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Introduction: Subtropical forests play an important role in the global carbon

cycle, and their carbon balance response mechanism to climate change not

only has important theoretical value, but also has practical reference significance

for forest management and decision-making in response to climate change in

similar ecosystems in the future.

Methods: Taking Zhejiang Province, China as an example, a series of relevant

data were collected, including forest distribution, meteorological data, soil

data, nitrogen deposition data, etc. The optimized InTEC model was used for

simulation to predict the net ecosystem productivity of forests in Zhejiang

Province under different climate scenarios at a hundred year scale in the

future, and the temporal and spatial sequence changes were analyzed. Then,

combined with the spatiotemporal variation characteristics of meteorological

data, analyze the response mechanism of subtropical forest ecosystem carbon

cycle to climate change. The age of the Result forest and climate change factors

have a significant impact on the forest’s carbon sequestration capacity. In the

past forest age stage, the climate factors that had the greatest impact on the

net ecosystem productivity of forests were temperature, precipitation, and solar

radiation, with correlation coefficients of 0.56, 0.84, and −0.79, respectively.

After the forest matures, the correlation between net ecosystem productivity

and temperature is the highest and negatively correlated under different climate

scenarios. This indicates that there are significant differences in the response of

forests to climate change at different times. The response of Discuss forests

to climate change varies significantly at different stages, therefore different

management measures should be taken according to forest age, especially in

subtropical forests. This discovery is of great significance for understanding the

influencing factors and driving mechanisms of forest carbon sink function, and

also provides a reference for predicting future forest carbon cycle dynamics.
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1 Introduction

After the Industrial Revolution, humans converted carbon
buried underground and not involved in the carbon cycle into
carbon dioxide and emitted it into the atmosphere by burning
fossil fuels, marking the beginning of global warming (Joachimski
et al., 2022; Morten et al., 2023; Usman and Abdullah, 2023).
Land ecosystems play an extremely important role in mitigating
global warming. According to statistics from carbon dioxide
observation stations at different latitudes around the world,
although carbon dioxide concentration continues to rise, the
pattern of increase at each station is different. The carbon dioxide
concentration in the southern hemisphere and equatorial regions
is steadily increasing (Aryavalli and Kumar, 2024). Subtropical
forests have unique ecosystem characteristics, therefore they play
an important role in regulating soil erosion, maintaining water, and
providing ecotourism. Although subtropical forests have important
ecological functions, they also face serious ecological crises.
Excessive human activities and deforestation have caused damage
to subtropical forest ecosystems in many regions. Therefore,
protecting and restoring subtropical forest ecosystems is crucial
for maintaining ecological balance, preserving biodiversity, and
addressing climate change. How to reveal the response mechanism
of subtropical forest carbon balance to climate change is significant
for evaluating forest carbon sequestration capacity. Many scholars
have conducted in-depth analysis and discussion on this issue.
Goll et al. (2022) artificially solved the problem that the extent
of impact of spatial redistribution of nutrients by atmospheric
transport and sedimentation on forest carbon sink is still unclear.
They used a terrestrial biosphere model to quantify the impact of
changes in atmospheric nitrogen and phosphorus deposition on
plant nutrition and biomass carbon sink in typical lowland forests
in Central Africa since the 1980s. The results show that the carbon
sink in the model has a more significant response to changes in
phosphorus deposition, while a smaller response to changes in
nitrogen deposition (Goll et al., 2022). Fernández-Martínez et al.
(2023) investigated the relationship between increases in global
terrestrial net carbon uptake or net biomass production and carbon
sink stability using atmospheric inversion models and dynamic
global vegetation models. The trend of terrestrial net carbon uptake
and its controlling factors, temporal variability and autocorrelation
from 1,981 to 2,018 were analyzed. The experimental results
show that the global annual net biomass production and its
interdecadal variability increase, while the time autocorrelation
decreases (Fernández-Martínez et al., 2023). Xiong et al. (2020)
conducted continuous field measurements of organic carbon and
plant δ13C values for Masson Pine and monsoon evergreen broad-
leaved forests for 15 years (2000–2015) using a mass balance based
isotope mixing model to quantify the impact of vegetation on
organic carbon storage and soil characteristics. The results show
that compared with Masson Pine, monsoon evergreen broad-leaved
forest has higher carbon input and more powerful carbon storage
environment (Xiong et al., 2020).

Based on the above content, it can be seen that the current
models used to explore the change of forest carbon sink are
relatively simple, only considering the impact of forest biomass
carbon sink or soil carbon sink. The Integrated Terrestrial
Ecosystem Carbon Cycle Model (InTEC), which takes into account

