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Automatic, wall-to-wall monitoring of forests from remote sensing data is a
dream slowly becoming a reality. One barrier to development is the laborious
task of developing quality ground reference data. Structural information captured
by terrestrial laser scanners (TLS) or unmanned aerial systems (UAS) would
expedite the collection of ground reference data if tree species could be
automatically determined from point clouds. This study aims to improve species
classification from point clouds by identifying detectable structural features
useful for classifying species. We compare the effectiveness of multiple feature
design strategies for classifying dominant hardwood species (oaks and sugar
maples) from single-scan TLS and UAS data of natural hardwood forests, and
analyze the separability of these species within and across the canopy layers.
We find that oaks and sugar maples have distinct profile shapes that both
single-scan TLS data and UAS LiDAR data can capture. TLS captures species-
specific profile shapes through direct measurement of canopy width. UAS LiDAR,
with its characteristically occluded understory, relies more on canopy density
features. Our results emphasize the importance of tailoring data processing and
feature extraction for capturing understory structure and highlight the need for
modality-specific feature design. Implementing these insights will improve the
accuracy and efficiency of automated tree-level inventories in hardwood forests,
ultimately supporting more robust forest monitoring and management practices.

KEYWORDS

tree structure architecture, unmanned aerial vehicle, forest inventories, species
classification, terrestrial laser scanning

1 Introduction

Timely information about the size, health, and species composition of forests is critical
for preserving and promoting ecosystem services. Carbon absorption, urban cooling,
and timber value are major environmental and economic metrics that fluctuate with
forest coverage, health, and species diversity (Jonsson et al., 2019; Gauthier et al., 2014;
Jaganmohan et al.,, 2016; Bonan, 2008; Oswalt et al., 2019). In recent years, forests across the
globe have experienced increased tree mortality caused by the rising frequency and severity
of fires, insects, disease, and extreme weather events (Allen et al., 2015; Fei et al., 2019;
Hartmann et al., 2022). To mitigate these changes, the forestry industry and the research
community need methods for monitoring large forested areas quickly and seamlessly.
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Remote sensing technology has long been seen as the key to
forest monitoring at scale. Since the 1990s, research has focused on
exploiting airborne laser scanning (ALS) for stand-level monitoring
of forests (Vauhkonen et al., 2014a). Currently, ALS has been
incorporated as an essential component of stand-level monitoring
operations in multiple countries (Nesset, 2007; Maltamo and
Packalen, 2014). Wall-to-wall descriptors of standard canopy
variables may be generated from airborne data, but only when
paired with ground references. Generally, these references are forest
inventories. Forest inventories directly measure biometric features,
identify the species, and generate qualitative assessments of
individual trees within sample plots. Traditionally, forest inventory
workflows manually measure tree attributes, such as diameter at
breast height (DBH) and tree positions, using calipers, compasses,
and hypsometers (Kangas and Maltamo, 2006; Gollob et al., 2019).
Though costly and labor-intensive, these inventories form the
“keystone” for stand-level monitoring in Finland (Maltamo and
Packalen, 2014), and have become the default training data for
tree-mapping algorithms (Kangas et al., 2018; Li et al., 2013b) and
accuracy assessment (Lister et al., 2020; Chirici et al., 2020). Yet,
more reference datasets are needed to train and assess the models
being designed to automate individual tree-level monitoring at
scale (Kiikenbrink et al., 2022).

To increase the accuracy, coverage, and collection rate of forest
inventories, researchers have long worked to integrate terrestrial
laser scanning (TLS) and unmanned aerial system (UAS) mapping
into the forest inventory workflow (Gollob et al., 2019; Kankare
et al, 2015; Oveland et al., 2018). UAS-based remote sensing is
widely recognized as the technology most suited to advance the
forest monitoring framework (Krok et al, 2020). Not only can
these platforms cover significantly larger areas than manual forest
inventories, but advances in close-range remote sensing hardware
have made LiDAR and image collection from UAS cheap and
accessible. On the other hand, since ground-based scanners can
rapidly digitize the forest with millimeter accuracy (Liang et al.,
2018a), TLS data is widely recognized as the most accurate remote
sensing modality for tree-level feature measurement (Liang et al.,
2018b; Krok et al., 2020; Schneider et al., 2019; Kiikenbrink et al.,
2022) [though photogrammetric techniques are also producing
precision results (Huang et al., 2018)]. In addition to height and
DBH, TLS data can estimate biometric traits that cannot be easily
measured manually, such as tree volume (Abegg et al., 2023),
biomass (Stovall et al., 2023), stem curve and taper (Liang et al,
2014), and vegetation density (Ashcroft et al., 2014; Batchelor
et al., 2022). Despite the advances, data interpretation methods
for extracting typical forest inventory features from TLS or
UAS data are developing slowly, and manual forest inventory
sampling remains the standard for tree-level feature measurement
(Breidenbach et al., 2020).

A major reason TLS or UAS data have not replaced manual
forest inventory sampling is that these technologies struggle to
duplicate non-geometric assessments. Species identification is an
integral part of the forest inventory process. Growth models and
treatment schedules are species dependent (Vauhkonen et al,
2014b), as is the accuracy of allometrically-derived biomass
estimations (Korpela and Tokola, 2006; Vorster et al., 2020).
Initially, LiDAR data was not considered adequate for species
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classification (Vauhkonen et al., 2014b). As point density improved,
however, LiDAR data collected by TLS, ALS, or UAS began to
be useful for capturing the 3D architecture of trees—a feature
known to vary by species and local biodiversity (Hakkenberg et al.,
2016). Several researchers have utilized high-density data to classify
individual tree species and have shown promising results (Terryn
et al, 2020; Liu et al, 2021, 2022; Allen et al., 2023). Despite
these previous efforts, more investigation on individual tree species
classification is needed, given the diversity of tree structures by
species and environments, and the different abilities of platforms
to capture this structural information.

