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This paper presents an empirical method to calculate a conservative discount factor 
when applying a large-scale estimate to an internal subset of areas (subdomains) 
that accounts for both the precision (variability) and potential bias of the estimate 
of the subset (i.e., the small area estimated within the large-scale framework). 
This method is presented in the context of forest carbon offset quantification 
and therefore considers how to conservatively adjust a large-scale estimate when 
applied to a subdomain within the original estimation domain. The approach 
outlined can be used for individual or aggregated carbon projects and allows 
large-scale estimates of forest stocks to be scaled down to project and stand-
level results by discounting estimates to account for the potential variability and 
bias of the estimates. The conceptual basis for this approach is built upon a 
method described in Neeff’s 2021 publication and in 2024 was adopted by the 
American Carbon Registry for use in the Small Non-Industrial Private Forestlands 
(SNIPF) methodology. Although this publication uses an example dataset from 
the Southeastern United States and is specific to the ACR SNIPF Improved Forest 
Management (IFM) protocol, the intent of this study is to introduce a method that 
can be applied in any forest type or geography using any forest carbon offset 
protocol where there exist independent estimates of forest carbon stocks that 
overlap with the large-scale estimates. The application of this method relies on 
user-defined levels of risk and inventory confidence combined with the distribution 
of observed error. This method allows remote sensing estimates of carbon stocks 
to be applied to forest carbon offset quantification. By doing so, this approach 
can reduce the costs for forest landowners and can therefore help to increase the 
impact of these market-based forest carbon offset programs on forest conservation 
and climate change mitigation.
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1 Introduction

Quantifying forest attributes at large scales has been a topic of scientific research and 
commercial importance for over 40 years (Justice et al., 1985; Running et al., 1995; Turner 
et al., 2006; Wilson et al., 2013; Cohen et al., 2017; Bell et al., 2022). Applying large-scale 
estimates to smaller subdomains within the original estimate can result in reduced accuracy 
(bias) and a loss of precision (increased variability) (Rao and Molina, 2015). This presents a 
major obstacle to using large-scale estimation (either model- or design-based approaches) in 
the context of forest carbon quantification and climate change mitigation. There have been 
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many recent efforts to use small area estimation (SAE) techniques to 
improve forest attribute estimation and efficiency (Breidenbach and 
Astrup, 2012; Ståhl et al., 2016; Green et al., 2020; Coulston et al., 
2021; Cao et al., 2022; Dettmann et al., 2022; Frescino et al., 2022). 
However, even SAE requires some inventory data to calibrate and 
constrain model estimates. Furthermore, the potential bias and 
increased variability of subdomain estimates using an SAE framework 
without inventory data remains unknown.

This paper presents an empirical method to calculate a 
conservative discount factor for a large-scale estimate to an internal 
subset of areas (subdomains) that accounts for both the precision 
(variability) and potential bias of the estimate of the subset (i.e., the 
small area estimated within the large-scale framework). This method 
is presented in the context of forest carbon offset quantification and 
therefore considers how to conservatively adjust a large-scale estimate 
when applied to a subdomain within the original estimation domain. 
The approach outlined can be  used for individual or aggregated 
carbon projects and allows large-scale estimates of forest stocks to 
be  scaled down to project and stand-level results by discounting 
estimates to account for the potential variability and bias of 
the estimates.

The conceptual basis for this approach is built upon a method 
described in Neeff (2021) and has been adopted (American Carbon 
Registry, 2021a) by the American Carbon Registry for use in the 
Small Non-Industrial Private Forestlands (American Carbon 
Registry, 2021b) (SNIPF). Although this publication uses an example 
dataset from the Southeastern United States and is specific to the 
ACR SNIPF IFM protocol, the approach described here can 
be applied in any forest type or geography using any forest carbon 
offset protocol where there exist independent estimates of forest 
carbon stocks that overlap with the large-scale estimates. The reason 
for this is that this method is based solely on the distribution of errors 
observed between a large-scale estimate and subdomains paired with 
concepts of statistical risk and confidence. For example, large-scale 
estimates of tropical forests when compared to subdomain 
observations will generate the same sorts of conclusions irrespective 
of the unique attributes of that specific forest ecosystem.

1.1 Climate change and forest loss

Forest carbon offsets are a critical tool to mitigate climate change 
and protect the myriad co-benefits offered by forests. Climate change 
combined with increasing global forest loss and degradation presents 
two of the greatest challenges to the functioning of ecosystems and 
the continued health of this planet (Core Writing Team, 2023). 
Globally, deforestation continues to be a driver of land use carbon 
emissions (Hansen et  al., 2013; Curtis et  al., 2018; Bullock et  al., 
2020),(McNulty et al., 2015; Fitts et al., 2021; Nedd and Anandhi, 
2022). Current climate change mitigation policies and commitments 
leave a substantial gap that needs to be  filled to meet stated 
atmospheric CO2 goals (Shukla et al., 2022).

1.2 Forest carbon offsets

To address the dual threats of increasing global CO2 emissions 
and increasing forest loss and degradation, forest carbon offset 

protocols have been developed to provide methodologies to account 
for the emission reductions and removals generated by protecting 
forests (American Carbon Registry, 2021b; Architecture for REDD+ 
Transactions, 2021; American Carbon Registry, 2023b; Climate 
Action Reserve, 2023; Verra, 2023). In some jurisdictions, 
methodologies have been approved by legislative bodies and adopted 
to allow businesses covered by carbon taxes or carbon caps to use 
offsets generated by forests to reduce their costs of complying with 
CO2 emissions reduction policies (Núñez and Pavley, 2006; 
Compliance Offset Protocol US Forest Projects, 2015; Order of the 
Minister of the Environment, the Fight Against Climate Change, 
Wildlife and Parks dated 17 November 2022, 2021; RCW 70A.45.020: 
Greenhouse gas emissions reductions—Reporting 
requirements, 2023).

Forest carbon offsets can be generated in several distinct ways. 
The general frameworks for carbon offset projects occur at a project 
level or a jurisdictional level. Jurisdictional-level carbon projects 
occur across countries or large regions and attempt to measure and 
quantify the changes in forest carbon stocks based on large-scale 
estimates of baselines and activities (von Essen and Lambin, 2021). 
Project-level carbon projects occur at the landowner scale and 
typically reflect the individual’s rather than the government’s 
agreement to abide by the principles and rules defined in forest 
carbon standards.

When estimating the carbon stored in forests for the purposes of 
carbon offsets, there are many sources of uncertainty. These range 
from the uncertainty inherent in any sample, the uncertainty in any 
modeled projections of forest growth or forest management (i.e., 
growth and yield model uncertainty), and the uncertainty in the 
allometric equations used to convert tree measurements to volume, 
biomass, and carbon. Most standards ignore allometric model and 
growth and yield model uncertainty (though there have been 
proposals to include and propagate these sources of uncertainty; 
Holdaway et al., 2014; Vorster et al., 2020; Lin et al., 2023).

Despite these myriad sources of uncertainty, carbon offset 
protocols require calculating a single number to represent the climate 
impact that a given project has on the climate. As a result, these 
protocols require conservative discount factors to be calculated to 
ensure that any claimed climate benefits can be  conservatively 
estimated (Architecture for REDD+ Transactions, 2021; Verra, 2023).

There are many different types of forest carbon offsets, but all 
generally apply similar principles to ensure the integrity of the 
offsets generated (Climate Action Reserve, 2019; American Carbon 
Registry, 2023a; The Integrity Council for the Voluntary Carbon 
Market, 2024). One of the consistent themes through all types of 
forest carbon offset programs and all sets of principles is the need 
to accurately and precisely quantify the actual carbon stocks and 
CO2 removals and reductions claimed by a given project. The 
discounting of the claimed offsets is crucial when considering that 
offsets used by emitters are considered equivalent to emissions to 
balance businesses’ carbon budgets. With this context in mind, 
we propose a method to conservatively discount estimate(s) of a 
claimed climate benefit (i.e., tons of CO2 removed from or avoided 
from being emitted to the atmosphere) due to engaging in a forest 
carbon offset project. The method outlined in this publication has 
been adopted by the American Carbon Registry for their Small 
Non-Industrial Private Forestlands methodology (American 
Carbon Registry, 2021b).
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1.3 Forest carbon estimation methods

Accurate and precise estimates of forest carbon stocks are the 
foundation upon which all quantification of carbon offsets is built. The 
specifics of some of the overarching estimation approaches are 
detailed below to provide some context for how large-scale estimates 
are built. However, the distinctions (Gregoire, 1998; Sterba, 2009) 
between these methods are less important than the overarching 
similarity of the potential bias and increased variability that is 
introduced when applying a large-scale estimate to an 
internal subdomain.