the spatio-temporal changes of forest carbon sink affected by
stand age and forest disturbance, was innovatively proposed in
this study. By introducing the change of stand age structure, the
model can more accurately simulate the temporal and spatial
changes of forest carbon sink, and provide a more scientific
basis for the development of forest management strategies. In
addition, high-resolution remote sensing data, forest disturbance
monitoring and other technologies can more accurately assess the
forest carbon sink increase potential and sink decline amplitude.
In response to the above issues, the study takes Zhejiang Province
as the research area. Firstly, an InTEC model is established. Then
Carbon Cycle Spatiotemporal (CCS) is conducted to explore the
response mechanism to climate change. The research aims to clarify
the response mechanisms of carbon balance and climate change
in subtropical forests at different Age stages, provide targeted
management measures for forests in different climate scenarios
and Age stages, and present reference for similar forest adaptation
to climate change, ensuring high carbon sink capacity. There are
two main innovative points in the research. The first is to explore
the spatiotemporal evolution pattern of forest ecosystem carbon
sources in the research area over the past and future centuries. The
second point is to explore the relationship between Net Ecosystem
Productivity (NEP) and meteorological factors in forests, and to
analyze the response mechanism of subtropical forest carbon cycle
to climate change in the study area. The research has four parts.
The first part is a review of relevant research. The second designs
the climate response mechanism method for CCS simulation based
on the InTEC. The third part is to analyze the response mechanism
of subtropical forest carbon balance to climate change. The last part
is a summary of the research.

2 Relative work

With the implementation of key forestry ecological projects,
afforestation has achieved tremendous results. The quality of forests
has been further improved, and the overall carbon sequestration
capacity of forests has also been greatly enhanced. However, there
is still serious low quality in forest management in China. The
natural forest is severely damaged, and the sustainable management
of artificial forests is insufficient. The potential of forest ecosystems
to mitigate climate change through carbon balance monitoring and
carbon sequestration is difficult to realize. Numerous scholars have
conducted in-depth discussions on this topic. There is a conflict
between forest bioenergy and forest carbon balance, as well as the
protection of biodiversity. Therefore, Repo et al. (2020) designed
a method to quantify the impact of harvesting forest residues
to obtain bioenergy on forest carbon balance and biodiversity in
northern forest landscapes. The forest development of four real
watersheds was simulated. The results showed that rooting on tree
stumps reduced forest carbon storage and dead wood volume at
the landscape scale (Repo et al., 2020). Gouge et al. (2021) aimed to
determine the effects of biomass extraction on regeneration density,
and carbon balance in northern forests affected by spruce aphids.
The research results indicated that the acquisition of biomass
increased the density of forest regeneration and the quantity of
planted microhabitats, while reducing cumulative carbon dioxide
emissions. The inclusion of biomass in afforestation may act an
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active role in achieving carbon balance in forest management,
while also contributing to mitigating climate change (Gouge et al.,
2021). Gea-Izquierdo and Sanchez-Gonzalez (2022) found that
factors such as drought and logging affected forest carbon balance
and terrestrial carbon sinks, and caused uncertainty in forest
mortality rates after disturbance. Therefore, combining the data
of permanent re-sampling plots with biomass oriented ecological
plots, the time series of annual woody biomass growth were
estimated. The experimental results showed that the difference
between tree ring estimation and simulated woody biomass growth
was caused by changes not explained in allocation or errors
in model calibration methods. Stronger interference intensity
resulted in greater modifications to carbon distribution patterns
(Gea-Izquierdo and Sanchez-Gonzalez, 2022). Liu et al. (2022)
were unable to determine whether the relationship between
climate and northern forest carbon flux was stable. Therefore,
continuous vortex covariance and microclimate data from the
century old northern poplar forest in central Saskatchewan were
studied to evaluate the relationship between climate and ecosystem
carbon and water flux. The temperature sensitivity of carbon flux
decreased, indicating that forest structure may undergo changes,
which was related to the overripe age of poplar forests (Liu et al.,
2022).

The subtropical forest ecosystem is an important component
of China’s forest carbon sink. Its carbon sequestration status
and carbon sequestration potential have received widespread
attention from many scholars. Jiang et al. (2022) conducted
factor experiments in humid subtropical gaps to address the
unclear importance and mechanism of ultraviolet radiation on
litter decomposition in forest ecosystems. The experimental results
showed that the increase in microbial degradation under ultraviolet
radiation may be related to the increased degradation of lignin
and cellulose. In subtropical forests, the direct photodegradation
of ultraviolet radiation may be weak, but the promoting effect of
ultraviolet radiation generated rapid carbon turnover in the system
(Jiang et al., 2022). The soil priming effect of increased nitrogen
deposition on subtropical forests is unclear. Therefore, Wang et al.
(2023) cultured soil exposed to experimental nitrogen deposition
for 9 years in subtropical evergreen broad-leaved forests and used
two 13C labeled substrates with comparative bioavailability. The
results indicated that expected changes in carbon quality affected
the soil priming effects (Wang et al., 2023). Kumari et al. (2022)
evaluated the carbon sequestration potential of different natural
forests in the Biraspur region of the Indian state of Himachal. Non-
destructive methods were used to analyze the aboveground and
underground carbon storage of existing vegetation in six different
locations of subtropical forests. The research results showed that
the highest carbon storage at Site II was 131.95 tons of carbon
per hectare, while the lowest at Site I was 70.34 tons of carbon
per hectare. There were significant differences in tree density
and carbon storage among these subtropical forests. Appropriate
management strategies further increased the potential for carbon
storage (Kumari et al., 2022). Richardson et al. (2022) found that
the peatlands of subtropical forests along the southeastern coast
of the United States were mainly caused by the Pokosin Swamp.
To quantify the GHG emissions and storage of drainage and
Pokosin Lake, eddy covariance technique was used in the study.
The results showed that the net ecosystem exchange measurement

of subtropical forests showed a loss of 21.2 m3 carbon dioxide
(Richardson et al., 2022).