The objective of this work is to aid in the advancement
of LiDAR-based species classification by identifying structural
features detectable in TLS and UAS data that can be used to aid in
species identification. We see the difficulty in extracting qualitative
assessments of individual trees—especially species identification—
as a primary reason TLS and UAS data have not replaced manual
forest inventory methods in hardwood forests. Automating forest
inventories is necessary to quickly increase available ground
validation data and, thereby, catalyze the development and testing
of data-driven models for using remotely sensed data for wall-to-
wall forest monitoring.

We see several gaps in the literature. The first gap is the lack of
modality-specific feature design. It is well known that data modality
determines which element of a tree’s structural architecture is
most easily detected; however, few studies have offered insight into
designing features for species detection that account for modality
bias. The work of Lin and Herold (2016) points out that TLS
is increasingly being used in forest inventory procedures, but
relatively little work has been done on identifying species with
specific attention to the difference in occlusion pattern in TLS data.
Rather, many TLS-based studies simply apply methods designed
for aerially collected point clouds to TLS data sets (Puttonen
et al, 2011). Lin and Herold argue that direct application of these
methods to TLS data may not be optimal. Since feature design
strategies for TLS cannot be assumed to produce equivalent results
when calculated from UAS data (or vice versa), this study aims
to determine which structural elements are most detectable in
the respective modalities and which feature design strategy best
captures species-variable structural elements.

The second gap is the limited use of single-scan TLS data for
species classification. Although TLS data has been used effectively
for individual tree modeling, most previous studies use high-quality
multi-scan TLS point clouds (Terryn et al, 2020; Akerblom et al,
2017; Lin and Herold, 2016). While multi-scan point clouds result
in very low occlusion rates, the additional fieldwork and processing
time needed to produce high-quality point clouds (described
in Wilkes et al,, 2017) prevents them from gaining widespread
use in current forest inventory procedures (Reddy et al, 2018).
Meanwhile, several studies demonstrated the potential of single-
scan TLS data in different applications, even with high occlusion
rates and uneven point density (Batchelor et al., 2022). Motivated
by this demonstrated potential, this study extracts valuable features
from single-scan TLS data, which can be easily collected in the field,
and utilizes them to classify tree species.

The third gap is that little work has focused on structural
feature extraction and species classification from LiDAR data in
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the northern forests of North America. Most work on species
classification from LiDAR data has been conducted in the
boreal forests of Scandinavia, where forests have fewer species
and less understory, and where distinguishing between conifers
and deciduous trees may be sufficient for many applications
(Vauhkonen et al., 2014b). In northern forests, like the hardwood
stands used in this study, the understory contains many trees
of significant size. This calls for more complex methods for
segmenting individual trees from the point cloud scene. Many
studies simply segment individual trees by crown perimeter
(Brandtberg et al., 2003; Holmgren and Persson, 2004; Li et al.,
2013a). While a reasonable choice for forests that have little to no
understory (such as shorter coniferous forests), these methods fail
in upland hardwood forests, where oaks and maples are among the
most dominant species and have become critical indicators of the
effect of climate change and deer population on forest composition
(Brandtetal., 2014). Motivated by the need to develop features and
workflows that are useful for species classification in environments
where understory is critical, this study focuses its application on
northern hardwood forests.

In this work, we pair manually-measured forest inventory plot
measurements with single-scan TLS data and UAS LiDAR within
natural northern hardwood forest. We use an algorithm designed
for complex deciduous forests to segment individual trees from
the point clouds and extract a series of structural features from
each tree. We then use these features to discriminate between
oaks and sugar maples in both the canopy and understory to
identify detectable structure differences and suggest feature design
strategies tailored to specific data modalities. The findings of this
work will aid in improving species classification from TLS and
UAS LiDAR data, increasing the collection rate of forest inventory
reference data, and ultimately accelerating the pace and accuracy
of remote sensing for forest monitoring. The main contributions of
this work are:

e demonstrating that below-canopy structural features are

critical for structure-based species classification, and
proposing feature design strategies for leveraging the
understory differences tailored to TLS or UAS data modalities;

e performing species classification from single-scan TLS data of
natural forest with robust tree segmentation; and

e discriminating between oaks (quercus) and sugar maple (acer
saccharum) from mixed northern hardwood forest from both

the canopy and understory.

2 Materials and methods
2.1 Test site

The site of this study is Martell Forest, a 195-hectare research
forest in northern Indiana, USA (40.44105, -87.03353). The most
dominant topographical feature within the forest is Indian Creek.
The creek flows southward through a flood plain cut into the
surrounding glacial till, dropping about 8 m across the forest as it
descends into the Wabash River. As a result, the forest covers three
distinct terrain regions: the flat upland plains at 205 m elevation, the
flat lowland flood plain averaging 165 m in elevation, and the steep,
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transitional slopes (Figure 1). Forest research has been conducted
at Martell Forest since the mid-twentieth century. For several
decades, forest inventories have been periodically performed at 112
plots scattered throughout the forest (Figure 1A). Of these plots,
61 are used in this study and have been designated as “upland,
“lowland,” or “slope” plots (Figure 1B). All forest inventory plots
are located in mixed natural forest areas, but the varied terrain
creates several micro-environments that influence the admixture
of species. The upland areas and the slopes are dominated by oaks
and sugar maples, with oaks forming the canopy and sugar maples
thriving in the understory. Black cherry, hickories, yellow poplar,
and basswood are also common. In the lowland floodplain, the trees
at Martell tend to be shorter with basswood, oaks, hackberry, elms,
and buckeye being most common (Figure 2).