1.3.1 Design-based estimation
Design-based (DB) estimation does not assume or require any 

underlying structure of the sampled population. Instead, it uses a 
probability sample where the probability of each sample unit’s 
inclusion is known. There are many ways to improve the efficiency of 
design-based estimation that impose more structure on the underlying 
data (e.g., stratification and post-stratification) or use auxiliary 
variables to correct sample estimates (model-assisted estimation) 
(Gregoire et al., 2011; Næsset et al., 2011; Ståhl et al., 2016; McConville 
et al., 2017; McConville et al., 2020; Wojcik et al., 2022). These DB 
approaches are asymptotically design-unbiased. All these techniques 
require that samples be available in any location where an estimate 
is produced.

1.3.1.1 Model-assisted estimation
A more complicated and potentially more powerful subset of 

design-based estimation is model-assisted (MA) estimation. This type 
of estimation framework is introduced here to more fully describe the 
space of design-based approaches. Counter-intuitively, model-assisted 
estimation is a design-based approach that includes 
modeled components.

MA methods are asymptotically design-unbiased. These methods 
make estimates based on models that relate auxiliary data to sample 
data from a probability sample. In their simplest forms, ratio and 
regression estimators are MA estimators. MA methods have often 
been used to estimate values in small areas. However, their design-
unbiasedness is only asymptotic and does not hold when small areas 
have minimal sample sizes (< 5 samples) (Næsset et al., 2011). MA 
methods are not considered models that generate the population of 
possible values in a given location, but rather they assist in partitioning 
the variability of the probability design-based sample (Corona et al., 
2014). MA estimates are powerful tools for estimating quantities in 
small areas and are often compared to design-based and composite 
estimators (Ståhl et al., 2016; Guldin, 2021). The equation below is a 
typical MA form (taken from Ståhl et al., 2016):
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In Equation 1, ˆiy  is the prediction generated by a model fitted to 
predictor variables for each ith observation. The second summand 
shows that the model-based (MB) predictions in the first summand 
are scaled by the difference between the observed and predicted values 
(as Stahl explains “this is the Horvitz-Thompson estimator of the total 
of deviations between observed iy  and predicted values” scaled by the 

probability of inclusion of each observation ( iπ )). This scaling 
(difference estimator) causes MA estimators to be unbiased for larger 
sample sizes. Said another way, MA estimators correct their 
predictions based on the prediction error relative to the observed 
values from the design-based sample (see equation above).

1.3.2 Model-based estimation
Model-based (MB) inference develops relationships between 

predictor variables and response variables to estimate finite population 
parameters. These models often have low variance but may have a 
significant bias as they are only constrained by the data they are 
trained on. If assumptions are violated when they are constructed, or 
the input data are not representative of the feature modeled, there are 
no guarantees or supports that prevent a model-based estimate from 
exhibiting large bias in small areas. That said, large-scale model-based 
estimates of forest parameters have been shown to be strong predictors 
of forest attributes at smaller scales (McRoberts et al., 2019).

1.3.2.1 Small area (composite) estimation
Small area estimation (SAE) is a statistical estimation method 

designed to combine model-based or synthetic estimates with design-
based estimates. As a result, SAE approaches are often called 
“composite estimators.” These composite estimators can take on many 
forms, but a fundamental feature of this approach is that the final 
estimate generated is a weighted combination of the design-based and 
model-based estimates of the parameter of interest. The weighting is 
based on the variance of the design-based estimate. The larger the 
variance, the more weight is given to the model-based estimator. The 
smaller the variance of the design-based estimate (hence the more 
precise), the more weight is given to the design-based estimator 
(Magnussen et al., 2017).

Using an SAE framework has been shown to create more precise 
and statistically unbiased estimates of finite population forest 
parameters (Rao and Molina, 2015; Guldin, 2021; Dettmann et al., 
2022). However, applying this approach in  locations where 
subdomains may have little or no direct samples is difficult, as the 
design-based variance estimates in these locations may be very large 
or non-existent. Because SAE uses model-based results, it is best 
considered a subset of model-based estimation. However, unlike a 
purely model-based approach, SAE constrains the model-based 
estimates based on the design-based estimator’s variance, protecting 
against large biases that purely model-based estimators might 
introduce (but only in cases where inventory data exist) (see 
Equation 2).

Equation 2 below is a typical formulation of the scaling or 
shrinkage factor that is used to weight model-based estimates by the 
sample variability of the target unit or area (taken from Dettmann 
et al., 2022). ˆCOMP

dτ  is the composite or small area estimator for a 
given domain d. dγ  is the shrinkage factor that is between 0 and 1 and 
is based on the variability of the direct sample in that domain. The 
DIR superscript refers to the direct sample-based estimate and the 
SYN superscript refers to the synthetic model-based estimate for each 
domain d.

 ( )ˆ ˆ1ˆCOMP DIR SYN
d dd d dτ γ τ γ τ= + −  (2)
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Most literature examining SAE methods is focused on reducing 
the variance of estimators relative to design-based samples as opposed 
to evaluating the bias of the estimates (with few exceptions; Katila, 
2006; Goerndt et al., 2013; Wojcik et al., 2022). Applying SAE methods 
is an effective way to leverage the power of design-based samples and 
model-based approaches even in cases where the small area matches 
the extent of the original survey. That is, the power of the SAE method 
extends beyond situations where estimates are needed for small areas 
but can also be used to combine estimation approaches for large areas 
as well (Saarela et al., 2015a; Saarela et al., 2015b; Saarela et al., 2016; 
Babcock et al., 2018).

1.4 Subdomain (small area) relative bias

The problem of estimating subdomain (SD) bias and increased 
variability occurs in any situation where an estimator and the 
associated uncertainty of the estimate are calculated (using either a 
design- or model-based approach) at a given scale, and then, this 
large-scale estimate is the basis of a claim for a subdomain of this 
large-scale estimate (this is complicated in cases of design-unbiased 
model-assisted or composite estimators. In these cases, the specific 
subdomain, while design-unbiased, may still have a bias). As an 
example, one may develop a model- or design-based estimate of 
carbon stocks for a full state in the USA. The estimate at the state level 
has an associated uncertainty based on the method used typically 
based on the underlying data used to generate the estimate (e.g., the 
US Forest Service Forest Inventory and Analysis plot inventory data—
described below) as well as the form of the estimate. If this state-level 
estimate is then applied to a subset of regions (e.g., counties, 
ownerships, and stands) within the state, there is the potential for this 
estimate to be biased and have increased variability relative to the 
state-level estimate.

Regardless of the method used to estimate forest attributes at large 
scales (e.g., design-based, model-based, and composite), attempting 
to estimate smaller area subsets or individual unit subsets within the 
extent of the initial large-scale estimate results in additional estimate 
uncertainty. In addition, these scenarios add the potential for a bias in 
the smaller estimate especially when no sample data are available in 
the small area subset. To understand why this is, it is helpful to 
consider a 1:1 plot of observed vs. predicted outcomes for small areas 
or individual units that may be estimated using a model- or design-
based approach developed for a larger area.

Figure  1 shows an example 1:1 plot for a given inferential 
paradigm where the x-axis is the observed values at a given location 
and the y-axis is the predicted value at that location. The observed 
values may be individual plots where the predicted values are strata 
averages calculated by stratified random sampling—a design-based 
inferential paradigm. Alternatively, the observed values could 
be individual plots used to train a linear regression model that is 
then used to predict those values—a model-based paradigm, or any 
of the other more sophisticated model-assisted or composite/SAE 
model-based approaches. The ovals labeled a and b show potential 
subsets of the initial full dataset that might be predicted. In oval b, 
the selection zone is centered around the 1:1 line, so little bias 
would be expected in the outcome. Oval a shows a scenario where 
more bias would be  introduced due to the properties of the 
sub-sample. It is important to consider that the subset of data 

predicted may not be represented by the original modeled data and 
may be  found outside of the range of variability shown by the 
observed points. This is possible as some subdomains will not have 
samples within them.

