
Frontiers in Forests and Global Change 01 frontiersin.org

Point-of-care diagnostics and 
resistance phenotyping to 
combat ash dieback
Pierluigi Bonello 1*, Anna O. Conrad 2, Dušan Sadiković 3, 
Mateusz Liziniewicz 4 and Michelle Cleary 3

1 Department of Plant Pathology, The Ohio State University, Columbus, OH, United States, 2 USDA 
Forest Service, Northern Research Station, Delaware, OH, United States, 3 Southern Swedish Forest 
Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden, 4 Skogforsk – The 
Forest Research Institute, Ekebo, Sweden

Non-destructive tree phenotyping for resistance screening and early, presymptomatic 
disease detection figures prominently among the most important practical limitations 
inherent in forest health management. The need for point-of-care tools is particularly 
acute for managing diseases caused by non-native pathogens, often resulting 
in difficult-to-control biological invasions. One such case is represented by ash 
dieback in Europe, caused by Hymenoscyphus fraxineus, which has led Sweden 
to red-list its main host, European ash (Fraxinus excelsior). We evaluated the 
use of near-infrared (NIR) spectroscopy and machine learning for detection of 
presymptomatic infections by H. fraxineus and identification of disease-resistance 
European ash accessions. Here, we show that presymptomatic infected trees can 
be distinguished from pathogen-free trees with a testing error rate of 0.161 in a 
controlled inoculation experiment. We also show that the same approach can 
be used to identify disease-resistant European ash accessions based on data from 
two independent, multiyear clonal trials, with a testing error rate of 0.155. These 
results confirm that NIR spectroscopy combined with machine learning is sensitive 
enough for early disease detection and resistance screening in this system. This 
is consistent with prior findings in other tree pathosystems and suggests that this 
approach could be developed into an operational tool to facilitate the management 
of biological invasions of forest environments by non-native pathogens, including 
habitat restoration with resistant germplasm.
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1 Introduction

Invasions by non-native forest pathogens and insect pests (PIPs), often introduced into 
new environments through global commerce pathways, have dramatically altered forests 
worldwide, sometimes with enormous economic and ecological impacts (Gandhi and Herms, 
2010; Hicke et al., 2012; Loo, 2009; Lovett et al., 2016). By killing trees on landscape scales, PIP 
invasions lead to major losses in fundamental ecosystem services, such as weather and climate 
regulation, carbon fixation, and provisioning of abundant clean water, wildlife habitat, and 
fiber, with major impacts on environmental sustainability and human wellbeing. All these 
changes also have major disruptive effects on human communities that are directly forest-
dependent for their economies.

One important contemporary PIP example is Hymenoscyphus fraxineus (T. Kowalski) 
Baral, Queloz and Hosoya, the causal agent of ash dieback (ADB) in Europe. This 
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ascomycete fungus originates from East Asia, where it has 
co-evolved with, and is a benign associate of, native Fraxinus 
species, including F. mandshurica Rupr. (Cleary et al., 2016; Baral 
and Bemmann, 2014; Gross et al., 2014; Zheng and Zhuang, 2014). 
In Europe, however, the fungus is an aggressive pathogen of several 
species of Fraxinus, especially European ash (F. excelsior L.). Leaves 
and rachises are the primary habitats of H. fraxineus and the tissues 
in which the fungus completes its lifecycle, usually after leaf fall 
(Cleary et al., 2013; Gross et al., 2014). The fungus forms apothecia 
on rachises resting on the forest floor; during several weeks in the 
summer, apothecia release wind-disseminated ascospores that then 
invade through numerous infection points on leaves of young 
shoots, then spreading to petiole, rachis, and eventually woody 
tissue, causing necrosis and dieback of twigs, branches and stems. 
Young trees can be girdled and die quickly, while on older trees, the 
cumulative effect of multiple and annual infections leads to 
progressive tree decline and eventual tree death.