Based on the above content, it can be seen that the current
research results mainly focus on carbon balance monitoring and
carbon sequestration mitigation in subtropical forest systems at
home and abroad. However, subtropical forest management still
faces huge challenges, such as insufficient sustainable management
of artificial forests, severe damage to natural forests, and unclear
CCS climate change response mechanisms in subtropical forests.
In the future, by strengthening forest management, optimizing
afforestation strategies, and improving forest quality, the potential
of forest ecosystems in carbon sequestration and addressing climate
change can be fully realized. Therefore, taking Zhejiang Province as
the research area, the InTEC model for CCS simulation is designed.
It is expected to clarify the response mechanism of carbon cycling
in subtropical forest areas to climate change.

3 Climate change response
mechanism based on InTEC model
simulation of carbon cycle
spatiotemporal

To explore the response mechanism of regional climate change,
the core process and driving data of the InTEC are first designed.
Then a climate change response mechanism method based on CCS
simulation is developed.

3.1 The core process and driving data of
the InTEC model

The InTEC is mainly used to study the spatiotemporal variation
characteristics of carbon sinks or sources in forest ecosystems. It
is the only model that considers the effects of stand age (Age)
and forest disturbance, which is suitable for studying the impact
of forest management measures on forest carbon absorption. The
research mainly designs the InTEC from two aspects: core processes
and driving data. In the core process section, firstly, the quantitative
relationship between Net Primary Productivity (NPP) and Age of
vegetation is initialized, as shown in equation (1).

NPP
(
age
)
= A

(
1+

b
[ age

c
]d
− 1

aep
[ age

c
] )

(1)

In equation (1), A, b, c and d are all regression coefficients
determined by the average annual temperature Ta. The relationship
FNPP between normalized NPP and forest age can be calculated
using equation (1). The InTEC obtains the interannual variation
of NPP through the relationship between meteorological data and
NPP-Age. The proportion of NPP and Gross Primary Productivity
(GPP) remains consistent with the environmental change state,
thus overestimating the impact of NPP on climate change (Chen
et al., 2023; Fan et al., 2022; Yang et al., 2023). Therefore, it is
modified to equation (2).{

NPPu (i) = NPPu (i− 1) 1+B(i)
1−B(i)

B (i) = [X(i)−1]−α(i−1)[Y(i)−1]
[X(i)+1]−α(i−1)[Y(i)+1]

(2)
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In equation (2), X (i) and Y (i) represent the changed
proportion in GPP and maintenance respiratory Ra between the i-
th and i− 1-th years, respectively. α (i− 1) is the proportion of Ra
in GPP. The Ra is shown in equation (3).

Ra (i) =
(
CLRL,15 + CSRS,15 + CCRRCR,15 + CFRRFR,15

)
Q[T(i)−15]/10

10 (3)

In equation (3), CL, CS, CCR, CFR and RL,15, RS,15, RCR,15, RCR,15
correspond to the biomass carbon pools of leaves, stems, coarse
heels, and fine heels of plants, as well as the annual respiration
rate at an average annual temperature of 15◦C. T (i) is the average
temperature in year i. Q10 is Ra’s sensitivity to temperature. The
InTEC uses a process-based biogeochemical cycling soil model in
terrestrial ecosystems to estimate heterotrophic respiration. Soil is
divided into nine carbon pools to simulate soil carbon dynamics,
including surface litter carbon pool, surface microbial carbon pool,
surface structural litter carbon pool, soil metabolic litter carbon
pool, soil microbial carbon pool, soil structural litter carbon pool,
chronic carbon pool, inert carbon pool, and woody litter carbon
pool (He Y. et al., 2022; He et al., 2023). The expression for
heterotrophic respiration is shown in equation (4).

Rh (i) =
9∑

j=1

Kj,a (i)Cj (i) (4)

In equation (4), Cj (i) and Kj,a (i) represent the scale of the
j-th carbon pool and the rate of carbon dioxide release into the
atmosphere, respectively. The biomass carbon pool is determined
by the annual NPP and corresponding allocation coefficients. The
differences in forest types result in differences in corresponding
allocation coefficients. The expression for the annual biomass
carbon pool update is shown in equation (5).

Cj (i) = Cj (i− 1)+1Cj (i) (5)

In equation (5), 1Cj (i) represents the change corresponding to
the j-th carbon pool in the i-th year. The expression for vegetation
carbon pool is shown in equation (6).

1Cj,v (i) =
FjNPP (i)− KjCj (i)

1+ Kj
(6)

In equation (6), Fj represents the allocation coefficient of NPP
to the j-th carbon pool. Kj represents the turnover rate of the j-th
carbon pool. The soil carbon pool is shown in equation (7).

1Cj,s (i) =

∑n
i=1 K

′
i,jCj (i− 1)− K ′jCj (i− 1)

1+ K ′j
(7)

In equation (7), K ′j and K ′i,j are the decomposition coefficients
corresponding to the j-th carbon pool, and carbon pool i to
carbon pool j. The change in GPP is calculated, as displayed in
equation (8).

