
Frontiers in Forests and Global Change 01 frontiersin.org

Integrating climate and soil 
factors enhances biomass 
estimation for natural white birch 
(Betula platyphylla Sukaczev)
Aiyun Ma 1†, Zheng Miao 1,2†, Longfei Xie 3, Jiaxin Tian 1, 
Xuehan Zhao 1 and Lihu Dong 2*
1 Department of Forest Management, School of Forestry, Northeast Forestry University, Harbin, China, 
2 Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of 
Forestry, Northeast Forestry University, Harbin, China, 3 China School of Forestry, Beihua University, 
Jilin, China

Introduction: Accurate biomass estimation is crucial for quantifying forest carbon 
storage and guiding sustainable management. In this study, we developed four 
biomass modeling systems for natural white birch (Betula platyphylla Sukaczev) 
in northeastern China using field data from 148 trees.

Methods: The data included diameter at breast height (DBH), tree height (H), 
crown dimensions, and biomass components (stem, branch, foliage, and 
root biomass), as well as soil and climate variables. We employed Seemingly 
Unrelated Regression (SUR) and mixed-effects models (SURM) to account for 
component correlations and spatial variability.

Results: The base model (SURba), using only the DBH variable, explained 89-
96% of the biomass variance (RMSE%: 1.34-19.94%). The second model (SURbio) 
incorporated H for stem/branch biomass and crown length (CL) for foliage, 
improving the predictions of stem, branch, and foliage biomass (R2 increased by 
1.69–4.86%; RMSE% decreased by 10.76-59.04%). Next, the SURba-abio and SURbio-

abio models integrated abiotic factors, including soil organic carbon content 
(SOC), mean annual precipitation (MAP), degree-days above 18°C (DD18), and 
soil bulk density (BD). Both models showed improvement, with the abiotic 
factor model SURba-abio performing similarly to the biotic factor model SURbio 
(ΔR2 < 4.36%), while the SURbio-abio model performed the best. Subsequently, 
random effects were introduced at the sampling point (Forestry Bureau) level, 
developing seemingly unrelated mixed-effects models (SURMba, SURMbio, 
SURMba-abio, SURMbio-abio), which improved model fitting and prediction accuracy. 
The gap between the SURMba-abio model (with abiotic factors) and the SURMbio-abio 
model (including both biotic and abiotic factors) was minimal (ΔR2 < 2.80%). The 
random effects model stabilized when calibrated with aboveground biomass 
measurements from four trees.

Discussion: In conclusion, these models provide an effective approach for 
estimating the biomass of natural white birch in northeastern China. In the 
absence of biotic factors, the SURba-abio and SURMba-abio models serve as reliable 
alternatives, emphasizing the importance of abiotic factors in biomass estimation 
and offering a practical solution for predicting birch biomass.
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1 Introduction

Accurate forest biomass estimation serves as a foundational 
pillar for quantifying terrestrial carbon stocks, evaluating ecosystem 
productivity, and informing climate change mitigation frameworks 
(Dutcă et al., 2020; Testolin et al., 2023). Natural forests, particularly 
in northern and central China, serve as critical carbon sinks and 
biodiversity reservoirs. Their carbon storage significantly influences 
the regional ecological balance and efforts to mitigate climate 
change (Wei et al., 2014; Sun and Liu, 2019). Among the dominant 
species in these forests, Betula platyphylla Sukaczev (white birch) 
emerges as an ecologically pivotal species due to its extensive 
geographic distribution, rapid growth rates, and adaptive 
plasticity—traits that collectively enhance soil stabilization and 
carbon sequestration (Wang et al., 2018; Geng et al., 2022; Liu et al., 
2023). However, accurate biomass estimation in natural forests 
remains challenging due to structural complexity—heterogeneous 
tree densities, multi-layered canopies, and diverse species 
compositions—which traditional single-variable models (e.g., DBH, 
height) fail to capture (Saatchi et al., 2011). Furthermore, the high 
cost and operational difficulties associated with ground surveys in 
natural forests pose significant barriers to large-scale biomass 
assessments (Holly et al., 2007). Although remote sensing offers 
scalable monitoring solutions, it struggles with species-specific 
biomass differentiation and belowground carbon quantification 
(Litton et  al., 2007; Fassnacht et  al., 2014). These limitations 
underscore the necessity for integrative approaches that synergize 
in-situ measurements with environmental covariates to advance 
accuracy and scalability.

Recent advances advocate combining biotic factors (e.g., DBH, 
crown dimensions) with abiotic variables (e.g., soil organic carbon, 
climate indices) to improve model accuracy (Poorter et al., 2008). 
Notably, extensive evidence highlights the critical role of climatic 
and edaphic variables in influencing tree growth and biomass 
distribution (Fu et al., 2017; Chen et al., 2021; Wang et al., 2023; Li 
et al., 2024). For example, climatic factors such as the mean annual 
temperature and the precipitation strongly influence the biomass 
distribution across different forest components (Uscanga et  al., 
2023; Yang et al., 2024). Soil properties, including the soil organic 
carbon (SOC) content and bulk density (BD), directly affect root 
system development and, consequently, the distribution of total 
biomass (Ola et al., 2018). They are closely related to forest biomass 
(Lal, 2018; Petaja et al., 2023). While prior studies have integrated 
biotic and abiotic variables for white birch biomass estimation, a 
systematic framework addressing spatial heterogeneity and 
incorporating hard-to-measure biotic variables remains 
underdeveloped in natural forest contexts.

Statistical modeling techniques have improved to meet these 
challenges. For example, during model application, even small 
deviations can be exaggerated at the stand or even regional scales. 
Mixed-effects models (MEMs) have been widely used in ecological 
research and biomass estimation because of their ability to account 
for both fixed and random effects, effectively capturing spatial 
variations and reducing biases from local environmental differences 
or data inconsistencies (Bates et  al., 2014; Xie et  al., 2023). The 
efficacy of these models in large-scale biomass estimation, particularly 
in carbon stock assessments, by improving model adaptability 
through sampling correction and prediction error reduction. 

Furthermore, the use of MEMs can reduce the need for direct 
underground biomass measurements by improving the prediction of 
aboveground biomass, thereby lowering costs and enhancing overall 
model precision (Bates et  al., 2014). Despite their theoretical 
advantages, mixed-effects models (MEMs) face practical limitations 
hindering broad application. These include dependency on 
specialized statistical software for parameter estimation and the need 
for resource-intensive sampling protocols to calibrate their enhanced 
predictive accuracy. To mitigate these limitations, this study 
synergizes mixed-effects models (MEMs) with readily available 
abiotic covariates (e.g., bioclimatic indices, edaphic properties) to 
investigate the feasibility of achieving robust biomass predictions 
under reduced sampling intensities. Therefore, the focus of this study 
is efficient and accurate biomass estimation for natural white birch to 
further advance regional forest carbon stock assessments and climate 
change prediction and provide a reliable theoretical foundation and 
technical support for forest management, carbon trading market 
analyses, and ecological restoration. The specific steps are as follows: 
(1) develop a seemingly unrelated additive biomass model (SUR) that 
incorporates abiotic factors and additional biotic factors (such as 
topography, soil, and climate factors) to achieve high prediction 
accuracy; (2) analyze the influence of the abiotic factors included in 
the biomass model on the biomass components of natural white 
birch, compare the variability associated with the abiotic factors and 
additional biotic factors, and explore whether abiotic factors can 
be  substituted for more difficult-to-obtain biotic factors; and (3) 
introduce random effects from sampling points (Forestry Bureau) to 
establish the SURM biomass model, which improves predictive 
accuracy for large-scale biomass estimation, finally, the predictive 
capability of the random-effects model is evaluated through 
aboveground biomass calibration.