In Sweden, ash is considered an important, “noble” broadleaved 
tree species (Götmark et al., 2005). Despite its minority status relative 
to other tree species, it has regional importance, making up a large 
component of local broadleaved forest landscapes (Cleary et al., 2017), 
and is valued for its economic, cultural, and ecological importance. 
Nearly a decade after the first report of H. fraxineus in Sweden, the 
population of European ash had seriously declined to the point where 
it became a red-listed species (Hultberg et  al., 2020). Fortunately, 
several studies across Europe have demonstrated large genotypic 
variation in susceptibility to ADB among individuals, a low level (ca. 
1–2%) of natural resistance in the population, a strong genetic basis 
for resistance that is heritable, which suggests that considerable gain 
can be achieved through intensive selection and breeding (McKinney 
et al., 2011; Pliura et al., 2016; Pliura et al., 2011; Stener, 2013).

Recently, Hultberg et al. (2020) argued that ADB in Sweden poses a 
serious risk of instigating an extinction cascade due to the large number 
of threatened species associated with, or singularly dependent on, ash. 
Ash has a critical role as a keystone species, in that it provides a critical 
habitat for many other species and significantly contributes to the 
ecosystem functioning of temperate broadleaved forests (Pautasso et al., 
2013; Broome and Mitchell, 2017). Breeding for disease resistance is the 
only sustainable, long-term strategy to reduce the risk of local extirpation 
of ash and its associated biodiversity. Previous studies offer evidence for 
quantitative disease resistance (variably referred to as tolerance in the case 
of ADB) (Cleary et al., 2014; Liziniewicz et al., 2022), marked by specific 
constitutive biochemical differences that include several key compounds, 
including two coumarins, fraxetin and esculetin, and several other 
phenolics, especially secoiridoids (Nemesio-Gorriz et al., 2020; Sambles 
et al., 2017).

Resistance screening currently relies on multiyear experiments 
to expose ash accessions to natural infection in common garden 
experiments or genetic trials. Typically, parent trees are identified in 
the field in areas of high disease pressure as survivors who display 
largely healthy crowns. From the time propagative material is 
collected from these parents to the time it is planted and monitored 
for resistance, 3–10 years can pass. Thus, phenotyping efforts would 
be  greatly facilitated by non-destructive point-of-care tools to 
rapidly screen accessions for resistance, even before they are ever 
challenged with the pathogen. That is, such screening could, in 
theory, be applied directly on parent trees in the field, even in areas 
of low or no disease pressure, and extended to the offspring in the 

common garden for early identification of superior, i.e., disease-
resistant, genotypes.

Recently, advanced phenotyping techniques based on mid-infrared 
spectroscopy, specifically Fourier Transform Infrared (FT-IR) 
spectroscopy, coupled with multivariate statistical modeling, have 
shown significant potential for use in the classification of individual 
trees that are resistant to specific pathogens (Conrad and Bonello, 
2016). FT-IR spectroscopy is a type of vibrational spectroscopy that 
targets the region between 2,500 and 25,000 nm (4,000–400 cm−1) of 
the electromagnetic spectrum (Cozzolino, 2014). It measures the 
absorbance of organic chemical structures containing O-H, N-H, and 
C-H bonds (Cozzolino, 2014), which in plants are found in both 
primary and specialized metabolites (Martinelli et al., 2015). Thus, 
these methods are based on the discriminating power of chemical 
fingerprints, i.e., a profile based on all the chemicals present within a 
given sample (Conrad and Bonello, 2016). Their success is predicated 
on biochemical differences between resistance classes, such as those 
mentioned above for European ash. Indeed, we  were able to 
demonstrate the usefulness of FT-IR-based classification for ash 
dieback in prior work (Villari et al., 2018), while examples from other 
pathosystems include coast live oak (Quercus agrifolia Née) and 
Phytophthora ramorum Werres et al. (sudden oak death) (Conrad et al., 
2014), Norway spruce [Picea abies (L.) H. Karst.] and Heterobasidion 
annosum (Fr.) Bref. (annosus root and butt rot) (Mukrimin et  al., 
2019), and Austrian pine (Pinus nigra Arnold) and Diplodia pinea 
(Desm.) Kickx (Diplodia tip blight and canker) (Conrad et al., 2020b). 
However, while representing a considerable advancement for the rapid, 
non-destructive classification of trees into resistant and susceptible 
phenotypes, such techniques require highly specialized and expensive 
lab equipment and advanced technical knowledge, which is a 
significant obstacle to their uptake as a practical tool.

