point js ; λ j  represents the 
weight of each sampling point; and jd  represents the distance 
between the interpolation point and the sampling point. As shown 
in Equations 1–3, the sum of the weights of all sampling points is 
equal to 1.

In addition to climate variables, this study selected other 
indicators that may affect forest fire hazards, including the altitude 
above sea level, degree of slope, aspect of slope, normalized difference 
vegetation index (NDVI), proximity to roads, and proximity to 
residence zones (Supplementary Figure S2). ArcMap  10.8 was 
employed to merge, clip, and process the downloaded data to make 
them usable for analysis (Table 1).

2.3 Forest fire driving factor analysis 
method

One of the key focuses of this study was to investigate the effects 
of climate, vegetation, topography, and human activities on the 
probability of forest fire occurrences. The present study utilized forest 
fire points in Hainan Island as the dependent variable and indicators 
of climate, vegetation, topography, and human activities as 
independent variables to determine the relative importance of 
different forest fire drivers using the GeoDetector method and the 
mean decrease accuracy (MDA) index.

The GeoDetector model is a statistical tool designed to explore 
spatial heterogeneity and identify its underlying driving forces (Wang 
et al., 2010). Because the GeoDetector method requires categorical 
data for independent variables, the continuous independent variables 
were discretized. The optimal number of intervals for discretization 
was determined based on the maximum Q value, a metric computed 
using the GeoDetector model (Supplementary Figure S3). In this 
study, the factor detection function of GeoDetector was employed to 
explain the relative importance of wildfire driving factors, with the 
level of explanation measured based on the Q value. The Q value is 
calculated using the following formula (Equation 4):
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where h = 1, …; L represents the strata of variable Y or factor X; 
Nh and N are the strata h and the number of units in the whole area, 

TABLE 1 List of data used in this study.

Data Abbreviation Units Spatial 
resolution

Temporal 
coverage

Source

Forest fire data based on field 

investigation
2000–2020

Forestry Department of Hainan Province (FDHP)

https://lyj.hainan.gov.cn/

Forest fire data based on 

moderate resolution imaging 

spectroradiometer

1 km 2000–2020

NASA fire information for Resource Management System 

(FIRMS)

https://firms.modaps.eosdis.nasa.gov

Average temperature AveTemp °C

Monthly from 

2000 to 2020

National Meteorological Information Center

https://data.cma.cn/

Average wind speed AveWind m/s

Average rainfall AveRain mm

Minimum relative humidity MiniHumi %

Altitude above sea level Altitude m 90 m

2020

NASA SRTM Digital Elevation 30 m

Google Earth Engine (GEE)

https://developers.google.cn/earth-engine/

Degree of slope Slope ° 90 m

Aspect of slope Aspect 90 m

Normalized difference 

vegetation index
NDVI 1 km

Monthly from 

2000 to 2020

Landsat series data

Google Earth Engine (GEE)

https://developers.google.cn/earth-engine/

Proximity to road ProxiRoad m 1:1,000,000 Daily from 2020
Open street map

https://www.openstreetmap.org/

Proximity to residence zone ProxiResidence m 1:1,000,000 Daily from 2020

Harmonized Sentinel-2 MSI: MultiSpectral Instrument, 

Level-1C

Google Earth Engine (GEE)

https://earthengine.google.com/
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respectively; and σ 2
h  and σ  are the variances of the Y value of strata h 

and the whole area, respectively. The value range of Q is [0.1], and a 
larger value of Q indicates a stronger determination ability or relative 
importance of the independent factor X on the attribute Y. The 
GeoDetector calculations were performed using the “GD” package in 
RStudio version 4.3.1.

The MDA index is a metric used to evaluate the importance of 
each independent variable (feature) in a random forest model. This 
index measures the impact of randomly permuting each variable on 
the model’s performance. In the present study, the MDA computations 
were implemented using the “RandomForest” package in RStudio 
version 4.3.1.

