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Introduction: Uneven rainfall distribution alters tree water use patterns, 
ultimately influencing plantation establishment.

Methods: Based on monthly rainfall, six drought levels were classified. Whole-
tree sap flux and meteorological variables were monitored across these levels 
from 2010 to 2013 in a pure Schima superba plantation in South China. The 
relationships between daily transpiration (Tt) and the influencing factors were 
modeled using the Support vector regression (SVR) method. Shapley additive 
explanations (SHAP) values were employed to characterize the sensitivity and 
contributions of four environmental variables to Tt.

Results: The results indicate that monthly rainfall (RFt) significantly influences the 
sensitivity of these four environmental variables to Tt when RFt exceeds 300 mm 
(Level 6). Furthermore, when RFt is 300 mm or less (Levels 1–5), the sensitivity 
of these factors and their total contributions to Tt are independent of tree size.

Discussion: Our findings indicate that the decoupling between Tt and 
environmental factors may be a significant characteristic of ongoing water stress 
during high rainfall months. Additionally, these findings enhance the predictive 
capability of machine learning models in assessing tree water use.
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Introduction

Global climate change has led to an increase in the number of extreme weather events in 
recent years (Zia et al., 2021; Brunet et al., 2024). Since the year 2000, southern China has 
experienced several severe droughts, particularly during four significant events in 2001, 
2006–2007, 2009–2010 and 2020–2021, which have been identified as extreme “Water crisis” 
(Zhang et al., 2018). The uneven distribution of rainfall is a major factor contributing to 
drought in this region, which seriously affects the ecological establishment of plantations. 
Specifically, the intensity and frequency of rainfall profoundly influence the physiological 
behavior and ecological environment of trees. Even during prolonged mild to moderate 
drought, trees become particularly vulnerable to carbon starvation and biological invasion, 
potentially leading to chronic mortality (McDowell et al., 2008; da Silva et al., 2013; Anderegg 
et al., 2013; Chen et al., 2018; Kono et al., 2019).

Transpiration plays a crucial role in the physiological functioning of trees and serves as 
the primary mechanism for water use. Its dynamics are influenced by various internal and 
external factors. Meteorological conditions primarily govern instantaneous changes in 
transpiration, while soil factors determine its overall level (Wullschleger et al., 1998; Jiao et al., 
2019). However, these influences may differ among trees of various sizes and ontogenetic 
stages (Andrade et al., 1998; Meinzer et al., 2001; Meinzer, 2003). Long-term synchronous 
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monitoring of whole-tree sap flow and environmental factors 
significantly enhance our understanding of the relationship between 
these internal and external factors influencing tree water use, 
ultimately improving prediction efficiency. However, few studies have 
focused on the performance of tree transpiration responses to 
meteorological factors under varying drought conditions.

Environmental factors are critical in driving water movement within 
plants. Photosynthetically active radiation ( PARt ) influences the 
opening and closing of stomata by affecting the amount of CO2 absorbed 
during photosynthesis and heating the leaf surface, which subsequently 
impacts transpiration rates (Kume, 2017; Li et al., 2021). The air vapor 
pressure deficit (VPDt ) significantly alters the water vapor pressure 
difference between the leaves and the surrounding air, directly affecting 
the transport of water vapor from the internal leaf to the external 
atmosphere (Fricke, 2017). Similarly, wind speed (WSt ) affects the 
boundary layer resistance of plant leaves, as well as the dynamics of 
stomatal opening and closing and overall leaf temperature (Monteith and 
Mike, 1990; Holwerda et al., 2012; Carvalho et al., 2015). Furthermore, 
soil moisture content ( SMt ) impacts the ability of plant roots to absorb 
and transport water. A thorough understanding of these causal 
relationships provides a theoretical basis for predicting transpiration 
models based on environmental factors (Jarvis, 1976). The close 
relationships between sap flow, transpiration calculated based on sap flow 
and environmental factors have been demonstrated using double-variable 
analysis and multiple linear regression in different climate zones and 
forest types (e.g., Juhász et al., 2013; Shen et al., 2015; Wang et al., 2017; 
Han et al., 2019; Chen et al., 2022). However, multiple linear regression 
requires strict null assumptions, including linearity, independence and 
normality, while double-variable analysis did not adequately quantify the 
contributions of eigenvalues. In contrast, machine learning (ML) methods 
does not impose these stringent requirements. They not only demonstrate 
higher prediction accuracy and stability in drought sensitivity analysis but 
also effectively uncover and capture the relationships between input 
variables and forecast outcomes. Furthermore, they elucidates interactions 
among input variables through interpretive tools such as the SHAP 
algorithm and more sophisticated models. This comprehensive approach 
enhances our understanding of which factors are most sensitive to 
drought prediction (Zhang et al., 2024; Uexkull et al., 2016; Saha et al., 
2023). Although ANNs are gaining increasingly popularity in predicting 
tree transpiration due to their flexible requirements (e.g., Liu et al., 2009; 
Whitley et al., 2009; Xu et al., 2017; Tu et al., 2019), there are currently no 
studies on Support vector Regression (SVR) in this context. The study 
emphasizes exploring the application of ML methods for analyzing tree 
transpiration sensitivity to drought. The objectives of this paper are to (1) 
determine the sensitivity of meteorological factors to the transpiration of 
three tree sizes across six levels of drought, as well as their total 
contributions to transpiration using SVR, and (2) examine how these 
responses vary with different drought levels and tree sizes.

