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Realistic projections of future wildfires need to account for both the stochastic 
nature of climate and the randomness of individual fire events. Here we adopt a 
probabilistic approach to predict current and future fire probabilities using a large 
ensemble of 1,600 modelled years representing different stochastic realisations of the 
climate during a modern reference period (2000–2009) and a future characterised 
by an additional 2°C global warming. This allows us to characterise the distribution 
of fire years for the contiguous United States, including extreme years when the 
number of fires or the length of the fire season exceeded those seen in the short 
observational record. We show that spread in the distribution of fire years in the 
reference period is higher in areas with a high mean number of fires, but that there 
is variation in this relationship with regions of proportionally higher variability in the 
Great Plains and southwestern United States. The principal drivers of variability in 
simulated fire years are related either to interannual variability in fuel production 
or atmospheric moisture controls on fuel drying, but there are distinct geographic 
patterns in which each of these is the dominant control. The ensemble also shows 
considerable spread in fire season length, with regions such as the southwestern 
United States being vulnerable to very long fire seasons in extreme fire years. The 
mean number of fires increases with an additional 2°C warming, but the spread 
of the distribution increases even more across three quarters of the contiguous 
United States. Warming has a strong effect on the likelihood of less fire-prone 
regions of the northern United States to experience extreme fire years. It also 
has a strong amplifying effect on annual fire occurrence and fire season length 
in already fire-prone regions of the western United States. The area in which fuel 
availability is the dominant control on fire occurrence increases substantially 
with warming. These analyses demonstrate the importance of taking account of 
the stochasticity of both climate and fire in characterising wildfire regimes, and 
the utility of large climate ensembles for making projections of the likelihood of 
extreme years or extreme fire seasons under future climate change.
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1 Introduction

Recent wildfire events have prompted concern about future 
changes in wildfire regimes. Analyses of remotely sensed burned area 
show significant declines since 2001 in Europe, sub-Saharan Africa, 
southern Africa and Central Asia, but no significant trends in other 
regions of the world (Zubkova et al., 2023). However, there has been 
an overall increase in burned area as a result of wildfires in the 
United States between 1983 and 2022 (EPA, 2024). Other aspects of 
the fire regime are also changing. Extreme wildfire events have become 
more frequent and intense globally (Cunningham et al., 2024) and the 
fire season has lengthened significantly in many regions over the past 
four decades (Smith et al., 2020). There has been a strong response of 
fire regimes to warming and land-use change during past centuries 
(Sayedi et al., 2024). A similar response is expected with future global 
warming, with fire risk projected to increase over the 21st century as 
a result of changes in meteorological conditions (Arias et al., 2021). 
Fuel accumulation is also projected to increase with warming (Lu 
et al., 2024), and fuel moisture is projected to decrease across the plant 
productivity gradient (Ellis et al., 2022).

A recent UNEP report (Sullivan et al., 2022), using outputs from 
four climate models under the RCP2.6 and RCP6.0 scenarios, 
predicted a significant increase in burned area globally in the 21st 
century and an increasing trend in the likelihood of extreme wildfire 
events from 2020 to 2100. That study reflects the spread of burned area 
outcomes given modelled conditions - based on the distribution of 
possible model parameters from the training data (Kelley et al., 2019) - 
but does not reflect the full spread due to the chance of different 
realisations of weather that affect the likelihood of wildfire occurrence. 
This second component of the uncertainty can be addressed by using 
a large ensemble (LE) of climate simulations. As the drivers of wildfire 
likelihood (such as temperature, moisture, and vegetation 
productivity) vary between years in a given climate, considering a 
large distribution of simulated years for a given global mean 
temperature, or climate state, allows the full variability in potential fire 
years to be defined (Van der Wiel et al., 2021). Modelling this aleatoric 
component of the uncertainty allows us to characterise the otherwise 
unknown spread of the annual wildfire distribution that arises from 
the limited length of the recent wildfire record, and to understand the 
possible extremes of the modern fire regime through better resolution 
of the tails of the distribution.

LEs are a standard method in climate and climate impact science 
where ensemble runs are used to represent the distribution of possible 
outcomes and extremes. LEs have been widely adopted in flood 
modelling (Cloke and Pappenberger, 2009) and have been used to 
predict extremes for heavy snowfall (Sasai et al., 2019), drought (Van 
der Wiel et al., 2021), extreme heat (Suarez-Gutierrez et al., 2020), and 
fire weather (Squire et al., 2021). This approach is very applicable in 
the context of fire, which is sensitive to meteorological variability 
between years (Chuvieco et al., 2021) and to changes in vegetation 
properties caused by this variability. LE methods have been adopted 
for projection or attribution of extreme fire weather events (Touma 
et al., 2022; Squire et al., 2021), but have not been applied to other 
factors influencing fire regimes. Significant spread has been shown 
between General Circulation Model (GCM) predictions of wildfire in 
California (Dye et  al., 2023; Yue et  al., 2014) and the northern 
United States (Kerr et al., 2018). These studies represent a combination 
of aleatoric and systematic uncertainty, and hence cannot 

be interpreted probabilistically (Shepherd, 2019). It is important to 
understand how this uncertainty impacts projections, particularly 
given the rapidly moving target due to climate and land-use change.