2.4 Construction of forest fire occurrence 
probability prediction model

2.4.1 Logistic regression model
Logistic regression modeling has become one of the most common 

techniques in forest fire research due to its excellent interpretability and 
predictive accuracy. Before utilizing the logistic regression model, this 
study conducted Spearman’s correlation coefficient tests to assess the 
strengths of the relationships among all factors, aiming to determine the 
degree of correlation between them. Furthermore, the variance inflation 
factor (VIF) was employed to detect multicollinearity among the 
independent variables, thereby determining which factors could 
ultimately be  utilized in the model as independent variables. The 
formula used to calculate the VIF is as follows (Equation 5):

 
=

− 2
1

1
VIF

R  
(5)

Only variables with a VIF ≤ 10 and a Spearman’s correlation 
coefficient below 0.7 were considered for model construction 
(Dormann et al., 2013). Spearman’s correlation coefficient tests and 
multicollinearity checks were performed using the “car” and “corrplot” 
packages in RStudio 4.3.1 software.

A logistic regression model was used to predict the probability of 
forest fire occurrence in the study area. Assuming that the probability 
of a forest fire at a certain point is P; then, the probability of no forest 
fire is (1 − P). The formula for calculating P is as follows (Equation 6):
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where P represents the probability of forest fire occurrence; x1, x2, 
…, xm represent the driving factors influencing forest fire points on 
Hainan Island; a0 is the intercept; and a1, a2, …, am represent the 
coefficients corresponding to each driving factor in the logistic 
regression model.

This study randomly generated 2,289 non-fire points within the 
forest distribution range of the study area, based on 1.5 times the 
quantity of forest fire points. These non-fire points, along with 1,526 
forest fire points, were binary coded in ArcMap 10.8 software, with a 
value of 1 representing fire occurrence and a value of 0 representing 
no fire occurrence. The “caTools” package in RStudio 4.3.1 software 
was utilized to create this model.

2.4.2 Random forest model
Random forest is an ensemble learning method that builds a 

model comprising multiple decision trees. These trees are constructed 
through bootstrap sampling of the training data and random feature 
selection, and classification or regression is performed by aggregating 
predictions through voting or averaging. In the present study, the 
“caret” package in R was employed to optimize the parameters. The 
initial value for the number of features (mtry) was set to 2, with an 
increment of 2 for each iteration, and the maximum value was set to 
16. Ultimately, this study selected the number of features (mtry) that 
yielded the highest accuracy to construct the random forest model. 
This model was created using the “RandomForest” package in 
RStudio 4.3.1.

2.5 Forest fire susceptibility map 
generation and accuracy assessment 
methodology

To create the fire susceptibility map, 70% of the fire points were 
utilized as training samples and the remaining 30% were used as 
validation samples. The logistic regression model constructed in this 
study was employed to compute the predicted probabilities of fire 
occurrence based on the validation samples. Subsequently, the Kriging 
interpolation tool in ArcMap 10.8 software was used to generate the 
fire susceptibility map.

The accuracy of the fire susceptibility map was validated 
based on the receiver operating characteristic (ROC) curve. The 
area under the curve (AUC) of the ROC curve indicates the 
model’s accuracy. The AUC between two points can be calculated 
using definite integration, providing a value ranging from 0.5 to 
1. An AUC value between 0.5 and 0.7 reflects poor accuracy, 
values between 0.7 and 0.8 indicate acceptable accuracy, values 
between 0.8 and 0.9 represent high accuracy, and values above 0.9 
indicate outstanding model accuracy (Hosmer Jr et al., 2013). The 
ROC curve plotting and calculations were performed using the 
“pROC” package in RStudio 4.3.1 software.