Materials and methods

Field site and plant materials

The experiments were conducted at the South China Botanical 
Garden station of the Chinese Academy of Sciences in Guangzhou, 
Guangdong, China (113°21′E，23°10’N, 40 m altitude). This area 
experiences a subtropical monsoon climate, characterized by a wet 
season (April to September) and a dry season (November to 

January), with an annual average temperature of 21.8°C. The region 
receives an averages annual precipitation in 1710.5 mm, with over 
80% occurring during the wet season. A pure Schima superba forest 
was established in the mid-1980s at a density of 1,046 plants per 
hectare. We sampled 15 30-year-old individuals as test objects and 
divided them into three size classes based on the method of Mei 
et al. (2010a) (Table 1).

Sap flux density and transpiration 
measurement

Granier’s thermal dissipation probe (TDP) (Granier, 1985) was 
used to measure xylem sap flux density ( Ft , g·m−2·s−1). These probes 
were 2 mm in diameter and 20 mm in length, consisting of a copper-
constantan thermojunction. They were radially inserted into the 
sapwood of the stem samples at approximately 0.15 m apart vertically 
at breast height. The sensors were placed on the northern side and 
covered with aluminum foil to protect them from sunlight, while the 
top of the probes was sealed with waterproof silicone. The heated 
upper probe was supplied with a constant power of 0.2 W, while the 
unheated lower probe served as a reference. The temperature 
difference between the two probes were averaged every 30 s, and data 
were collected at 10-min intervals using a Delta-T logger. These 
records were then used to calculate Ft  using the empirical equation 
proposed by Granier (1987). Due to the substantial variation in sap 
flux at depths greater than 40 mm in the sapwood of Schima Superba 
(approximately 45% of the flux occurs at depths of 0-40 mm) (Mei 
et al., 2010b), the mean flux was calculated by adding the sap flux at 
these two depths, weighted by their respective areas. The weights were 
determined based on the ratio of sapwood area within the two depths 
to the total sapwood area. Whole-tree transpiration ( Tt , g) was 
calculated every 10 min by

 
T F A F At = ∑ × + ×( )×− −0 40 0 40 40 40 t

 
(1)

where, F0 40−  and F40  represent the sap flux density in the outer 
xylem (0–40 mm) and inner xylem (>40 mm), respectively, while 
A0 40−  and A40  are the sapwood areas corresponding to these 

densities, as calculated by Zhao et al. (2018). The time interval, t, is 
600 s, with data averaged and recorded every 10 min by the logger.

Environmental measurements

Five environmental variables were monitored approximately 2 m 
above the forest upper canopy. Wind speed (WSt , m·s−1) was 
monitored using an AN4 Anemometer (Delta-T Devices Ltd., 
Cambridge, UK). Air temperature ( Ta , °C) and relative humidity 
( RH , %) were monitored using a RHT2V-418 sensor (Delta-T 
Devices Ltd., Cambridge, UK). The air vapor pressure deficit ( VPDt , 
kPa) was calculated using the difference in vapor pressure between 
saturated and ambient air, combining the effects of air temperature 
and relative humidity. Photosynthetically active radiation ( PARt , 
W·m−2) was monitored with a Li-Cor quantum sensor (LI-190SA, 
LI-COR, USA). Soil moisture content ( SMt , m−3·m−3) was assessed 
using three frequency domain sensors (SM200, Delta-T Devices, UK) 
at a depth of 30–40 cm. Monthly rainfall ( RFt , mm) data were 
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obtained from the Guangzhou Statistics Bureau1. All variables were 
recorded using the same logger as the sap flux measurements.