2 Materials and methods

2.1 Data collection

In this study, we collected data from 148 natural white birch 
trees managed by 12 Forestry Bureaus in northeastern China, 
encompassing diameter at breast height (DBH), tree height (H), 
crown length (CL), crown width (CW) and topographic factors, 
such as elevation, slope, and slope direction. All trees were 
destructively divided into stems, branches, roots, and foliage in 
order to gain access to the various tissues and organs and to the 
above- and below-ground biomass. Stems were cut into 1-meter-
long differentiated segments and then weighed. At the end of each 
stem segment, we collected a disc approximately 3 cm thick. The 
living crown of the tree is divided into three layers (upper, middle, 
and lower), and all the living branches in each layer are cut and 
weighed. One or two average-sized branches were taken from each 
layer, and the branch and foliage were weighed separately. Branch 
and foliage separation was used to calculate the specific weight of 
branch and foliage and to extrapolate the branch and foliage 
biomass of other branches. Roots (≥ 5 mm in diameter) were 
removed from the soil and weighed separately, classified into three 
diameter groups: large roots (≥ 5 cm), medium roots (2–5 cm), and 
small roots (< 2 cm). Fine roots (< 5 mm) were excluded from 
biomass measurements due to the labor-intensive collection process 
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and their small biomass. After measuring the fresh weight of each 
organ in the field, the dry-to-fresh weight ratio was determined in 
the laboratory to calculate the dry biomass of the stem, branch, 
foliage, and root. Approximately 100 grams of wood samples and 
50 grams of bark samples from the discs were collected. Branch 
(50–100 g) and foliage (50–100 g) samples were taken from average-
sized branches selected from three canopy layers. Around 100 g of 
roots were sampled from each group. In the laboratory, all 
subsamples were chopped into small pieces and dried at 85°C until 
a constant weight was achieved. The dry biomass of the stem (sum 
of wood and bark), branch, foliage, and root was calculated by 
multiplying the fresh weight of each part by its corresponding fresh-
to-dry weight ratio.

The geographic locations of the sampled trees and 
corresponding statistics are shown in Figure 1 and Table 1. The 
allometric growth relationships between the biomass of the different 
components of natural birch and the tree variables (DBH, H, CL, 
and CW) are shown in Figure 2. On the basis of the geographic 
coordinates of the sampling points, 10 soil factors, such as the soil 
bulk weight, cation exchange capacity, and organic carbon content, 
as well as 17 climatic factors, such as the mean annual temperature, 
mean annual precipitation, and relative humidity, were obtained for 
the sample trees. Meteorological data for all years corresponding to 
the age of each sample tree were extracted on the basis of the age of 
each tree via ClimateAP (Wang et al., 2017). Climatic data were 
aligned with individual tree age and investigation year to capture 
growth-phase climatic influences. For structural components (stem, 
branch, and root biomass), mean annual climate values were 
applied. Foliage biomass exclusively utilized harvest-year climatic 
data due to its non-cumulative nature. The soil data were extracted 
from the SoilGrids250  m system on the basis of latitude and 
longitude (Hengl et al., 2017). Eleven soil variables were weighted 

and averaged by depth of the soil profile (0–5, 5–15, 15–30, 30–60, 
and 60–100 cm) for use in the present study. The aim of this study 
was to comprehensively analyze the relationships between biotic 
and abiotic factors and the biomass of natural birch and to construct 
a natural birch biomass model with the addition of abiotic factors. 
The basic statistical information for the abiotic factors is shown in 
Table 2.

2.2 Methods

2.2.1 Basic biomass model based on biotic and 
abiotic factors

Power functions are commonly used to describe the relationships 
between tree attributes and component biomass (Dong et al., 2014). 
The error structure of a model can be additive or multiplicative, with 
likelihood analysis used to determine the more appropriate form 
(Xiao et  al., 2011). Maintaining model additivity—a fundamental 
requirement where total biomass equals the sum of its constituent 
compartments—necessitated implementing a seemingly unrelated 
regression (SUR) method. This approach preserves the mass-balance 
relationship between aboveground (foliage, branch, stem) and 
belowground biomass components through simultaneous equation 
estimation (Bi et al., 2015; Dong et al., 2018; Xie et al., 2023). Machine 
learning algorithms were excluded based on sample size constraints 
(n = 148) and interpretability requirements. Model selection 
diagnostics demonstrated statistical superiority of multiplicative error 
structures (ΔAICc>2) (Dong et  al., 2014), establishing log-linear 
regression as the foundational modeling approach.

Additionally, many studies have shown that adding tree height 
and canopy variables to biomass models, alongside diameter at breast 
height (DBH), can improve prediction accuracy (Zhao et al., 2015; 

FIGURE 1

Geographic distribution of natural white birch (Betula platyphylla) sampling sites in northeastern China. Blue dots indicate individual tree locations.
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Bronisz and Mehtätalo, 2020). Furthermore, abiotic factors are known 
to affect biomass (Chen et al., 2021). In this study, we consider both 
biotic and abiotic factors when modeling the biomass of four 
components of natural birch. Three types of models are constructed 
via an additive approach. The first model (base model: SURba, 
Equation 1) uses DBH as the sole predictor, as it is the key predictor 

and easy to measure. The second model (a model incorporating 
additional biotic factors: SURbio, Equation 2) builds on SURba by 
incorporating single-tree factors, such as tree height or canopy 
variables. Finally, abiotic factors are added to the SURba and SURbio 
models to create two additional models, SURba-abio and SURbio-abio 
(Equation 3). The specific forms of these models are as follows:

TABLE 1 Basic statistical information for tree parameters and the biomass of natural white birch trees.

Variable Variable code Mean Max. Min. Std.

Age (years) AGE 27.11 110.00 5.00 14.56

Diameter at breast height (cm) DBH 11.06 39.20 1.40 7.04

Tree height (m) H 12.54 22.60 3.10 4.78

Crown length (m) CL 6.44 12.90 1.90 2.65

Crown width (m) CW 2.77 9.50 0.80 1.53

Stem biomass (kg) Stem 54.71 611.76 0.22 84.89

Branch biomass (kg) Branch 12.33 166.33 0.05 24.30

Foliage biomass (kg) Foliage 2.49 24.35 0.01 4.03

Root biomass (kg) Root 21.07 257.67 0.08 36.74

Mean is the average value, max. is the maximum value, min. is the minimum value and std. is the standard deviation.

FIGURE 2

Allometric relationships between biomass components (stem, branch, foliage, root) and tree variables for natural white birch: diameter at breast height 
(DBH, cm), tree height (H, m), crown length (CL, m), and crown width (CW, m).
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TABLE 2 Statistical table of basic information for abiotic factors.