3 Results

3.1 Relationship between forest fire 
incidence and climate, topography, 
vegetation, and human activities

The findings demonstrated that the number of forest fires 
exhibited a trend of initial increase followed by a decrease with 
rising annual average temperature, which suggests that a higher 
temperature does not necessarily correlate with a higher 
frequency of forest fires (Figure 2a). The highest number of forest 
fire occurrences was observed when the annual average 
temperature ranged from 24.5°C to 24.9°C, accounting for 44.4% 
of the total forest fire occurrences. The maximum number of 
forest fire points was observed at an average wind speed of 
1.9–2.7 m/s, constituting 32.8% of the total. This phenomenon 
may be attributed to Hainan Island’s tropical maritime monsoon 
climate, where strong winds during the monsoon season are often 
accompanied by rainfall, which further reduces fire risks by 
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FIGURE 2

Forest fire incidence and overlay of climatic factors (a–d), topographic factors (e–g), vegetation factors (h), and human activity factors (i,j) in Hainan 
Island from 2000 to 2020. Note the difference in y-scale between the left and right panels.
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moistening vegetation. Forest fire incidence exhibited a 
decreasing trend with increasing average wind speed (Figure 2b). 
The peak number of forest fire points occurred when the annual 
rainfall ranged from 1422.6 to 1592.4 mm, representing 42.2% of 
the total (Figure 2c). Overall, there was a decreasing trend in 
forest fire points with elevated annual minimum relative humidity 
(Figure 2d). As the altitude increased, the number of forest fire 
points significantly decreased (Figure 2e). Forest fire points were 
concentrated between slopes of 0°–25°, with fewer occurrences 
as the slope steepness increased (Figure  2f). The distribution 
across different aspects of slopes was relatively uniform 
(Figure 2g). Regions with a higher NDVI tended to have more 
forest fire points (Figure 2h). The forest fire incidence notably 
decreased in areas farther from roads and residential zones 
(Figures 2i,j).

3.2 Analysis of driving factors for forest 
fire incidence

The factor detection function was applied to determine the 
relative impact of individual drivers on wildfire occurrence 

(Figure  3a). Only the average temperature, average rainfall, 
average wind speed, proximity to roads, and altitude above sea 
level were found to significantly influence the occurrence of 
tropical forest fires, with the q-values ranked from largest to 
smallest. Among all factors, average temperature had the highest 
q-value (q = 0.4733), followed by average rainfall (q = 0.4449). 
The MDA index values (Figure 3b) further validated this finding. 
These results indicate that climatic factors are the primary drivers 
of the spatial patterns of tropical forest fires in the study area, 
particularly the average temperature and average rainfall.

3.3 Interrelationships among factors

Spearman’s correlation analysis revealed that climate variables 
exhibited low correlation, while the altitude, slope, NDVI, 
proximity to roads, and proximity to residential areas were highly 
correlated (Figure  4a). In particular, the correlation between 
altitude and slope was the highest and most significant. However, 
all variables had VIF values below 10, even below 2, which 
indicated that there was no collinearity among these variables 
(Figure 4b).

FIGURE 3

Importance ranking of factors influencing forest fire occurrence based on GeoDetector (a) and importance ranking of factors based on the mean 
decrease accuracy index (b). “*” or “**” is the significance level, “*” significant at 95% confidence level, “**” significant at 99% confidence level.
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TABLE 2 Logistic regression model fitting results.

Variable name Estimate Significance

(Intercept) −9.697 **

AveTemp 4.433 **

AveWind −1.527 **

AveRain −3.323 **

MiniHumi 5.218 ns

Altitude −1.499 **

Slope −8.313 ns

Aspect −2.845 ns

NDVI −1.926 ns

ProxiRoad 4.19 **

ProxiResidence 2.395 ns

“*” or “**” is the significance level, “*” Significant at 95% confidence level, “**” Significant 
at 99% confidence level. “ns” not significant.

3.4 Development of forest fire Hazard 
models using logistic regression and 
random forest

The fitting results of the logistic regression model showed that 
the annual average temperature, annual average wind speed, 
annual average rainfall, altitude, and proximity to roads were 
significant (p > 0.01). The average annual temperature and 
proximity to roads were positively correlated with the number of 
forest fires, while the average annual wind speed, average annual 
rainfall, and altitude were negatively correlated (Table 2). The fire 
sensitivity maps developed based on the logistic regression and 
random forest models showed that the areas with high forest fire 
risk were primarily concentrated in southwestern Hainan Island 
(Figure 5).