SVR

Support vector regression (SVR) is a significant extension of 
Support vector machine (SVM) specifically designed to address 
regression problems. It works by identifying a hyperplane defined by 
the equation f x x b( ) = +ωT  (representing the predicted value in the 
linear case) that creates a margin of f x ,f x( ) − ( ) + ε ε . The goal is 
to position this hyperplane so that most training samples fall within 
the margin, satisfying the condition |y − f(x)| ≤ ɛ, while keeping the 
complexity of the model as low as possible. This process can 
be formulated as an optimization problem:

 min ( )ω ξ ξ∗
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where ω  denotes the weight vector, C > 0 is the regularization 
parameter that balances the model’s fit accuracy and generalization 
ability (with C = 0.08 here). ε  is the tolerance for prediction error 

1 http://tjj.gz.gov.cn/

(with ε =0.01 here). These two parameters can be determined using 
GridSearchCV from Scikit-learn. b is the bias, xi  is the i -th 
observation of the input vector (x ϵ Rd), and ξi  and ξi

∗  are slack 
variables for guarding against outliers.

To transform the constrained optimization problem (Equation 2) 
into an unconstrained optimization one, Lagrange multipliers are 
introduced to formulate the Lagrangian function:
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(3)

Where αi , αi
∗ , λi  and λi

∗  are Lagrange multipliers; the first two 
correspond to inequality constraints, while the last two are associated 
with the non-negative constraints.

The minimum of Equation 3 can be determined based on the 
Karush-Kuhn-Tucker (KKT) conditions, yielding the dual 
optimization form in Equation 4 by taking the partial derivatives with 
respect to ω , b, ξi  and ξi

∗  (Vapnik, 1995; Smola and Schölkopf, 2004):
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(4)

TABLE 1 Characteristics of tree samples.

Tree 
class

Tree 
no.

DBH (m) Height (m) Crown 
diameter (m2)

Bark thickness 
at DBH (m)

Sapwood 
Area (m2)

Sapwood Area at depth 
of 0-40 mm (m2)

Class 1 Tree 1 0.151 15.3 14.7 0.40 0.0688 0.0382

Tree 2 0.194 12.6 28.8 0.75 0.113 0.0523

Tree 4 0.220 15.3 6.6 0.90 0.146 0.0609

Tree 5 0.224 15.5 6.9 0.70 0.151 0.0622

Tree 10 0.240 16.9 7.0 0.80 0.174 0.0674

Mean 0.197 15.1 12.8 0.71 0.117 0.0534

Class 2 Tree 3 0.133 12.1 4.5 0.45 0.0534 0.0322

Tree 6 0.095 11.0 1.2 0.35 0.0273 0.0197

Tree 7 0.175 12.9 5.5 0.7 0.0924 0.0461

Tree 11 0.135 11.2 2.9 0.45 0.055 0.0329

Tree 13 0.084 12.0 3.1 0.35 0.0214 0.0161

Tree 14 0.144 13.1 4.4 0.55 0.0626 0.0359

Mean 0.128 12.1 3.6 0.45 0.0544 0.0326

Class 3 Tree 8 0.088 9.7 3.4 0.40 0.0234 0.0174

Tree 9 0.088 9.5 2.3 0.35 0.0234 0.0174

Tree 12 0.065 8.0 2.0 0.30 0.0128 0.00988

Tree 15 0.073 9.7 2.4 0.25 0.0161 0.0125

Mean 0.079 9.2 2.5 0.33 0.0234 0.0174

DBH, Diameter at breast height (1.3 m).
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Equation 5 represents the linear case (Kernel = ‘Linear’). For the 
nonlinear case, SVR can map the input data to a higher-dimensional 
kernel space using kernel functions such as Gaussian, Polynomial and 
Sigmoid kernels.