In both model- and design-based approaches, it is assumed that 
individual predictions will have some error based on the underlying 
variability in the process described by the model or probability sample. 
The sub-sample of individuals or areas the estimation approach is 
applied to is assumed to be within the same domain as the original 
large-scale framework, so inherits the same underlying variability 
found in the large-scale estimate. However, the subdomain may have 
a different (larger or smaller) range of variability when compared to 
the domain used to build the large-scale estimate. This difference 
could result in a subdomain estimate that exhibits a bias relative to the 
large-scale estimate.

The question that motivates this research is as follows: how can 
we estimate the potential bias that may occur within a subdomain of 
a large-scale inferential framework? Furthermore, is it possible to 
conservatively correct the potential bias and increased variability of 
the subdomain using a risk-based framework to calculate a discount 
factor? The goal of this study is to adjust claimed climate benefits to 
reduce the risk of over-crediting using this information.

2 Methods

Mitigating potential bias requires estimating the size of the bias 
and the variability of the potential bias. Below, after defining how bias 
is calculated, several methods and data sources are introduced to 
quantify the potential size and variability of subdomain bias. In 
addition, because over-crediting is the primary concern in the context 

FIGURE 1

Example subdomains within a large-scale estimate of forest 
attributes. The diagonal line represents a large-scale model based on 
the samples (dots). Ellipse b is an unbiased subdomain—the mean of 
predictions in this domain will be close to the mean of observations. 
Ellipse a is a biased subdomain—the mean of the predictions in this 
domain will show a systematic bias relative to the mean of the 
observations.
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of carbon offset project development, a method will be introduced to 
protect against potential bias that inflates estimates of forest carbon 
stocks by applying a discount factor.

2.1 Relative bias

The first step toward calculating the potential bias that may result 
for estimates in a subdomain within a broader model is to define the 
metric that will be used to track this bias. In our case, we will use the 
relative bias metric for each subdomain i  [defined in several 
publications but taken from Goerndt et al., 2011, 2013 and Wojcik 
et al., 2022] and shown Equation 3 below:

 
10

ˆ ˆ
0ˆ

iP iO
i

iO

Y YRB
Y

 −
= ∗  
   

(3)

where îPY  is the predicted mean estimate for subdomain I, and îOY  is 
the directly measured sample estimate of subdomain i (and is assumed 
to be an unbiased estimate of this subdomain). For this study, the îPY  
prediction may come from any number of estimation approaches (e.g., 
model-based estimates and design-based estimates). The critical 
distinction being made here is that this prediction is based on an 
estimation frame that is larger than the directly measured estimate îOY  
that is based only on samples within subdomain i (although îPY  may 
or may not include direct samples in subdomain i, there will be many 
more samples that inform îPY  outside of subdomain i).

The RB is negative when the îPY  is smaller than îOY  for subdomain 
i. RB is reported as a percentage. RB can be  reported across an 
aggregate of all subdomains or for an individual subdomain. In cases 
where the variability of the bias must be expressed for a single location, 
the standard deviation is used. In cases where the aggregate variability 
is of interest, the standard error is used.

2.2 Data sources

2.2.1 Literature review
With relative bias defined, our next step is to quantify the potential 

bias and variability of this bias that may occur when using a larger 
inferential framework to predict a subdomain within this framework. 
We first conducted a literature review of forest attribute estimation to 
find cases where a large-scale estimate was applied to a subdomain 
within the initial framework. We  further limited this search to 
publications that reported this large-scale prediction along with the 
estimate derived from direct measurements of the same area or unit 
results. Using this data, we can then develop a distribution of potential 
relative bias and estimate the mean and variability of this bias.

For most studies we  examined, the emphasis is on estimator 
efficiency, i.e., the reduction of variance in the estimates (Mauro et al., 
2017). While in most cases model results are reported either 
graphically or within the text, the actual numeric outcomes of the 
subdomain estimates made by the large-scale framework and the 
direct observations are not provided in a useable form (Saarela et al., 
2015a; Magnussen et al., 2017; Green et al., 2020; Temesgen et al., 
2021). Typical examples of this can be found in Figure 4 from ver 
Planck et al. (2018) and Figure 4B of Breidenbach et al. (2018). In 

these figures, you can visually compare the relationship between the 
design-based (SRS in ver Planck et al. (2018), Figure 4) and SAE [all 
points in ver Planck et  al. (2018), Figure  4, and EBLUP in 
Breidenbach, Figure 4B]. The results of this literature data can be seen 
in the Results section below.

2.2.2 Ground truth data
The literature review data described above, while informative, are 

still not a perfect fit to answer the original question posed at the 
beginning of this analysis: what is the size and variability of potential 
bias when estimating a subdomain using a larger inferential 
framework? The reason this data does not quite answer the question 
posed is that it compares the design-based estimate for subdomains 
where the design-based sample, though it contains direct measurement 
plots, was never intended to be used at the scale of the subdomain in 
question. For example, although most counties have US Forest Service 
Forest Inventory and Analysis plots we can rely on to provide estimates 
of stocking within the county, these plots are part of a much larger 
United States Forest Services (USFS) FIA sampling design and the 
sampling design itself was not designed to make county-level estimates 
with a high degree of precision (Reams et al., 2005).

A more accurate comparison of potential relative bias would 
compare estimates of subdomains calculated from purpose-built 
inventories of these subdomains against estimates of these subdomains 
from large-scale frameworks.

Data of this sort are not always available. However, the publicly 
available data provided by the California Air Resources Board 
(CARB) forest carbon offset projects can serve this purpose. The 
Climate Action Reserve (CAR) and American Carbon Registry 
(ACR) project registries (Climate Action Reserve Registry, 2024; 
American Carbon Registry Registry, 2024) host data about all 
compliance IFM projects located in the US (Badgely et al., 2021) 
(Compliance IFM projects are forest carbon offset projects that have 
been verified and registered using a standard that has been approved 
and adopted by a legislative body. This contrasts with voluntary 
standards that are unaffiliated with regulatory jurisdictions.). Each 
project has a polygon vector file associated with it that shows the 
extent of the project. The projects also have annual Offset Project 
Data Reports (OPDRs) detailing the IFM-1 stocks (both aboveground 
and belowground live carbon stocks), as well as any confidence 
deductions required, and the date at which the reporting period 
ended, and the stock estimate was generated. The initial listing OPDR 
also includes the project acreage. These independent, third-party 
verified, and registered projects (IVRPs) were chosen as ground truth 
information within larger-scale inferential frameworks for the two 
primary reasons outlined below.

First, all IVRPs have an extensive level of quality assurance and 
control. This includes two rounds of independent review detailed 
below. During the first round of review, an independent, 3rd party 
verification body consisting of certified forestry professionals evaluates 
each project’s documentation, sampling plan, sampling 
implementation, field operation procedures, and data management 
practices. Then, all projects are required to pass a field verification 
where verifiers measure the forest until certain prescribed statistical 
quality thresholds are met based on the verification plot measurements. 
Finally, once the verifiers complete their review and issue a positive 
opinion attesting to the accuracy of the estimates for each project, the 
standard issuing organization (e.g., CARB or ACR) conducts a 
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secondary review of all documentation and audit findings to ensure 
each project meets the program requirements. Second, these datasets 
are a high-quality estimate of a subdomain using a ground sample 
specifically designed for this subdomain.

While only the CARB compliance cap and trade system requires 
forest carbon project developers to post spatially explicit polygon 
vector files of project areas, there have been recent attempts to digitize 
the maps that are required to be posted using other voluntary offset 
standards (Karnik et  al., 2024). Although other datasets contain 
carbon project geospatial information for projects outside of the 
CARB system, it is often impossible to use this project information. 
First, only CARB projects are required to publicly report their IFM-1 
standing live carbon stocks with each verification and credit issuance. 
Second, only CARB projects are required to provide geographic files 
to show the exact project area. Filtering to only these projects allows 
us to have a reproducible and consistent dataset and does not require 
any additional assumptions. Of the total 189 active IFM projects 
across all protocols in the US at the time of submission, 121 of these 
are ARB compliance projects. Figure 2 shows the locations of all 189 
active IFM projects.