2.2 Data collection and initial processing

Ground data collection began with the collection of forest
inventory data and TLS scans at plot sites. In March and April 2022,
trained forestry undergraduate students measured forest inventory
data during leaf-oft conditions. All living trees within 16 m 52.3
feet) of the center, larger than 12.7 cm (5 inches) in diameter, were
located by compass bearing and distance. Dead trees were excluded.
For each tree of interest, field crews measured the DBH with a D-
tape and identified the species. At each plot, we also collected a TLS
scan using a FARO laser scanner (Figure 3).

To compare how well features from UAS and TLS data capture
structural differences in tree species, UAS LiDAR was also collected
over the site during leaf-off conditions. We flew a DJI Matrice
300 platform mounted with a Zenmuse L2 LiDAR sensor (DJI,
Shenzhen, China) at 120m over the site on March 28, 2024. The
raw data was processed using DJI's Terra software to create a
point cloud of ISOPm—t;, which was then co-registered with the
photogrammetric point cloud from the 2022 flight.

The geographic alignment between the validation site and
any remotely sensed data must be accurate to ensure detected
features align with field samples (Maltamo and Packalen, 2014).
Misalignment between remotely sensed data and ground reference
data is a significant source of error in forest metrics derived from
remotely sensed data (Nesset et al., 2004; Fraser and Congalton,
2019; Hernandez-Stefanoni et al., 2018; Mayamanikandan et al,,
2022). On our site, the stems and dense branches of the canopy
prevented precise GNSS observation, so the global coordinates
of the plot centers were determined by the method outlined by
Carpenter et al. (2023). We deployed disposable targets during
the early weeks of March and then flew a DJI Matrice 300
platform mounted with a Zenmuse P1 RGB camera (DJI, Shenzhen,
China) at 120 m over the site to capture 2 cm aerial imagery.
We processed the images using Agisoft Metashape (version 1.7.1)
(Agisoft, St. Petersburg, Russia) to create an orthoimage and
point cloud of the forest terrain referenced in UTM Zone 16N
(meters). Plot center locations were measured by digitizing each
target in the orthoimagery (Figure 4A). These centers were then
used to georeference the manual forest inventory measurements
(Figure 4C), and the TLS scans were shifted and rotated into the
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global frame using common ground and trunk features in both the
TLS data and the UAS LiDAR point cloud datasets (Figure 4B).

2.3 Sample preparation

After the data collection and initial processing steps detailed
above, both the TLS and UAS derived point clouds were sent to our
individual tree segmentation module (Figure 4D). In contrast with
boreal forests, where many studies safely assume that all TLS points
falling under the perimeter of the crown represent an individual
tree (Li et al., 2013a; Holmgren and Persson, 2004), Martel Forest is
anorthern hardwood forest where trees large enough to be included

Frontiersin Forests and Global Change

in the forest inventory procedure may still be under the canopy.
Thus, our work employs an unsupervised method for segmenting
individual trees from point clouds (Carpenter et al., 2022) designed
to preserve the geometric structure of the tree while separating
individuals from environments that have significant understory
and entangled tree structures. The TLS data was segmented first,
since this data most completely captures individual trunks, then the
UAS data was segmented using the TLS segmentation results as a
priori knowledge to improve segmentation results.

After segmentation, we linked each tree with the corresponding
forest inventory measurements and filtered the samples to create a
dataset of individual tree point clouds and labels (Figure 4E). We
implemented a modified version of the (Gale and Shapley, 1962)
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FIGURE 2

The mean tree heights for each species (bar charts—bars are colored by tree genus) and the tree species make up (pie charts) for both the entire
forest and within each of the three terrain classes. These statistics are derived from the forest inventory data.
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FIGURE 3
Terrestrial laser scanning data and unmanned aerial system lidar were collected over 61 forest inventory plots, each having a 16-m radius.
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FIGURE 4

Flow chart of the procedures employed to collect data, georeference the data, segment and select samples, and extract features of interest. Samples
from the UAS LiDAR (red arrows) and TLS (blue arrows) point cloud data were passed through the same Sample Preparation and Feature Calculation
routine, but the datasets were kept separate for comparative analysis.

stable marriage algorithm to match each tree with its species label ~ the TLS data cause errors in segmentation that would adversely
based on geographic proximity and similarity in tree size. The  affect the results of our study. So, after creating the TLS-label pairs,
complexity of the environment and the presence of occlusions in ~ we filtered the samples by manually inspecting all pairs to verify
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the automated matching procedure and to filter out point clouds
that were incomplete or poorly segmented. Of the 1,420 matches,
798 were found to either have some segmentation error, contain
some major occlusion, or did not match the forest inventory label.
Inspection of the samples indicated that lower quality segmentation
results were generally further from the plot center and had smaller
DBH measures (Figure 5). This indicates that occlusions in the
TLS data were the primary cause of poor segmentation results. We
removed these samples, leaving 622 high-quality individual tree
TLS point clouds with species labels for use in this study. Filtering
removed more samples from the UAS data. Because of the lower
density and different occlusion patterns of the UAS data, only 591
individual UAS trees were segmented for use in this study.