Accounting for interannual stochasticity in modelling wildfire 
under present-day and future conditions is important in model 
products designed for the wider fire community. Fire management is 
often based on the extrapolation of observed incidence, meaning that 
the effect of future environmental change on the fire regime is viewed 
in terms of increasing risk relative to local operational experience. 
However, this approach ignores the possibility that the observed 
occurrence of fires does not provide a full representation of the 
potential fire regime  - including unseen extremes. The modern 
observational record does not necessarily reflect the mean response to 
climate since it is strongly influenced by variability due to the small 
sample of years considered. Adopting an LE allows a characterisation 
of the distribution of possible events, meaning that the likelihood of 
extremes can be  more robustly determined. Additionally, climate 
change can have a different effect on average versus extreme fire years. 
LEs allow a robust characterisation of the full distribution of fire years 
to define vulnerability to extremes as well as changes to the landscape’s 
expected average susceptibility to wildfire.

Here, we apply a previously established modelling methodology 
for the likelihood of wildfire occurrence using an LE to assess the 
distribution of the expected number of fires per year for the contiguous 
United States. We then assess the regional drivers of fire variability and 
variability in the length of the fire season across North American 
ecological regions, or ecoregions (Commission for Environmental 
Cooperation (Montréal, Québec) and Secretariat, 1997). Finally, 
we  consider how these distributions change when subject to an 
additional 2°C of warming, identifying regionally distinct effects of 
climate change on both the mean and spread of fire year outcomes.

2 Methods

We use a model that predicts the daily likelihood of fire as a 
function of meteorological, vegetation, and human-activity variables. 
We  take bias-corrected meteorological variables from the Royal 
Netherlands Meteorological Institute Large Ensemble Time Slice 
(KNMI-LENTIS) ensemble for a “modern” period (2000–2009) and 
a hypothetical future (+2°C global warming relative to the modern 
ensemble). We also use these bias-corrected variables as input to a 
light-use efficiency model to derive gross primary production (GPP). 
Factors related to land cover and human activities are held constant. 
We then analyse the ensemble distribution of fire years under modern 
and future conditions, using a climate reanalysis-driven model as a 
baseline, focusing on how the variability between years varies spatially; 
extreme fire years; and variation in the length of the fire season.

2.1 Fire modelling approach

We use an existing model for the daily probability of fire 
occurrence at 0.1° spatial resolution for the contiguous United States 
(Keeping et  al., 2024), trained on occurrence data from the Fire 
Programme Analysis fire-occurrence database (Short, 2022). The 
original model selects 12 variables from a suite of 47 candidate 
variables associated with the likelihood of wildfire occurrence, 
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including instantaneous and antecedent predictors of weather 
conditions, plant productivity, plant type, population, and landscape 
development. The selected variables are then used to predict the daily 
likelihood of a wildfire occurrence using a power-law rescaled 
generalized linear model. Here, a reduced set of 31 candidate predictors 
(Supplementary Table  1) are used because some of the original 
variables could not be obtained from the KNMI-LENTIS ensemble, 
and some were eliminated because they were not selected across 1,000 
randomly sampled training datasets. The selected ensemble-derived 
variables were GPP, precipitation, vapour pressure deficit (VPD), snow 
cover, diurnal temperature range (DTR), and windspeed across a range 
of antecedences. Inputs derived from KNMI-LENTIS were downscaled 
to the resolution of the fire model since the effect of wildfire drivers 
varies across spatial scales (Parisien and Moritz, 2009) and the 
modelled relationships and the thresholds used for these relationships 
would therefore not necessarily be appropriate at coarser scale.

The reanalysis model based on the reduced set of variables performs 
as well as the original model. It shows good separability for fire 
occurrence, with an area under the receiver operating characteristic 
curve (AUC) statistic of 0.89. It also performs well spatially, with a 
geospatial normalised mean error (NME) of 0.46, in predicting both 
how concentrated the fire season is (seasonal concentration NME = 0.78) 
and when the peak of the fire season occurs (mean seasonal phase 
difference = 0.13), and in predicting interannual variability (interannual 
NME = 0.67). The model driven by reanalysis data provides a point of 
comparison for the realised likelihood of wildfire given the weather that 
occurred. However, as a reanalysis derived product, it cannot include the 
full stochasticity of the actual weather.

2.2 KNMI-LENTIS ensemble

KNMI-LENTIS (Muntjewerf et  al., 2023) provides a large 
ensemble run of EC-Earth3 (Döscher et al., 2021) for two climate 
periods, 2000–2009 and +2°C warming from this “modern” period 
(2075–2084 under SSP2-4.5 in EC-Earth3). Each ensemble consists of 
160 simulations of 10 years. These 160 ensemble members are created 
combining “macro” initialization and “micro” perturbations, with 16 
different starting conditions created by starting the model at 25-year 
intervals in the pre-industrial spin-up, and running long transient 
(historical and SSP2-4.5) simulations. Each of these 16 runs is then 
subject to nine very small perturbations to the atmospheric 
temperature field at the start of the modern and modern + 2°C decades 
to produce two ensembles of 160 members each. These 160 members 
yield 1,600 years of data for two climates that are considered relatively 
stable (the 2000s and that climate subject to +2°C warming) since any 
climate trend will be limited in a 10-year period. Antecedent GPP over 
the preceding year was selected as a predictor, although none of the 
longer antecedent GPP predictors was found to be important in the 
model training. Antecedent 1-year GPP was calculated by repeating 
the first year of the ensemble following Van der Wiel et al. (2019).