Attribute Variable Variable code Mean Max. Min. Std.

Topographical factors

Altitude (m) ALT 501.35 680.00 158.00 116.06

Slope (°) Slope 8.46 22.31 0.23 5.49

Aspect (°) Aspect 198.54 352.11 2.81 98.57

Soil factors

Bulk density (cg/m3) BD 122.92 129.00 117.83 2.75

Cation exchange capacity (at pH 7) 

(mmol(c)/kg)
CEC 202.41 242.43 172.28 22.42

Coarse fragmentation (cm3/dm3) CF 198.57 259.56 132.06 28.46

Clay content (g/kg) CC 224.96 302.00 163.00 31.82

Nitrogen (cg/kg) NITRO 233.62 327.94 142.37 43.27

Organic carbon density (hg/dm3) OCD 197.10 252.22 148.00 27.41

pH water (pH x 10) PH 57.27 62.33 55.01 1.77

Sand (g/kg) SAND 374.85 448.50 188.94 54.20

Silt (g/kg) SILT 370.53 482.00 302.24 42.36

Soil organic carbon (dg/kg) SOC 320.10 484.21 175.24 65.12

Climate factors

Mean annual temperature (°C) MAT 0.04 4.94 −2.70 2.40

Mean warmest month temperature 

(°C)
MWMT 19.60 22.92 18.03 1.16

Mean coldest monthly temperature 

(°C)
MCMT −22.64 −15.47 −26.68 3.75

Temperature difference between 

MWMT and MCMT (°C)
TD 42.24 45.57 35.80 2.93

Mean Annual Precipitation (mm) MAP 493.09 666.93 346.25 82.12

Annual heat moisture index 

(MAT+10)/(MAP/1000) (°C/mm)
AHM 20.82 26.15 15.25 2.84

Degree-days below 0°C, chilling 

degree-days (degree-days)
DD0 2419.21 3027.21 1422.68 551.04

Degree-days above 5°C, growing 

degree-days (degree-days)
DD5 1600.20 2281.76 1275.25 249.62

Degree-days below 18°C, heating 

degree-days (degree-days)
DD018 6540.65 7442.21 5026.62 786.20

Degree-days above 18°C, cooling 

degree-days (degree-days)
DD18 127.86 351.29 56.45 70.37

The number of frost-free days (days) NFFD 147.22 190.24 124.70 17.98

Precipitation as snow (mm) PAS 55.57 84.00 38.80 11.29

Extreme minimum temperature (°C) EMT −38.89 −30.50 −44.30 4.73

Extreme maximum temperature (°C) EXT 32.23 34.20 31.30 0.83

Hargreaves reference evaporation Eref 621.83 700.43 561.50 44.03

Hargreaves Climate Moisture CMD 220.54 282.54 167.77 26.75

Relative humidity (%) RH 50.46 60.38 45.04 4.51

Mean is the average value, max. is the maximum value, min. is the minimum value and std. is the standard deviation.
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where stW , brW , foW , roW , and DBH  represent the stem biomass, 
branch biomass, foliage biomass, root biomass, and diameter at breast 
height, respectively; iβ  represents the estimated parameters; i1X  
represents the covariates, i.e., H, CL, and CW for single trees; and i2X  
represents the abiotic factors (soil and climate variables). The best 
covariates were determined by comparing the modeling effects of 
different covariates; e is the error term, and e lnε= .

Equations 1–3 can be converted into matrix form, as noted by 
Xie et  al. (2023). In addition, to separate the effects of each 
variable on the biomass model, hierarchical partitioning (HP) 
analysis was used (Chevan and Sutherland, 1991). HP analysis 
was performed via the “hier.part” package in R software (Nally 
and Walsh, 2004).

2.2.2 Mixed-effects biomass model
To address spatial heterogeneity across 12 Forestry Bureau 

jurisdictions, we incorporated a bureau-level random effect into 
the model framework. This specification takes into account 
differences in biomass-allometry relationships that happen at 
different sites for trees that are dendrometrically similar. This 
makes the estimation more accurate (Ou et al., 2016; Xie et al., 
2023). Therefore, on the basis of the SUR modeling system, the 
random effect of the sampling point characteristics (Forestry 
Bureau) was introduced to construct a seemingly unrelated 
regression mixed-effects (SURM) system. That is, the SURM 
modeling system includes four variants: SURMba, SURMbio, 
SURMba-abio, and SURMbio-abio. They are the models of SURba, SURbio, 
SURba-bio, and SURbio-abio after adding random effects, respectively. 
The form of the SURM model is as follows:
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where iX  is the n ip× -order fixed-effects design matrix ( ip  is the 
number of fixed-effects parameters for each submodel); iβ  is the 1ip ×  
vector of dimensional fixed-effects parameters; iZ  is the n iq× -order 
random-effects design matrix ( iq  is the number of random-effects 
parameters for each submodel); and ib  is the 1iq ×  vector of 
dimensional random-effects parameters; the other variables are as 
defined above. Equation 4 can be  converted to matrix form, as 
described by Xie et al. (2023). For the log-transformed linear SURM 
model, the parameters were estimated via the restricted maximum 
likelihood (REML) method via the lme function in the nlme package 
in R4.1.2 software.

2.2.3 Prediction and calibration of the 
mixed-effects model

Mixed effects models can yield two types of predictions 
(Bronisz and Mehtätalo, 2020; Bronisz et al., 2021). The first type 

relies only on fixed effects, and the random effects calibration 
sample size is assumed to be 0. The second type combines both 
fixed and random effects, reflecting the case in which the available 
sample size for random effects calibration is greater than zero. For 
the SURM biomass model, the random-effects parameters for the 
model can be  calculated from submodels for which there are 
existing measurements of the response variable, and then the 
random-effects parameters for submodels corresponding to 
observations of the nonresponse variable can be calculated on the 
basis of the correlation between the random-effects parameters, 
i.e., allowing for the use of biomass measurements for some subsets 
of the model and calibrating all five subsets of the model’s random-
effects parameters on the basis of the variance–covariance matrix 
of the random-effects parameter vectors (Bronisz and Mehtätalo, 
2020; Xie et al., 2021; Xie et al., 2023). Because the acquisition of 
biomass data is time-consuming, especially for belowground 
biomass, stem, branch, and foliage biomass measurements were 
used to calibrate the random-effects parameters of the 
SURM model.

A random sampling method was used to select sample trees in the 
Forestry Bureau to correct the random effects parameters of the 
SURM model on the basis of stem, branch, and foliage biomass 
measurements. Random effects parameters were calculated on the 
basis of the estimated empirical best linear unbiased predictor 
(EBLUP) (Mehtätalo and Lappi, 2020; Xie et al., 2021). The formula 
for calculating the vector of random effects parameters for a given 
sample site is as follows:

 
( ) ( )

−
= + −

1T T
k o o o o o o o ob CZ Z D Z R Y X β

 
(5)

where kb  is the random effects parameter for the kth Forestry 
Bureau; C is the matrix obtained by removing the columns 
corresponding to the random-effects parameters in the model for the 
unobserved response variable from the D matrix; oZ  is the matrix 
obtained by removing the rows and columns corresponding to the 
unobserved response variable from the Z  matrix, with the superscript 
T  denoting the vector transpose; oD , oR  and oβ  are obtained from the 
fitting process of the model; and the oY  and oX  matrices are the 
matrices of all the response variables and predictor variables 
constructed separately, including observed and unobserved variables. 
The Z  matrix is computed from the partial derivatives of the model 
function with respect to its stochastic parameters, as follows: 
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=

∂
, kn  is 

the size of Forestry Bureau k, and i is the number of random-
effects parameters.