The goal of this study is to identify structural features that
have the potential to separate species. To have proper insight into
variation indicative of species, it is critical to control for feature
variation caused by other factors. To reduce the impact of the
growing environment, we removed samples from lowland areas, as
trees in these parts of the forest had significantly different structural
patterns. Next, to ensure that we had large enough sample sizes to
derive statistically meaningful conclusions, we combined species
from the same genus into genus-level groups (Table 1). After this
merging, only two dominant species, oaks (genus-level) and sugar
maples (species-level), had significant numbers for comparison
(Figure 4F). Finally, we control for size variation. Terryn et al.
(2020) show that the feature variation within a single species can
vary significantly depending on a tree’s position in the canopy. This
intra-species variation is often larger than cross-species variation
within the same canopy class. We split the species in this study into
canopy and understory groups (Figure 4G). By visual inspection and
knowledge of the forest, 22m was determined to be the appropriate
threshold between canopy and understory classification. In the
end, we compare four classes of trees, canopy oaks (OAKs_C),
canopy sugar maples (SUM_C), understory oaks (OAKs_U), and
understory sugar maples (SUM_U). Ten of the segmented point
clouds of oak and sugar maples from the TLS data are shown in

10.3389/ffgc.2025.1500178

2.4 Feature extraction

The features for our study are based on three feature curves.
Each point cloud of a tree was split horizontally into 20 slices, and
a feature was calculated from the points of each slice. Since the
number of slices is equal for all trees, the height of the slices changes
across samples to accommodate changing tree heights (Li et al,
2013a). Three metrics were calculated to create the three feature
curves as shown in Figure 7. The first metric was height frequency
(ht) (Figure 7A). This was calculated as the number of points within
each height slice.

The second feature curve is canopy closedness (cd) (Figure 7B).
To calculate this metric, the slice was rasterized, and the number of
pixels containing points was divided by the number of pixels in the
rectangular footprint of the tree. The resolution of the rasterization
was equal to the slice height of the particular tree. This size
dependency was chosen because it was less sensitive to changes in
point density while producing features with meaningful separation
between experimental units, and because maintaining equal slices
and resolutions allows our method to be implemented with cubic
voxels. Calculating canopy closedness in this paper is based on the
principles of canopy openness (denoted as “gap fraction") described
in the FORESTR R package (Hardiman et al., 2011; Atkins et al,
2018). However, given the irregularity of TLS point density, we only
considered the existence of lidar points within each pixel rather
than the number of points. Closedness should be conceptualized as
the shading power or the amount of light blocked at each height
slice—it is the opposite of openness (Sprugel et al., 2009). The
canopy closedness value is correlated with the width of the canopy
and the density of the branching architecture within the selected
height slice.

The third feature curve is canopy diameter (di)
(Figure 7C). This is calculated by finding the area of the
convex hull containing all occupied pixels within the height
slice. After finding this area, the diameter of the circle of
equal area is calculated. Once all absolute diameters are

Figure 6. calculated for all slices of a tree, the curve is normalized
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FIGURE 5

The mean distance from the plot center and DBH for each segmentation quality ranking. High-quality tree segmentation results tend to be nearer
the center of the plot (near the scanner) and have larger DBH measurements. Only qualities 4 and 5 were used in this study.
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TABLE 1 The number of trees in each species from upland and slope plots.

‘ Species Abbrev. Count Species Abbrev. Count ‘
Sugar maple SUM 140 Red Elm REE 7
White oak WHO 96 Chinkapin oak ZCO 6
Yellow poplar YEP 38 American elm AME 6
Red oak REO 36 Bitternut hickory BIH 5
Basswood BAS 33 Iron wood 1RO 4
Black oak BLO 25 Shingle oak SHO 3
Black cherry BLC 25 White ash WHA 2
Pignut hickory PIH 19 American beech AMB 2
Black walnut BLW 17 Largetooth aspen LAA 2
Shagbark hickory SHH 15 Bur oak BUO 1
Sassafras SAS 12 Ohio buckeye OHB 1
Hackberry HAC 8

Species counts after grouping

Oak[1] OAKs 144/34[2] Sassafras SAS 12
Sugar Maple SUM 30/110[2] Hackberry HAC 8
Hickory[1] HICs 39 Iron wood IRO 4
Yellow poplar YEP 38 White ash WHA 2
Basswood BAS 33 American beech AMB 2
Black cherry BLC 25 Largetooth aspen LAA 2
Black walnut BLW 17 Ohio Buckeye OHB 1
Elm[1] ELMs 13

[1] Oaks, Hickories, and Elms emphasized in bold to highlight that they have been grouped at the genus level, reflected in their increased count. [2] For Oaks and Sugar Maples, the count is
divided between Canopy and Understory individuals in the format (Canopy Count / Understory Count).

E
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1 I
1 I
1 I
E204 | )
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CRCE :
1 sugar Maple
FIGURE 6
Examples of segmented oak and sugar maple tree point clouds. The red lines along the sides of the first two canopies indicate the canopy shape
trend. Oak canopies tend to widen toward the top of the tree, while sugar maple canopies tend to be a consistent width through the canopy.

by the maximum diameter in the curve. This normalized Additionally, a few explicit tree structure (ETS) metrics were
diameter curve directly captures the profile shape of calculated. These ETS metrics are tree height (et_tree_height),
the tree. height of the base of the canopy (et_cbh), and the length of
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FIGURE 7

with an area equal to the area of the convex hull.

A visual representation of the method for calculating the three curves used for species segmentation. Each tree point cloud was segmented into
horizontally oriented slices (the red box represents a single slice). Points falling within a given slice were used to calculate three metrics for that
height window: (A) the number of points within the slice, (B) the percentage of occupied voxels within the slice, and (C) the diameter of the circle

the canopy (et_cl). These ETS metrics were designed to further
exploit the strengths of the TLS data. Several studies introduce
feature normalization to decouple the feature value from the
size of the tree ( ; ;

). The height curve and ETS features are not
normalized, reflecting the true size of the tree. The closedness
and diameter features are normalized to reduce their correlation
with tree size. shows the complete list of features and
their description.

2.5 Feature analysis

The objective of this paper is to provide insight into
the relationship between features and the tree structural
architecture. Understanding this relationship is critical for
recognizing the effect different occlusion patterns and point
densities will have on calculated features. Such recognition
will inform feature design for specific point cloud capture
modalities. To this end, our study focuses on identifying feature
importance and noting how the usefulness of features changes with
data modality.