2.3 Bias correction and generation of input 
data

The KNMI-LENTIS outputs were bias-corrected and downscaled 
by the climate imprint (CI) method (Hunter and Meentemeyer, 2005) 

using ERA5-Land data (Muñoz-Sabater et al., 2021) for the period 
1990–2019 at 0.1° (~10 km resolution). Bias-correction of the 
meteorological and plant growth predictors reduces the general 
overestimation of GPP and the under/over-estimation of windspeed 
and snow cover in some regions (Supplementary Figure 6) which, 
because of the threshold relationships inherent in the fire probability 
model, would result in the prediction of unrealistically high 
likelihoods of fire occurrence (Supplementary Figure 7).

Although KNMI-LENTIS and ERA5-Land are both ECMWF 
products, the core atmospheric modules are different (IFS Cy36r4 and 
Cy45r1 respectively), IFS Cy45r1 performs better then IFS Cy36r4 
(ECMWF, 2025), and ERA5-Land also uses observational data 
assimilation. Thus, the modelling schemes and implementation are 
sufficiently different for ERA5-Land to be  considered as an 
independent source for bias-correction and downscaling of 
EC-Earth3. Whilst reanalysis products are an imperfect representation 
of reality and can be subject to bias, assessments of ERA5-Land show 
that it performs better than other products in reproducing 
extratropical northern hemisphere land temperatures (Muñoz-Sabater 
et  al., 2021), United  States temperature extremes (Ibebuchi et  al., 
2024), precipitation in the northeastern United States (Crossett et al., 
2020) and extratropical precipitation patterns more generally (Lavers 
et al., 2022). The representation of precipitation extremes is not as 
good (Lavers et al., 2022) but this is not important since the wildfire 
model is not sensitive to precipitation exceeding 13 mm/day (Keeping 
et al., 2024).

The reanalysis data were averaged by the day-of-year and 
smoothed by a 31-day centred window, thus preserving the seasonality 
but eliminating error introduced by limited sampling of stochastically 
varying years (on leap-years, day 366 was grouped with day 365 for 
this reason). Modern ensemble data was converted into single delta 
values relative to the ensemble day-of-year mean. Zero-bounded 
variables, such as precipitation, were treated multiplicatively whilst 
non-bounded variables, such as temperature, were treated additively. 
This delta version of the ensemble was then bilinearly downscaled and 
applied to the day-of-year averaged and smoothed reanalysis data. The 
bias correction was applied to all variables separately. The same 
procedure was followed for the +2°C ensemble data, but the difference 
was between the future ensemble data and the modern ensemble 
day-of-year mean. As some ensemble variables have a 3-h resolution, 
times of day were bias-corrected separately to respect potentially 
different distributions in different parts of the diurnal cycle.

The 0.1°, 3-hourly or daily bias corrected data were used to 
generate climate predictors for the fire model. Diurnal temperature 
range was derived from the difference between the daily minimum 
and maximum temperature. Daily and 5-daily precipitation were 
derived from daily precipitation data. Windspeed was derived from 
the daytime mean of 3-hourly windspeed data, which in turn had been 
calculated from westerly and northerly components prior to the bias 
correction. Snow cover was derived from daily data. Vapour pressure 
deficit was calculated according to the Buck formula (Buck, 1981) 
from 3-hourly temperature and dewpoint data, which was then used 
to derive the daytime mean value.

The top four moments (mean, variance, skewness and kurtosis) 
were calculated for the reanalysis and bias-corrected ensemble data 
aggregated by time of day; month; and 2π the ensemble resolution. 
The mean and variance showed good agreement for all the bias-
corrected variables except windspeed (Supplementary Table 2a). A 
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single-value variance rescaling was thus applied to further correct 
windspeed (Supplementary Table 2b).

