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Accurate mapping of tree species is critical for forest management, carbon

sequestration estimates and ecosystem assessment. Remote sensing provides

an efficient approach using satellite image time series (SITS), but complex

data poses challenges for classifiers and feature analysis. This study presents a

deep learning-based classification method using Sentinel-1/2 SITS for mapping

forest tree species and tree species biodiversity. Specifically, temporal data

from unlabeled forest pixels were used for pretraining the model through self-

supervised learning, followed by fine-tuning with species samples, enhancing

model performance. Various configurations of temporal data were tested for

classification, and their impact was evaluated. To address species maps accuracy

overestimation caused by homogeneous pure-species stands, a pseudo-

labeling approach was employed to incorporate mixed-species scenarios.

Additionally, statistical and visualization methods were applied to SITS and

model analysis. The results showed that longer time series tended to improve

species identification and model confidence, with OA increasing from 0.496

(6–7 months) to 0.795 (1–12 months), macro-F1 from 0.384 to 0.779, and a

significant improvement in predicted scores. As data from subsequent year

was incorporated, accuracy growth slowed and stabilized, reaching OA of

0.847 and macro-F1 of 0.836, compared to 0.764 and 0.737 for the non-

pretrained model. Certain vegetation indices, such as NDre and NDVIre, which

are sensitive to physiological changes, highlight species differences during key

phenological stages, especially between deciduous and evergreen species. This

study demonstrates the potential of combining SITS with deep learning for

species classification and provides a comprehensive analysis, contributing to

ecological research and sustainable forest management.
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1 Introduction

Forests are a key component of ecosystems, playing a crucial role in environmental
sustainability and human wellbeing. Accurate mapping of forest tree species distribution
and biodiversity is essential for forest management and conservation, ecosystem
assessment, and the quantification of ecosystem carbon storage (Felton et al., 2020;
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Hermosilla et al., 2022; Wang and Gamon, 2019; Xiao et al.,
2019). Tree species distribution information is vital for various
research, such as assessing the impact of extreme weather events
or climate change on forest ecosystems, and improving biomass
estimation accuracy through tree species data (Fassnacht et al.,
2014; Kumar et al., 2024; Lindner et al., 2010; Zhang et al., 2023).
Forest biodiversity is closely tied to productivity and influenced
by tree species composition, and biodiversity loss can significantly
reduce forests carbon absorption capacity, affecting global carbon
sequestration (Shirima et al., 2015). In many regions, tree species
maps are typically derived from field surveys, the high costs of
surveys often result in forest inventories being conducted only at
multi-year intervals and species maps are not wall-to-wall. This
does not meet the needs for mapping forest species over larger
areas, and the accessibility and adequacy of existing data remain
challenges (Blickensdörfer et al., 2024; White et al., 2016).