GPP (i) = GPP (i− 1)U (i) (8)

In equation (8), U (i) represents meteorological factors,
namely the overall impact of carbon dioxide, nitrogen, and
soil moisture on photosynthesis. In the driving data section, it
includes meteorological data, soil data, Leaf Area Index (LAI),
Age, and annual NPP data to simulate carbon cycling on an

annual scale. Taking 2015 as a node, meteorological data is
divided into meteorological data from the past 1979–2015 and
future 2016–2079. The meteorological data in the past came
from the daily ground value data of Zhejiang Province from
the National Meteorological Center. There is spatial correlation
in meteorological data. Therefore, the study uses the inverse
distance weighting method to perform differential analysis. The
altitude correction of temperature data is carried out through
digital elevation data, that is, for every 1 km increase in altitude,
the temperature decreases by 6.5◦C (Li et al., 2023; Yu et al.,
2023b). Due to the limited number of radiation stations in the
study area, the direct difference method may result in significant
errors. Therefore, the study introduces sunshine hours to estimate
radiation data, as expressed in equation (9).

H = Hsun •

(
k+m •

S
Ssun

)
(9)

In equation (9), Hsun and Hsun represent the total daily
solar radiation and the total ground radiation on clear days,
respectively. k and m are both empirical parameters. m represents
sunshine hours. Ssun represents the duration of sunlight. The
meteorological data from 2,016 to 2,079 are simulated using the
global climate model of the Fifth International Coupled Model
Comparison Program (CMIP5). Three scenarios are set: low
emission (P1), medium emission (P2), and high emission (P3)
(Na et al., 2022; Rao et al., 2023; Yu et al., 2022). In P1, the
radiation intensity shows an initial increase followed by a decrease,
achieving 2.6 W/m2 by 2,100. In P2 and P3, radiation intensity
continues to increase until reaching 4.5 W/m2 and 8.5 W/m2,
respectively by 2,100. The meteorological data obtained from the
above scenario simulation includes monthly average temperature,
monthly total precipitation, monthly relative humidity, etc. The
data is simulated at a resolution of 1◦. The linear interpolation
is used to resample the data into 1 km × 1 km resolution data
(Zandi et al., 2023). The soil temperature and moisture content in
the InTEC model is influenced by soil parameters, such as bulk
density, effective water holding capacity, soil depth, percentage
of silt clay content, and wilting point, which in turn affect the
heterotrophic respiration. The soil bulk density is calculated using
the Brooks-Corey optimization model and the percentage of soil
silt content. The wilting point is calculated through the percentage
of soil silt and clay content, and other parameters are obtained
from the global soil database (Guo et al., 2022; Yu et al., 2023a).
LAI data directly affects the calculation of precipitation intercepted
by the canopy, solar radiation, and plant transpiration, thereby
affecting the calculation of vegetation photosynthesis, autotrophic
respiration, and soil moisture content. Therefore, the locally
adjusted cubic spline cap algorithm smooths the MODIS LAI
data. Then, the Kalman filtering algorithm is used to assimilate
the smoothed data. The high-precision LAI spatiotemporal data
of the study area is obtained. The forest age data comes from
the forest resource inventory team in Zhejiang Province, which
includes forest age information from 1,425 sample plots. Then,
the Kriging interpolation method can be used to obtain the spatial
distribution data of forest age at a resolution of 1 km × 1 km. The
carbon dioxide concentration data from 1,979 to 1,999 is sourced
from the National Oceanic and Atmospheric Administration of
the United States, while the remaining data comes from the RCP
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TABLE 1 Parameter setting of different forest types and soil carbon.

Carbon pool Parameter Coniferous
forest

Broad-leaved
forest

Unit

Biomass carbon pool Leaf distribution ratio 0.2129 0.2228 –

Distribution ratio of wooden parts 0.3012 0.4628 –

Coarse root allocation ratio 0.1485 0.1192 –

Fine root distribution ratio 0.3480 0.1962 –

Leaf turnover rate 0.1927 1.0000 1/yr

Wood turnover rate 0.0271 0.0290 1/yr

Coarse root turnover rate 0.0271 0.0449 1/yr

Fine root turnover rate 0.5950 0.5950 1/yr

Specific leaf Area 70.0 31.7 m2kg2

Soil carbon pool Wood residue decomposition rate 2.89*A*Lc 1/yr

Slow acting carbon decomposition rate 0.2*A*Cr 1/yr

Inert carbon decomposition rate 0.0047*A*Cr 1/yr

Soil microbial decomposition rate 7.5*A*Tm 1/yr

Decomposition rate of surface structural leaf residues 4.0*A*Lc 1/yr

Decomposition rate of soil structural residues 4.9*A*Lc 1/yr

Decomposition rate of surface metabolic leaf residues 14.9*A 1/yr

Soil metabolic residue decomposition rate 18.6*A 1/yr

Surface microbial decomposition rate 6.0*A 1/yr

database. The parameter settings for different forest types and soil
carbon are displayed in Table 1.

In Table 1, Lc represents the influence of structural lignin
content on decomposition rate. A represents the influence of soil
temperature and humidity on organic matter decomposition rate.
Tm represents the influence of soil structure on the migration of
active organic matter.