2.4 The GPP model

Predictions of GPP were made using a light-use efficiency model 
(the P model) that combines the Farquhar-von Caemmerer-Berry 
photosynthesis model for instantaneous biochemical processes with 
two eco-evolutionary hypotheses to account for the spatial and 
temporal acclimation of carboxylation and stomatal conductance to 
environmental variations at weekly to monthly time scales (Wang 
et al., 2017; Stocker et al., 2020). The model uses an empirical function 
to take account of the effect of soil moisture stress on photosynthesis, 
as defined in Stocker et al. (2020). The inputs to the P model are air 
temperature (°C), VPD (Pa), air pressure (Pa), incident photosynthetic 
photon flux density (PPFD, μmol m−2 s−1), the fraction of absorbed 
photosynthetically active radiation (fAPAR), and ambient CO2 
concentration. The meteorological inputs to drive the P model were 
the bias-corrected and downscaled variables from the KNMI-LENTIS 
ensemble, with the +2°C scenario using CO2 concentrations 
corresponding to the SSP2-4.5 scenario for 2075–2084. fAPAR was 
derived from a prognostic model of the seasonal cycle of the leaf area 
index (LAI) (Zhou et al., 2025), since fAPAR can be derived from LAI 
using Beer’s law. This model derived the steady-state LAI timeseries 
from the GPP time course based on a general linear relationship 
between “steady-state” LAI, the LAI when environmental conditions 
remain unchanging, and GPP. The actual estimated LAI is then 
calculated as the time-lagged average of the steady-state LAI. A 
seasonal maximum fAPAR model was embedded in this model to 
limit seasonal LAI predictions (Zhu et al., 2023; Cai et al., 2025).

2.5 Ecoregions

To conduct regional analyses of wildfire patterns, we aggregated 
data using the Level I  Ecological Regions of North America 
(Commission for Environmental Cooperation (Montréal, Québec) 
and Secretariat, 1997). Two ecoregions that occupy relatively small 
areas in the contiguous United States were merged with a closely 
related ecoregion, following Balik et al. (2024). Specifically Tropical 
Wet Forests (in southern Florida) were merged with Eastern 
Temperate Forests, and Southern Semi-arid Highlands (in 
southeastern Arizona) were merged with Temperate Sierras. The eight 
ecoregions used here are: Eastern Temperate Forests; Great Plains; 
Marine West Coast Forest; Mediterranean California; North American 
Deserts; Northern Forests; Northwestern Forested Mountains; and 
Temperate Sierras (Supplementary Figure 1a). When describing more 
specific geographical regions, we followed the naming convention of 
the United States Census Bureau (Supplementary Figure 1b).

2.6 Fire year metrics

The ensemble-driven fire model is compared to the reanalysis-
driven fire model rather than to the observations to provide a like-for-
like comparison of the contemporary probability of wildfire, because 
of the stochasticity of the realised wildfire record. The fire occurrence 

model is daily, accounting for the daily extremes that drive the annual 
likelihood of fire, but the analysis here is annual to focus on variability 
between fire seasons and not on daily scale variability in weather. The 
spread of the ensemble is defined as the 1st to 99th percentile of the 
ensemble fire years by grid cell since this is more robust than the 
maximum and minimum of the distribution (Supplementary Figure 2). 
A leave-one-out (LOO) approach was used to identify the predictor 
that contributes most to interannual variability in fire occurrence. A 
version of the ensemble was generated for each of the eight climate 
predictors by taking the average for each day of the year across the full 
ensemble to eliminate interannual variability of that predictor. This 
approach preserves seasonality but means that all years are identical 
for that predictor across ensemble members. The mean absolute 
difference between the original and LOO annual number of fires was 
used to measure the contribution of that predictor to variability. The 
length of the fire season was defined as the number of days exceeding 
a threshold of 50% of the average of the week with the most fires at 
each location in the reanalysis model. We also compared the reanalysis 
maximum fire years (from the 1990s, 2000s and 2010s) to the 160 
ensemble decades by ecoregion to determine whether the observed 
decadal maximum falls in the distribution of possible decadal maxima 
for a similar environment. This also allows us to examine if there was 
a trend in the reanalysis period that could affect the comparison with 
the ensemble model.

3 Results

3.1 Modern day fire regimes

The spatial pattern of number of fires in the reanalysis-based 
model is broadly consistent with the observational record (Short, 
2022), although as expected the observed map is less smooth 
(Figure 1). Despite the good overall agreement with observations, 
there are some differences - for example the greater extent of wildfires 
in northern parts of the Mountain West and East North Central, and 
the sharper boundaries of regions where wildfire does not occur in 
heavily farmed regions of the East North Central (the Corn Belt) and 
East South Central (the Mississippi Valley). The model is a reliable 
predictor for the probability of wildfire occurrence, and the reanalysis-
based model mean shows good agreement (R2 = 0.96) with the KNMI-
LENTIS modern ensemble mean, indicating that the bias-corrected 
ensemble data is also reliable. Without bias-correction and 
downscaling, the fire model shows the correct geographic patterns but 
seriously overestimates the probability of fire in high-likelihood 
regions (Supplementary Figure 7).

The absolute spread of the 1,600-year ensemble for the expected 
annual number of fires (Figure 1d) is largest in regions with a high 
mean number of fires. The regions most susceptible to wildfire 
occurrence over a long period also show the highest absolute spread 
in fire occurrence on a year-to-year basis, with extreme years 
contributing substantially to the higher-than-average rate of wildfire. 
As the mean and spread of the ensemble distribution are strongly 
associated spatially, the ratio between them (the relative spread) 
indicates where the skewed fire year distribution 
(Supplementary Figure  2) is longer tailed, and where there is a 
different response in the spread and mean of the distribution to 
warming. The relative spread (Figure 1e) is highest in the Great Plains, 
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the Warm Deserts, the coast and hills of Mediterranean California, 
and southern Florida. In contrast, a large region of the eastern 
United States has a high mean number of expected fire events but low 
relative spread. The relative spread identifies regions where previously 
unseen extremes could be substantially above the recent mean, with 
Mediterranean California and the southern Great Plains being 
characterised by particularly high mean annual fires and 
relative spread.