3.5 Validation of model accuracy

The confusion matrix generated in this study indicated that 
the prediction accuracy of the logistic regression model was 
82.79% (Figure 6a), while the prediction accuracy of the random 
forest model was 98.60% (Figure 6b). The ROC curve analysis 
showed that the AUC of the logistic regression model was 0.79 
(Figure  7), which fell within an acceptable accuracy range. In 
contrast, the AUC of the random forest model was 0.99, indicating 
perfect classification. Although both models demonstrated 
reliability, the fire sensitivity map generated by the random forest 
model exhibited higher applicability for predicting forest fire 
occurrence probabilities on Hainan Island compared to the 
logistic regression model.

4 Discussion

4.1 Determinants of tropical forest fires

We found that climate factors contribute the most to the spatial 
pattern of fire occurrence across the entire study area, particularly 
temperature and rainfall, which jointly and significantly drive the 
probability of tropical forest fires. This finding aligns with the majority 
of research in other tropical regions, such as the Amazon, Southeast 
Asia, and Africa (Cardil et al., 2023; Su et al., 2021; Trang et al., 2022; 
Xu et al., 2020), indicating that temperature and precipitation are the 
primary drivers of forest fires in most tropical regions. We further 

FIGURE 4

Correlation between variables, Spearman’s correlation coefficient test results (a), and variance inflation factor (VIF) values (b). *Significant at 95% 
confidence level. **Significant at 99% confidence level. ***Significant at 99.99% confidence level.
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found that rising temperatures and reduced rainfall significantly 
increase forest fire risk in the study area. This occurs because warmer 
and drier conditions substantially enhance fuel aridity in tropical 
forests, thereby creating more favorable conditions for fire ignition 
and spread. Similar conclusions have been drawn from studies in 
tropical forests such as the Brazilian Pantanal, northern Vietnam, and 
the Caribbean (Ribeiro et al., 2022; Trang et al., 2022; Van Beusekom 
et al., 2018). However, in tropical savannas, some studies have found 

that increased drought and high temperatures do not necessarily lead 
to more fires (Alvarado et al., 2020). This may be attributed to the 
lower fuel loads in savannas compared to tropical forests, as drought 
and heat primarily influence fire frequency by enhancing fuel 
flammability. Our study revealed that when the mean annual 
temperature exceeds 24.5°C and the mean annual precipitation falls 
below 1,592.4 mm, the number of fire hotspots in the study area 
increases sharply. Therefore, the evidence presented in this study 

FIGURE 5

Forest fire susceptibility map developed using the validation dataset based on the logistic regression model (a) and the random forest model (b).

FIGURE 6

Confusion matrix of prediction results on the validation dataset based on the logistic regression model (a) and the random forest model (b).
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FIGURE 7

Receiver operating characteristic (ROC) curve of prediction results compared with actual values based on the logistic regression model and the 
random forest model.

suggests that the trends of global warming and drying may lead to 
more frequent tropical forest fires globally.

Although the results showed that human activities were not the 
primary drivers of forest fire occurrence, human activities still 
significantly affected the probability of tropical forest fires, albeit with 
a lower contribution compared to climatic factors. This finding is 
consistent with studies from neighboring tropical regions in southeast 
Asia (Trang et al., 2022; Trang et al., 2023a). This may be due to the 
higher population pressure and greater demand for forest land use in 
southeast Asian tropical regions, leading to more intense human 
disturbance (Gareth, 2019; Taufik, 2017). Surprisingly, the results of 
this study showed that vegetation factors (normalized difference 
vegetation index) did not significantly contribute to fire occurrence 
probability, which was inconsistent with findings from subtropical and 
temperate regions (Guo et al., 2020; Ma et al., 2020). The present study 
area is located in a tropical maritime monsoon climate zone, and 
although the biomass of tropical rainforests is abundant, this biomass 
only burns under conditions of water depletion, such as prolonged 
droughts (Trang et  al., 2022). Moreover, the distribution maps 
(Supplementary Figures S2d, S3d) show that areas with higher NDVIs 
often correspond to regions with elevated air humidity, suggesting that 
fire occurrence is limited by fuel moisture.