Remote sensing offers a promising and more cost-effective
alternative to traditional field surveys (Kollert et al., 2021;
Lechner et al., 2020). Earth observation satellites, such as Landsat
and Sentinel, provide continuous images of the earth’s surface.
These satellites can capture repeated images every few days and
compose satellite image time series (SITS), which provide massive
information about land cover (Miller et al., 2024). Moreover,
these data can be processed and accessed for free through Google
Earth Engine (GEE). Previous research has shown that the use
of SITS yields excellent results, especially in vegetation studies, as
multi-temporal images capture the phenological characteristics of
plants more effectively (Foerster et al., 2012; Hemmerling et al.,
2021). Phenological differences cause different tree species to be
at various growth stages (e.g., greenness rise, leaf on, greenness
fall, leaf off), leading to variations in appearance and physiological
traits, resulting in distinct spectral reflectance and change patterns.
Identifying distinct phenological characteristics and spectral-
temporal changes among species has proven to be helpful for
vegetation classification (Asner et al., 2008; Liu et al., 2023). Simply
stacking multi-temporal images may lead to the omission of critical
information due to algorithm limitations. Moreover, SITS often
contain redundant features, increasing computational time and
reducing classifier accuracy, a phenomenon known as the “curse of
dimensionality”. The key challenge is how to mitigate the impact
of high-dimensional data while identifying critical periods and
optimal features (Camps-Valls et al., 2007; Hu et al., 2019; Löw et al.,
2013). Common Machine Learning (ML) models such as Random
Forest (RF), Support Vector Machine (SVM), have been widely
explored for tree species classification (Fu et al., 2022; Hemmerling
et al., 2021; Immitzer et al., 2019; Melnyk et al., 2023). However,
these models process stacked temporal data independently, failing
to capture the temporal dependencies inherent in the input
(Ienco et al., 2017; Interdonato et al., 2019; Pelletier et al., 2019).
Another problem is that traditional models rely heavily on input
feature processing, struggling to leverage relationships between
multi-temporal data and information redundancy. Consequently,
many studies extracted key indicators based on feature selection
algorithms or domain knowledge to enhance feature representation
among species (Somers and Asner, 2014; Hu et al., 2019; You
and Dong, 2020). Even so, feature engineering is time-consuming
and challenging, and the resulting information is limited and
highly dependent on the algorithms employed (Dou et al., 2021;
Zhong et al., 2019).

Artificial intelligence (AI) has made significant advancements
in the past few years, studies have shown that neural networks
can identify and learn time dependencies in sequential data
(Rußwurm and Körner, 2020; Zhong et al., 2019). In contrast
to traditional ML, neural network-based deep learning (DL)
automatically extract and learn features from vast amounts of
data. Convolutional neural networks (CNNs) extract features in
the short term through convolution, but may overlook long-
term dependencies. Recurrent neural networks (RNNs) such as
Long Short-Term Memory (LSTM), capture time dependencies
by iteratively updating hidden state, which encodes information
from previous time steps. However, this can increase computational
complexity and noise, resulting in reduced efficiency (Rußwurm
and Korner, 2017; Zhao et al., 2022). Transformer models based
solely on the self-attention mechanism process long-term data
without recursion, allowing each time step to compute correlations
with others in parallel, thus enhancing training efficiency while
mitigating noise accumulation and information loss (Vaswani
et al., 2017). It has significantly impacted DL and has been
effectively utilized in remote sensing research (Chen et al., 2022;
Li et al., 2022). The advantages of Transformer in identifying
key features and temporal dependencies makes it an excellent
choice for tree species classification based on SITS. Given the
scarcity of labeled data, a prevalent strategy involves combining
pretrain and fine-tune. Pretraining a model on a large dataset
allows it to learn general features and representations, followed
by fine-tuning the model on a specific task dataset to adapt it
for the intended purpose. This transfer of knowledge effectively
enhances the model performance and generalization (Jing and
Tian, 2021; Misra and Van Der Maaten, 2020). Although DL models
demonstrate excellent performance, they are often considered as
“black boxes” because of the hard interpretation of their decision-
making processes. Explaining the feature learning pipeline can
clarify the complex processes of information capture, supporting
the reliability of results, and this explanatory process may also
provide valuable insights for users (Lipton, 2018; Samek et al., 2017;
Xu et al., 2021).

The Forest Inventory Data typically includes both pure and
mixed species units, but many studies focus solely on pure
stands, which may oversimplify scenarios like mixed stands and
limit model generalization. Moreover, using the same source for
validation may overestimate mapping accuracy (Blickensdörfer
et al., 2024; Fassnacht et al., 2016). Adjusting the dataset to
include more samples from diverse forest stands can address
the limitations. Pseudo-labeling is a semi-supervised learning
technique that generates labels for unlabeled samples through
supervised training with labeled samples, enriching the dataset
and improving model generalization (Blickensdörfer et al., 2024;
Tan et al., 2015; Zhou, 2018). Combining DL with pseudo-labeling
could achieve higher-quality dataset optimization, making it more
representative of the study area forest.