The model predictors can be  categorised into static variables 
(rural population density, shrubland cover, needleleaf cover, cropland 
cover) and dynamic variables that vary with time, including 
meteorological (mean daytime VPD, DTR, mean daytime windspeed, 
snow cover, precipitation in the prior 5-days, and daily precipitation) 
and vegetation (GPP in the prior year and GPP in the prior 50-days) 
variables. The four most influential variables in the model 
(Supplementary Table 1) were annual GPP, VPD, rural population 
density and 50-day GPP, respectively.

Comparison of the original fire year ensemble and the ensemble 
with the interannual variability of individual variables fixed showed 
that the primary driver of interannual fire variability reflects two sets 
of controls: atmospheric drying (VPD, DTR) and fuel availability 
(GPP) (Figures 2a, 3a). Fuel availability is the most important control 
on interannual variability in the eastern Great Plains, Eastern 
Temperate Forests, Mediterranean California, Temperate Sierras, and 
the southern North American Deserts. Atmospheric drying is most 
important in the lower fire-occurrence areas of the Mountain West 
and northern Pacific West. VPD and annual GPP control fire year 
variability across most of the United  States, but DTR is more 
important in the Marine West Coast Forest, the northeastern Northern 
Forest, and a small area west of the Great Lakes. These three regions 

have the lowest interannual variability in VPD, whilst DTR variability 
is more homogeneous in the surrounding areas. GPP in the prior 
50 days is also an important control in much of the Northwestern 
Forested Mountains. Interannual variability in VPD is the most 
important control of variability in severe fire years, as indexed by the 
top  1% of fire years (Figure  2c), except in the southwestern 
United States (Figure 3c) where fuel availability is the main control.

The mean fire season length is < 30 days over much of the 
United States (reanalysis-model, Supplementary Figure 4a; modern 
ensemble, Figure 4a), except for the southwestern North American 
Deserts where the season can be  up to 4 months long. There is 
considerable variation in the extremes of the distribution in fire season 
length (Figure  4c) and this can be  significantly higher than the 
maximum registered in the 30-year reanalysis period 
(Supplementary Figure 4b). The East South Central and southern 
South Atlantic regions can experience long fire seasons of up to 
120 days. However, most of the region with long fire seasons in severe 
years – often multiple times longer than the mean fire season – lies 
west of the 100th meridian: the Warm Deserts and southern 
Mediterranean California see increases from 10–120 to 120–240 days 
in extreme years. Although these regions are characterised by a long 
fire season, they are also the most exposed to unseen extremes.

There are large differences in the spread of the distribution of the 
decadal maximum fire year across the 160 ensemble-based simulations 
(Figure 5), with Mediterranean California, the Temperate Sierras, and 
the Great Plains showing the largest spread and Marine West Coast 
Forest, Northwestern Forested Mountains, Northern Forests, and 
Eastern Temperate Forests showing a relatively confined distribution. 
The distribution of the decadal maximum fire year in the simulations 
is congruent with the maximum for each decade in the 

FIGURE 1

Modelled and observed patterns in the annual number of wildfires greater than 0.1 hectares, with both the mean and 1st-99th percentile spread 
shown. The plots show (a) the observed annual mean of the wildfire occurrence record for 1992–2020; (b) the modelled reanalysis mean for 1990–
2019; (c) the modelled ensemble mean for the modern (2000–2009 climate); (d) the modelled ensemble spread for the modern; (e) the ratio of model 
spread and mean for the ensemble modern; (f) the +2°C ensemble mean (2000–2009 climate plus 2°C of warming); (g) the +2°C ensemble spread; 
and (h) the ratio of model spread and mean for the +2°C ensemble.
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reanalysis-based model for some ecoregions (Figure 5), most notably 
in the Great Plains and the Eastern Temperate Forests. However, the 
tail of the simulated decadal maximum fire year in Mediterranean 
California, the North American Deserts, and the Temperate Sierras 
greatly exceeds the maximum in the reanalysis-based model. There is 
only one region, Northern Forests, where the maximum in the 
reanalysis-based model lies outside the ensemble-based distribution. 
The extremes from each of the three reanalysis decades differ 
(Figure 5), reflecting the observed warming trend since the 1990’s. 
This highlights the unreliability of estimating extremes from the 
reanalysis model rather than the ensemble-based model.

3.2 Future fire

There is an increase in both the mean and spread of total annual 
wildfires across all regions of the United States in the +2°C ensemble-
based simulations (Figure 1, Supplementary Figure 5). The mean 
annual number of fires is more than double in the Midwest and 
Northeast. However, the greatest changes are in the West 
(Supplementary Figure 5) and most pronounced in the higher fuel-
load environments of the Northwestern Forested Mountains. The 
increase in the spread is generally greater than the increase to the 
mean (Figure 1h): 78% of the contiguous United States shows an 

FIGURE 2

Relative importance (as measured by the area where the variable is the dominant effect) of different drivers for the variability in the modelled number 
of wildfires per year as shown by the leave-one-out analysis. The top plots show the drivers in the modern (2000–2009) ensemble for (a) all fires and 
(c) the top 1% of fire years. The bottom plots show the drivers in the +2°C ensemble, for (b) all fires and (d) the top 1% of fire years. DTR is the diurnal 
temperature range, VPD is vapour pressure deficit, GPP is gross primary production.