2.2.4 Model evaluation
The models were fitted using all the data, and the goodness of fit 

of the models was evaluated on the basis of two metrics: the coefficient 
of determination (R2, Equation 6), root mean square error (RMSE%, 
Equation 7) and mean absolute percentage error (MAPE%, 
Equation 8). Model evaluation prioritized the R2 over its adjusted 
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counterpart to provide a clearer understanding of the model’s 
effectiveness. The leave-one-out cross-validation (LOOCV) protocol 
was systematically implemented to mitigate overfitting potential 
during model training. The predictive ability of the SUR and SURM 
models was evaluated via the LOOCV (Xie et al., 2023). On the basis 
of the values predicted via the LOOCV method at the sample level, 
the MAPE% value was calculated to evaluate the predictive ability of 
the models. The formula is as follows:
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where n  is the size of the sample tree. iY , îY  and iY ′ are the 
observation, antilogarithmic fitted value and antilogarithmic LOOCV 
prediction for the ith subcomponent of biomass, respectively, and 

−
Y  

is the mean of the biomass subcomponent observations.

3 Results

3.1 Development of basic models 
incorporating abiotic factors

A fundamental biomass modeling system based on biotic and 
abiotic factors (SUR modeling system) was developed using all the 
data, and the parameter estimates and fitting effects are shown in 
Table 3. The SURba model accounted for 89–96% of natural white birch 
biomass variance (RMSE%: 1.34–19.94%). Its extension SURbio 
integrated dendrometric covariates (H for stem/branch biomass, CL 
for foliage biomass), yielding component-specific improvements: R2 
increased by 1.69–4.86% and RMSE% reductions of 10.76–59.04%. 
On the other hand, biotic covariates (H, CL, crown width) showed no 
predictive value for root biomass (parameters lacked statistical 
significance, p > 0.05), justifying their exclusion from the 
belowground model.

Conversely, the SURba-abio model, constructed by incorporating 
abiotic factors (organic carbon content (SOC) for the stem biomass 
model, mean annual precipitation (MAP) for the branch biomass 
model, degree-days above 18°C (DD18) for the foliage biomass model, 
and soil bulk density (BD) for the root biomass model), also improved 
the branch and foliage biomass models, with an increase in 2R  of 
approximately 0.23 to 2.16% and a decrease in RMSE% of 1.93 to 
13.92%. The SURbio-abio model demonstrated optimal performance when 
both biotic factors (e.g., tree height and crown length) and abiotic 
factors were included, resulting in an increase in 2R  of approximately 

3.49 to 5.39% and a decrease in RMSE% of 12.92 to 59.09%. Overall, 
the model that incorporated additional biotic factors, such as tree 
height and crown length, as well as abiotic factors, such as soil and 
climate variables, exhibited superior predictive performance.

Figure  3 presents the MAPE% of biomass components for 
different tree diameter classes on the basis of LOOCV method. The 
results indicate that the inclusion of additional biotic factors 
significantly enhanced the prediction accuracy of stem biomass, with 
greater efficacy observed for the prediction of the stem biomass and 
total biomass of larger trees (DBH ≥ 15 cm) than for those of smaller 
trees. Abiotic factors, such as climate and soil factors, were 
particularly effective for improving the prediction accuracy for the 
branch, foliage, root, and total biomass of smaller trees 
(DBH < 15 cm). The model incorporating both biotic and abiotic 
factors exhibited the lowest prediction bias for stem and branch 
biomass, whereas for foliage biomass prediction for smaller trees 
(DBH < 15 cm), the model with abiotic factors alone demonstrated 
the lowest prediction bias. Nevertheless, it is evident that the base 
models still exhibited substantial prediction bias for branch and 
foliage biomass.

3.2 Mixed-effects model development

The mixed-effects model parameter estimates and fitting effects 
are shown in Table 4. The SURMba model effectively predicted the 
variation in natural birch biomass, with an accuracy of approximately 
93 to 98%, and the RMSE% ranged from 1.04 to 12.54%; the SURMbio 
and SURMba-abio models effectively predicted the variation in natural 
birch biomass, with an accuracy of approximately 94 to 99%, and the 
RMSE% ranged from 0.82 to 8.49%; and the SURMbio-abio model 
effectively predicted the variation in natural birch biomass, with an 
accuracy of approximately 96 to 99%, and the RMSE% ranged from 
0.82 to 8.02%. The white birch biomass was associated with 
approximately 96 to 99% of the variance, with the RMSE% ranging 
from 0.82 to 8.02%. The models all improved after the introduction of 
sampling point (Forestry Bureau)-level random effects; notably, 2R  
increased by approximately 0.03% ~ 5.00%, and the RMSE% of each 
component biomass model decreased by 1.69% ~ 37.12%. On the 
other hand, the performance of the SURMba-abio model differed very 
little from that of the SURMbio and SURMbio-abio models and was better 
than that of the SURMbio model in terms of branch and root 
biomass fitting.

3.3 Predictions of the mixed-effects model

The predictive ability of the mixed-effects model with random-
effects correction was assessed via independent data through the 
LOOCV method to evaluate the performance of the SURM model at 
the Forestry Bureau level. Measurements of aboveground biomass 
(such as stem, branch, and foliage biomass) from 1 to 6 randomly 
selected trees within the Forestry Bureau were used as response 
variables to calibrate the random effects for each biomass model. The 
MAPE% of the biomass components was calculated on the basis of the 
correlation between the residuals of the SURM model and the 
associations among the random effects parameters. As illustrated in 
Figure  4, the prediction accuracy of the corrected SURM model 
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improved with increasing number of sampled trees, with this model 
outperforming the pure fixed-effects SURM model (with a correction 
sample size of zero). Moreover, the MAPE% values for each biomass 
component stabilized once the sample size reached four trees, 
indicating that the introduction of random effects enhanced the 
predictive accuracy for each component.

From the perspective of MAPE% values, the prediction bias for 
stem, root, and total biomass was relatively low (with MAPE% values 
ranging from 9.87 to 22.92%), whereas the bias for branch and foliage 
biomass remained comparatively high (with MAPE% values ranging 

from 27.23 to 58.69%). Overall, when predicting independent data, 
the SURM model incorporating additional individual tree factors and 
abiotic factors (SURMbio-abio) exhibited superior performance for 
predicting stem, branch, and root biomass compared with the other 
models (Figure 4). The SURM model that included only abiotic factors 
(SURMba-abio) demonstrated certain advantages in predicting foliage 
biomass and performed comparably to the SURMbio-abio model for total 
biomass prediction.