2.2.2.1 Independent verified registered project (IVRP) 
stock adjustments

Because all projects are on different reporting cycles, for this 
analysis all project IFM-1 stocks should be grown (or degrown) to 
match the date of the large-scale estimate to simulate a single point in 
time ground truth estimate. The annual growth rates were applied 
compounded annually for the number of fractional years between the 
IVRP-reported stocks and the large-scale stock reporting date. The 
growth rate used was estimated based on simulations using the Forest 

Vegetation Simulator (FVS) growth and yield model growing all plots 
with trees in each FVS variant forward for 10 years and calculating the 
average carbon stock growth (Dixon, 2002, 2022; Crookston and 
Dixon, 2005). This approach was chosen as a broadly representative 
measure of growth across the large area these large-scale frameworks 
are used. In addition, although geographic boundary files are required, 
not all IVRP shapefiles matched the reported acreage as listed in offset 
project listing documents. In all cases, the difference between the 
OPDR acres and the vector file acres was within 7.75% of the acreage 
reported in the OPDR. We corrected these discrepancies (based on 
the ratio of areas for these discrepancies) before comparing the 
regional inventory and the IVRP-reported stocks.

Finally, several different methods are available to calculate volume, 
biomass, and carbon from inventory data. For example, FVS, using the 
Fire and Fuels Extension, can report aboveground live carbon (and 
many other carbon pools) at a plot level (Rebain et al., 2022). The 
CARB requires the use of the component ratio level calculated at a tree 
level to estimate carbon stocks outside of Alaska, California, Oregon, 
and Washington (Compliance Offset Protocol US Forest Projects, 
2015). The calculation of relative bias must use the same calculation 
methods as those applied in the IVRPs.

2.3 Calculating the subdomain bias 
discount factor

For the initial project carbon stock adjustment due to potential 
subdomain bias, we propose a risk-based approach that combines the 
distribution of IVRP stock estimates and the literature review-based 
distribution of potential subdomain bias. The general principle of this 

FIGURE 2

Location of 189 US IFM projects.
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approach is an extension of Neeff ’s (2021) proposed method and 
allows standard bodies or other regulatory agencies to specify the risk 
level they are comfortable with (Neeff, 2021).

In Neeff ’s (2021) approach, the uncertainty associated with an 
estimate of carbon reductions or removals tons (ERTs) can be used to 
calculate a discount factor at a given level of risk tolerance. This 
approach has been adopted by both Verra and the REDD+ TREES 
standard (Architecture for REDD+ Transactions, 2021; Verra, 2023) 
(Verra is “a non-profit organization that develops and manages 
standards for sustainable development, climate action, and responsible 
business practices”; Home, 2024). REDD+ TREES is “ART’s standard 
for the quantification, monitoring, reporting and verification of 
Greenhouse Gas (GHG) emission reductions and removals from 
REDD+ activities at a jurisdictional and national scale” (Architecture 
for REDD+ Transactions, 2021). The equation below is functionally 
equivalent to equation 8 in Neeff (2021), the equation on page 12 of 
the Verra Methodology, and equation 11  in the REDD+ TREES 
standard. The formulation used here is as follows:

 
var  %

1  %

% LCB
SD risk level

conf level

ERTdf t
t β
α

=
= −

= ∗
 

(4)

In this equation, the 
varSDdf  is the discount factor applied to ERTs 

due to the variability of the ERT estimate at the lower confidence 
bound (LCB) using a given confidence level. 

varSDdf  in this formulation 
is expressed as a percentage. 1  %conf leveltα= −  is the t-value of the 
two-sided specified confidence level (This confidence level is specified 
by the standard. ACR, Verra, and ART use a 90% confidence level for 
inventory estimates, so this would be the two-sided t-value at 10%.). 
This percentage difference is then scaled by the  %risk leveltβ =  (risk 
value) at a chosen risk level to control for the likelihood that a given 
level of over-crediting risk may occur due to the variability of the 
ground truth data. This risk is also specified by the standard. Verra 
uses a 33% risk (Verra, 2023). ART uses a 30% risk (Architecture for 
REDD+ Transactions, 2021). ACR is using a 10% risk level for the IFM 
SNIPF methodology (American Carbon Registry, 2021a). The tβ value 
is a one-sided value as offset integrity is only concerned with over-
crediting. Finally, the % LCBERT  term represents the uncertainty of 
the estimate at the lower confidence bound (LCB), given the specified 
confidence level as a percentage of the mean reported stocks.

As with all problems of estimation and sampling, it is generally 
impossible to remove all risks while maintaining reasonable levels of 
effort, cost, and efficiency. Using a risk-based approach allows 
practitioners the ability to more explicitly set the appropriate level of 
risk and the confidence levels they are comfortable with (e.g., the 
inventory confidence deduction is based on an acceptable level of 
inventory variability and hence risk).

Equation 4 above serves as the foundation for the method 
described here. The Neeff approach discounts the claimed ERT based 
on the variability of the ERT estimate. In the case of subdomain bias, 
we extend this approach by treating the distribution of relative bias of 
the subdomain estimate as another component of the ERT estimate 
variability. We then can add the observed mean shift of the ground 
truth distribution (i.e., the bias) onto this discount factor to capture 
both the variability (

varSAEdf ) of the relative bias estimate (this 
variability reflects the accuracy of the large-scale inferential paradigm) 
and the size of the bias present (the precision of the large-scale 

estimate). The final discount factor calculation combines these two 
elements as shown in Equation 5:

 var .%
totSD SD MSdf df ERT= −  (5)

Where the variability discount factor 
varSDdf  is defined above, and 

the % MSERT  represents the percentage relative bias mean of ERTs. 
The % MSERT  is negative when it shows the potential for 
over-crediting.

To calculate the relative bias for each IVRP, the first step is to 
apply the large-scale estimate to each IVRP within the vector file 
boundaries for each project. Comparing the IVRP IFM-1 stocks 
(grown to the date of the large-scale estimate layer) produces a relative 
bias percentage of the standing stocks for each project. This set of 
relative bias percentages is then applied to the mean stocks of the 
large-scale estimate layer for the full extent of the large-scale estimate. 
This is done as part of the process of converting the relative bias of 
initial carbon stocking estimates into the relative bias of ERTs. By 
applying the percentage relative bias at ground truth IVRP property 
locations to the grand mean of the large-scale estimate, we  can 
determine both the potential variability introduced when applying a 
large-scale estimate to a small subdomain and we can also see the bias 
this may produce (all within the original large-scale estimate frame).

Once the distribution of potential large-scale estimates is 
calculated from the observed relative biases of all IVRPs, the 
distribution of potential ERT estimates is calculated by adding the 
difference between the original average initial stocks and the biased 
initial stock estimate to the original estimate of ERTs. This is done 
as changes in initial stocks can be  considered to affect initial 
reductions and likely will not affect removals, i.e., the growth of the 
forest. In cases where the relative bias of initial stocks is negative 
(indicating an underestimate of stocks by the large-scale model), 
this will lead to under-crediting ERTs. In cases where the relative 
bias of initial stocks is positive (indicating an overestimate of carbon 
stocks by the large-scale model), this will lead to over-crediting 
ERTs. Table 1 shows a list of definitions that will be used throughout 
the steps describing this method. The full list of steps described in 
this method can be seen in Tables 2, 3. A flowchart that summarizes 
this method can be seen in Figure 3.

Example calculations for several large-scale inferential paradigms 
using this approach are provided in the Results and Conclusion 
sections to illustrate how this process is applied. That section focuses 
broadly on methods that generate large-scale estimates of forest 
attributes. By large scale, we mean state, regional, national, or global 
scale approaches used to quantify forest conditions. These approaches 
can use design- or model-based methods (or combinations of these 
two—e.g., composite estimates) to infer the state of forests at a given 
point in time. Given the scales in question, all of these methods 
generally require a forest inventory that provides a representative 
sample over the large area in question.

For model-based approaches, these data are used to train and 
evaluate models that predict forest attributes assuming an underlying 
population model. Design-based approaches use probability samples 
that do not assume any underlying structure to the data and 
instead infer population characteristics from the probability sample. 
National forest inventories are therefore a frequent component of 
large-scale inferential paradigms. For that reason, we briefly describe 
the structure of the NFI in the United States.
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TABLE 2 Discount factor calculation steps for variability-only portion of discount factor dfsd_var.