The solution is to create novel approaches that involve the use of 
relatively inexpensive, handheld instruments that require minimal 
training, allowing for point-of-care applications. In particular, Conrad 
et al. (2020a) demonstrated the potential of using a portable near-
infrared (NIR) sensor to detect the pre-symptomatic diseased state of 
rice plants for early detection of infection by the fungus Rhizoctonia 
solani J. G. Kühn, which causes rice sheath blight, while (Fearer et al., 
2022) demonstrated the feasibility of a similar approach on American 
beech (Fagus grandifolia Murray) trees infected with the causal agent of 
beech leaf disease (Ewing et al., 2019), the foliar nematode Litylenchus 
crenatae mccannii Handoo et  al. Unlike FT-IR spectroscopy, NIR 
spectroscopy targets the region between 750 and 2,500 nm (13,400–
4,000 cm−1) of the electromagnetic spectrum (Cozzolino, 2014), but like 
FT-IR, it measures organic chemical structures containing O-H, N-H, 
and C-H bonds (Cozzolino, 2014). Plant metabolism can be significantly 
altered by the presence of infectious organisms that activate plant 
defenses, even at a pre-symptomatic stage, i.e., before visual symptoms, 
and this can be detected in spectral profiles of the plants’ primary and 
specialized metabolites (e.g., Fearer et al., 2022; Conrad et al., 2020a). 
Based on the totality of this information, we hypothesized that disease-
resistant and disease-susceptible trees can also be  classified using 
NIR spectroscopy.

Therefore, the objective of this study was to test the applicability 
of portable NIR leaf reflectance spectroscopy as a rapid, 
non-destructive tool for the identification of pre-symptomatic 
ADB-infected trees (early detection) and the selection of 
ADB-resistant trees (resistance phenotyping).
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2 Materials and methods

2.1 Pre-symptomatic detection of 
H. fraxineus

2.1.1 Plant material and inoculation
To obtain infected but asymptomatic plants, F. excelsior seedlings 

were inoculated under controlled conditions in accordance with the 
inoculation assay described by Cleary et al. (2013). The experiment was 
performed in purpose-built humidity enclosures consisting of a PVC-pipe 
frame covered with transparent plastic sheeting (Supplementary Figure S1). 
The humidity enclosures were placed and maintained in climate rooms at 
the Biotron growth facility at the Swedish University of Agricultural 
Sciences, Alnarp, Sweden, for the duration of the study. Fifty uninfected 
one-year-old F. excelsior seedlings were exposed to a natural H. fraxineus 
spore rain as described below and constituted the inoculated treatment. 
The seed originated from a single location in Southern Sweden and the 
seedlings were up to ~25 cm tall at the time of the experiment. In the same 
climate room, 50 seedlings of the same genetic origin were placed in a 
separate, negative control humidity enclosure, which, therefore, had no 
spore rain. The two humidity chambers were placed on opposite sides of 
the room to minimize cross-contamination between the two seedling 
groups (Supplementary Figure S1). The plastic sheeting was secured by 
clipping it to the frame all around to maintain high humidity (which 
favors apothecia development on rachises and sporulation). High 
constant relative air humidity was maintained in the plastic enclosures by 
using ultrasonic humidifiers (Vevor 12 Head Ultrasonic Fogger 
Humidifier). Environmental parameters in the Biotron room were: 
24/19°C day/night temperature, with a 16 h photoperiod of 
90–100 μmol m−2  s−1 light intensity (measured inside the plastic 
enclosures), and relative air humidity of 80–90%.

Inoculation commenced on July 4, 2023, by placing sporulating ash 
rachises on a mesh suspended approximately 10–20 cm above the top of 
the seedlings in an amount sufficient to cover the whole inoculation area 
(at least 100 rachises). Rachises bearing fresh and maturing H. fraxineus 
apothecia were collected from the base of infected trees in a nearby 
infected ash progeny trial. Seedling exposure to the pathogen in the 
chamber lasted for a month, with fresh sporulating rachises being added 
every week. Both infected and control plants were first acclimated under 
the above-mentioned conditions for several days before the baseline 
measurements were taken to minimize abiotic stress signaling. On Aug. 
4, 2023, we collected leaflets for NIR measurements, then wiped them 
using 70% alcohol and stored them at −80°C until further use.