3.2 Climate change response mechanism
based on spatiotemporal simulation of
regional carbon cycling in research areas

Before simulating the CCS of the study area, the geographical
location, climate characteristics, and forest resources of the study
area are analyzed. The research area is located on the southeast
coast of China and the southern of the Yangtze River Delta,
spanning 27◦02′ -31◦11′N and 118◦01′ -123◦10′E. It borders the
Fujian to the south, East China Sea to the east, Shanghai and Jiangsu
to the north, and Jiangxi and Anhui to the west, The land area
of the research area is 105,500 square kilometers. It is a smaller
province in China (He C. et al., 2022; Zhu et al., 2023). A schematic
diagram of vegetation distribution in the study area is shown in
Figure 1.

From Figure 1, the sea area of the study area is 260,000 square
kilometers, with the total length of the coastline ranking first in the
country. The terrain slopes in a stepped manner from southwest to
northeast, with mountains and hills mainly in the southwest. The
eastern region of Zhejiang is mainly composed of coastal plains and
hills, the central region of Zhejiang is a basin, the southwestern

region of Zhejiang is hills and mountains, and Zhoushan City
is an island landform with complete landforms. There are many
mountains over a kilometer in the southwest. As of 2021, the
region has 1.2905 million hectares of arable land, of which paddy
and dry fields account for 82.36% and 17.64%, respectively. The
soil in this area is mainly yellow soil and red soil, accounting
for more than 70% of the total area, concentrated in hilly and
mountainous areas. Plains and valleys are mostly filled with paddy
soil. There are saline and desalinated soils distributed along the
coast. The climatic conditions of the study area are as follows.
The area is located in the middle of the subtropical zone, with a
monsoon humid climate, distinct four seasons, sufficient sunlight
and rainfall. The annual average temperature, annual sunshine
hours, and annual precipitation range are 15◦C–18◦, 1,100 h–
2,200 h, and 1,100 mm–200 mm, respectively. Affected by the ocean
and Southeast Asian monsoon, there are significant changes in
the prevailing wind direction during winter and summer in the
study area, with significant seasonal variations in precipitation and
diverse climate resources. The forest resources in the study area
are as follows. The overall diversity of the local forest ecosystem
is a medium to high level. Forest vegetation types, forest types, and
age groups of trees are abundant. The forest coverage rate in the
province reaches 61.24%. The health status of the forest is good,
and the proportion of forest areas classified as healthy and sub
healthy is 88.45% and 8.23%, respectively. In addition, the carbon
sequestration capacity per unit area of local forests is the strongest.
The carbon sink of forests accounts for approximately 53.98% of
the total amount. The forest and standing timber reserves are 0.361
billion cubic meters and 0.401 billion m3, respectively. The total
carbon storage of forest vegetation in the province is 280.7043
million tons.
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FIGURE 1

Schematic diagram of vegetation distribution in the study area.

After introducing the overview of the research area, the climate
change response mechanism method based on CCS simulation
can be carried out, which mainly includes three parts: observing
forest carbon flux, verifying station accuracy, and simulating
the process. In the first part, the study selects flux tower data
from Tianmu Mountain (Site 1), Anji County (Site 2), and
Qianyanzhou (Site 3) for testing the InTEC model, including
temperature and humidity, precipitation, soil temperature, soil
moisture content, wind speed and humidity, with sampling
frequencies and periods of 10 Hz and 30 min, respectively.
Then, the obtained flux observation data is processed through
data correction and interpolation to obtain daily Net Ecosystem
Carbon Exchange (NECE) and Total Ecosystem Respiration (TER).
In data correction processing, first, the outliers of each flux
observation data at 10 Hz are removed, and the periodic average
is calculated. Secondly, the sampling period data is subjected
to secondary coordinate rotation, virtual temperature correction,
and WPL correction. Then, the NECE storage term is calculated
using the carbon dioxide data from the profile system. If the
data is lost, the time series of carbon dioxide concentration from
the vorticity related observation system is used for calculation.
Finally, the outliers of NECE are removed using the difference
method. The time window, sensitivity, and threshold are located
at 15 days, 5.5, and (−3, 3), respectively. Friction wind speed
correction and nighttime negative values are also removed. In
data interpolation processing, there are mainly two methods. One

is to estimate daytime TER based on the respiratory equation
and NECE of nighttime data, as expressed in equation (10).

TERn = TERb exp
[
M0

(
1

Tr − T0
−

1
Ta − T0

)]
,Tr = 15◦C

(10)
In equation (10), Ta and Tr represent the air temperature

and reference temperature, respectively. TERb and TERn are the
reference temperature and TER corresponding to Tr . M0 represents
temperature sensitivity. T0 is −46.02◦C. Another method is to
interpolate the missing NECE data during the day using the Mie
light response curve model, as shown in equation (11).

NECEd =
γχPAR

γPAR+ χ
− TERd (11)

In equation (11), TERd and NECEd correspond to TER and
NECE during the day, respectively. γ represents the canopy
light energy utilization efficiency. PAR represents photosynthetic
effective radiation. χ represents the maximum rate of carbon
dioxide absorption by vegetation canopy under light saturation
conditions. If the missing data accounts for more than 20% of the
total daily data volume, the daily data will be directly removed.
On the contrary, by calculating the daily average values of NECE
and TER, the corresponding daily values can be obtained. In the
second part, the InTEC is tested using three different forest type
flux sites. The carbon cycle of the forest ecosystem is simulated.
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FIGURE 2

Optimization results of Net Primary Productivity (NPP) Age relationships and parameters for different forest types.