Row Description Formula

1
,RBIS IVRPi is the initial stock relative bias for each IVRPi. Negative RBs indicate regional inventory (RI) 

overestimates of initial stocks (IS). Definitions for ISIVRPic and ,ISRI IVRPi  can be seen above in Table 1.

( ),
,

IS IS
RB

IS
IVRPic RI IVRPi

IS IVRPi
IVRPic

−
=

2
,ISRB i are the regional inventory (RI) biased initial stock estimates based on each IVRPi RB. This step 

translates the project-level RB percentages to a consistent analysis scale based on the RI. Definition of IS RI  

can be seen above in Table 1.

( ), ,IS IS IS RBRI RIRB i IS IVRPi= + ∗

3 ERT RI  is the weighted mean ERTs (emission reduction tons) generated by the project based on the regional 

inventory. Emission reduction tons are made up of both removals (forest growth) and reductions (avoided 

forest carbon stock loss). As explained in the table above and row 4 below, this quantity is specific to the ACR 

SNIPF methodology. Please refer to the specific definitions of project and baseline carbon stock and crediting 

definitions to apply this method to other carbon offset standards.

,20 ,20ERT CP BSLRI tot avg= −

4
,ERTRB i represents an estimate of the ERTs generated at each IVRP using the relative bias values calculated 

above. This formula converts biased initial stocks to biased ERTs for each IVRP. This step is used to translate 

the initial stock subdomain bias to ERT bias as the final discount factor must be applied to the uncertainty of 

ERT estimates. For this publication and to use an example, this equation is specific to the ACR SNIPF 

methodology.

( ), ,ERT ERT IS ISRI RIRB i RB i= − −

5 Use all biased ERT estimates ( ,ERTRB i) to calculate the lower confidence bound (LCB) of ERTs at the specified 

confidence level where m is the number of IVRPs, and t_alpha is the t-value at the specified confidence level. 

ERT RB and 
RB

SDERT are the mean and standard deviation of the ERTRB,i values calculated in row 3.

RB

RB

SD
ERT ERT t

m
ERT

RBLCB α= − ∗

6 %ERTLCB  is the percentage difference between the biased mean ERT estimate (ERT RB) and the LCB ERT 

estimate (
RB

ERTLCB ). This can be considered the statistical uncertainty of the ERT estimate.
% 100RB

ERT ERT
ERT

ERT
RB LCB

LCB
RB

−
= ∗

7
As explained in the text explaining Equation 4 outside of this table, 

var
dfSD  is the variability-only subdomain 

bias discount factor based on the percentage difference in ERTs at the LCB calculated in row 5 paired with the 

chosen confidence and risk levels( 1  %t conf levelα= −  and  %t risk levelβ = ).

var

%
 %

1  %
ERTdf t

t
LCBSD risk level

conf level
β

α
= ∗ =

= −

2.3.1 USFS forest inventory and analysis dataset
In the United States, the NFI is conducted by the Forest Inventory 

and Analysis (FIA) program (USDA Forest Service). This data source 
provides valuable information regarding the status of forests at 
regional to national scales. The sample plots are available to the public 
(though their exact locations are perturbed—see below). They are 

placed on the landscape with a sampling intensity of one plot per 
approximately 6,000 ac (McRoberts, 2005). The USFS FIA NFI is a 
random, equal probability sample. Through its design, the FIA plot 
network is well-suited for analyzing and quantifying forest attributes 
at various user-defined spatial scales (e.g., counties, states, regions, or 
the entire US) over time and for assessing forest changes across space. 

TABLE 1 Definitions of variables used in discount factor calculation method.

Row Variable Description

1 ISIVRPi Stocks reported in independent, verified, and registered project locations for each project i. These estimates are based on ground samples in 

the project locations.

2 ISIVRPic Corrected stocking estimates in independent, verified, and registered project locations for each project i. The correction is applied by 

growing the ISIVRPi stocks forward or backward to the date of the RI. This date-aligned stock estimate is then further adjusted if the 

reported area of the IVRP is different from the polygon file acreage of the IVRP. This correction is done to allow for a true comparison 

between reported IVRP initial stocks and RI initial stock estimates from the large-scale prediction.

3 ,ISRI IVRPi The stocks that are estimated within the IVRP boundary based on the regional (large-scale) inventory (RI).

4 IS RI The weighted average Regional Inventory mean stocks (weighted by the population area). For example, if a regional inventory is defined as 

20 state-level estimates, weight by the state area to create a single estimate of mean initial stocks for the regional inventory. If the large-scale 

prediction has no sub-populations and is a single model, no weighting is required, and the mean stocks can be used.

5
,20CPtot  and 

,20BSLavg

These values are the estimated project and baseline 20-year averages (again weighted by area for all populations). These quantities represent 

the with project forest stocks over 20 years and the without project forest stocks with business as usual management practices. The average 

baseline ( ,20BSLavg ) and 20-year project stocks ( ,20CPtot ) are defined in the ACR Small Non-Industrial Private Forestland methodology 

v1.0 (see sections 4.2 and 5.5; American Carbon Registry, 2021b). Please refer to the specific definitions of project and baseline carbon stock 

and crediting definitions to apply this method to other carbon offset standards.
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This plot network provides a basis for unbiased estimates of specific 
populations of interest in a consistent and timely fashion (Gray 
et al., 2012).

2.3.1.1 FIA plot design and measurements
The following information about the FIA program is provided as 

context. Most large-scale estimates (regardless of the approach used) 
required measured forest inventory data to train or calculate the final 
estimate. The FIA program adopted a standardized inventory design 
methodology in the year 1999 to provide uniform and consistent 
results across the country. They use a hexagon grid to allocate plots 
across all lands and ownership classes. Measurements are sorted on 
a panel system inside each state; thus, a subset of the state grid is 
measured every year. A complete cycle of panel measurement takes 
approximately 5 years in the eastern states and approximately 10 years 
in the western states. A single plot consists of a cluster of four sample 
points. The central plot is georeferenced, and the other three plots are 
located 36.6 m from the central point at 0-, 120-, and 240-degrees 
azimuth. A detailed description of tree individual measurements in 
the plots can be found in The Forest Inventory and Analysis Database 
description (Burrill et al., 2024).

2.3.1.2 Design-based estimates using FIA plots
Scott et al. (2005) provide documentation to obtain design-based 

forest attribute totals for simple random estimation, stratified 
estimation, and double sampling for stratification based on Phase 1 
stratification. Variance estimators are also provided. The sampling 
error may be computed for all estimates and areas of interest although 
they specify that at least four plots should be included for any stratum.

2.3.1.3 Perturbed FIA coordinates
The FIA program must comply with public law prohibiting the 

disclosure of proprietary information. McRoberts et al. discuss why 
the FIA program has established additional policies of not 
disclosing the owner’s information and the exact location of plots 
(McRoberts et al., 2005). “The 2000 Interior and Related Agencies 
Appropriations Act (H.R.3423), which applies to information 
collected pursuant to Section 3(e) of the Forest and Rangelands 
Renewable Resources Research Act of 1978 (16U.S.C. 1,642(e)), 
included the FIA program in Section 1770 of the Food Security Act 
of 1985 (7U.S.C. 2,276)” (U.S. Code Title 16 Chapter 36 Subchapter 
2 Section 1642  - Investigations, experiments, tests, and other 
activities  - Subsection e  - Forest Inventory and Analysis, 1978; 
U.S. Code Title 7 Chapter 55 Section 2276, 2018; de la Garza, 1985; 
Rep Young, 1999).

To comply with the law, FIA plot locations are perturbed (fuzzed 
location), and some plots are swapped with those of similar plots 
(similar forest type, stand size, county). All plot locations are 
perturbed within circular areas of radii of 1 mi. However, McRoberts 
et al. (2005) point out that the proportion of perturbed plots that fall 
more than 0.5 mi from the original location is small.

2.4 Alternative discount factor calculation 
form

The approach outlined above treats the variability of the sampled 
ground truth dataset (the IVRP population) distinctly from the mean 

bias observed in this population. This approach is compelling due to its 
simplicity and the ease of explaining how to apply the discount factor to 
the emission reduction tons (ERTs). Despite this simplicity, by adding 
the bias (% mean shift) directly to the variability-based discount factor, 
the above method deviates from the pure risk-based approach that Neeff 
outlined. An alternative approach is to use a scaled Student t-distribution 
method. This method allows for the selection of a risk level and for that 
risk to carry through the full discount factor calculation.