2.1.2 NIR spectral measurements
Two sets of NIR spectral measurements were acquired – baseline 

(pre-inoculation) and post-inoculation. Measurements on negative 
controls were done on the same days as inoculated plants. All 
spectra were acquired from the leaflet adaxial surface to maximize 
consistency across samples. The NIR spectra were collected using a 
handheld NeoSpectra Scanner (Si-Ware Systems, Menlo Park, CA, 
United States), with the spectral range of the instrument set between 
1,365–2,550 nm (3922–7,407 cm−1). A minimum of five readings 
(one per leaflet) from each seedling were acquired with 3-s scans 
and 7-s intervals each from infected and negative control plants.

In total, 247 baseline spectra were collected before the start of the 
inoculation experiment on June 30, 2023 (t0), from 46 trees randomly 
selected from the 100 trees in the experiment. A total of 502 scans 

were then taken from all 50 control trees and 49 inoculated trees (one 
tree died due to undetermined fragility) on August 4, 2023 (t1). Only 
data from seedlings confirmed infected (see below) were used for 
downstream spectral analysis.

2.1.3 Infection verification
After the infection period and spectral measurements, all 

inoculated seedlings were screened for the presence of H. fraxineus. 
All negative control plants were also screened to verify that no cross-
contamination had occurred between the two treatments. Genomic 
DNA was extracted from 1 to 2 leaflets (approximately 100 mg) from 
each plant using the DNeasy™ Plant Pro Kit (Qiagen, Valencia, 
California, USA) according to the manufacturer’s recommendations.

Screening was performed using H. fraxineus-specific ITS-based 
PCR primer pairs developed by Johansson et al. (2010). Amplifications 
were conducted in a 12.5 μL reaction volume, using 6.2 μL GoTaq ® 
G2 Green Master Mix (Promega, USA), 3.3 μL of molecular grade 
H2O, 0.5 μL of each 10 mM of each primer, and 2 μL of genomic 
DNA. PCR reactions were performed under the following conditions: 
5 min of 95°C followed by 35 cycles of denaturation at 95°C for 30 s, 
annealing at 62°C for 30 s, and extension at 72°C for 1 min, with a 
final extension step at 72°C for 8 min. The PCR amplicons were 
separated by gel electrophoresis on 1% agarose gel stained with 
GelRed (Biotium, Hayward, CA, USA) and verified under UV light.

2.2 Resistance phenotyping

2.2.1 Plant material
For this part of the study, we used two sources of plant material. 

In 2023, plant material was selected from a clonal field trial established 
in 2016 in Snogeholm, Sjöbo, Sweden (55°32′46.2”N 13°42′20.7″E). 
The trial was comprised of 7-yr-old trees derived from a selection of 
genotypes from around Sweden which showed good vitality and little 
to no symptoms of crown dieback. In 2024, we conducted a similar 
assay but on plant material selected from a 28-yr-old clonal seed 
orchard established in 1995  in Trollehom, Svalöv, Sweden 
(55°56′41.1252”N 13°12′32.1192″E).

2.2.2 NIR spectral measurements
Forty-four genotypes and up to five ramets per genotype were 

sampled across a gradient of low susceptibility to high susceptibility 
based on a 6-point scale of increasing disease severity from annual 
surveys during the previous 5 years. Health class ratings (HCR) were 
assigned as follows: 1 = symptomless, 2 = light damage, <1/3 of the 
crown has necrotic lesions on branches; 3 = light damage, <1/3 of the 
crown has necrotic lesions on branches and main stem is necrotic; 
4 = moderate damage, between 1/3 and 2/3 of the crown has necrotic 
lesions on branches and two or more necrotic lesions on stems; 
5 = severely damaged, more than 2/3 of the crown has necrotic lesions 
on branches and stems; 6 = dead.