The study selects correlation coefficient R and Root Mean Square
Error (RMSE) to evaluate the model accuracy. The expression for R
is shown in equation (12).

R =
∑N

i=1 (xi − x̄)
(
yi − ȳ

)√∑N
i=1 (xi − x̄)2

√∑N
i=1

(
yi − ȳ

)2
(12)

In equation (12), i represents the year. xi and x̄ are the
simulated values and their means, respectively. yi and ȳ are the
measured values and their mean, respectively. In the third part,
two hypotheses are set. Firstly, on a 100 years scale, the forest in
the study area only undergoes one logging. After logging, the forest
will completely die. The forest restoration is not accompanied by
human interference or changes in forest type. The second is to use
fixed land cover type data for forest growth at the century scale.

4 Climate change response analysis
of subtropical forest carbon balance
based on the InTEC

To explore the response mechanism of carbon balance and
climate change in subtropical forests in the research area, the
optimization results of the InTEC model are first analyzed. The CCS

simulation results are explored. Finally, the response mechanism of
subtropical forest carbon cycle to climate change is analyzed.

4.1 Optimization results of InTEC model
and spatiotemporal simulation results of
carbon cycle

To optimize the InTEC model, the optimization results of NPP-
Age relationships and parameters for different forest types in the
study area are first determined.

Figures 2a, b show the NPP-Age relationship results and
parameter optimization results for different forest types,
respectively. From Figure 2, the NPP of both forest types
showed a rapid initial growth trend until reaching maturity.
Subsequently, NPP decreased first with the increase of Age
and eventually tended to stabilize. The NPP of coniferous
forests in the final stage was slightly higher than that of broad-
leaved forests. The above results are mainly due to the fact
that carbon sequestration in young and middle-aged forests is
mainly concentrated in stems, branches, and coarse roots. After
maturity, the proportion of carbon distribution in the xylem
decreased significantly, leading to a decrease in nitrogen utilization
efficiency. In the parameter optimization results of the InTEC
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FIGURE 3

Accuracy results of Carbon Cycle Spatiotemporal (CCS) simulation based on Integrated Terrestrial Ecosystem Carbon Cycle Model (InTEC) model for
different sites.

FIGURE 4

Time variation curve of the mean and total value of regional Net Ecosystem Productivity (NEP) at the century scale.

model for coniferous and broad-leaved forests, A, b, c, and d
were 480.287, 2.931, 21.792, 0.702 and 352.284, 5.317, 14.063,
and 0.889, respectively. In addition, other fixed experimental
parameters were set as follows, k and m were 0.251 and 0.749,

respectively. To further validate the accuracy of the InTEC
model in processing different forest types, data from three flux
stations were selected for analysis, and the results are shown in
Figure 3.
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FIGURE 5

Distribution of Net Ecosystem Productivity (NEP) values in different contexts.

Figures 3a–c show the accuracy results corresponding to
stations 1–3 based on the InTEC model CCS simulation. The R
is a statistical measure of the strength and direction of the linear
relationship between two variables. The relationship between two
variables can be visually observed through a scatter plot, while
the correlation coefficient provides a quantitative description. If
there is a linear relationship between two variables in a scatter
plot, the points in the scatter plot will show a certain trend,
which can be approximated by a discount chart. This line is the
regression line, which reflects the linear relationship between the
two variables. The NEP time series changes observed at the three
stations was consistent with the NEP simulated based on the
InTEC model CCS. The R and RMSE for Site 1 were 0.75 and
20.78 gC∗m−2∗yr−1. The R and RMSE corresponding to Site 2 were
0.55 and 52.92 gC∗m−2∗yr−1. The R and RMSE corresponding
to Site 3 were 0.54 gC∗m−2∗yr−1 and 35.71 gC∗m−2∗yr−1,
respectively. The InTEC optimized by parameters has high accuracy
in CCS simulation. It can be used for subsequent simulation and
prediction of forest NEP spatiotemporal distribution. To further
analyze the spatiotemporal distribution of forest NEP in the study
area under past and future climate backgrounds, the InTEC model
is simulated.

Figures 4a–d show the time series variation curves of the
mean and total value of NEP in the study area corresponding to
P1, P2, and P3 in past and future scenarios, respectively. From
Figure 4, under past climate scenarios, the mean and total NEP
values continuously decreased at a rate of 39.2 gC∗m−2∗yr−1 and
3.94 TgC/yr, reaching the minimum value in 1,985. Subsequently,
with the continuous restoration of forests, they transformed into
carbon sinks in 1,989. After 1989, the mean and total value
of forest NEP continued to increase at a rate of 15.2 TgC/yr
and 1.53 TgC/yr, corresponding to an increase in total carbon
sequestration. In the future P1 scenario, the mean and total value

of NEP decreased at a rate of 0.53 gC∗m−2∗yr−1 and 5.TgC/yr,
respectively. The total carbon sink reached 4.25 gTgC/yr. In the
future P2 scenario, the mean and total value of NEP decreased
at a rate of 0.43 gC∗m−2∗yr−1 and 4.25 gTgC/yr, respectively.
The total carbon sink reached 492.61 TgC. In the future P3
scenario, the mean and total value of NEP decreased at a rate of
0.36 gC∗m−2∗yr−1 and 3.49 TgC/yr, respectively, and the total
carbon sink reached 770.15 TgC.