The objective of this study is to employ a Transformer-
based model to process SITS for tree species identification, while
analyzing spectral-temporal data and interpreting the model. The
model was pretrained on unlabeled forest pixels to enhance
performance, and the dataset was optimized using Pseudo-labeling
to include mixed-species scenes. Then the pretrained model was
fine-tuned on the dataset, achieving precise forest tree species
and tree species biodiversity mapping. Various methods based on
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statistic and visualization, were utilized to gain a comprehensive
understanding of tree species classification using SITS and explore
deep learning model. The original SITS data was analyzed from
different perspectives, evaluating the contribution of spectral-
temporal features, discussing the similarities and differences among
tree species as well as the challenges of classification. Meanwhile,
the impact of time series data composition on model performance
was assessed and the model mechanism was analyzed.

2 Materials

2.1 Study area

The study area (approx. 35◦ 58′–37◦ 2′ E and 111◦ 45′–
112◦ 32′ N) is located in the Shanxi Province, China. It includes
the Huodong National Coal Mining Area and Taiyue Mountain
National Forest Park, the largest forest reservation in Shanxi
(Figure 1). The Taiyue Mountain and surrounding forests form an
important nature reserve with a temperate continental climate, an
average annual temperature of 9.2 ◦C, and 564 mm of precipitation.
The study area covers a total of 7,715.17 km2, with elevations from

534 to 2,564 meters, and forests occupy 3,861.14 square kilometers,
approximately 50% of the region, which belongs to the temperate
northern forest zone. The main dominant tree species include:
Larix principis-rupprechtii (LP), Pinus tabuliformis (PT), Pinus
bungeana (PB), Platycladus orientalis (PO), Quercus wutaishanica
(QW), Betula spp. (BA), Populus spp. (PS).

2.2 Remote sensing data

Based on the GEE platform, we used Sentinel-1 Ground Range
Detected (GRD) backscatter products and Sentinel-2 MultiSpectral
Instrument (MSI) Level-2A products from 2022 to 2023, including
cloud removal, monthly median value extraction, and resampling
to a spatial resolution of 10 meters, visit https://developers.google.
com/earth-engine/datasets/catalog/sentinel for more details. We
calculated commonly used vegetation indices and additional
indices recognized in prior researches as valuable for vegetation
remote sensing with Sentinel (Frampton et al., 2013; Li et al.,
2014; Ngo et al., 2023; Schulz et al., 2024). Combined indices
with the original bands, 33 variables include: B2-B8, B8A, B11-
12, VV, VH, NDVI, GNDVI, LSWI, EVI, NDVIre1-3, NDre1-2,

FIGURE 1

Study area and reference data. (A) The location of the study area in Shanxi Province, China. (B) The elevation information of study area. (C) The
distribution of tree species reference data (Background: Sentinel-2 image from July 2023, bands R: 4, G: 3, B: 2; World Hillshade from ArcGIS Pro,
Esri). Huodong: The Huodong National Coal Mining Area. Tree species: Larix principis-rupprechtii (LP), Pinus tabuliformis (PT), Pinus bungeana (PB),
Platycladus orientalis (PO), Quercus wutaishanica (QW), Betula spp. (BA), Populus spp. (PS).
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Clre, PSRI, MSAVI, MSRre, MTCI, CCCI, S2REP, RVI, VVVHR,
NDIVV. Full names and formulas can be found in Supplementary
Table S1. Temporal profiles of these indices for different tree
species are provided in Supplementary Figures S1, S2, the plots
highlight species-specific spectral, phenological, and structural
differences, such as distinct temporal patterns between deciduous
and evergreen trees, and backscatter contrasts between coniferous
and broadleaf trees (Supplementary Figure S3).

The European Space Agency (ESA) WorldCover 10 m v200
product was used in this study to extract forest areas mask.