In total, 24 clones with low susceptibility (HCR 1–3), and 26 
clones with intermediate to high susceptibility (HCR 4–5), were 
sampled. A minimum of five leaflets per tree were scanned for a total 
of 371 scans from 34 most resistant and 39 most susceptible 
individuals. Scans were collected on June 27 (resistant trees) and June 
29 (susceptible trees), 2023, prior to the peak sporulation period for 
H. fraxineus in southern Sweden. The NIR spectra were collected from 
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FIGURE 1

Presymptomatic verification of infection in the Biotron experiment 
via PCR using H. fraxineus-specific ITS-based PCR primer pairs 
developed by Johansson et al. (2010). (A) Control seedlings (n = 50). 
(B) Inoculated seedlings (n = 49). C − = negative control, i.e., H2O; 
C + = positive control, i.e., H. fraxineus DNA template.

the adaxial surface of the leaflet using the NeoSpectra Scanner, using 
the same set-up as in the inoculation experiment. Spectral 
measurements were taken in Trolleholm on July 2, 2024, from 32 
mature trees (comprising seven clones, up to 6 ramets per clone) 
known to be  resistant. Of the seven clones that were sampled in 
Trolleholm, six were also planted at Snogeholm.

2.2.3 Data preprocessing and analysis
Data were preprocessed and analyzed for all experiments in the 

same manner. Raw NIR spectra was imported into R version 4.4.0 
(RCoreTeam, 2024) for preprocessing and analysis. Raw reflectance 
data were visualized (R package: mdatools) (Kucheryavskiy, 2020), 
and outliers were identified and trimmed according to the method of 
Heim et al. (2018) (R packages: fda; fda.usc) (Febrero-Bande and de 
la Fuente, 2012; Ramsay et  al., 2024). Additional outliers were 
visualized using boxplots at 5188 cm−1 (reflectance > 18% was 
removed) and 7,230 cm−1 (reflectance < 45% was removed). Following 
removal of outliers, the remaining spectra from each individual tree 
were averaged and transformed with the second derivative function 
(R package: mdatools; width: 15, porder: 2, dorder: 2). Transformed 
data were then split into training and testing sets (80% training, 20% 
testing) while maintaining proportions of resistant and susceptible 
trees in each data set (R package: caret) (Kuhn, 2024).

Principal components analysis (PCA) with scaling was used to 
visualize variation between groups based on second derivative 
transformed spectra (R packages: stats, ggfortify, ggplot2, MixOmics) 
(RCoreTeam, 2024; Tang et al., 2016; Wickham, 2016; Rohart et al., 
2017). Sparse partial least squares discriminant analysis (sPLS-DA) 
with 5-fold cross-validation (CV) repeated 50 times was run to evaluate 
whether spectra could be used to discriminate between resistant and 
susceptible trees and to identify the most optimal parameters for group 
separation (R package: mixOmics) (Rohart et al., 2017; Le Cao et al., 
2011). sPLS-DA classification performance was assessed based on the 
repeated CV training maximum distance balanced error rate (and the 
maximum distance error rate for each class of the training data set). 
The balanced error rate (hereafter referred to as error rate) adjusts for 
the number of samples in each group and is useful for unbalanced data 
sets (Rohart et al., 2017). The repeated CV area (mean ± standard 
deviation) under the receiver operating characteristic curve (area 
under the curve, AUC) was evaluated as well, although for supervisory 
analysis, like the one performed here, it can only be  used as a 
complementary metric (Rohart et al., 2017). Additionally, the error rate 
of the testing set was evaluated to examine how the calibrated model 
performed on the testing data set.

3 Results

3.1 Pre-symptomatic detection of 
H. fraxineus

3.1.1 Verification of infection
Based on the analysis using species-specific ITS-based primers, all 

49 surviving seedlings from the inoculation chamber were shown to 
be positive for the presence of H. fraxineus DNA, thereby confirming 
successful inoculation, while all samples taken from the control 
chamber proved negative for H. fraxineus DNA, confirming the lack 
of any cross-contamination between the two chambers (Figure 1).