Figures 5a–d show the NEP value distribution corresponding
to P1, P2, and P3 in past climate scenarios and future scenarios,
respectively. From Figure 5, in the past climate scenarios, only the
two regions with NEP values less than 0 continuously decreased,
while the remaining regions with NEP values continuously
increased. In the future P1 scenario, NEP showed an overall
decreasing trend in both (300, 500) and (500, 2,000) regions, with
only an overall increasing trend in regions with NEP less than
−100. In the future P2 scenario, NEP showed a decreasing trend
overall in (300, 500) and (500, 2,000) regions, and only showed an
increasing trend overall in (−100, 0). In the future P3 scenario,
NEP showed a decreasing trend overall in (100, 300) and (500,
2,000) regions, only showing an increasing trend overall in (0, 100)
region.

Figure 6a displays the spatial distribution of NEP in the study
area under past climate scenarios. Figures 6b–j show the spatial
distribution of NEP in the early, middle, and late stages under
future P1, P2, and P3 scenarios, respectively. From Figure 6, in
the past scenario, due to the implementation of forest protection
measures, the local climate and geological conditions were suitable
for forest growth. Therefore, the carbon sequestration capacity of
regional forests can be restored to a higher state. In the future P1
scenario, most of the initial research area was carbon sinks. With
the continuous growth of forest age, most areas gradually shifted
toward carbon sources in the later stage.
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FIGURE 6

The spatial distribution results of regional Net Ecosystem Productivity (NEP) at the century scale. The NEP value range from red to dark green is
−2000 to 2000.

4.2 Response mechanism analysis of
subtropical forest carbon cycle to
climate change

To explore the response mechanism of subtropical forest
carbon cycle to climate change, this study analyzes the relationship
with NEP from four perspectives: temperature, precipitation,
relative humidity, and solar radiation.

Figures 7a, b show the temperature time variation curves
of the study area corresponding to past and future scenarios,
respectively. The temperature ranges corresponding to P1, P2,
and P3 in the past and future scenarios were [16.79, 19.09],
[19.01, 20.62], [19.05, 20.96], and [19.05, 22.62], respectively. The
corresponding growth rates every decade were 0.45◦C, 0.08◦C,
0.16◦C, and 0.35◦C, respectively. In different radiation intensities,
the P1 scenario remained stable, while both the P2 and P3 scenarios
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FIGURE 7

Time series variation curves of regional temperature under different scenarios.

FIGURE 8

Analysis of the correlation between regional temperature and Net Ecosystem Productivity (NEP) at the century scale.

showed a clear upward trend, with the P3 scenario growing the
fastest.

Figures 8a–d show the correlation analysis results between
temperature and NEP for P1, P2, and P3 under past and future
scenarios, respectively. From Figure 8, before 2,000, there was a
positive correlation between temperature and NEP, with a R of
0.56. Afterwards, the two transformed into a negative correlation.
This is because the former is in the young forest stage, and the
increase in temperature has a significant promoting effect on the
photosynthesis of the trees. The growth rate of the latter forest

continues to slow down, and the promoting effect of temperature
is also weakening. In the future scenario, the corresponding annual
average temperature ranges for P1, P2, and P3 were (17.83◦C,
20.62◦C), (17.83◦C, 20.96◦C), and (17.73◦C, 22.32◦C), respectively.
At the same time, global temperatures are also increasing due
to the greenhouse effect, which have adverse effects on the
carbon sequestration capacity of forest ecosystems. In the P1,
P2, and P3 scenarios, temperature and NEP presented a negative
correlation, with the P3 scenario having the highest R value of
−0.82.
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FIGURE 9

Time variation curve of regional precipitation at a 100 years scale.

FIGURE 10

Analysis of the correlation between regional precipitation and Net Ecosystem Productivity (NEP) at century scale.

Figures 9a, b show the temporal variation curves of
precipitation in the study area corresponding to past and future
climate scenarios, respectively. From Figure 9, the precipitation
ranges corresponding to the past climate scenario, P1, P2, and P3
scenarios were (1076.4 mm, 1891.3 mm), (895.1 mm, 2087.1 mm),
(753.7 mm, 1679.1 mm), and (858.4 mm, 1694 mm), respectively.
The average corresponding precipitation was 1494.6 mm,
1247.3 mm, 1216.3 mm, and 1223.4 mm. From the above results,
compared with past climate scenarios, the precipitation of the three
future scenarios significantly decreased.

Figures 10a–d show the correlation analysis results between
precipitation and NEP for P1, P2, and P3 under past and future
scenarios, respectively. Figure 10 shows a positive correlation
between precipitation before 2000 and NEP in past climate
scenarios. Afterwards, the two remained positively correlated, with
a R of 0.84. The relationship between precipitation in other future
scenarios and NEP displayed a positive correlation, with R values of
0.38, 0.33, and 0.12 for P1, P2, and P3, respectively. From the above
results, in the future scenario, the precipitation in the P1 scenario
had the greatest impact on the NEP value.
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FIGURE 11

Time variation curve of relative humidity in the study area at a 100 years scale.

FIGURE 12

The correlation analysis results between relative humidity and Net Ecosystem Productivity (NEP) in the study area at a century scale.