FIGURE 3

Maps showing the areas where each variable is the dominant driver of interannual variability between fire years. The top plots show the drivers in the 
modern (2000–2009) ensemble for (a) all fires and (c) the top 1% of fire years. The bottom plots show the drivers in the +2°C ensemble, for (b) all fires 
and (d) the top 1% of fire years. DTR is the diurnal temperature range, VPD is vapour pressure deficit, GPP is gross primary production.
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increase in spread greater than that of the mean in the +2°C 
ensemble, and the spread increases by > 1.2 times the mean over 34% 
of the region (Supplementary Figure 3). Fire years are consistently 
most variable relative to the mean annual number of fires in the 
Great Plains, Warm Deserts, and Mediterranean California. There is 
also a marked increase in relative spread in the southern Great Plains 
and Warm Deserts. The southeastern United States has the most 
limited increase in both mean annual number of fires and 
interannual spread.

GPP and atmospheric drying (VPD and DTR) are the most 
important drivers of interannual variability in the +2°C ensemble-
based simulations (Figure  2). However, GPP is the predominant 
control on fire year variability over 71% of the contiguous United States 
in the +2°C ensemble compared to 60% in the modern ensemble. 
Much of the expansion of the region where GPP is the primary control 
is in the West. In the +2°C ensemble scenario, the modelled average 
annual GPP increases across the contiguous United States, with a 
mean increase of 41% compared to a 49% increase in the average CO2 

FIGURE 4

Maps of fire season length. The mean for (a) the modern ensemble and (b) + 2°C ensemble, and the resolvable maximum (99th percentile) for (c) the 
modern ensemble and (d) + 2°C ensemble number of days exceeding a threshold of 50% of the average of the modern ensemble week with the most 
fires at each location. This number of locally relatively fire-prone days is considered as the effective fire season length.

FIGURE 5

Coloured histograms show the distribution of the maximum number of fires in a year per ensemble member (i.e., one simulated decade) in different 
ecoregions; the grey histograms show the distribution of the 10-year maximum in the same ecoregion after an additional +2°C warming. The 
maximum number of fires per decade in the reanalysis-based model are shown by horizontal lines. The map shows the area covered by each 
ecoregion.
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concentration, and with 99% of the contiguous United States showing 
an increase in GPP relative to the modern ensemble. The +2°C 
scenario also shows a GPP response of greater variance between years 
relative to the modern ensemble scenario across 99% of the contiguous 
United States, with 66% of the area of the contiguous United States 
showing an increase in the variability relative to the mean as shown 
by coefficients of variation of the modern and +2°C ensembles. 
Variables related to atmospheric drying become more important in 
the southeastern United States, where interannual variability is almost 
entirely controlled by GPP in the modern ensemble (Figure 3). DTR 
emerges as a more significant effect than in the modern ensemble. The 
area where it is the most important factor doubles. The region where 
VPD is the primary control decreases to one third of its extent in the 
modern ensemble. GPP over the prior 50 days becomes a more 
important driver of interannual variability than annual GPP in much 
of the South. GPP in the prior 50 days also replaces VPD as the 
dominant driver for the top 1% of fire years in parts of the same 
region – indicating an increase in the importance of low-productivity 
intervals (for example drought) for driving interannual variability.

The length of the fire season is increased in the 2°C ensemble 
compared to the modern ensemble (Figure 4), with increases to the 
mean fire season in the West and East South Central regions. There 
are regions of the southwestern North American Deserts and 
southern Mediterranean California where the top percentile of the 
distribution of fire season length is > 300 days. More northerly 
regions, such as the Northwestern Forested Mountains, are projected 
to experience fire seasons that would be normally associated with 
more southerly fire regimes. All ecoregions show a strong increase 
in the distribution of decadal extreme fire years (Figure  5). The 
Northern Forests ecoregion shows the greatest change: there is 
virtually no overlap between the 2000–2009 and the +2°C extreme 
distributions. A similar but less extreme difference occurs in the 
Northwestern Forested Mountains.

4 Discussion

The interannual spread of number of fires is greater than the mean 
expected number in the modern ensemble, meaning that the annual 
wildfire occurrence distribution can be described as highly variable 
and sensitive to interannual climate variability. Areas with a higher 
mean expected number of fires are likely to have a correspondingly 
higher spread in the distribution of annual number of fires, however 
there are geospatially distinct patterns in the spread of the distribution 
relative to the mean. There is an apparent effect of warming on the 
most extreme fire year per decade (across all eight ecoregions) over 
the past 30 years. The distribution of modelled decadal maxima in the 
modern climate consistently exceeds the reanalysis decadal maxima 
in all ecoregions. Drier ecoregions show higher spread between 
decadal maxima relative to the median decadal maximum of the 
ensemble. This effect could arise from the widespread variability in 
aggregated fire risk that can occur due to widespread drought affecting 
a large portion of an ecoregion, an established amplifier of wildfire risk 
in the West (Richardson et al., 2022). Whilst wildfire occurrence is 
high in the South and in highly populated areas, the southern West 
and southern Great Plains are the regions where relatively extreme 
years and extreme fire seasons are most likely under both the modern 
ensemble and +2°C ensemble scenarios.