3.1.2 Classification based on pre-symptomatic 
infection

Spectra were averaged by tree at each scan time (Figure 2). Thirty 
seven of 749 spectra were identified as outliers and removed prior to 
averaging by tree. Clustering of trees based on time and treatment 
group was observed based on an unsupervised PCA (Figure  3). 
Pre-experimental (t0) readings clustered separately from experimental 
(t1) readings, particularly so for control trees.

The optimized sPLS-DA model of the t1 spectra contained four 
components with 50, 110, 6, and 150 spectral bands, respectively. The 
error rate at four components for the training set was 0.027 (N = 80), 
with an error rate of 0.021 for control and 0.034 for inoculated groups 
(Figure 4). The AUC was 1 for four components, although this metric 
can only be used as a complementary tool for evaluating classification. 
The error rate of the testing set was 0.161 (N = 19).

3.2 Resistance phenotyping

For the clonal material in the clonal trial in Snogeholm, 14 of 371 
spectra were identified as outliers and removed prior to averaging 
spectra by tree (Figure 5). No obvious clustering of trees by resistance/
susceptibility was observed based on an unsupervised PCA of the 
training data set (Supplementary Figure S2).

The optimized sPLS-DA model contained four components with 3, 
60, 2, and 11 spectral bands, respectively. The error rate of the training 
data set at four components was 0.146 (N = 60), with an error rate of 
0.186 for resistant and 0.106 for susceptible (Supplementary Figure S3). 
The AUC was 0.974 for four components, although this metric can only 
be used as a complementary tool for evaluating classification. The error 
rate of the testing set was 0.155 (N = 13).

The accuracy of the model was further evaluated using the 
Trollehom validation data set. Of 181 spectra, nine were identified as 
outliers and removed prior to averaging spectra by tree. The optimized 
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sPLS-DA model developed from the Snogeholm data set was used to 
predict the susceptibility of the Trolleholm trees. All Trolleholm trees 
were predicted as susceptible based on the Snogeholm model.

Due to the inability of the Snogeholm model to correctly classify 
the susceptibility of Trolleholm trees, a new model was calibrated using 
spectra collected from both Snogeholm and Trolleholm. All data were 
visualized using a PCA of second derivative transformed spectra. In the 
first two components, clustering of Trolleholm trees is observed 
(Supplementary Figure S4). The optimized sPLS-DA model based on 

the training data contained four components with 1, 40, 80, and 100 

spectral bands, respectively. The error rate at four components for the 
training set was 0.123 (N = 85), with an error rate of 0.170 for susceptible 
and 0.077 for resistant trees (Figure 6). The AUC was 0.982 for four 
components, although this metric can only be used as a complementary 
tool for evaluating classification. The error rate of the testing set was 
0.253 (N = 20). Classification of the testing data set is available in 
Table 1. While not all Snogeholm trees in the testing set were correctly 
classified, all Trolleholm trees were correctly classified in the testing set.

FIGURE 2

Biotron mean (A) raw and (B) second derivative-transformed NIR 
spectra from 3,922–7,325 cm−1. Color indicates time and treatment: 
baseline time point (Time 0) - control; first reading post-inoculation 
(Time 1) - control; first reading post-inoculation (Time 1) - 
inoculated. Some minor differentiations in reflectance and its 
derivative among the group means can be seen in different regions 
of the spectrum in both panels.

FIGURE 4

sPLS-DA projection of biotron first reading training data set with 
prediction background indicated by shading [orange (I), inoculated; 
blue (C), control], showing clear separation between treatments with 
minor overlap.

FIGURE 3

PCA of all biotron data. Color indicates time point (T0: baseline; T1: 
first reading) and treatment (control; inoculated). Clear clustering by 
treatment can be observed, with ~69% of the variance explained by 
the first two components.