2.3 Ground reference dataset

As reference, we used the Forest Inventory data provided by
Taiyue Mountain forest administration. The data was collected
around 2020 and 2021 through field surveys and high-resolution
images, recording forest resource attributes such as dominant
and secondary species, stand age and area in polygons. We
selected seven main tree species in the study area as target
classes, categorizing other species as “Others” (mostly broadleaf)
for the final tree species mapping (Figure 1). Reference points was
randomly generated within each polygon, imposing constraints of
over 20 meters between points and 30 meters from plot edges,
and the number of points was based on plot area, resulting in
a reference dataset. To address the simplification of mixed forest
scenarios and accuracy overestimation resulting from the use of
only pure-species samples, we also selected mixed-species plots to
create pseudo-labeling samples, combining them with pure samples
for DL model training and evaluation. The specific methods are
detailed in section 3.1. We employed stratified sampling to select
60% of the samples from each species as an independent testing
dataset to prevent data leakage (Table 1). The remaining 40% of
samples were used for training and validation with five-fold cross-
validation, each fold involved using one subset for validation. This
process ensured validation on entirely different samples, aiming
to thoroughly evaluate model performance, ensure generalization
ability, and adjust model hyperparameters.

Additionally, forest mask was used to generate unlabeled
pretraining forest samples by creating grid points at 100 m
intervals (10 rows/columns for images), resulting in over 380,000
unlabeled samples.

3 Methods

3.1 Tree species dataset optimization

Forest inventory data consists of polygonal plots documenting
the dominant and secondary tree species. Previous studies
commonly used samples from pure units for model training and
accuracy assessment (Immitzer et al., 2019; Yang et al., 2024),
which may reduce dataset representativeness, lead to lower model
performance in identifying mixed-species areas and overestimate
mapping accuracy (Blickensdörfer et al., 2024). It’s easier to
distinguish between evergreen and deciduous species due to their
greater phenological feature differences. To ensure credibility for
the pseudo samples added to the dataset, only mixed units of
evergreen and deciduous species were used. Specifically, pure units
of target tree species were selected firstly to generate pure samples,
then evergreen-deciduous mixed units among the seven target tree
species were selected to generate unlabeled samples. The process
for generating pseudo-labels for unlabeled samples based on deep
learning classification model are as Figure 2. First, the pretrained
model was fine-tuned using labeled samples from pure units of
two species (one evergreen and one deciduous), to obtain a binary
classification model. Next, the unlabeled samples of mixed units
were input into the binary classification model, which outputs
predicted scores ranging from 0 to 1 for each sample. The class with
the highest score was assigned as the pseudo-label, and samples
with highest scores above 0.9 were added to the final dataset.

3.2 Classification model based on
transformer

3.2.1 Transformer
The core of Transformer is the self-attention mechanism, which

captures internal relationships between elements at any position
in a sequence, excelling at handling long-term dependencies and
capturing relevant information (Rußwurm and Körner, 2020).
The complexity and temporal correlation of SITS data make
Transformers an ideal choice for tree species classification tasks.
The original pixels time series data X = {x1, x2, . . . , xn} is input, n
representing the month. The data embedding process uses a linear

TABLE 1 The dataset for tree species mapping.

Short Species Type Samples (pure:
pseudo-labeled)

Training and
validation

Testing

LP Larix principis-rupprechtii Deciduous 8,924 (7,754:1,170) 3,569 5,355

PT Pinus tabuliformis Evergreen 18,155 (11,936:6,219) 7,262 10,893

PB Pinus bungeana Evergreen 4,666 (4,170:496) 1,866 2,800

PO Platycladus orientalis Evergreen 8,532 (6,856:1,676) 3,412 5,120

QW Quercus wutaishanica Deciduous 13,802 (8,710:5,092) 5,520 8,282

BA Betula spp. Deciduous 8,053 (6,898:1,155) 3,221 4,832

PS Populus spp. Deciduous 1,494 (1,322:172) 597 897

OT Others – 2242 896 1,346

Total 65,868 26,343 39,525

The tree species abbreviations, types, sample quantities (including pure units and pseudo-labeled samples); the number of samples used for training and validation in 5-fold cross-validation
and for independent testing.
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FIGURE 2