4.2 Predictive model for tropical forest fire 
Hazard

Currently, there is a significant lack of development in tropical 
forest fire hazard prediction models, which severely hampers precise 
fire prevention and control efforts in these regions. Based on our 
identification of the primary drivers of tropical forest fires, we fitted 
logistic regression models and random forest models to predict the 
probability of forest fire occurrence. We  found that both models 
demonstrated reliability in predicting tropical forest fire risks, but the 
random forest model achieved higher accuracy. This result is 
consistent with findings reported in studies from Vietnam (Truong 

et al., 2023). In the present study, five factors—temperature, rainfall, 
wind speed, altitude, and proximity to roads—were significant at the 
99% confidence level. Most studies on tropical forest fire hazard 
prediction models have also identified climate, topography, and 
human activities as important variables (Ngoc Thach et  al., 2018; 
Truong et  al., 2023). Although the two models showed some 
differences in prediction accuracy in the present study, both were able 
to effectively identify high-hazard areas for forest fires in tropical 
regions. These results are of significant practical importance for forest 
fire management in tropical areas. Identifying high-hazard zones will 
enable the development of more targeted fire prevention and control 
strategies, as well as the optimization of resource allocation.

4.3 Practical applications

This work provides a deeper understanding of the mechanisms 
underlying wildfire occurrence in tropical forests and supports 
wildfire prevention and mitigation efforts. First, by employing the 
logistic regression and random forest models we developed, relevant 
authorities can identify high-hazard areas for wildfires based on both 
past and current data and deploy disaster prevention and mitigation 
measures in advance. Currently, some wildfire management planners 
are hesitant to use machine learning models, as they are often 
considered “black box” models (Li et al., 2024). However, the present 
work also provides the most classic logistic regression model, which 
is easier for wildfire management planners to use. Second, this work 
provides an effective wildfire feature attribution method that reveals 
the driving factors of wildfires in tropical continental islands for the 
first time. This study explains the contribution of each feature to the 
occurrence of tropical forest fires and determines the specific 
numerical values of these contributions, which can be compared with 
values from other regions in the future. Understanding the driving 
factors of wildfires will be beneficial for the establishment of wildfire 
early warning systems. When these key driving factors reach critical 
thresholds, authorities should be alert and take proactive measures to 

https://doi.org/10.3389/ffgc.2025.1495699
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Chen et al. 10.3389/ffgc.2025.1495699

Frontiers in Forests and Global Change 11 frontiersin.org

enhance monitoring. Furthermore, this study presents the fire hazard 
index of the study area in the form of a map. This will help with 
targeted resource planning and allocation within the region, allowing 
for the development of disaster prevention and mitigation strategies 
specific to certain areas.

5 Conclusion

This study integrated ground-based fire statistics and MODIS fire 
point data to construct a 20-year (2000–2020) forest fire dataset for 
Hainan Island. Using traditional logistic regression and emerging 
random forest models, we developed a tropical forest fire hazard 
model for Hainan Island and explored the main driving factors of 
forest fires in the region. The analysis leads to the following 
conclusions: (1) climate factors make the greatest contributions to the 
probability of tropical forest fire occurrence, followed by human 
activities and topography, while vegetation factors have no significant 
contribution; (2) temperature and rainfall dominate the probability 
of tropical forest fire occurrence, with rising temperatures and 
decreasing rainfall significantly increasing the risk of forest fires; and 
(3) both logistic regression and random forest models are reliable in 
predicting tropical forest fire risk, but the random forest model has 
greater applicability. The fire susceptibility maps generated using 
both models reveal high-risk areas in Hainan Island, providing a 
promising approach for local forest fire early warning and 
monitoring systems.

In summary, the findings indicate that the probability of tropical 
forest fires will increase under global warming and drought 
conditions. This study contributes to a deeper understanding of the 
factors driving tropical forest fires and provides theoretical support 
for the prevention and mitigation of wildfires in tropical 
regions worldwide.
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