FIGURE 5

Snogeholm mean (A) raw and (B) second derivative transformed NIR 
spectra from 3,922–7,407 cm−1. No differentiations in reflectance 
and its derivative are evident to the naked eye between the resistant 
and susceptible ash group means.
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4 Discussion

In this study, we  have demonstrated that point-of-care 
phenotyping using NIR spectroscopy of tree leaves, coupled with 
machine learning, is possible to detect presymptomatic infections in 
the ADB pathosystem, at least under controlled conditions. The results 
regarding phenotyping trees for resistance were also highly 
encouraging, with high predictive ability for the Snogeholm trial. 
When trees from both the Snogeholm and Trolleholm datasets were 

included in the model, the error rates were 0.077 and 0.170 for 
resistant and susceptible trees, respectively. The low error rates for 
susceptible trees is particularly relevant, as in any resistance screening 
program, it is especially important to exclude susceptible individuals. 
These error rates are also quite realistic, as the model predicted the 
phenotype correctly for 16 of 20 testing ramets between Snogeholm 
and Trolleholm, i.e., the overall error rate was 0.253 of the cases.

Conceptually, two fundamental, practical approaches can be used 
for the effective management of established forest pathogen invasions 
such as ADB, especially in combination: (1) surveillance/monitoring 
for pathogen detection and control, and (2) development of resistant 
hosts for restoration. To implement (1) fast, reliable, sensitive, and 
single tree-to-landscape scale diagnostics are necessary to prevent 
and/or delimit infestations to eradicate or contain them; to implement 
(2) rapid, reliable, and non-destructive screening for selection and 
breeding of resistant tree germplasm is a necessary prerequisite to 
restoring resilient environments in which tree-killing phytophagous 
insects and phytopathogens (PIPs) have become established. Although 
molecular methods have boosted our ability to accurately detect (and/
or diagnose) PIPs earlier than was once possible (Munck and Bonello, 
2018; Bonello, 2024), currently, this can be done only at a single tree 
level while screening for resistance is based on very time consuming, 
and expensive, destructive approaches that involve artificial 
inoculations or natural infection of test subjects. Both interventions 
require specialized training and extensive use of always scarce human 
capital to scout large areas, collect samples, and process them in the 
lab or in seedling trials.

Early detection of infected but asymptomatic (i.e., pre-symptomatic) 
plants is very important. Such trees represent a lag phase between 
infection and symptom expression that results in the true disease front 
always falling outside the margin of infection areas determined by visible 
symptoms (Figure  7), and furthermore, from an epidemiological 

FIGURE 6

sPLS-DA projection of Snogeholm and Trolleholm combined training 
data set with prediction background indicated by shading (blue: 
resistant; orange: susceptible), showing clear separation between the 
treatments with minor overlap.

TABLE 1 Actual and predicted phenotypes for the Snogeholm and 
Trolleholm testing data set based on the model calibrated using the 
Snogeholm and Trolleholm training data set.

Site Actual 
phenotype

Predicted 
phenotype

Correct?