Data and analyses

According to the Chinese meteorological industry standard 
‘Rainfall Process Classification’ (QX/T 489–2019), six levels of rainfall 
intensity were defined based on monthly rainfall to explore the 
sensitivity of environmental factors to sap flux in three classes of 
S. superba under drought stress (Table 2). Accordingly, six datasets 
were selected from the years 2010–2013, each comprising 10-min 
interval sap flux data and the corresponding environmental data 
when PARt  was at least 5 w·m−2. Of these datasets, 80% were used 
for training, while the remaining 20% were used for testing. Daily 
transpiration ( Tt ), calculated using Equation 1 for each class, was 
modeled as an output series using SVR with Scikit-learn in Python 
3.12, with environmental variables served as input series. All series 
were standardized, denoised, and made stationary using the z-score 
method, Haar transformation, and differencing before modeling. 
Their stationarity and white noise characteristics were assessed using 
the Augmented Dickey-Fuller test and the Portmanteau test. During 
the testing phase, the Nash-Sutcliffe Efficiency coefficient (NSE) and 
Root Mean Square Error based on the observations’ standard 
deviation (RSR) were used to evaluate the effectiveness of the SVM 
models considering their advantages (Moriasi et al., 2007). The Root 
Mean Square Error (RMSE) was utilized to determine the optimum 
kernel function.
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Where Pi  is the predicted value, Oi  is the actual value, and Oi  
is the average of the actual value; n is the total number of datasets. The 
prediction accuracy of the models was evaluated as follows: I. very 
good (0.75 < NSE ≤ 1 and 0 ≤ RSR ≤ 0.5); II. good (0.65 < NSE ≤ 0.75 
and 0.5 < RSR ≤ 0.6); III. Satisfactory (0.5 < NSE ≤ 0.65 and 
0.6 < RSR ≤ 0.7); IV. unsatisfactory (NSE ≤ 0.5 and 0.7 < RSR).

Shapley additive explanations (SHAP) was first utilized to explain 
the results of the SVR models for Tt . Unlike traditional correlation 
and determination coefficients, SHAP values can highlight the 
direction of each feature’s contribution and quantify their impacts on 
the final prediction, regardless of whether they are present in the test 
instances (Mastropietro et al., 2023). In this context, the sensitivity of 
environmental factors to Tt  is quantified by the mean value of 
|SHAP|. A higher mean value indicates greater sensitivity of those 
factors to Tt , and vice versa. The accumulation of SHAP values 
reflects the total contributions of these factors to Tt .

Results

Daily transpiration, sap flux and 
environmental factors variation

At all six levels, the coefficient of variation (CV.) of Tt  and Ft  
exhibited consistent variation (Figure 1a), while their means did not align 
(Figure 1b). The Tt  of Class 1 was the highest, followed by Class 2 and 3. 
In contrast, Ft  did not consistently follow the class order, with the 
exception of Level 2, where Class 2 showed the highest value. This suggests 
that larger trees use more water in terms of transpiration. Notably, both 

TABLE 2 Characteristics of six levels and data choosing.

Drought Month rainfall (mm) Days Daily interval (UTC + 8) Observations

Level 1 RFt ≤5 25 7:30–18:30 1,525

Level 2
5< RFt ≤10

25 7:50–17:40 1,500

Level 3 10< RFt ≤25 33 7:40–17:40 2013

Level 4 25< RFt ≤100 24 6:50–17:40 1,584

Level 5 100< RFt ≤300 30 7:10–17:30 1890

Level 6 RFt >300 14 8:20–18:20 732

RFt represents month rainfall. PARt represents photosynthetically active radiation.
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Tt  and Ft  reached their highest values at Level 5, which may be attributed 
to their relative stability, indicated by lower CV value (Figure 1b).

Only the mean of SMt  varied consistently across the levels, 
indicating that monthly rainfall significantly affects SMt . Compared 
to Level 1, SMt  showed a modest increase of 4% at Level 2, while it 
increased the most—by 52%—at Level 6 (Figure 2a). Additionally, 
SMt  exhibited the smallest variability among the factors (Figure 2b). 
For other environmental variables, the highest mean values of PARt
, VPDt  and WSt  were observed at Level 5, Level 4 and Level 1, 
respectively, while the lowest values were found at Level 2 for PARt , 
Level 2 for VPDt  and Level 4 for WSt  (Figures 2a,b). Overall, WSt  
exhibited the largest variability across Levels 1–4 (Figure 2b).