To further evaluate the impact of correcting for random effects 
using only aboveground biomass given the prediction bias across 

TABLE 3 Parameter estimates and fitting statistics for the SUR models.

Model 
Type

Component Variable Parameter estimation and fitting statistics

0βi 1βi 2βi 3βi 2R %RMSE

SURba

Stem DBH
−2.4949 2.4760

- - 0.9452 19.9403
(0.0444) (0.0193)

Branch DBH
−4.4409 2.5543

- - 0.9239 6.7246
(0.1046) (0.0455)

Foliage DBH
−6.1442 2.6505

- - 0.8896 1.3449
(0.1365) (0.0594)

Root DBH
−3.0865 2.3160

- - 0.9647 6.9252
(0.0664) (0.0289)

SURbio

Stem DBH, H
−3.3031 1.9821 0.7761

- 0.9908 8.1666
(0.0903) (0.0530) (0.0798)

Branch DBH, H
−3.2831 3.2619 1.1118

- 0.9398 6.0014
(0.2470) (0.1451) (0.2183)

Foliage DBH, CL
−6.3405 2.3741 0.4547

- 0.9197 1.1504
(0.1621) (0.1390) (0.2072)

Root DBH
−3.0865 2.3160

- - 0.9647 6.9252
(0.0664) (0.0289)

SURba-abio

Stem DBH, SOC
−1.7191 2.4675 −0.1317

- 0.9476 19.5554
(0.3648) (0.0194) (0.0615)

Branch DBH, MAP
−8.9708 2.4713 0.7618

- 0.9441 5.7885
(1.0728) (0.0474) (0.1796)

Foliage DBH, DD18
−7.6610 2.5040 0.3828

- 0.8974 1.3008
(0.4188) (0.0686) (0.1004)

Root DBH, BD
−15.7160 2.2962 2.6341

- 0.9738 5.9905
(4.0754) (0.0291) (0.8499)

SURbio-abio

Stem DBH, H, SOC
−3.3293 1.9842 0.7733 −0.0050

0.9910 8.1581
(0.3468) (0.0550) (0.0845) (0.0520)

Branch DBH, H, MAP
−7.7562 3.1498 1.0631 0.7437

0.9565 5.1201
(1.0181) (0.1408) (0.2086) (0.1645)

Foliage DBH, CL, DD18
−7.8057 2.2455 0.4318 0.3723

0.9381 1.0143
(0.4313) (0.1383) (0.1980) (0.1017)

Root DBH, BD
−15.0943 2.2971 2.5044

- 0.9735 6.0308
(4.0721) (0.0291) (0.8492)

Values in parentheses are standard errors. Subscript i denotes biomass components (stem, branch, foliage and root). R2: the coefficient of determination; RMSE%: the root mean square error 
percentage. Model definitions: SURbio: SURba + biotic variables (H for stem/branch biomass; CL for foliage biomass). SURba-abio: SURba + abiotic factors (SOC for stem, MAP for branch, DD18 
for foliage, BD for root). SURbio-abio: SURbio + abiotic factors (SOC, MAP, DD18, BD).

https://doi.org/10.3389/ffgc.2025.1549531
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Ma et al. 10.3389/ffgc.2025.1549531

Frontiers in Forests and Global Change 09 frontiersin.org

different tree diameter classes, the measured aboveground biomass 
values from four randomly selected trees were used to correct the 
random effects in the SURM models. The predictive performance of 
the models was assessed by comparing the MAPE% for each biomass 
component. As illustrated in Figure 4, the SURMbio-abio model yielded 
the lowest prediction error for stem biomass, indicating that the joint 
inclusion of additional biotic and abiotic factors provided the highest 
prediction accuracy for stem biomass. The SURMba-abio model 
displayed the lowest prediction bias for foliage, root, and total biomass 
for smaller trees (DBH < 15 cm), highlighting the significant effects of 
climate and soil on the biomass of young natural birch trees, as 
corroborated by the SUR model predictions. Furthermore, while the 
SURMba-abio model demonstrated slightly worse performance than the 
SURMbio model in terms of the prediction of stem biomass, it 
performed comparably or even better for other components and total 
biomass. These findings suggest that for predicting the biomass of 
natural birch, a model incorporating only abiotic factors may serve as 
a viable alternative to models that include biotic factors, such as tree 
height and crown length, which are more challenging to obtain.

3.4 Effects of biotic and abiotic factors on 
the biomass of natural white birch fractions

From the model parameter estimates in Tables 3, 4, the parameter 
estimates of the abiotic factor (LnSOC) were negative, and the 
parameter estimates of LnMAP, LnDD18 and LnBD were positive, 
indicating that the organic carbon content (SOC) was negatively 
correlated with the natural white birch stem biomass; additionally, 

the mean annual precipitation (MAP), the degree-days above 18°C 
(DD18), and the soil bulk density (BD) were negatively correlated 
with the branch biomass, foliage biomass and root biomass. The 
relative importance of the variables analyzed via HP is shown in 
Figure 5. DBH contributed the most to the modeling of the biomass 
of each component of natural white birch, followed by H, CL, and the 
abiotic factors (SOC, MAP, DD18, and BD). Among them, abiotic 
factors had a certain effect on branch, foliage and root biomass, with 
a relative importance of as high as 12.10–23.72%; additionally, the 
stem biomass was less affected by the abiotic factors, with a relative 
importance of 2.16–2.53%. Moreover, HP analyses of SURbio-abio and 
SURba-abio revealed that abiotic factors (SOC, MAP, DD18, and BD) 
account for a portion of the prediction errors even after the 
introduction of variables such as H and CL; thus, introducing abiotic 
factors into the natural birch biomass model is necessary. The 
elevated predictive uncertainty (MAPE%: 25–66%) observed in 
branch and foliage biomass estimation of juvenile trees 
(DBH < 15 cm). This uncertainty remained even with abiotic indices 
(e.g., DD18), indicating their limited capacity to capture such 
biological complexity.

4 Discussion

This study developed an integrated biomass model for natural 
white birch that synthesizes tree measurement attributes with soil 
(SOC, BD) and climatic (MAP, DD18) predictors. The 
incorporation of multifactorial drivers significantly improved 
model precision, particularly for stem and foliage biomass. Spatial 

FIGURE 3

Mean absolute percentage error (MAPE%) of SUR model predictions for biomass components across DBH classes, evaluated via leave-one-out cross-
validation (LOOCV). Models include: SURba (DBH only), SURbio (DBH + H/CL), SURba-abio (DBH + abiotic factors), and SURbio-abio (DBH + H/CL + abiotic 
factors). Abiotic factors: soil organic carbon (SOC) for stem, mean annual precipitation (MAP) for branche, degree-days above 18°C (DD18) for foliage, 
and soil bulk density (BD) for root.
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heterogeneity across administrative jurisdictions was explicitly 
addressed through a mixed-effects framework incorporating 
bureau-level random intercepts, which enhanced prediction 
robustness. The mixed-effects framework incorporated bureau-
level random intercepts to explicitly address spatial heterogeneity 
across administrative jurisdictions, thereby enhancing predictive 
robustness through systematic variance partitioning. In terms of 
natural birch biomass prediction ability, these abiotic factors can 
effectively replace or even be  more useful than more 

difficult-to-obtain biotic variables, such as tree height and crown 
length (Tables 3, 4; Figures 3, 4, 6). Notably, the influence of abiotic 
variables (e.g., climate and soil parameters) on forest biomass is 
very important, as observed in previous studies (Bennett et al., 
2020; Chen et al., 2021). This may be a result of the interactive 
relations with biotic variables and the consequent confounding 
effects associated with abiotic variables. Analyses of models 
developed under traditional conditions, such as those of static 
climates or stable sites, suggest that unavoidable errors (significant 

TABLE 4 Parameter estimates for the SURM models (parameters are fixed-effects parameters).