Optimizing the dataset through pseudo-labeled sample generation.

dense layer to project the original time series observation data
into a high-dimensional representation Linear(X), then the sine
and cosine functions of different frequencies are used to generate
“positional encodings”, which have the same dimension as the
embeddings and are added to them (Vaswani et al., 2017):

PE(xn) =
{

sin
(

n/10000
2i

dmodel

)
, IF i is even

cos
(

n/10000
2i

dmodel

)
, IF i is odd (1)

Em (X) = Linear (X) + PE (X) (2)

Where n is the time position, i is the dimension index, and dmodel is
the embedding dimension. The embedding dimension in this study
is dmodel = 512.

The Em(X) is projected onto three matrices Q, K, V by stacking
multiple query vectors (q), key vectors (k), and value vectors (v)
using corresponding weight matrices WQ, WK , WV , these matrices
are updated during the model training. Then, the scaled dot-
product attention function measures similarity by dot-multiplying
a query vectors (Q) with a set of key vectors (K), normalizes the
result by dividing the dimension of key vector

√
dk, and maps it to

the weighted time series data X′:

X
′

= Attention (Q,K,V) = softmax
(

QKT
√

dk

)
V (3)

To address the limitations of single-head attention in capturing
information from complex time series data, Transformer
introduces multi-head self-attention, which maps Q,K,V to
different feature subspaces using distinct linear layers, executes
self-attention in parallel across heads, and concatenates outputs to
project into the final hidden representation:

MultiHead (Q,K,V) = Concat
(
head1, . . . , headH

)
(4)

Where headH is the self-attention output of each head. The
model consists of Transformer blocks, including Multi-Head
Attention, Feed-forward networks, residual connections, and
layer normalization. By stacking multiple layers, the embedded
data is processed by the first layer to produce a hidden
representation, which serves as input for the next layer, facilitating
information flow and the progressive extraction of high-level

feature representations (Figure 3A). This study employed multi-
head attention with 8 heads and stacked 3 Transformer layers to
capture the complex relationships and information of time series
data for identifying tree species.

3.2.2 Classification model construction
Self-supervised learning involves pretraining models on

specific tasks to learn feature representations from the data, which
can be applied to enhance model performance in downstream tasks,
especially when the amount of labeled data is limited (Jing and
Tian, 2021). In this study, we referenced the method of Yuan and
Lin (2021) and employed a pretrain task that predicts the temporal
data values of samples, enabling the model to learn the spectral-
temporal feature context of tree pixels from a large set of unlabeled
data (Figures 3B,C). During the pretrain stage, time series data
from unlabeled forest samples, which were generated from the
forest mask, were used to pretrain model. Specifically, we added
uniformly distributed noise between −0.5 and 0.5 to the feature
values of 4 time points from the 24 in the time series, and trained the
model to predict original values of the noisy feature points, using
Mean Square Error (MSE) as the optimization function:

MSEloss = 1
n
∑n

i = 1 (oi−oi)2 (5)

Where n is the number of time points with added noise, oi is the
original value, and oi is the predicted value. The model has a hidden
size of 512, uses the Adam optimizer with a learning rate of 1e-4,
a batch size of 512, is pretrained for 60 epochs (with 10 warm-up
epochs), and has a dropout rate of 0.1.

After the pretrain stage, we extracted time series feature values
for tree species sample along with their species labels, adapting the
pretrained model for class identification by altering the output layer
to create a classification model that maps input data to tree species.
The model was fine-tuned using labeled sample data, employing
Cross-Entropy loss as the optimization function to measure the
difference between the model’s output and the actual labels for
adjusting model parameters:

CrossEntropyloss = −
∑C

i = 1 yi log
(
ŷi
)

(6)

Where C the number of classes, yi is the ground truth, and ŷi is
he predicted probability for class i. The model is fine-tuned for 100
epochs using the Adam optimizer with a learning rate of 2e-4 and a
batch size of 512.
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FIGURE 3

(A) Transformer model architecture. (B,C) Illustrate the pretraining and fine-tuning processes.