The interannual variability in fire is largely controlled by the 
interannual variability in daily VPD or annual GPP, which 
correspond to variability in fuel moisture content and fuel 
availability, respectively. In the modern ensemble, fuel availability 
is consistently the most important driver in the southwestern 
United States, even for the top 1% of fire years which are primarily 
controlled by VPD in other regions. The response of GPP to climate 
change in the future scenario shows that the generally positive 
effects of CO2 on average outweigh the negative effect of increasing 
incidence of soil moisture stress on net primary production. This is 
consistent with the findings of Cai and Prentice (2020) that in the 
United States the predominant controls on GPP are plant cover 
(fAPAR) and CO2, as well as matching recent (Jeong et al., 2024) 
and projected (Knauer et al., 2023) trends in GPP. GPP becomes 
more variable in the +2°C ensemble scenario, even relative to the 
increase in the mean. The overall effect of this is to increase fuel 
production, increasing fire likelihood given equivalent weather 
conditions, and to increase the variability in fuel production 
between years, enhancing the impact of GPP variability in driving 
variability between fire years. This is seen in the increasing area of 
the West in the +2°C ensemble scenario for which GPP is the 
primary control of interannual wildfire variability – consistent with 
the findings of Abatzoglou et al. (2021) that the fires in the western 
United  States are increasingly constrained by increasing fuel 
availability with near-term future warming, despite increases in fire 
likelihood. Fuel limitation is also characteristic of the Great Plains, 
where annual GPP is the dominant control of interannual variability 
in fire occurrence in both the modern and the +2°C ensembles. The 
herbaceous fuels in this region have a shorter lifespan and are more 
sensitive to aridity (McGranahan and Wonkka, 2024), meaning that 
years of low productivity associated with lower moisture strongly 
reduce fire likelihood (Guyette et al., 2015; Knapp, 1998). VPD is a 
well-established control on the daily likelihood of wildfire (Mueller 
et  al., 2020) but even in fuel-availability controlled regions, the 
top  1% of fire years in both the modern ensemble and +2°C 
scenarios are often controlled by VPD. Even though annual GPP is 
the chief control of interannual variability, the interannual variation 
in VPD controls whether an extreme fire year occurs, consistent 
with its influence on extreme burned area in the West (Williams 
et al., 2019).

We identified DTR as the primary driver of interannual variability 
in the Northeast in the modern ensemble and in the Northeast and 
Appalachia (the mountainous inland region that extends parallel to 
the coast down from the Northeast) in the +2°C ensemble. Seager 
et al. (2015) showed there is strong interannual variability in summer 
VPD in all of the United States except for Florida and the Northeast, 
and that VPD does not exert a strong effect on soil dryness in the 
Northeast and Appalachia. Physically, DTR and mean daily VPD are 
strongly linked, with VPD having an exponential response to 
temperature (through saturation vapour pressure, SVP) modulated by 
relative humidity; VPD = SVP (1  – RH/100). The exponential 
response of SVP to temperature means that, physically, DTR 
corresponds to the daytime increase in SVP whilst VPD corresponds 
directly to the rate of vegetation drying by diffusive evaporation, 
separate from thermal or photomolecular vaporisation (Tu et  al., 
2023). Thus, one explanation for the emergence of DTR as a more 
important contributor to interannual wildfire variability in regions 
where VPD is less variable could be related to increased atmospheric 
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instability and increased cloud-free days, which result in greater night-
time cooling and daytime warming: both of which are associated with 
elevated wildfire risk (Haines, 1988; Williams et al., 2018). Increases 
in the expected area per year of the Northern Hemisphere affected by 
atmospheric blocking (Nabizadeh et al., 2019) could also contribute 
to this. Atmospheric blocking is associated with long-term cloud-free 
conditions (Lupo, 2021), which are in turn associated with periods of 
higher-than-average DTR (Dai et al., 2001), so an increase in blocking 
events with climate change could explain greater interannual variation 
in DTR. The fact that DTR becomes a more widespread control after 
warming shows that despite VPD being an effective predictor of 
wildfire risk (Sedano and Randerson, 2014) and widely used in 
empirical fire models (Haas et al., 2024), other metrics for atmospheric 
drying are more appropriate regionally.

Cumulated GPP over the 50 prior days is the primary control in 
the more fire-prone regions of the Northwest Forested Mountains, and 
it is also important over much of the South in the +2°C ensemble. 
Extreme fires have been linked to short-term acute drought in the 
South (Barbero et al., 2014), which may explain why variability in 
short-term vegetation productivity influences fire year variability in 
such relatively high productivity regions. The increase in importance 
of this control in the +2°C ensemble, particularly in the top 1% of fire 
years for occurrences, may reflect the increasing vulnerability to 
severe drought in some regions with warmer climates.