Model 
Type

Component Variable Parameter Estimation and Fitting Statistics

0βi 1βi 2βi 3βi 2R f
2Rm

RMSE %

SURMba

Stem DBH
−2.3909 2.4388

- - 0.9582 0.9783 12.5386
(0.0795) (0.0345)

Branch DBH
−4.9150 2.7304

- - 0.9404 0.9460 5.9539
(0.1971) (0.0834)

Foliage DBH
−5.6812 2.4811

- - 0.9338 0.9482 1.0419
(0.1630) (0.0607)

Root DBH
−3.0023 2.2912

- - 0.9642 0.9800 5.2067
(0.0828) (0.0315)

SURMbio

Stem DBH, H
−3.2669 2.0039 0.7402

- 0.9909 0.9901 8.4851
(0.0894) (0.0520) (0.0781)

Branch DBH, H
−3.3541 3.1792 0.9986

- 0.9396 0.9444 5.7742
(0.2508) (0.1414) (0.2108)

Foliage DBH, CL
−5.8827 2.3003 0.3295

- 0.9359 0.9588 0.8247
(0.1918) (0.1359) (0.1903)

Root DBH
−3.0102 2.2940

- - 0.9643 0.9798 5.2387
(0.0858) (0.0325)

SURMba-abio

Stem DBH, SOC
−1.5472 2.4351 −0.1463

- 0.9577 0.9793 12.3065
(0.3779) (0.0314) (0.0628)

Branch DBH, MAP
−8.4198 2.5046 0.6591

- 0.9621 0.9709 4.1739
(1.1274) (0.0479) (0.1881)

Foliage DBH, DD18
−7.3799 2.4558 0.3482

- 0.9203 0.9364 1.0242
(0.6221) (0.0651) (0.1322)

Root DBH, BD
−10.3864 2.2892 1.5328

- 0.9695 0.9838 4.7048
(4.9792) (0.0299) (1.0357)

SURMbio-abio

Stem DBH, H, SOC
−3.1772 2.0121 0.7334 −0.0164

0.9911 0.9913 8.0195
(0.3631) (0.0548) (0.0824) (0.0555)

Branch DBH, H, MAP
−7.1666 3.1507 0.9158 0.5841

0.9614 0.9589 4.9812
(1.1019) (0.1436) (0.2093) (0.1786)

Foliage DBH, CL, DD18
−7.3693 2.2639 0.3056 0.3247

0.9571 0.9595 0.8197
(0.6062) (0.1317) (0.1840) (0.1285)

Root DBH, BD
−9.8561 2.3037 1.4150

- 0.9719 0.9812 5.0717
(5.2383) (0.0313) (1.0885)

Values in parentheses are standard errors. Subscript i denotes biomass components (stem, branch, foliage and root). 2R f : the coefficient of determination for the fixed effects model; 2Rm : the 
coefficient of determination for the mixed effects model. RMSE%: the root mean square error percentage. Model variants: SURMba: SURba (DBH-only base model) + random effects at sampling 
points. SURMbio: SURbio (DBH + H/CL) + random effects. SURMba-abio: SURba-abio (DBH + abiotic factors) + random effects. SURMbio-abio: SURbio-abio (DBH + H/CL + abiotic factors) + random 
effects.
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differences in soil physicochemical properties and climate) may 
occur when nonenvironmentally adapted models are used at large 
geographic or temporal scales. Currently, high-resolution layers of 
global abiotic factors facilitate the large-scale extraction of 
environmental features from sample plots (Fick and Hijmans, 
2017; Hengl et al., 2017; Wang et al., 2017), which largely solves the 
problem of measuring the cost of environmental factors. In this 
context, deciphering the influence of abiotic factors on the 
modeling of natural birch biomass is necessary.

4.1 Model comparisons: SUR and SURM

Prior to the development of environmentally adapted biomass 
models, SUR biomass models (SURba and SURbio) containing only 
DBH and introducing H and CL and corresponding SUR biomass 
mixed-effects models (SURMba and SURMbio) were constructed. Our 
results suggest that the allometric relationships between the biomass 
of natural birch fractions and various factors are plastic rather than 
fixed and that the W-DBH relationship of each component is 

FIGURE 4

MAPE% of SUR mixed-effects models (SURM) for biomass predictions across sample groups. SURM variants: SURMba (SURba + random effects), SURMbio 
(SURbio + random effects), SURMba-abio (SURba-abio + random effects), and SURMbio-abio (SURbio-abio + random effects).

FIGURE 5

Relative contributions of biotic (DBH, H, CL) and abiotic (SOC, MAP, DD18, BD) factors to SURMba-abio and SURMbio-abio models, analyzed via hierarchical 
partitioning (HP). Variables are log-transformed (LnDBH: diameter at breast height; LnH: height; LnCL: crown length; LnSOC: soil organic carbon; 
LnMAP: mean annual precipitation; LnDD18: degree-days above 18°C; LnBD: bulk density).
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constrained to varying degrees by other biological factors. Biomass 
models that include both biotic and abiotic factors (SURba-abio, 
SURbio-abio, SURMba-abio, and SURMbio-abio) can account for more 
variability in the observed biomass data of each component than the 
less flexible generalized biomass models that include only DBH and 
H (Bi et al., 2004; Dong et al., 2014). Interestingly, when we compared 
the prediction results of the SURba-abio and SURbio models and the 
prediction results of the SURba-abio and SURMba-abio models, the 
SURba-abio and SURMba-abio models performed only slightly worse than 
SURbio in terms of the prediction of stem biomass and yielded results 
similar to or even better than the SURbio and SURMbio models in terms 
of the prediction accuracy of the other components and total biomass. 
These findings suggest that a model with only abiotic factors can be an 
effective alternative to models with additional biotic factors, such as 
H and CL, which are more difficult to obtain for predicting natural 
birch biomass. This is one of the main goals of our study: constructing 
biomass prediction models that are convenient and widely applicable.