Figures 11a, b correspond to the relative humidity time
variation curves of past climate scenarios and future scenarios,
respectively. From Figure 11, the average relative humidity
corresponding to the past climate scenario, P1, P2, and P3 were
76.33%, 67.24%, 67.36%, and 67.29%, respectively. In addition,
compared with the relative humidity of past climate scenarios, the
future three scenarios had lower relative humidity values.

Figures 12a–d show the correlation analysis results of relative
humidity and NEP for past climate scenarios, future P1, P2, and
P3 scenarios, respectively. Figure 12 shows a negative correlation

between relative humidity and NEP in past climate scenarios. The
corresponding R values before and after 2,000 were 0.01 and 0.23,
respectively. In the future scenario, the corresponding R values
for P1, P2, and P3 were 0.25, 0.11, and −0.24, respectively. In
the P3 scenario, there was a negative correlation between relative
humidity and NEP, while in the other scenarios, there was a positive
correlation.

Figures 13a, b show the time variation curves of solar radiation
for past and future scenarios, respectively. According to Figure 13,
the average solar radiation for past climate scenarios, future P1, P2,
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FIGURE 13

Time variation curve of solar radiation in a research area at a century scale.

FIGURE 14

Analysis of the correlation between regional solar radiation and Net Ecosystem Productivity (NEP) at century scale.

and P3 scenarios were 138.29 W/m2, 192.96 W/m22, 193.69 W/m2,
and 194.17 W/m2, respectively. Overall, in the solar radiation
results of each scenario, the simulation results of future scenarios
have higher solar radiation values.

Figures 14a–d show the correlation analysis results of solar
radiation and NEP under past climate scenarios, future P1, P2, and
P3 scenarios, respectively. In past climate scenarios, there was a
negative correlation between solar radiation and NEP. After 2000,
R was−0.79. In the future P1, P2, and P3 scenarios, both showed a
negative correlation, with corresponding R values of −0.61, −0.61,

and−0.25, respectively. Based on the above results, among various
meteorological factors, temperature, precipitation, and radiation
intensity have a greater impact on forest NEP production, while the
impact of relative humidity is relatively small.

5 Discussion

Forest ecosystems acts an extremely important role in carbon
cycling. In recent years, the combustion of fossil fuels has led to
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an increase in greenhouse gas emissions and frequent extreme
weather events, posing a huge threat to the global ecosystem and
human society. In response to the above issues, a climate change
response mechanism method based on the InTEC model CCS
simulation was designed in Zhejiang Province as the research
area. Then the mechanism was analyzed from four meteorological
factors: temperature, precipitation, relative humidity, and solar
radiation. Based on the InTEC model parameter optimization
results, the A, b, c, and d of coniferous and broad-leaved forests
were 480.287, 2.931, 21.792, 0.702 and 352.284, 5.317, 14.063,
and 0.889, respectively. This indicates that coniferous forests
have stronger performance in terms of biomass accumulation
and carbon absorption capacity. In the carbon cycle, coniferous
forests usually have higher growth rates and biomass accumulation
capacity, which can absorb and store more carbon. Broad leaved
forests have advantages in diversity and ecosystem stability among
the five types of forests. The R and RMSE for Sites 1, 2, and 3
were 0.75 and 20.78 gC∗m−2∗yr−1, 0.55 and 52.92 gC∗m−2∗yr−1,
and 0.54 gC∗m−2∗yr−1 and 35.71 gC∗m−2∗yr−1, respectively. The
above results verify the accuracy and reliability of the model.
Among different forest types, the predicted results of the research
model have the highest degree of agreement with the actual
observed values. In the past forest age scenario, temperature,
precipitation, and solar radiation had the greatest impact on forest
production, with corresponding R values of 0.56, 0.84, and −0.79,
respectively. This indicates that in past scenarios, an increase in
precipitation was beneficial for forest production; Temperature
also has a certain positive promoting effect; The impact of solar
radiation on forest production is negatively correlated, possibly
due to factors such as increased water evaporation caused by
excessive solar radiation, which has an inhibitory effect on forest
production. In the future scenario, the P3 scenario had the highest
correlation between temperature and NEP, with a R of −0.82.
The precipitation in scenario P1 had the greatest impact on the
NEP value, with a R of 0.38. The solar radiation in P1 and P2
scenarios had the greatest impact on the NEP value, with R being
−0.61. The above results indicate that an appropriate increase
in precipitation is beneficial for forest carbon absorption, and
the negative impact of solar radiation on forest carbon cycling
is still prominent. This can provide insights for forest ecological
protection. For example, in areas where temperature rise has a
significant negative impact on NEP, forest water management
should be strengthened to reduce the stress of high temperature and
drought on forests; In areas where increased precipitation promotes
NEP, forest area can be appropriately increased or forest structure
can be optimized to enhance the carbon sequestration capacity of
forests. Therefore, the proposed method has high accuracy and
obtains the impact of different meteorological factors on forest
carbon sequestration capacity, which is conducive to developing
targeted forest management measures. However, there are still
shortcomings in the research. Although various interference factors
have been considered in the InTEC model, there is a lack of data
on deforestation in the study area. The relatively low number of
local fires has caused certain errors in the simulation results. In

future research, interference factors such as logging and fires can
be considered to achieve more comprehensive simulations.
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