Our first feature evaluation technique quantifies the separability
of the species within each feature. To measure the separability, we
employ Fisher’s Discriminant Criterion (FDC), which is defined as

Frontiersin

the ratio of the between-class variance to the within-class variance
( ) as shown in

(my — my)?

FDC =
(712 + 022

1

where o7 and o, are the means of each class within a given
feature, and o; and o, are the standard deviations of the class
within the same feature. FDC values closer to zero indicate
minimal separability, while increasingly larger positive values (e.g.,
0.5-1.5 or higher, depending on the dataset) suggest stronger
discrimination between classes. Concretely, an FDC value of 1
indicates that the distance between the means equals the combined
standard deviation, suggesting moderate overlap between classes.
We further evaluate the usefulness of the features by
performing supervised classification and analyzing the importance
of each feature. We use Linear Discriminant Analysis (LDA),
a parametric method for finding the linear combination of
features that best separates the classes. LDA assumes multivariate
normality of features and equal covariance among classes; both
assumptions were evaluated and found to be reasonably satisfied
based on Mahalanobis QQ plots, the Henze-Zirkler test for
multivariate normality, and geometric comparisons of class
covariance structures in principal component space. In this paper,
the LDA classifier was built using the libraries of scikit-learn in


https://doi.org/10.3389/ffgc.2025.1500178
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org

Carpenter et al.

TABLE 2 Features extracted from the point clouds of individual trees.

Curve Abbr. Description
Height ht_std Height standard deviation
ht_var Height variance
ht_cov Height coefficient of variance
ht_skw Height skewness
ht_krt Height kurtosis
ht_ent Height entropy
ht_avg Height average
ht_max Height maximum
Closedness cd_std Closedness standard deviation
cd_var Closedness variance
cd_cov Closedness coefficient of variance
cd_skw Closedness skewness
cd_krt Closedness kurtosis
cd_ent Closedness entropy
cd_avg Closedness average
cd_max Closedness maximum
ht_cd_max Height at closedness maximum
cd_ratio_1 Height at closedness maximum to tree
height ratio
cd_ratio_2 Closedness maximum to tree height
ratio
cd_ratio_7 Height at closedness maximum to
canopy length ratio
cd_ratio_8 Height at closedness maximum to
closedness maximum ratio
cd_bh Closedness at breast height
cd_cbh Closedness at canopy base height
Diameter di_std Norm’d diameter standard deviation
di_cov Norm’d diameter coeflicient of variance
di_skw Norm’d diameter skewness
di_krt Norm’d diameter kurtosis
di_ent Norm’d diameter entropy
di_avg Norm’d diameter average
d_max Diameter maximum
ht_di_max Height at Norm’d diameter maximum
di_ratio_1 Height at Norm’d diameter maximum
to tree height ratio
d_ratio_2 Diameter maximum to tree height
ratio
ETS et_tree_height 98h percentile of all heights
et_cbh Canopy base height
et_cl Canopy length
et_ratio_l Canopy base height to tree height
ratio
et_ratio_2 Canopy length to tree height ratio
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Python (Pedregosa et al, 2011). The model was fit using the
default “linear” solver, with class priors estimated from the sample
proportions and no shrinkage applied. We chose LDA because
the coeflicients of the projected scores are easily interpretable, the
method is directly related to our separability metric, it performs
well with low feature count, and can handle multicollinearity.
Further, it has a long track record in remote sensing. LDA has
been used heavily for imagery data, including hyperspectral remote
sensing (Chan et al,, 2021; Alonzo et al., 2013; Zhao et al., 2000) and
for tree species classification from point clouds (Orka et al., 2009;
Li et al., 2013a; Alonzo et al., 2014).

3 Results

There are three primary results of this study. First, the density
and arrangement of understory branches differ between oaks and
sugar maples. Oaks tend to shed their lower branches, resulting
in a triangular canopy profile with little understory structure.
In contrast, sugar maples retain their lower branches, creating
a denser branching mass lower on the tree (exemplified by the
first pair of trees in Figure 6). Second, these structural differences
are detectable in point cloud data. Both the UAS and TLS data
captured separable differences in the understory structure. Third,
the most effective feature for leveraging this difference for species
classification depends on the modality of data collection. Features
describing the diameter of a tree’s understory structure provide
strong separability between species in TLS data, while features
capturing canopy closedness are more effective for UAS data. These
three findings are derived from the observations presented in the
following subsections.

3.1 Feature evaluation

Analysis of structural features derived from TLS and UAS
point clouds reveals three key differences between oaks and sugar
maples: (1) canopy oaks have their maximum canopy closedness
and diameter positioned high in the tree in both modalities; (2)
sugar maples have a relatively uniform canopy width, whereas
oaks gradually widen toward the top; and (3) UAS-derived features
provide less separability between species than TLS-derived features.
Our feature evaluation results are presented in two figures. Figure &
shows the FDC separability between oaks and sugar maples for
each feature, within each canopy class and modality. The right
panels of Figure 8 highlight the distributions of a select four
features. These four are highlighted because they show the most
separability between species within their class, provide useful
separability across multiple classes, or capture quantitatively a
pattern detected qualitatively in visual analysis. Together, these
four best demonstrate how structural differences between oaks and
sugar maples manifest themselves in the data modalities tested in
this study. Figure 9 displays mean profile shapes for each species
and canopy classification. Shading represents the closedness value
of each horizontal layer, and dotted lines mark the height of
maximum closedness in both TLS and UAS trees.
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FIGURE 8