First, define a conservative estimate of ERT relative bias ( ,RB cERT
). Assume the proponent uses a sample of n independent ground truth 
carbon estimates from existing independent verified and registered 
carbon projects and uses these projects’ independent inventory 
systems to predict the carbon amount on these n sites. If the proponent 
inventory (the regional inventory) system is unbiased, then it is 
expected that in half of the cases, the relative bias takes a positive 
value, and the other half takes a negative value. Hence, the mean of 
the RB project estimates ( ,RB xERT ) should be zero or near zero. Based 
on prior information collected from the literature, it is known that the 
distribution of ,RB xERT  is symmetric and has a shape similar to the 
normal distribution. A correction that makes the inventory system 
produce an ,RB cERT , such that , ,RB c RB xERT ERT correction= + , 
that is located to the right of the ,RB xERT , is considered conservative 
because the system would now be under-crediting most of the time.

As the ,RB xERT  increases (shifts to the right), the risk of over-
crediting decreases. Therefore, a conservative estimate of RB with a 
low risk of overestimation α  is such that:

 { }, 0 1RB cP ERT α≥ = −  (6)

To obtain a conservative ,RB cERT , the ,RB xERT  needs to be shifted 
by a given amount ( RBC ), which can be established using Equation 6 
as follows:

 { }, 0 1RB x RBP ERT C α+ ≥ = −  (7)
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(8)

where ( ),, , ,RB xt t df ERT scaleα α∗ =  is the quantile of a Student 
t-distribution with location ,RB xERT  and scale factor scale  = 
standard error of ,RB xERT  (NIST/SEMATECH e-Handbook of 
Statistical Methods, 2023). The * represents the scaled t-distribution. 

0
tα∗  is the scaled t-value that represents the proportion of samples with 
negative relative bias. The three cases outlined in Equation 8 are 
as follows:

If 0α α≤

 o this case can be seen in Figure 4—Case 1 below. It represents 
cases where the proportion of negative RB is less than or equal to 
the risk level. Equivalently, 

0
t tα α≤ . In this case, the risk of 

observing over-crediting is less than the defined risk threshold, 
and therefore, no deduction is necessary to meet the required risk 
tolerance. In this case, as in the primary method described above, 
the literature review risk level is used as the discount factor.
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if 0tα∗ ≤

 o this case can be seen in Figure 4—Case 2 below. It represents 
cases where the t quantile that represents the risk is on the 
negative side of the distribution and the quantile that represents 
the proportion of negative RB could be  in the negative or 
positive side of the distribution (but will always be larger than tα∗

). In this case, to guarantee that the risk of over-crediting is less 
than or equal to α, we apply a discount factor. As a result, the 
discount factor is the net distance between the two quantiles. It 
is obtained by adding the absolute value of the scaled risk t-value 
to the scaled proportion of negative project t-value. Where there 
are higher proportions of negative relative bias values, this 
results in larger discount factors.

if 
0

& 0t t tα α α
∗ ∗ ∗≥ ≥

 o this can be seen in Figure 4—Case 3 below. It represents cases 
where the mean relative bias is positive and the t quantile for 
the risk level is positive, but still, the proportion of negative RB 
is larger than the risk level chosen. As a result, the deduction 
is the linear distance (or simple subtraction) between 

0
tα∗  and tα∗ .

Figure 4 is a representation of various scenarios where the t quantile 
associated with the selected risk is compared with the t quantile linked 
to the sampled proportion of negative RB. The sign of these two 
elements needs to be considered when calculating the linear distance 
between them. This distance is then used as a measure of the deduction.

Note that for the two last cases in Equation 8, the formulas 
calculate the linear distance between the two t-values. This is the linear 
distance in relative bias space between the t-value for the specified risk 
and the t-value for the distribution portion equivalent to the sample 
fraction with negative relative values.

Equation 9 below shows how to calculate the quantiles tα∗  and 
0

tα∗  
(Gelman et al., 2021).

 ( ), ,RB xt ERT scale t dfα α∗ = + ∗  (9)

where ( ),t dfα  is the quantile function for the t-distribution with df  
( 1df > ) degrees of freedom.

Note that Equations 6, 7 are adaptations of equations 6–8 from the 
Neeff paper (Neeff, 2021).

In this formulation, RBC  represents the adjusted amount that 
,RB xERT  must be moved to have an acceptable risk of overestimation 

of α . This adjustment is calculated based on the distance between the 
two Student t quantiles.

The deduction factor needed for emission reductions is assumed to 
be proportional to RBC . That is, as Equation 10 explains, the deduction 
factor needs to adjust the emission reduction (ERTs) to account for 
possible over-crediting when estimates are done on subdomains is:

 ( )1adj RBERTs ERTs C∗ = ∗ −  (10)

Therefore, the alternative deduction factor is ( )1 .RBC−

3 Results

3.1 Literature review results

Figure 5 shows the results of those studies that published both the 
prediction for a small area and the observed direct measurement of 
the same small area. While some studies produce results for large 
regions (e.g., the entire country and small areas within this country), 
other studies are more targeted to states and small areas within these 
states or even counties or ownerships and small areas within these 
areas. The list of all papers reviewed (over 60) that were considered 
in this analysis can be found in the References section at the end of 
this document.

Table 4 shows the range of potential RB in 10 studies. These 10 
studies resulted in 7333 datapoints that can be used to understand the 
expected distribution of RB. All but 4 of these 7,333 datapoints were 
actual estimates of small areas that also had a direct sample. The 4 
remaining were only reported as the mean or were taken from a 
spread of points in a graph and used the min and max. Of these 7,333 
datapoints, 6,823 were from composite models (SAE models), 493 
were from model-based estimates, and 17 were from model-assisted 
estimates. Tables 5, 6 summarize these results:

The results of this literature review show one realization of 
potential bias and the uncertainty of this bias when applying a 

TABLE 3 Final calculation of discount factor based on the variability-only discount factor, the percentage mean shift, and the literature review-based 
discount factor calculation.

Row Description Formula

1 Rows 1 through 3 are used to calculate the discount factor to apply based on the bias of the estimate. %ERTMS is the 

percentage ERT mean shift between the biased ERT mean estimate (ERT RB) and the weighted average Regional 

Inventory mean ERT estimate (ERT RI). Positive values show potential for under-crediting. Negative values show 

potential for over-crediting.

% 100ERT ERTERT
ERT
RI RB

MS
RI

−
= ∗

2
tot

dfSD combines the percentage ERT mean shift (%ERTMS) with the variability-based discount factor (
var

dfSD ). var
%

tot
df df ERTSD SD MS= −

3 dfSAE is the final discount factor to apply to insure conservativeness. This uses the literature review discount factor 

(
LitRev

dfSD ) based on the distribution of literature review relative bias to calculate the minimum discount factor value 

in the case where the calculated combined total subdomain discount factor is less than the literature review-based 

discount factor.

tot tot LitRev

LitRev tot LitRev

df ifdf df
df

df ifdf df
SD SD SD

SD
SD SD SD

≥=  <

https://doi.org/10.3389/ffgc.2025.1501303
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Golinkoff et al. 10.3389/ffgc.2025.1501303

Frontiers in Forests and Global Change 11 frontiersin.org

large-scale inferential paradigm to a subdomain. These results can 
be used to understand the distributional properties of RB and how 
large in magnitude a correction factor should be to obtain conservative 
forest attribute estimates.

3.2 Example 1: design-based stratified 
regional estimate

Consider the scenario where a large geographic area is broken 
into logical populations that reflect attributes of interest, e.g., 
regulatory constraints or ecological similarity. Then, a suite of 
remote sensing data products is combined to generate a 
stratification of forest land over each of these independent 
population areas. This stratification is then paired with an existing 
NFI such as the USFS FIA dataset to generate stratum level 
estimates that the NFI was designed to measure. Given a random 
or systematic grid of plot locations, this pairing of plot data with 
the stratification is considered a post-stratification for each 
independent population.