It was necessary to ensure that the ensemble climate data was 
directly comparable to the reanalysis data in order to compare the 
ensemble and reanalysis wildfire models. We  bias-corrected and 
downscaled the climate ensembles to map the climate ensemble onto 
the local reanalysis distribution using a relatively simple approach. The 
analyses show that this reduces but does not eliminate bias in the 
ensemble. The CI downscaling method used in this study can result in 
some distortion of the spatial covariance of climate variables, but 
preserves the temporal dynamics and representation of extremes 
(Maraun, 2013; Hnilica et al., 2017; Sobie and Murdock, 2017). More 
complex methods of bias correction (e.g., quantile mapping, Grillakis 
et  al., 2017; or multivariate techniques, François et  al., 2020) can 
produce a more precise correspondence but they impose a greater 
change on the climate-model distribution. The method used here is 
intended to be more robust by not making extreme – and thus more 
likely unphysical – alterations to the underlying distribution of the 
original climate ensemble (see Karger et al., 2023; Tefera et al., 2024; 
Mosier et al., 2014).

The moments of the ensemble GPP distribution correlate less well 
to the reanalysis than for other bias-corrected variables 
(Supplementary Tables 2a,b), and this may help to explain why the 
reanalysis decadal maxima is consistently lower than the median in 
more arid ecosystems such as Mediterranean California, the North 
American Deserts, and the Temperate Sierras. This effect could 
be  because GPP variability is not well reflected in the ensemble, 
possibly because the simulated fAPAR is based on an optimal response 
to environmental conditions during a given year and does not take 
account of prior disturbances or multi-annual changes in soil 
moisture. Therefore, whilst the ensemble GPP serves as a best estimate 
for an undisturbed vegetation regime, environments identified as 
primarily driven by variability in dryness-related predictors would 
naturally still be controlled by vegetation abundance or productivity 
in the case of high levels of disturbance, such as deforestation or 
prior wildfires.

The stochastic realisation of individual fire year conditions 
drives differences in potential outcomes from an impacts and 
management perspective. LE approaches have been adopted by the 
climate impacts community (e.g., Cloke and Pappenberger, 2009; 
Bevacqua et al., 2023; Van der Wiel et al., 2020), and bring benefits 
for wildfire modelling, both in gauging the likelihood of fire 
extremes and in contextualising the observational record. However, 
there are two difficulties that may limit the use of LEs for wildfire. 
Firstly, wildfire is influenced by vegetation properties and human-
activities more than many other climate-related hazards. The 
impact of human activities in particular is difficult to simulate 
reliably. Secondly, as in the case of the renewable energy community 
(Craig et al., 2022), there is often a need in wildfire studies to look 
at spatial resolutions finer than available from accessible climate 
datasets. Despite these difficulties, there are clear benefits to 
employing LE methods in wildfire modelling – allowing for the 
better estimation of resource demand in possible extreme years, 
and characterisation of the interannual variability inherent to a 
fire regime.

From a fire management perspective, the LE provides information 
about potential extremes that are not captured in the relatively short 
observational record and which might therefore pose a challenge for 
existing wildfire management resources. The approach can 
be employed to define regions susceptible to very long fire seasons, of 
use for planning suppression capacity in extreme years. In the 
southwestern United  States, for example, the existing trend of a 
lengthening fire-season (Jain et  al., 2017) continues with future 
warming. LEs can also be  used to understand emerging issues in 
vulnerability and exposure to wildfire. The proneness of the southern 
West and southern Great Plains to extreme fire years corresponds to 
areas of shrubland and grassland, where the development of the 
wildland urban interface has been greatest (Radeloff et  al., 2023). 
Given the increasing concern about the increasing costs of changing 
fire regimes in the United States and the likelihood that these will 
continue to worsen in coming years (Lee et al., 2015; Melvin et al., 
2017; Schoennagel et al., 2017; Murphy et al., 2018; Iglesias et al., 
2022), the LE approach provides a more robust management 
framework for assessing fire occurrence and extremes than 
currently available.

5 Conclusion

The application of an LE approach to wildfire occurrence 
modelling provides a more robust characterisation of fire regime 
properties than provided by the observational record. This makes it 
possible to estimate the likelihood of extreme fire years – as seen both 
in the probability of fire occurrence and the length of the fire season. 
Climate warming extends the area that experiences wildfires. More 
importantly, climate warming affects the average probability of fire 
occurrence in fire-prone regions and can cause even larger shifts in 
extremes in some regions. Interannual variability in fire occurrence is 
largely controlled by factors affecting fuel availability or fuel drying. 
The relative importance of these controls varies between regions in the 
present-day climate. However, fuel availability becomes an even more 
important control on fire probability under climate warming. 
Application of an LE approach provides a useful tool for characterising 
fire regimes and how they might change in the future, and thus a 
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stronger basis for designing mitigation and adaptation 
management strategies.
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