Snogeholm Resistant Susceptible No

Snogeholm Susceptible Susceptible Yes

Snogeholm Susceptible Susceptible Yes

Snogeholm Susceptible Resistant No

Snogeholm Resistant Resistant Yes

Snogeholm Susceptible Resistant No

Snogeholm Susceptible Susceptible Yes

Snogeholm Susceptible Resistant No

Snogeholm Susceptible Susceptible Yes

Snogeholm Resistant Resistant Yes

Snogeholm Resistant Resistant Yes

Snogeholm Resistant Resistant Yes

Snogeholm Resistant Resistant Yes

Trolleholm Resistant Resistant Yes

Trolleholm Resistant Resistant Yes

Trolleholm Resistant Resistant Yes

Trolleholm Resistant Resistant Yes

Trolleholm Resistant Resistant Yes

Trolleholm Resistant Resistant Yes

Trolleholm Resistant Resistant Yes

FIGURE 7

Schematic representation of an infection center, e.g., ADB. The 
visible front is delimited by symptomatic trees, but that area will 
be surrounded by infected and asymptomatic trees (silent disease 
carriers). Unless those trees are identified and managed, the infection 
will keep spreading to naive trees.
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perspective, they can be considered as (potentially) silent disease carriers. 
This confirms prior results from our program, including early detection 
of rice plant diseases (Conrad et al., 2020a) and, significantly, beech leaf 
disease (Fearer et al., 2022), another devastating forest PIP (Ewing et al., 
2019). Whether our growth chamber results can be  translated to 
biosurveillance operations under variable field environments and 
settings or whether such an approach could provide sufficiently advanced 
warning to allow for pre-emptive sanitation (i.e., elimination of silent 
disease carriers) remains to be determined. Moreover, implementation 
of such an approach would presume acceptance of the concept that, once 
pre-symptomatic trees are located, they would have to be destroyed in 
an attempt to interrupt disease transmission. Such considerations are 
beyond the scope of our study, but it may be worth it to investigate the 
applicability and acceptability of an approach that could provide much-
needed early warning.

In the face of the ADB epidemic, “a glimmer of hope” lies in our 
ability to exploit the low proportion of genetic resistance to H. fraxineus 
exhibited by European ash (Gossner et al., 2023). Indeed, even if ADB 
could be detected early and transmission interrupted (or the disease 
eradicated in early stages of establishment in new areas), the question 
would remain of what to do in the aftermath of local ADB-induced tree 
loss, or indeed the epidemic overall. If society determines that ash 
ecosystem restoration is of pre-eminent importance, then developing host 
resistance is the ultimate solution, and such a program would need to 
be implemented on an operational basis as soon as possible, supported by 
adequate public and private resources (Showalter et  al., 2018). As 
Scandinavia has been a hot spot of extreme mortality since the start of the 
ADB epidemic (George et al., 2022), there is some urgency in conserving 
the remaining genetic diversity in ash populations, especially considering 
the imminent arrival of emerald ash borer (Agrilus planipennis Fairmaire). 
It is a fact that the development of resistance has been shown to be feasible 
even in naïve systems, i.e., those between partners that lack a 
co-evolutionary history. Examples exist with many recent epidemics by 
both non-native pathogens and insect pests – to wit: sudden oak death 
(Conrad et al., 2019; Conrad et al., 2017; McPherson et al., 2014; Conrad 
et al., 2014), emerald ash borer (Stanley et al., 2022; Koch et al., 2015), 
rapid ʻōhi’a death (Luiz et al., 2022), and laurel wilt (Hughes et al., 2022).

While prior research has shown that biochemical analysis could, at 
least in principle, be used specifically to identify resistant ash (Nemesio-
Gorriz et al., 2020; Sambles et al., 2017), the technology requires high 
levels of expertise, is logistically complex, and is prohibitively expensive 
in operational settings. Thus, screening for ash resistance so far has 
relied solely on testing individuals in common gardens by exposing 
them to natural infection, as in the case of our Snogeholm and 
Trolleholm trials (Liziniewicz et al., 2022). In this study, we clearly 
showed that NIR phenotyping of ash foliage can be highly effective and 
the tool itself is relatively inexpensive, with the caveat that we conducted 
our analyses in only two relatively close locations, albeit in different 
years. Thus, while extremely encouraging, validation of our models 
over larger spatial and temporal scales would be advisable before this 
approach can be operationalized.

Ultimately, the advantages afforded by our techniques could 
be extended to identifying resistant trees in advance of the epidemic 
front so that they can be propagated and used in breeding or directly 
in reforestation. Such usage would tremendously accelerate the 
process and allow forest managers to be much more proactive and 
effective in their fight against PIPs across the globe.
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SUPPLEMENTARY FIGURE S1

The humidity enclosures were placed and maintained in climate rooms in a 
Biotron growth facility. One enclosure served as a control chamber while the 
other served to inoculate the seedlings.

SUPPLEMENTARY FIGURE S2

PCA of Snogeholm training data set.

SUPPLEMENTARY FIGURE S3

sPLS-DA projection of Snogeholm training data set with prediction 
background indicated by shading (blue: resistant; orange:  
susceptible), showing clear separation between the treatments with 
minor overlap.

SUPPLEMENTARY FIGURE S4

PCA of second derivative transformed spectra from Snogeholm (green) 
and Trolleholm (orange). Shape indicates phenotype, resistant (circle) 
and susceptible (triangle). Some clustering by treatment can 
be observed, with ~ 61% of the variance explained by the first 
two components.
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