Furthermore, imagine that this large-scale inventory is the basis 
for the quantification of forest carbon offsets (ERTs) at the landowner 
scale. Given this structure, Tables 2, 3 show the formulae that 
describe the calculation of a discount factor to be applied to ERTs 
issued using the approach outlined above. Table 7 shows a worked 
example of this approach.

A graphical representation of the calculated discount factor can 
be seen in Figure 6A below.

3.3 Example 2: model-based regional 
estimate

The second example considers a case where a regional- or 
national-scale model-based estimate is used to predict initial carbon 
stocks, and this prediction is then used for carbon offset credit 
generation. In this case, assume the model is applied at a 30 m pixel 
level across the full project region. By adding up all pixel values and 
dividing them by the number of pixels, the regional inventory mean 
is found. A similar process as above is then applied to these results to 
adjust any small area over-crediting bias.

Table  8 below shows a worked example of a model-based 
approach. There are two notes to consider for this example:

 1. The process is the same regardless of the estimation approach, 
i.e., model-based or design-based.

 2. The example below shows a scenario with minimal over-
crediting risk. Therefore, this example uses the literature 
review-based discount factor adjustment.

Figure  6B shows a graphical example of the discount factor 
adjustment calculated for example 2. In example 1, the mean ERTs 
when accounting for relative bias are less than the ERTs estimated in 
the large-scale design-based framework. In example 2, this is reversed 
(note the negative % MSERT  in example 1 and the positive % MSERT
in example 2). As a result of this difference, when subtracting the 
negative % from the variability discount factor, the result is less than 
the minimum discount factor as defined by the literature review 

FIGURE 3

Subdomain bias discount factor calculation flowchart.
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FIGURE 5

Distribution of relative bias from published literature. The leftmost boxplot shows all data together.

results. As a result, in example 2, the final discount factor to be applied 
to the ERTs generated will be the literature review calculated discount 
factor. As described above, this serves as the minimum possible 
discount factor to protect against shortcomings based on the small 
sample size of the IVRP analysis.

4 Discussion

The examples above show the steps required to calculate and apply 
the discount factor to prevent over-crediting when using a large-scale 
inferential framework for smaller internal subdomains. Using this 
method, we treat any subdomain bias measured for the initial stock 
estimate as equivalent to a bias in the claimed ERTs. Said another way, 

if a bias in initial stocks exists, it impacts avoided emissions 
(reductions) instead of removals (growth).

Although only verified and issued project stocks were considered, 
there are still several possible problems with both the growth and area 
scaling adjustments. For the growth adjustment, even if we  were 
growing for just 1 year, this assumes that no disturbances have 
occurred which might bias the results. Similarly, scaling the area of 
projects assumes that all area differences come from average stocked 
areas. In fact, proponents may have updated their shapefiles to remove 
all low stocked areas or any non-random update and this would result 
in a biased and inaccurate estimate. Despite these concerns, this 
comparison provides a robust set of 3rd party verified carbon stocks 
and is the best available dataset to answer the question at hand. In 
addition, because of the inclusion of the variability discount, smaller 

FIGURE 4

Example of alternative risk-based discount factor calculation method.
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TABLE 4 Relative bias estimated from published literature.

Percentage relative bias distribution percentiles

Author Year Publication Study Area Small 
area

# of results Variable Model 
type

Mean Min 1st 5th 10th 25th Median 75th 90th 95th 99th Max

Cao et al. 2022 Frontiers VA, NC, TN All counties in 

3 states

295 counties net volume Area-level

(Fay-Herriot) 

SAE

0.07% 29.1% −19.4% −13.5% −10.4% −4.8% 0.0% 4.0% 10.3% 15.9% 24.0% 36.8%

Frescino 

et al.

2022 Frontiers Entire US - only 

13 SE data 

analyzed

Counties 1,256 counties aboveground 

biomass 

density

Area-level

(Fay-Herriot) 

SAE

−0.49% −69.1% −37.8% −23.3% −17.6% −8.8% −0.6% 6.4% 15.3% 23.7% 46.2% 88.9%

Frescino 

et al.

2022 Frontiers Entire US - only 

13 SE data 

analyzed

Hydrological 

unit code 10 

watershed 

boundaries

3,956 watersheds aboveground 

biomass 

density

Area-level

(Fay-Herriot) 

SAE

−1.71% −80.4% −57.9% −30.7% −30.1% −15.6% −2.3% 9.8% 24.9% 40.1% 76.6% 252.5%

Breidenbach 

et al.

2012 Eur. Journal of 

Forests and 

Global Change

Vestfold county, 

SE Norway

Municipalities 

in Vestfold 

county

14 municipalities aboveground 

biomass 

density

Area-level

(Fay-Herriot) 

SAE

26.87% −27.4% −26.8% −24.4% −22.5% −11.1% −0.5% 19.8% 112.5% 172.4% 231.7% 246.5%

Goerndt 

et al.

2013 Forest Science 9 counties in OR 

divided into 12 

equal areas (split 

3 counties)

Counties or 

half counties

3 simulations of 

20, 30 and 40% of 

available plot data

Volume/ha Area-level

(Fay-Herriot) 

SAE

−4.40% −5.1% −4.3% −3.8%

Stanke et al. 2022 Frontiers Entire US - only 

13 SE data 

analyzed

Counties 1,301 counties Carbon 

density

Area-level

(Fay-Herriot) 

SAE

0.26% −49.9% −21.9% −15.6% −11.8% −6.1% −0.5% 4.7% 11.9% 18.4% 39.4% 108.4%

Emick et al. 2022 Remote Sensing 

of Environment

Oregon All counties 

and years 

between 2001 

and 2016

493 county year 

combinations

aboveground 

biomass 

density

geostatistical 

model-based 

estimator

1.05% −55.8% 42.2% −30.5% 25.3% 14.2% −5.1% 5.6% 23.5% 41.8% 166.5% 477.8%

McConville 

et al.

2020 Forests Daggett County, 

UT

Daggett 

County

6 county model 

type combinations

Volume/ha model-assisted −3.20% −8.8% −8.6% −7.9% −7.2% −5.3% −2.6% −1.6% 0.6% 1.3% 2.1% 2.3%

Næsset et al. 2011 Remote Sensing 

of Environment

Aurskog-Holand 

Municipality in 

SE Norway

351,000 square 

meter circular 

plots

1 for all plots aboveground 

biomass 

density

model-assisted 12.50%

Wojcik et al. 2022 Frontiers Intermountain 

west

Counties 37 counties 

simulated with 2 

to 10% of the 

actual sample 

plots

Trees per acre model-assisted −13.0% 12.0%

Næsset et al. (2011), Breidenbach and Astrup (2012), Goerndt et al. (2013), McConville et al. (2020), Cao et al. (2022), Frescino et al. (2022), Stanke et al. (2022), Wojcik et al. (2022), Emick et al. (2023).
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datasets will result in larger deductions. This feature further protects 
against over-crediting.

Another potential problem with this method is that although it 
provides a reasonable estimate of potential bias, it cannot estimate the 
actual bias of the subdomains enrolled. If there is a bias in the 

independent projects, this may lead to biases in the estimate of 
potential subdomain bias and in the calculated discount factors. That 
said, the fact that the independent projects are also carbon projects 
supports the idea that these areas may represent other potential 
carbon project areas accurately. Further study and ground truth data 
to verify the findings and methods introduced here are needed to 
provide additional confidence in this approach.

A comparison of the original method described above and the 
alternative discount calculation method can be seen in Figure 7. The 
SE panels in Figure  7 represent the variability of the IVPR RB 
estimates. Because the first method relies on the variance and bias of 
the IVRP while the alternate method relies on the variance and 

TABLE 5 Distribution of relative bias from data reported in published 
literature.

Mean Median Min Max Standard 
deviation

Count

−0.8% −1.5% −80.4% 477.8% 22.6% 7,333

TABLE 6 Breakdown of published relative bias data by type.

(A) (B) (C)

Result statistic Count Model type Count Model scale Count

Mean 2 Model-assisted 17 Municipality 15

Max 1 Model-based 493 County 2,869

Min 1 SAE 6,823 County-year 493

Actual 7,329 huc10 watershed 3,956

(A) Data types reported by literature. (B) Model types used to generate large-scale predictions. (C) Geographic scale of data found.

TABLE 7 Worked Example 1—Discount factor for large over-crediting risk from design-based regional inventory.