For each feature, the separability between oaks and sugar maples within each experimental unit was tested. (A) This heatmap shows Fisher's
discriminant coefficient describing the separability between oaks and sugar maples captured by each feature, within a specific canopy class and data
modality. This heatmap can be used to identify features that capture structural differences between species. Four features are highlighted on the left.
The distributions of these features, from which the FDC scores were derived, are shown in panels (B—E), with the FDC separability score displayed
above each pair. An asterisk (*) indicates that the difference in mean values is statistically significant. Four features are uniquely indicative of how
structural differences exhibit themselves in the tested data modalities. The distributions of these four are highlighted in the following panels. (B) A
detail of the normalized height of maximum closedness (cd_ratio_1) feature showing the feature’s distribution across species, canopy class, and data
modality. (C) A detail of the standard deviation of normalized canopy diameters (di_std) feature. (D) A detail of the skewness of normalized canopy
diameters (di_skw) feature. (E) A detail of the normalized height of maximum diameter (di_ratio_1) feature.
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Observation 1: Canopy oaks exhibit a distinct structural
characteristic where their maximum canopy closedness and
maximum diameter occur higher in the tree profile than in sugar
maples. While maples and understory oaks reach their maximum
closedness at approximately 70% of tree height, canopy oaks
reach it at about 83%, with their maximum diameter occurring
around 85%. This distinction is easily detected visually in the
mean profiles shown in Figure 9. Two features quantify this
characteristic: canopy oaks have significantly higher normalized
height of maximum closedness (cd_ratio_1) and normalized height
of maximum diameter (di_ratio_1) than canopy sugar maples. The
FDC score of cd_ratio_1, comparing canopy oaks to canopy sugar
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maples, is 0.48 (for TLS) and 0.34 (for UAS), and t-test results
indicate their means are significantly different. This can be seen
graphically by inspecting the box plots in Figure 8B. Likewise, the
FDC score of di_ratio_1 comparing canopy oaks to canopy sugar
maples is 0.49 (for TLS) and 0.30 (for UAS), also with statistically
different means (Figure 8E). These two features have the highest
separation scores in both TLS and UAS data, which is why they are
highlighted in this analysis.

Observation 2: Sugar maples have a relatively uniform canopy
width, while oaks gradually widen toward the top. Once again, this
observation is apparent upon visual inspection of the mean profiles,
but more insight is to be gained in identifying the features that
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FIGURE 9

The average profiles of oaks and sugar maples in canopy and understory classes as captured by TLS data. The profile shape is formed from the
diameter curve for each height slice, and the shading shows the value of the canopy closedness curve for each height slice. The average height of
the maximum closedness calculated from both TLS and UAS is marked by a dotted line. (A) The absolute tree profile. (B) Tree profile represented as a

capture this structural difference. Unlike canopy trees, understory
oaks and sugar maples are not well-separated by cd_ratio_1
(FDC: 0.16 for TLS, 0.05 for UAS) and di_ratio_1 (FDC: 0.24 for
TLS, 0.01 for UAS). Two other features—the standard deviation
of normalized canopy diameters (di_std) and the skewness of
normalized canopy diameters (di_skw)—were found by this study
to effectively distinguish between oaks and sugar maples regardless
of canopy class (though it generally has more separation in the
canopy class). Comparison of the distributions shown in Figure 8C
indicates that oaks have a lower standard deviation of diameters,
while the distributions highlighted in Figure 8D indicate they have
a higher skewness. A high skewness means diameter distributions
are more right-skewed, with more small-diameter height slices.
This reflects a key structural difference: oaks gradually taper toward
the canopy, resulting in a smaller mean diameter with lower
variance, while sugar maples have a short, distinct “trunk” region,
leading to a larger mean diameter with more variance. These two
features are not the only features that capture this pattern, but they
are the features that show it most clearly and are, therefore, used
here as exemplars.

Observation 3: UAS-derived features provide less species
separability than TLS-derived features. Occlusion patterns in
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the point clouds change based on modality. TLS data tends
to undersample the top of the canopy, making the canopy
appear more open in the upper layers while capturing the
trunk and understory in great detail. UAS, in contrast, tends to
undersample the lower canopy, making the top of the canopy
appear relatively more closed. Referring to the FDC results in
Figure 8A, we see that understory trees generally have lower FDC
scores (less separable between species), and UAS features have
lower FDC scores than the corresponding TLS scores, regardless
of canopy class.

These three observations reinforce our primary findings.
Observations 1 and 2 demonstrate that oaks and sugar maples
differ in sub-canopy structure, a distinction detectable in both
TLS and UAS data. Oaks exhibit a widening canopy shape
with maples
maintain a more uniform canopy width throughout the
tree’s height. Observation 3—that UAS features show lower
the importance
of understory structure for classification and highlights the
need for

relatively few understory branches, whereas

species  separability—further underscores

modality-specific feature design, as differences

in occlusion patterns between TLS and UAS impact

feature effectiveness.

frontiersin.org


https://doi.org/10.3389/ffgc.2025.1500178
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org

Carpenter et al.

3.2 Classification

We use LDA classification to perform multivariate analysis of
the features. The four target classes were: canopy oaks (OAKs_C),
canopy sugar maples (SUM_C), understory oaks (OAKs_U), and
understory sugar maples (SUM_U). We implemented stratified
five-fold cross-validation for two LDA models—one trained on
TLS features and the other trained on UAS features. The TLS
features achieved a 75 £ 6% total classification accuracy, and
the UAS features achieved a 61 £ 7% accuracy. The results of
the LDA classification are presented in Figure 10. Analysis of the
coeflicients of the LDA axis yielded three additional observations:
(4) Species classification is more accurate for canopy trees, (5) tree
height-related parameters dominate class separability across the
four classes, and (6) separation between species is best captured
by diameter curve descriptors in TLS data and by closedness curve
descriptors in UAS LiDAR.