3.3 Spectral-temporal traits analysis

3.3.1 Separability index between tree species
Intra-class and inter-class variability are crucial metrics for

evaluating a feature set’s ability to distinguish classed, meaning
that a class should be most accurately classified when it
maximizes differences with other classes while maintaining internal
consistency (Hu et al., 2019). The Separability Index (SI) is used
to describe the separability between pairs of classes (Somers et al.,
2010), with higher SI values indicating better separability of the two
species in a specific spectral-temporal feature. It is calculated using
the following formula:

SIij
(
v, d

)
=

1inter(i,j)
1intra(i,j)

=
|Mi−Mj|

1.96 × (σi+σj)
(7)

Where i, j represent two different species, while Mi,Mj and
σi, σj denote the sample means and variances for the respective
species. v = {NDVI,GNDVI, LSWI, . . . ,NDIVV} represents the
features used to calculate SI, and d = {1, 2, 3, . . . , 24} indicates
the time points (months).

We calculated the SI for all species pairs to assess key variables
and moments for distinguishing tree species. To comprehensively
assess the separability among tree species, we averaged the paired

indices to obtain a global separability index (SI-global), calculated
as follows:

SIglobal
(
v, d

)
= Mean

(
SIij(v, d)

)
(8)

Where SIij represents the separability index between i and j, v and d
is features and time points. We obtained a matrix with dimensions
(v, d) representing the global separability index for each feature
variable at all time points, indicating the overall capability to
distinguish between the various tree species.

3.3.2 Principal component analysis
Principal component analysis (PCA) is commonly used for

dimensionality reduction and serves as a descriptive statistical
method to explain variance in multi-dimensional datasets. It
projects original multi-dimensional data into a new coordinate
system through linear transformations, consolidating information
into a few principal components (PCs) while maximizing variance
retention and reducing dimensionality (Jolliffe and Cadima, 2016).
We applied PCA on tree species samples’ bands and index data. The
data was standardized, and the covariance matrix was calculated
to extract the main independent variables and select the principal
components that explain the majority of the variance. We then
analyzed the PCs and their relationships with the original features
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(bands and indices), aiming to assess the significance of these
features. Additionally, PCA was employed on each month’s data
separately to reveal that the importance of individual variables
varies throughout the year.

3.4 Interpretation for deep learning
classification model

3.4.1 Analysis of self-attention weight matrices
Extracting the self-attention weight matrix from the trained

model reveals how it focuses on different time points or features,
illustrating the influence of low-level inputs on high-level features
and the mechanisms of feature transformation (Rußwurm and
Körner, 2020). The weight matrix is an n-dimensional square
matrix (n is the sequence length), where each element weightij
indicates the attention of time point i on j. High weight values
suggest the significance of certain time points in relation to high-
level features. Transformer employs multi-head self-attention,
where each head independently focuses on different parts of
the input sequence. This allows the model to capture diverse
features by highlighting various relationships, resulting in distinct
distributions of high values across weight matrices. Examining the
weight matrices of different heads reveals key time points and their
relationships, helping to reveal underlying patterns in the data
and understand the model’s decision-making process. Integrating
the weights from all heads provides a global perspective across
different layers, revealing overall attention patterns and enhancing
our understanding of how the model processes input sequence data.
We extracted and visualized the attention weight matrices for each
tree species from all heads of layers.

3.4.2 Hidden features visualization
In Transformer neural network, input data is processed

through multiple layers, resulting in increasingly complex features.
This hierarchical structure gradually builds higher-level abstract
features from simple raw characteristics. When processing SITS,
the model first captures low-level features, such as changes in
pixel reflectance and index fluctuations. As the data passes through
intermediate layers, the model may identify patterns or trends in
the time series, such as specific spectral variations for certain pixel
types and differences between categories. In the deeper layers, the
model extracts high-level features, which may include complex
spatiotemporal relationships and changes in time series values,
allowing it to link deep temporal features to the target task and
improve accuracy.