Step Equation Equation
reference

Example 1 values

IVRP and regional inventory stats IS RI Table 1 157.7

,20 ,20ERT CP BSLRI tot avg= − Table 2 91.4

Total IVRP (m) 16

Confidence, risk, and t-values Inventory Confidence Level (α) 90%

Allowable Risk (β) 10%

1  %t conf levelα= − Table 2 −1.7531

 %t risk levelβ = Table 2 −1.3406

ERT_RB distribution values ERT RB Table 2 84.4

RB
SDERT Table 2 21.99

RB

RB

SD
SE

m
ERT

ERT =
Table 2 5.5

RB RB
ERT ERT t SERBLCB ERTα= − ∗ Table 2 74.8

Discount factor pre-calculations
% 100RB

ERT ERT
ERT

ERT
RB LCB

LCB
RB

−
= ∗

Table 2 11.41%

var

%
 %

1  %
ERTdf t

t
LCBSD risk level

conf level
β

α
= ∗ =

= −

Table 2 8.73%

ERT ERTRI RB− Table 3 −7.0

% 100ERT ERTERT
ERT
RI RB

MS
RI

−
= ∗

Table 3 −7.62%

var
%

tot
df df ERTSD SD MS= − Table 3 16.35%

Final dfSD Table 3 16.35%

Blue cells are input data provided by a user. Orange cells are calculated based on the formulas defined above.
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FIGURE 6

Graphical representation of examples 1 and 2. (A) Shows the design-based large over-crediting risk. In this figure, the initial stocks as estimated by the 
IVRP data were 7.62% less than the stocks estimated by the regional inventory (RI). This difference, combined with the variability-based discount, results 
in a 16.35% final ERT deduction factor. (B) Shows the minimal over-crediting risk associated with a model-based estimate of regional inventory stocks. 
The initial stock underestimate by the regional inventory results in a conservative estimate of ERTs and therefore a small discount factor.

TABLE 8 Worked example 2—discount factor calculation for minimal over-crediting risk using the literature review results for the discount factor.

Step Equation Equation reference Literature review 
minimum discount factor

Example 2 
values

IVRP and regional 

inventory stats
IS RI Table 1 157.7 157.7

,20 ,20ERT CP BSLRI tot avg= − Table 2 91.4 91.4

Total IVRP (m) 7,333 16

Confidence, risk, 

and t-values

Inventory Confidence Level (α) 90% 90%

Allowable Risk (β) 10% 10%

1  %t conf levelα= − Table 2 −1.6451 −1.7531

 %t risk levelβ = Table 2 −1.2817 −1.3406

ERT_RB distribution 

values
ERT RB Table 2 90.1 98.3

RB
SDERT Table 2 35.69 22.28

RB

RB

SD
SE

m
ERT

ERT =
Table 2

0.4 5.6

RB RB
ERT ERT t SERBLCB ERTα= − ∗ Table 2 89.4 88.5

Discount factor 

pre-calculations % 100RB
ERT ERT

ERT
ERT

RB LCB
LCB

RB

−
= ∗

Table 2
0.76% 9.94%

var

%
 %

1  %
ERTdf t

t
LCBSD risk level

conf level
β

α
= ∗ =

= −

Table 2
0.59% 7.60%

ERT ERTRI RB− Table 3 −1.3 6.8

% 100ERT ERTERT
ERT
RI RB

MS
RI

−
= ∗

Table 3
−1.45% 7.49%

var
%

tot
df df ERTSD SD MS= − Table 3 2.04% 0.11%

Final dfSD Table 3 2.04% 2.04%
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FIGURE 7

Comparison of original and alternate discount factor calculation methods.

proportion of the IVRP sites that have a negative relative bias, it is not 
possible to exactly compare these. Therefore, to make the comparison 
below, the average proportion of negative relative bias values was 
found based on 100 simulations of the distribution of possible site 
relative bias values based on the assumed mean bias and variance 
percentages. The simulations were drawn from a normal distribution. 
There are a few points to take from these results. First, the first 
proposed method (and the method adopted and published by the 
American Carbon Registry for use in the SNIPF methodology) 
results in larger discount factors as the negative bias (risk of over-
crediting) increases, while the alternate method shows larger 
deductions even when the average bias is positive. Given the 
increased conservatism of the alternative method for small or no 
over-crediting bias situations, it is possible to remove the literature 
review portion of this calculation entirely. Removing this calculation 
will make the application of this method simpler and more internally 
consistent. Equation 11 shows this revised formulation.

Equation 11: Alternative discount factor calculation removing 
literature review result dependency

 

( )0

0 0

00 if

if 0

if & 0

RBC t abs t t

t t t t t

α α α

α α α α α

α α
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 ≤

= + ≤

 − ≥ ≥  

(11)

Further comparison of these methods reveals that the first method 
presents a strong relationship between the mean bias and the final 
deduction claimed while the alternative method relies on the 
proportion of negative relative bias values—which is a proxy for the 
mean relative bias but slightly different. The strength of the original 
method is its relative simplicity in incorporating the mean relative bias 
into the final discount factor value. The strength of the alternative 
method is that it more closely aligns with the risk-based framework 

proposed originally by Neeff. The choice of approach will be dictated 
by the goals of the standards body.

5 Conclusion

This paper outlines a discount factor that can be  applied to 
estimates of carbon offsets when a large-scale estimate framework is 
used to estimate offsets within a subdomain. Although this publication 
uses an example dataset from the Southeastern United States and is 
specific to the ACR SNIPF IFM protocol (this method was adopted by 
this protocol), the intent of this study is to introduce a method that 
can be applied in any forest type or geography using any forest carbon 
offset protocol where there exist independent estimates of forest 
carbon stocks that overlap with the large-scale estimates. The approach 
breaks down the discount factor into three main components: (1) a 
variability-based discount factor, (2) a mean shift discount component, 
and (3) the discount factor associated with a review of relevant 
literature. By combining these components, this approach insures a 
conservative estimate of credit generation by projects. Using this 
approach, standard bodies can confidently develop offset protocols to 
ensure the conservativeness of offsets generated while also allowing 
for cutting-edge remote sensing technologies to be deployed to allow 
for the rapid scaling of program participation.

While this method is specific to forests and forest carbon offsets, 
the general framework could easily be adapted to work in other fields 
or for other purposes. For example, if one wanted to estimate soil 
contamination in small areas based on a larger-scale estimate where 
robust subdomain observations were available, this method could 
be  applied. Furthermore, if one was more concerned with 
underestimation rather than overestimation, the signs in the formulas 
could be reversed to address this risk instead.

Because this method relies on independent projects to understand 
the potential subdomain estimation variance and bias, it is the opinion 
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of the authors that registries and standards bodies should try to follow 
the lead of the CARB in requiring project area shapefiles and standing 
carbon stocks be made publicly available for all forest carbon offset 
projects at each verification. Furthermore, verifiers and registries 
should take care to ensure that provided project area vector files 
remain consistent with the actual project area as defined in the project 
reporting documents. Finally, the certainty of the inventory estimates 
should be  reported to allow for a more detailed analysis of the 
potential bias of large-scale forest estimation frameworks.

Some may argue that the standard body should not allow any 
known bias or increased variance in estimates of carbon stocks and 
ERTs. They may further argue that all forest-based climate solutions 
must therefore rely on direct, ground-based samples of stocks. 
We believe that there is an inherent trade-off between the cost of offset 
project development and the participation in these projects. Because 
ground-based approaches become cost prohibitive when projects span 
large geographic extents and include many disjoint enrolled polygons, 
this method to account for and mitigate potential increased variability 
and bias is critical to improving participation in these programs and in 
increasing the climate and ecosystem co-benefits these programs create.

Addressing climate change and protecting forests is an immense 
challenge. The IPCC estimates that there is an “emissions gap” of 
4 to 7 GtCO2 needed to reduce emissions and help to stabilize 
warming below 1.5°C (Core Writing Team, 2023). Given the size of 
this emissions gap and the importance of protecting forests, it is 
critical that we develop tools that incentive forestland protection and 
can do so with high integrity at large scales. By providing a method to 
adjust for both the variability and bias that subdomain estimates 
might introduce, this method opens the door to the use of more 
efficient large-scale models and estimation frameworks to reduce costs 
for participants in forest carbon offset programs while maintaining 
high-integrity offsets.
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