Model establishing and calibration

For rigor, the time series of all participating models used for 
training were stationary and no-white noise (Table 3). The first-order 
difference of SMt  (denoted as D. SMt ) for Level 2, 5 and 6 was 
stationary (p < 0.05), while D. SMt  for Level 2 exhibited white noise 
characteristics (p > 0.05). The series for the others levels were 
stationary and non-white noise at the current order (p < 0.05).

Eighteen SVR models with linear kernels, based on Equation 8 and 
corresponding to six levels, were developed, with the predictions 
shown in Figure 3. Fifteen models across all three classes at Levels 1–5 
were successfully constructed and performed very well based on 
Equations 6 and 7, with NSE values ranging from 0.77 ~ 0.98 and RSR 
values from 0.16 ~ 0.48. However, only three models corresponding to 
the three classes at level 6 performed poorly, with NSE values ranging 
from −0.41 to −0.17 and RSR values from 1.08 to 1.19.

Sensitivity of transpiration to 
environmental factors

From Figure 3f, the very poor performance of the SVM models 
at Level 6 indicated that the four environmental factors are 
insensitive to daily transpiration ( Tt ). As a result, the total 

contribution of all factors to Tt  at Level 6 could not be predicted. 
At Levels 1–5, where high-accuracy prediction models were 
established, PARt  was found to be the most sensitive factor to Tt
, followed by VPDt  and WSt , with SMt  exhibiting the least 
sensitivity (Figures  4d–f–8d–f). However, the sensitivity of the 
three classes did not differ significantly across Levels 1–5 (p > 0.05, 
Table 4), suggesting that the observed sensitivity is not related to 
tree size. Interestingly, the total contributions of PARt  and VPDt  
to Tt  does not align with this order, except at levels 4 and 5 
(Figures 4a–c–8a–c). The Mann–Whitney U test indicated that the 
contributions of all factors to Tt  among the three classes did not 
differ significantly between Levels 1–5 (p > 0.05, Table 5). Similar 
results were observed within levels, except for WSt  at level 5 and 
SMt  at level 1. Additionally, the directions of contribution were 
consistent across the same levels. However, the effect of SMt  to Tt  
for three classes at Levels 2 and 5 could not be predicted, as D. SMt  
was considered white noise.

Interaction of environmental factors

External environmental factors not only affect the transpiration of 
trees individually but also regulate transpiration through complex 
interactions. For example, high PARt , and high VPDt  generally 
increase transpiration. However, under conditions of low SMt  or 
increased WSt , trees may respond to these factors by closing their 
stomata, thereby limiting transpiration. The synergistic or antagonistic 
interactions among these factors depend on specific environmental 
conditions, plant species, and forest types. From 
Supplementary Figures 1, 4, 6, it is evident that SMt  (at Levels 1, 3 
and 4), WSt  and VPDt  (at Levels 1–5) did not significantly impact 
the influence of PARt  to Tt  across the three tree classes at Levels 1, 
3 and 4, as they transitioned without trends with PARt . This indicates 
that there is no interaction between SMt  and PARt , WSt  and PARt
, or VPDt  and PARt  concerning Tt . In contrast, SMt  negatively 
influenced the effects of VPDt  and the reduction of WSt  to the 
predicted Tt  (Supplementary Figures 2, 3) across all classes at Levels 
1, 3 and 4, except for class 1 at Level 1 (Supplementary Figures 2a1, 3a1). 

FIGURE 1

Changes in the original series of sap flux (Ft), daily transpiration (Tt) and their Coefficient of Variation (CV) across Levels 1 to 6. (a) mean values of Ft and 
CV for both Ft and Tt. (b) mean value of Tt.
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Similarly, WSt  also negatively impacted the influence of VPDt  to Tt  
across all classes at Levels 1–5 (Supplementary Figure 5), except for 
Class 3 at Level 5 (Supplementary Figure 5e3).