Observation 4: Species classification was far more accurate
between canopy classed trees. Regardless of modality, the results
of LDA classification showed less confusion between oaks and
sugar maples within the canopy class than within the understory.
In the TLS data, canopy oaks and sugar maples were classified
with 85% and 70% accuracy, respectively, while understory oaks
and sugar maples were classified with 44% and 72%, respectively.
The UAS-based features showed a similar pattern, achieving 71%
and 40% in the canopy, and significant misclassification of oaks in
the understory. These results match our observations of individual
feature separability that indicated there was more separability
between canopy species and are shown by the confusion matrix
found in Figure 10A.

Observation 5: Tree height-related parameters dominate class
separability among the four groups. Following an assessment of
classification performance, we examined the coefficients of the
LDA axes. We first plotted each tree sample by its LDA axis score
(Figure 10B). A visual assessment indicates that canopy (circles)
and understory (triangles) trees are primarily separated along LDA
axis-1. Deeper investigation of the coefficients of axis-1 shows that
the largest contributors to axis-1 are the absolute height parameters
(Figure 10C). Features such as average height (ht_avg), the height of
the maximum normalized diameter (ht_di_max), maximum height
(ht_max), and standard deviation of heights (ht_std) contribute
significantly to axis-1 and are highly correlated with it. For TLS-
derived features, 78% of the total class separability is driven by tree
height, while for UAS-derived features, this proportion increases
to 85%. This dominance of height-related parameters suggests
that other structural differences between classes may be masked,
limiting the discriminative power of additional features.

Observation 6: Diameter features are more important for
species classification in TLS data, while closedness features are
better for UAS data. While LDA axis-1 primarily separates canopy
and understory classes based on height parameters, LDA axis-
2 differentiates oaks from sugar maples (this can be seen by
again referring to the plot of LDA axes in Figure 10B), Species
separation is more pronounced in canopy trees than in understory
trees, as seen in the greater distinction between their LDA scores.
Examining the coefficient contributions of axis-2 (Figure 10D)
reveals that while height-related features still influence class
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separation, diameter-based features, such as the height of the
maximum normalized diameter (ht_di_max) and normalized
height of maximum diameter (di_ratio_1), show the strongest
correlation with axis-2 in TLS data. In contrast, closedness
features, including standard deviation of closedness (cd_std),
average closedness (cd_avg), and the normalized maximum
closedness (cd_ratio_2), exhibit the highest correlation in UAS
data. Although individual feature separability analysis previously
identified diameter and closedness as key discriminators for species
classification, the LDA results reveal a more nuanced pattern:
diameter features play a dominant role in species separation when
using TLS data, whereas closedness features are more effective for
classification in UAS data.

These observations further highlight that UAS data has more
difficulty separating species compared to TLS data. The key reason
for this is that the shape of the understory, which holds the most
distinct structural features, is obscured by the canopy in UAS
LiDAR due to its look angle. As a result, modality influences how
features are designed to capture the same physical phenomenon.
While TLS data can directly sample the branches of the understory,
UAS data must rely on features that capture the density of the
canopy layers, limiting its ability to distinguish species effectively.

4 Discussion

4.1 Modality-specific feature design

Our findings underscore the critical role of modality-specific
feature design in maximizing species classification performance
based on structural differences. Few, if any, studies have directly
compared feature extraction strategies for TLS and UAS LiDAR
using the same forest samples. We show that structural differences
between species manifest differently in the feature space depending
on the data modality. In particular, the shape of the understory
emerges as a key determinant of species identity, as it reflects
species-specific growth strategies. However, the utility of structural
features is strongly influenced by how each modality samples
the forest.

TLS, with its ground-based perspective, captures the understory
in detail and enables direct measurements of tree profile diameters
at multiple heights. These width-based features were the strongest
species discriminators in our TLS dataset. In contrast, UAS
point clouds suffer from significant occlusion in the understory,
introducing noise into profile measurements. Instead, features
capturing canopy closedness and vertical layering—such as branch
density and canopy compactness—proved more informative
in UAS data. Our feature importance analysis highlights this
contrast: TLS enables species classification through direct
structural measurement, while UAS requires indirect proxies, with
canopy closedness emerging as a particularly effective feature in
this study.

4.2 Use of TLS data in natural forests

While prior studies have used TLS data for species
classification, most rely on low-occlusion multi-scan datasets
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FIGURE 10

Results of the LDA species classification using TLS and UAS-derived features. (A) Confusion matrices showing the classification performance for each
modality. (B) Scatter plots illustrating the separation between the four classes in the reduced feature space. To identify features that differentiate
species, classification is performed between the canopy classes (C) and the percentage of contribution of each feature category is observed (D).
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or detailed 3D models of individual trees (Terryn et al., 2020;
Akerblom et al., 2017; Lin and Herold, 2016). In contrast, our
study demonstrates that even single-scan TLS data—despite its
higher occlusion rates and incomplete sampling—can support
species classification when features are carefully designed to
capture robust structural patterns. Because single-scan data
can be collected more quickly and requires minimal pre-
processing, expanding its use from capturing purely structural
measurements to qualitative traits, such as species identity,
offers a more efficient alternative for field-based ecological
assessments. The ability to extract species information from
single-scan TLS will be a meaningful step toward integrating
TLS data collection into routine forest inventory workflows,
thereby propelling existing monitoring efforts and supporting
faster development of labeled datasets for training machine
learning models.

4.3 Feature extraction in northern
hardwood forests

Feature design strategies cannot focus solely on modality; the
expected structure of the forest must also be considered. Many
published methods for species classification from lidar, particularly
those using aerial or UAS LiDAR, segment individual trees using
the perimeters of tree crowns. While effective in forests with sparse
understory, such as boreal or managed stands, this method often
merges dominant trees with neighboring subordinates in denser
forests (Holmgren and Persson, 2004; Li et al., 2013a; Jeronimo
etal, 2018). In this study, we have implemented many of the curve-
based features widely used in previous studies, but adapted the
tree segmentation methodology to suit northern hardwood forests
and their characteristic dense understories. It is this robust tree
segmentation that enabled our study to extract useful metrics from
the understory; metrics that captured the most structural difference
between the dominant trees.