The mixed-effects models (SURMba, SURMbio, SURMba-abio, and 
SURMbio-abio) constructed with random-effect levels at the Forestry 
Bureau outperformed the SUR model, indicating that the mixed-
effects model can improve the accuracy of biomass estimation (Xie 
et al., 2021; Xie et al., 2023). LOOCV verified the prediction accuracy 
of the SURM models for independent data (Figures 4, 6). Mixed-
effects models are widely used in forestry modeling because of their 
ability to represent data hierarchies; additionally, they are more 
accurate than general regression models. However, they are typically 
used in single models and rarely used in joint estimation with multiple 
equations (Maltamo et  al., 2012; Xie et  al., 2023). In terms of 
calibrating SURM models, when one measure of at least one response 
variable is available, the correlation of the random effects parameter 
can be used to predict the sample effects for all subcomponents of the 
SURM models (Bronisz and Mehtätalo, 2020; Xie et al., 2021). Given 

that obtaining biomass data requires harvesting trees for measurement, 
this calibration method is important for the practical application of 
the SURM biomass model; calibrating the model using response 
variable data can significantly reduce the needs for time, labor, and 
financial resources (Xie et al., 2021; Xie et al., 2023). When calibrated 
via measurements of all component biomasses, the random effects in 
the component-specific biomass model are associated with other 
random effects given the correlations among random effect 
parameters, and the best prediction accuracy is achieved by using all 
subcomponent biomasses to calibrate the random effects for 
prediction (Bronisz et al., 2021; Xie et al., 2023). Notwithstanding 
their predictive advantages, mixed-effects models necessitate labor-
intensive calibration sampling to achieve optimal performance (Zuur 
et  al., 2009), imposing substantial cost burdens that constrain 
operational scalability. Belowground biomass quantification presents 
disproportionate methodological challenges and financial 
expenditures compared to aboveground compartment measurements 
(stem, branch, foliage), particularly regarding root system excavation 
and processing (Xie et  al., 2023). This methodological constraint 
prompted us to use only aboveground biomass measurements to 
calculate the random effects for enhanced prediction. Crucially, our 
calibration experiments demonstrated that sampling intensity can 
be optimized to four trees per administrative unit while maintaining 
prediction fidelity, as validated through leave-one-bureau-out cross-
validation (Figure 3). The MAPE% value for each biomass component 
decreased with increasing number of calibration samples, indicating 
that using only aboveground biomass measurements in the calibration 
prediction test is reliable and valid. This is because there is a high 
correlation between aboveground and belowground biomass for most 
tree species (Mehtätalo and Lappi, 2020). Overall, calibration via 
aboveground biomass measurements produced robust 
model predictions.

FIGURE 6

MAPE% of biomass component predictions by SURM models across DBH classes, calibrated with four trees per sampling site.
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4.2 Influence of biotic and abiotic factors 
on biomass prediction

In this study, three biotic factors, DBH, H, and CL, were selected 
as independent variables to construct a modeling system for natural 
birch biomass. Among them, diameter at breast height is the most 
reliable predictor of biomass because of it is easy to measure and 
highly correlated with other tree dimensions (Dong et al., 2020). In 
addition, tree height (H) and crown length (CL), as additional biotic 
factors, improved the prediction accuracy of the biomass model for 
stems, branches and leaves. Zhao et al. also reported that in addition 
to diameter at breast height, tree height, crown length and crown 
width had important effects on biomass modeling for various 
subcomponents (Zhao et al., 2015; Xie et al., 2021; Xie et al., 2023). 
Recent studies have shown that the enhancement effect of component-
specific biomass modeling for some species is not significant when 
only tree height is used as a covariate (Dong et al., 2015; Kusmana 
et al., 2018). In this study, only tree height was included as the best 
covariate for stem and branch biomass modeling in the biomass SURba 
model with DBH, a finding that is biologically significant because of 
the presence of stems and branches throughout the tree structure. For 
the foliage biomass model, crown length was more important than the 
other variables, suggesting that the relationship between crown length 
and crown biomass is stronger than the relationship between tree 
height and crown biomass. For tree root biomass, no additional 
biological factors were introduced as covariates. Although the 
introduction of covariates has been shown to improve the modeling 
of aboveground biomass, the effect of covariates on root biomass may 
be relatively small (Kusmana et al., 2018; Xie et al., 2021; Xie et al., 
2023). Figure 3 shows that the inclusion of four abiotic factors (SOC, 
MAP, DD18, and BD) improved the prediction accuracy of the 
biomass of each component for natural white birch trees of different 
diameters; in particular, the inclusion of four abiotic factors was most 
effective for predicting the biomass of branches, foliage and root 
biomass of trees in the small diameter class (DBH < 15 cm) than the 
inclusion of additional biotic factors (H and CL).

The soil characteristic variables (SOC and BD) were introduced 
into the stem biomass and root biomass models based on previous 
findings of the effects of soil on forest biomass (Becknell and Powers, 
2014; Caleño-Ruíz et  al., 2023). SOC is an extremely important 
component of soil that is not only closely or positively correlated with 
soil fertility but also strongly affects the Earth’s carbon cycle and is 
negatively correlated with natural birch stem biomass (Tables 3, 4). 
This may be  due to complementary resource utilization among 
coexisting tree species. In natural forests, there is a significant 
interaction effect between soil fertility and aboveground biomass, with 
forests having different mycorrhizal compositions depending on soil 
fertility. Aboveground biomass in natural forests usually increases 
with species richness, whereas this positive diversity effect diminishes 
with increasing soil fertility (Ma et al., 2023). Stem biomass is an 
important component of aboveground biomass, and it contributes to 
the negative correlation between SOC and stem biomass. BD is also a 
key soil indicator that is positively correlated with tree root biomass 
(Tables 3, 4). Changes in soil fertility are often accompanied by 
changes in soil structure and bulk density, and high soil fertility tends 
correspond to low BD; however, studies have shown that tree 
biodiversity has a positive effect on below-ground biomass (Xu et al., 
2019), which is consistent with the negative correlation between SOC 

and aboveground biomass (Li et al., 2018; Mao et al., 2023). It has been 
shown that an increase in the soil nutrient concentration should result 
in increased plant biomass; however, this phenomenon only seems to 
apply to small trees (Li et al., 2017). Radial growth responsivity to 
temperature and drought stressors exhibits progressive attenuation 
across ontogenetic stages (Drake et  al., 2010). Such ontogenetic 
plasticity in environmental response necessitates the integration of 
bioclimatic drivers into allometric models (McDowell et al., 2020), 
particularly for long-term biomass projections.

The climate factor MAP was incorporated into the branch 
biomass model as a measure of the mean annual precipitation at the 
sampling sites. Our results were consistent with the theoretical 
expectation that dendritic biomass increases with MAP (Tables 3, 4). 
Natural white birch is a cold-temperate deciduous broad-leaved tree 
species that is light loving, shade tolerant, cold tolerant, highly 
adaptable to different soil conditions, and shallow rooted, preferring 
moist environments. Some studies have shown that the biomass of 
boreal conifers tends to increase in areas with low precipitation, 
whereas the biomass of cold temperate deciduous broadleaf trees 
tends to increase in areas with high precipitation (Obata et al., 2023). 
A reduction in precipitation decreases biomass, abundance, and mean 
individual weight for some species but increases biomass, abundance, 
and mean individual weight for others. Compared with those with 
deep roots, species with strong resource-acquiring traits (e.g., shallow-
rooted species) displayed stronger positive responses to precipitation 
changes in terms of biomass and mean individual weight (Zhang et al., 
2020). DD18, as a temperature indicator, was positively correlated 
with foliage biomass, which was consistent with theoretical 
expectations. Specifically, temperature changes drive trees to utilize 
light energy during photosynthetic uptake to increase aboveground 
biomass (Černý et  al., 2020). The linear relationship between the 
photosynthetic radiation absorbed by different tree species and tree 
biomass has also been confirmed in previous studies 
(Teklehaimanot, 2004).