Discussion

Several key factors, including RFt , Ta , RH , PARt , VPDt , 
WSt  and SMt , have been identified as major determinants of tree 
transpiration (e.g., Juhász et al., 2013; Shen et al., 2015; Wang et al., 
2017; Wei et al., 2017; Xu and Yu, 2020; Chen et al., 2022). However, 
Ta, RH, and VPDt , which is derived from the first two, are often 
considered simultaneously in regression models, potentially leading 
to collinearity issues (e.g., Yu et al., 2009; Liu et al., 2017; Wei et al., 
2017; Han et  al., 2019). While some studies employ principle 
component analysis (PCA) to address collinearity, eliminating 
multicollinear factors can enhance the efficiency of deep learning (DL) 
models (O'Brien et al., 2004; Juice et al., 2016; Xu and Yu, 2020; Li 
et al., 2022). Fan et al. (2020) compared the three ML models and one 
DL model in estimating daily maize transpiration, finding that deep 
neural networks (DNN) outperformed the others, with support vector 
machines (SVM) being the next best. In contrast, this study utilized 
an SVM that accounts for autocorrelation to analyze the sensitivity of 
the whole-tree transpiration of S. superba is to environmental factors, 
particularly because DNNs performed poorly. Variables included were 
PARt , VPDt , WSt  and SMt , while Ta and RH were excluded. 
Additionally, monthly precipitation was considered a limiting factor 
for measuring drought.

Overall, PARt  and VPDt  exhibited the highest sensitivity to Tt  
when RFt ≤300 mm (Levels 1–5), during which the SVR models 
were well-developed. Numerous studies have been conducted across 
different climate zones and ecosystems. Based on traditional 
regression analysis, the influence of VPDt  on Ft  and transpiration 
is often greater than that of PARt  in tropical climate zones (e.g., 
Oguntunde and Oguntuase, 2007; Köhler et al., 2010; Huang et al., 
2021). Conversely, in temperate climates, the impact of PARt  tends 
to be greater than that of VPDt  (e.g., Huang et al., 2010; Yue et al., 
2008; Zheng and Wang, 2015; Shen et al., 2015; Wei et  al., 2017; 

Thomsen et al., 2020). Although this research was conducted in a 
subtropical climate zone, Tt  was found to be more responsive to 
PARt  than to VPDt , aligning with the findings of Wang et  al. 
(2017). However, VPDt  exhibited the opposite trend, except at Level 
3, indicating that depressed trees are unable to tolerate water deficits 
in their leaves. This may be attributed to their relatively unstable CO2 
assimilation and low biomass allocation due to shallow roots (Sabir 
et  al., 2020; Zafar et  al., 2019). The effects of WSt  on Ft  and 
transpiration were inconsistent due to substantial temporal variation 
(e.g., Tang et al., 2006; Chen et al., 2019; Chen et al., 2022), although 
significant effects were noted (e.g., Oguntunde and Oguntuase, 2007; 
Huang et  al., 2010; Huang et  al., 2015). There are primarily two 
different responses of transpiration to increases in WSt , as noted by 
Laplace et al. (2013): linear responses (e.g., Juhász et al., 2013; Wang 
et al., 2017) and saturated responses (e.g., Li et al., 2022; Chen et al., 
2024). Moreover, WSt  tends to affect the daytime Ft  more than 
nighttime Ft  (Han et al., 2019). In our study, WSt  was the third 
most sensitive factor affecting daytime Tt  of S. superba, exhibiting 
linear decreases. Additionally, it influences other factors. Komatsu 
et al. (2006) found that the promotion of VPDt  to Ft  depends on 
WSt <0.7 m·s−1. We observed that WSt  negatively influenced the 
overall promotion of VPDt  to Tt  (Supplementary Figure  5). 
However, tree size did not significantly influence the responses of Tt  
to PARt , VPDt  and WSt  (Table  4), despite the theoretical 
expectation that larger trees would have a greater impact due to their 
increased surface area in contact with the atmosphere. The 
discrepancy may be attributed to variations in the actual contact area, 
which could depend on other factors such as the vertical distribution 
of leaf area and transient differences caused by fluctuations in wind 
speed, rather than just plant height and leaf size. Similar to WSt , 
most studies suggest that SMt  significantly affects SFt  and 
transpiration, except for those by Tang et al. (2006), Shen et al. (2015), 
and Ma et  al. (2017). Our results supports the views although it 
showed the least sensitive to Tt , which aligns with Huang et  al. 
(2021). The finding that SMt  has a greater negative effect on Tt  in 
Class 1 compared to the positive effects observed in Class 2 and 3 at 
the same level (level 4) is inconsistent with the observation that larger 
trees with deeper roots are less sensitive to depletion in SMt  

FIGURE 2

Changes in the original series of environmental factors and their Coefficient of Variation (CV) across Levels 1 to 6. (a) mean values of soil moisture (SMt) and 
photosynthetically active radiation (PARt). (b) mean values of wind speed (WSt), air vapor pressure deficit (VPDt), and the CV for SMt, VPDt and PARt.
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TABLE 3 Augmented Dickey-Fuller test for unit root and Portmanteau test for white noise.