Our findings highlight the necessity of region-specific
structural feature design. The structural differences we observed—
oaks forming progressively widening crowns and sugar maples
retaining broad lower branches—reflect species-specific responses
to local competition dynamics. This is an example of gene-
environment interaction: shade-intolerant oaks shed lower
branches as they mature (U.S. Department of Agriculture, Natural
Resources Conservation Service, 2001, 2002), while shade-tolerant
sugar maples allocate resources to lateral growth while maintaining
apical dominance in anticipation of canopy recruitment. At Martell
Forest, where old oaks dominate the canopy, the differences
between species are most apparent in the canopy because maples
that have recruited into the canopy class tend to be younger and
retain their high-competition, shade-tolerant characteristics, as
sugar maple shade tolerance may decline with size (Sendall et al,
2015). Therefore, our feature design would presumably generalize
to areas that reflect both the species diversity and the maturity level
of Martell Forest, for, as we show, both the geometric complexity of
the forest and an understanding of how the target species reshape
themselves to accommodate their environment are necessary to
consider in feature design.
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4.4 Study limitations

While our results are promising, several limitations must be
acknowledged. First, our classification focused on oaks and sugar
maples, the two most abundant species in our dataset. Although
other species were present, sample sizes were too small to support
robust analysis, especially after stratifying by canopy position and
terrain class. Future studies should incorporate a wider range of
species to examine the generalizability of our findings.

Second, our results are site-specific. Martell Forest has a
particular species composition, with oaks dominating the canopy
and sugar maples dominating the understory. Since competition,
age, and local site conditions influence tree shape, other
environments may yield different structural patterns. Additional
studies are needed in forests with different dominant species in each
canopy class to evaluate the repeatability of our structural features
and classification results.

4.5 Broader implications and future work

This study contributes to the broader technological push
toward automated forest inventory systems by clarifying how
structural data, from both terrestrial and aerial LIDAR, can support
species identification in structurally complex forests. We offer three
primary contributions to this effort. First, we demonstrate that
single-scan TLS data, when paired with robust feature design,
can extend beyond structural measurement to support species
classification. This opens a path for more efficient ground-based
workflows that can scale across forest inventories and facilitate the
creation of labeled datasets for machine learning.

Second, our findings demonstrate that structural information
from occluded modalities can contribute to species identification.
It is widely accepted that automating species identification at
the individual tree level requires an integration of structural and
spectral data inputs (Balestra et al., 2024; Terryn et al, 20205
Pu, 2021). Capturing species-specific structural differences more
efficiently from single-scan TLS will expedite the capture of the
needed structural metrics. Which, when integrated with other data
streams, may provide much more robust insights than structural
or spectral features alone. Spectral imagery tracks the physiological
and phenotypic responses of the canopy, and is especially effective
when used in a time series (Huang et al, 2025). However, the
data cannot penetrate the canopy layers. In contrast, structural
features derived from TLS and UAS LiDAR can characterize trees
across canopy strata. These features change slowly, and thus
are complementary to temporally dynamic spectral signatures.
Structural features would augment spectral classification methods
by accessing understory information invisible to spectral sensors.

Third, our findings offer guidance for designing more effective
structural features for UAS-based LiDAR. In Hardwood forests,
we've identified structural patterns that distinguish between the two
dominant tree species. We further highlight the need for modality
and environment-specific feature design. Structural trait visibility
depends not only on sensor geometry but also on species-specific
growth strategies and forest composition. In particular, the use of
features like canopy closedness and vertical layering as proxies for
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understory structure may improve species classification from the
air, even in occlusion-heavy environments.

5 Conclusions

Automating tree-level forest inventories is essential for
improving forest monitoring workflows, but the lack of validation
data remains a significant barrier to automation. Integrating TLS
and UAS LiDAR into forest inventory workflows will accelerate
ground reference data generation if automatic species classification
can be reliably achieved from point cloud data. This study
demonstrates that single-scan TLS and UAS LiDAR can detect
structural differences between species. Our findings highlight the
importance of understory descriptors for classification and propose
modality-specific feature design strategies for capturing understory
structure. We compared the effectiveness of multiple features for
classifying oaks and sugar maples by analyzing the separability
of these species within and across the canopy layers of natural
forest. We found that oaks and sugar maples have distinct profile
shapes that are detectable in single-scan TLS data and, to a lesser
degree, in UAS data. For TLS data, the diameter height curve
supplied the most separation between species, since the profile of
the tree’s shape is directly sampled. However, since the understory
is highly occluded in UAS LiDAR, features related to the density of
successive canopy layers (such as canopy closedness) contributed
more to species separation from the UAS data.

These findings contribute to the development of LiDAR-based
species classification by identifying the structural attributes most
informative for each modality in complex, mixed-species forests.
Importantly, our use of single-scan TLS data demonstrates that
meaningful structural differences can be detected with occluded
data, significantly reducing the collection and processing time
needed to implement TLS data. Our results demonstrate the
importance of understory structure in distinguishing species
and highlight the need for feature extraction strategies that
account for modality-specific constraints, such as occlusion in
UAS LiDAR. By demonstrating the effectiveness of modality-
specific feature design, species classification from single-scan TLS,
and the applicability of these methods in northern hardwood
forests, this work provides methodological insights that will
improve the accuracy and efficiency of automated tree-level
inventories, ultimately supporting more robust forest monitoring
and management practices.
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