The integration of abiotic predictors (SOC, MAP, DD18, BD) 
significantly enhanced predictive accuracy for natural birch biomass, 
particularly for branch, foliage, and root biomass in juvenile trees 
(DBH <15 cm). Crucially, abiotic covariates function as 
complementary rather than substitutive parameters to biotic 
measurements. Comparative analysis revealed comparable 
performance between models utilizing only DBH with abiotic 
variables (SURba-abio, SURMba-abio) and those incorporating biotic 
factors (SURbio, SURMbio) for branch and foliage biomass (ΔMAPE% 
<6.14). However, stem biomass predictions exhibited marked 
divergence (ΔMAPE% = 18.12), underscoring the persistent 
importance of dendrometric variables like tree height (Figure 6). This 
evidence delineates a context-dependent optimization framework: 
abiotic proxies demonstrate operational utility where biotic data 
acquisition proves logistically constrained (e.g., remote monitoring), 
or for biomass components (foliage, roots) with stronger 
environmental regulation (Schimel et al., 2015). This is particularly 
relevant in large-scale or remote applications in which data on tree 
height and canopy characteristics may be  difficult to obtain. As 
Gustafson et al. (2010) emphasized, the use of soil and climate data in 
biomass modeling provides a reliable foundation for forest biomass 
estimation across different geographic regions. With the increasing 
availability of high-resolution global datasets, such as WorldClim and 
SoilGrids250m, researchers can now efficiently integrate localized 
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environmental data into biomass models, thereby increasing the 
predictive accuracy without the need for intensive field measurements. 
These global datasets provide spatially detailed climate and soil 
information that improves model adaptability across diverse 
environmental conditions (Fick and Hijmans, 2017; Hengl et al., 2017).

4.3 Reflections on the research

This study highlights the effectiveness of integrating biotic and 
abiotic factors in SURM models to estimate the biomass of natural 
white birch. By combining traditional tree measurements with 
environmental variables such as SOC, BD, MAP, and DD18, the 
model enhances accuracy and adaptability across different forest 
environments. This modeling framework demonstrates operational 
scalability for large-scale forest biomass estimation. By leveraging 
existing national forest inventory (NFI) permanent plots and 
management survey data, high-accuracy predictions can 
be  achieved through diameter-at-breast-height (DBH) 
measurements combined with globally accessible abiotic covariates 
from WorldClim (climate) and SoilGrids250m (edaphic). The 
streamlined protocol substantially lowers survey costs through 
minimized reliance on labor-intensive dendrometric variables 
(e.g., H and CL). On the other hand, Hierarchical variance 
partitioning revealed distinct environmental mediation patterns: 
abiotic drivers explained 12.10–23.37% of variability in branch, 
foliage, and root biomass, but minimally influenced stem biomass 
(2.30–2.53%) (Figure  5). The negative correlation between soil 
organic carbon (SOC) and stem biomass (Tables 3, 4) likely reflects 
nutrient competition dynamics in high-fertility soils—a pattern 
consistent with recent findings in temperate forests (Ma et  al., 
2023). These results necessitate interpreting abiotic coefficients as 
ecological process mediators rather than direct predictive 
parameters, particularly for woody biomass components.

While the current framework exhibits robust predictive 
capabilities, future refinements could strengthen its ecological fidelity 
and operational versatility. Integrating temporal dynamics—including 
growth trajectories, soil nutrient fluxes, and climatic oscillations—
would enhance responsiveness to environmental stochasticity under 
climate change scenarios. Expanding the covariate matrix to 
incorporate critical edaphic factors (e.g., nitrogen mineralization 
rates) and bioclimatic extremes (e.g., seasonal thermal thresholds) 
would enable more comprehensive characterization of biomass 
partitioning mechanisms across tree compartments. Ecophysiological 
trait integration (e.g., interspecific variation in wood density and leaf 
economics spectrum parameters) could facilitate cross-taxa 
generalization, while synergizing UAV-derived canopy structural 
indices (e.g., CHM-based vertical complexity metrics) with abiotic 
gradients may automate calibration workflows, reducing reliance on 
labor-intensive field measurements. Systematic validation across 
biomes—particularly in boreal and subtropical ecotones—would 
delineate model transferability boundaries and refine allometric 
scaling rules under divergent resource regimes. Operational 
optimization requires determining minimum calibration sample sizes 
through power analysis across forest structural types, thereby 
balancing prediction uncertainty with survey costs—a critical 
consideration for resource-limited regions. Although demonstrated 
for Betula platyphylla, model generalizability to phylogenetically 

distinct taxa (e.g., conifers) or tropical systems necessitates explicit 
validation given interspecific allometric divergence and ecosystem-
specific gene–environment interactions.

5 Conclusion

This study developed SUR and SURM models for estimating the 
biomass of natural white birch in northeastern China by integrating 
biotic (DBH, H, CL) and abiotic factors (SOC, MAP, DD18, BD). The 
SURM framework, incorporating random effects at the Forestry Bureau 
level, significantly improved prediction accuracy (R2: 0.94–0.99), 
particularly for stem and foliage biomass, while demonstrating robust 
calibration using aboveground biomass measurements from four trees 
per sampling site. The inclusion of abiotic factors enhanced model 
generalizability, offering a scalable solution for regions where biotic 
variables like tree height or crown dimensions are logistically 
challenging to obtain. However, our findings also highlight several 
limitations and opportunities for future research. First, while abiotic 
factors (e.g., SOC, MAP) effectively compensated for the absence of 
biotic variables in branch and foliage biomass predictions, their 
substitution for dendrometric parameters in stem biomass estimation 
showed reduced efficacy (ΔMAPE% = 18.12). This suggests that abiotic 
proxies are context-dependent and may not universally replace biotic 
measurements, particularly for woody biomass components. Second, 
the reliance on global datasets such as SoilGrids250m and ClimateAP 
introduces uncertainties, as their coarse spatial resolution (~1 km) may 
inadequately capture microsite variations in heterogeneous natural 
forests. Future applications could benefit from localized soil-climate 
data to refine predictions. Additionally, while the model stabilized with 
four calibration trees, operational scalability in diverse ecological 
contexts—especially in regions with differing species compositions or 
disturbance regimes—requires further validation. Practically, this 
framework offers a cost-effective tool for large-scale carbon stock 
assessments. Integrating DBH with globally accessible abiotic covariates 
enables efficient resource allocation in remote areas. For instance, 
embedding the model into national forest inventories could streamline 
carbon trading analyses or reforestation planning under climate change. 
Adaptive calibration protocols tailored to local gradients (e.g., soil 
fertility) are recommended to enhance robustness. Future work should 
explore temporal dynamics (e.g., climate-growth feedbacks) and expand 
covariates (e.g., UAV-derived canopy metrics). Cross-biome validation, 
particularly in boreal and subtropical forests, will clarify transferability 
and strengthen global forest management applications.
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