Conditions Test object Lag 
length

Number of 
observations

5% Critical 
value

Test 
statistic

p-value Portmanteau 
(Q) statistic

p-value

Level 1 Tt of Class 1 22 1,220 −3.410 −8.621 0.000 8756.050 0.000

Tt of Class 2 −3.410 −8.644 0.000 9061.838 0.000

Tt of Class 3 −3.410 −8.086 0.000 9337.683 0.000

PARt −3.410 −9.739 0.000 8856.676 0.000

VPDt −1.950 −5.343 0.000 10274.288 0.000

WSt −1.950 −2.941 0.000 15229.976 0.000

SMt −2.860 −3.646 0.005 25651.070 0.000

Level 2 Tt of Class 1 22 1,200 −1.950 −10.554 0.000 8120.585 0.000

Tt of Class 2 −1.950 −10.299 0.000 8919.100 0.000

Tt of Class 3 −1.950 −9.953 0.000 9052.521 0.000

PARt −1.950 −10.333 0.000 8565.602 0.000

VPDt −3.410 −7.463 0.000 8577.785 0.000

WSt −1.950 −4.530 0.000 7688.037 0.000

D.SMt −3.410 −7.577 0.000 7.287 0.999

Level 3 Tt of Class 1 24 1,647 −3.410 −10.622 0.000 12703.216 0.000

Tt of Class 2 −3.410 −11.015 0.000 12770.674 0.000

Tt of Class 3 −3.410 −8.682 0.000 13455.599 0.000

PARt −1.950 −11.534 0.000 13607.849 0.000

VPDt −3.410 −7.492 0.000 12556.748 0.000

WSt −1.950 −4.143 0.000 18216.559 0.000

SMt −1.950 −2.510 0.000 33158.676 0.000

Level 4 Tt of Class 1 22 1,254 −3.410 −9.752 0.000 8409.517 0.000

Tt of Class 2 −3.410 −9.877 0.000 9178.319 0.000

Tt of Class 3 −1.950 −9.580 0.000 8645.546 0.000

PARt −3.410 −10.731 0.000 9022.630 0.000

VPDt −3.410 −8.204 0.000 6832.120 0.000

WSt −1.950 −4.002 0.000 8959.233 0.000

SMt −2.860 −4.840 0.000 25952.219 0.000

Level 5 Tt of Class 1 23 1,512 −1.950 −9.329 0.000 9868.117 0.000

Tt of Class 2 −1.950 −9.477 0.000 10321.484 0.000

Tt of Class 3 −1.950 −9.232 0.000 11529.843 0.000

PARt −3.410 −10.438 0.000 9713.968 0.000

VPDt −1.950 −5.148 0.000 14088.944 0.000

WSt −3.410 −5.033 0.0002 7370.889 0.000

D.SMt −1.950 −7.751 0.000 4.3486 1.000

Level 6 Tt of Class 1 18 610 −1.950 −4.678 0.000 4913.821 0.000

Tt of Class 2 −1.950 −5.088 0.000 4961.036 0.000

Tt of Class 3 −1.950 −5.412 0.000 5098.185 0.000

PARt −1.950 −4.566 0.000 3155.029 0.000

VPDt −1.950 −2.720 0.000 6292.988 0.000

WSt −1.950 −3.935 0.000 1626.305 0.000

D.SMt −1.950 −5.641 0.000 32.735 0.018
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(Dawson, 1996). This inconsistency may arise because trees benefit 
from more effective roots in the upper moist soil layer (Wei et al., 
2017; Ochoa and Abdallah, 2023). Additionally, SMt  influenced the 
promotion of VPDt  and the demotion of WSt  in relation to Tt  
(Supplementary Figures  3, 5). However, it has no effect on the 

increase of PARt  to Tt , nor do WSt , VPDt  
(Supplementary Figures 1, 4, 6), even during Level 1 of the worst 
drought. In other words, PARt  affected Tt  independently, while the 
others did not. Across different levels (1–5), the total contributions 
of all four factors to Tt  also do not vary with tree size (Table 5). One 

FIGURE 3

SVR testing results for daily transpiration in Classes1 to 3 across Levels 1 to 6. (a) Level 1. (b) Level 2. (c) Level 3. (d) Level 4. (e) Level 5. (f) Level 6.

https://doi.org/10.3389/ffgc.2025.1572414
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Zhao and Zhu 10.3389/ffgc.2025.1572414

Frontiers in Forests and Global Change 09 frontiersin.org

possible cause could be that the drought was not severe enough, as 
our study site is located in a humid region of China. In contrast, a 
decoupling occurs between Tt  and environmental factors when RFt  
exceeds 300 mm. This decoupling may lead to an abnormal 

transpiration rate, resulting in the formation and accumulation of 
bubbles in the xylem ducts, which affects water transport and can 
cause cavitation in the xylem. Consequently, even during high rainfall 
months, if a tree has previously experienced drought stress, its 

FIGURE 4

SHAP values of environmental factors affecting transpiration in Classes 1 to 3 at Level 1. (a-c) SHAP values for Class 1 to 3. (d-f) mean |SHAP values| for 
Class 1 to 3.

TABLE 4 Mann–Whitney U test results for the mean |SHAP| values of all factors across three classes at Level 1–5.

Factors Group Classes Obs Rank sum Expected Z-value p-value

PARt
VPDt
WSt
SMt

Group 1 1 18 342 333
0.285 0.776

2 18 324 333

Group 2 1 18 346 333
0.412 0.681

3 18 320 333

Group 3 2 18 336 333
0.095 0.924

3 18 330 333

TABLE 5 Mann–Whitney U test for the accumulated SHAP values of all factors across three classes at Level 1–5.

Factors Group Classes Obs Rank sum Expected Z-value p-value

PARt
VPDt
WSt
SMt

Group 1 1 18 316 333
−0.538 0.591

2 18 350 333

Group 2 1 18 325 333
−0.253 0.800

3 18 341 333

Group 3 2 18 340 333
0.221 0.825

3 18 326 333
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FIGURE 5

SHAP values of environmental factors affecting transpiration in Classes 1 to 3 at Level 2. (a-c) SHAP values for Class 1 to 3. (d-f) mean |SHAP values| for 
Class 1 to 3.

FIGURE 6

SHAP values of environmental factors affecting transpiration in Classes 1 to 3 at Level 3. (a-c) SHAP values for Class 1 to 3. (d-f) mean |SHAP values| for 
Class 1 to 3.
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FIGURE 7

SHAP values of environmental factors affecting transpiration in Classes 1 to 3 at Level 4. (a-c) SHAP values for Class 1 to 3. (d-f) mean |SHAP values| for 
Class 1 to 3.

FIGURE 8

SHAP values of environmental factors affecting transpiration in Classes1 to 3 at Level 5. (a-c) SHAP values for Class 1 to 3. (d-f) mean |SHAP values| for 
Class 1 to 3.
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transpiration rate may remain abnormal, leading to continued water 
stress. Additionally, some studies indicate that this abnormality is 
significantly related to the obstruction of stomatal behavior caused 
by rainfall (Smith and McClean, 1989; Meinzer et al., 1995; Meinzer 
et al., 1997; Lu et al., 2016). Therefore, it is essential to pay closer 
attention to the impact of immediate rainfall on transpiration and its 
relationship with environmental factors. Given the low sensitivity of 
SMt  on Tt  in S. superba, we recommend mitigating the transpiration 
rate imbalance caused by rainfall thresholds by incorporating other 
shallow-rooted tree species.

Conclusion

This study demonstrates the application of Machine Learning 
(ML) in assessing tree water use concerning drought sensitivity 
analysis, revealing the threshold effect of monthly rainfall on the 
coupling of environmental factors in relation to transpiration. Five 
SVR models, which accounted for autocorrelation in daily 
transpiration of S. superba at five drought levels, revealed that daily 
transpiration is sensitive to all four environmental factors when 
RFt ≤300 mm, in the following order: PARt > VPDt > WSt > SMt . 
The mean total contributions to Tt  were ranked as follows: VPDt
> PARt > WSt > SMt . Additionally, this sensitivity and total 
contributions did not vary with tree size. However, when RFt
>300 mm, daily transpiration becomes insensitive to all 
environmental factors.
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