We employed t-distributed Stochastic Neighbor Embedding
(t-SNE) to visualize the hidden feature outputs from different
layers of the classification model. t-SNE projects high-dimensional
data points into a lower-dimensional space while preserving the
neighborhood relationships of the original data, enabling better
visualization in the low-dimensional space (van der Maaten and
Hinton, 2008). The hidden features from different layers was
projected into a two-dimensional space to visualize dynamics of
the extracted features, approximating how the model extracts and
captures key features from multidimensional time series data to
distinguish between different tree species during classification.

3.4.3 Evaluation of soft outputs
The classification model analyzes the input time series data

and applies a Softmax function to produce soft outputs, which are
normalized prediction scores for each tree species. These scores
indicate the model’s estimated probability of the sample belonging
to each species, with the highest score determining the predicted
output. In addition to evaluating the performance of the model
based solely on overall or class-specific accuracy, we tried to
examine how different constructions of time series data impact
predictions from an “internal” perspective. The predicted scores
of test samples’ true classes were used as a reference metric, which
indirectly reflects the confidence and reliability of the classification
model outputs. By observing how these predicted scores vary with
changes in the time series data, we aim to dynamically monitor how
the input data composition influences multi-species classification
and the resulting accuracy variations.

3.5 Biodiversity estimation

To further analyze the forest ecosystem in the study area,
we calculated biodiversity indices based on the final tree species
classification map: Species Richness, the Shannon-Wiener Index,
and Simpson’s Diversity Index (Peng et al., 2021). Species Richness
reflects diversity by simply counting the number of species in
a sample. The Shannon-Wiener Index takes into account both
species richness and evenness, based on the relative abundance of
each species in the sample. Simpson’s Diversity Index emphasizes
dominant species by considering the square of relative abundance,
highlighting species evenness. The formulas are as follows:

R = S (9)

H = −6s
i = 1pilnpi (10)

D = 1−6s
i = 1pi

2 (11)

Where R is Species Richness, H is Shannon-Wiener Index, D is
Simpson’ s Diversity Index, S is total number of species in sample,
and pi is the proportion of individuals of species i relative to
the total number of individuals. we calculated each index at a
resolution of 100 m.

3.6 Accuracy evaluation

We generated a confusion matrix from validation results
and calculated six commonly used metrics: Overall Accuracy
(OA), Kappa, User’s Accuracy (UA), Producer’s Accuracy (PA), F1
Score and macro-F1. UA (Precision) and PA (Recall) focus on
class-specific accuracy, while the F1 Score combines both for a
comprehensive measure. OA, Kappa and macro-F1 evaluate overall
performance.

UA = TP/(TP+FP) (12)
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PA = TP/(TP+FN) (13)

OA = Ncorrect/Ntotal (14)

Kappa = (Po−Pe)/(1−Pe) (15)

F1Score = 2 × (UA × PA)/(UA+PA) (16)

macro−F1 =
∑k

i = 1 F1Score/k (17)

Where k is the number of classes, TP is the number of true
positives, FP is the number of false positives, FN is the number
of false negatives, Ncorrect is the number of corrected classified
samples, Ntotal is the number of all samples, Po is the overall
accuracy, Pe is the proportion of agreement expected by chance.

Considering the potential bias caused by the spatial distribution
of samples, we adopted an inverse sampling-intensity weighted
method (De Bruin et al., 2022). This method corrects estimation
bias by assigning more weight to sparsely sampled areas and
less weight to densely sampled areas, based on the sample
distribution density. Using the Kernel Density Estimation (KDE)
method from the scikit-learn package in Python (Pedregosa
et al., 2011), we estimated the sample point density and applied
inverse sampling weights. Additional accuracy metrics, including
weighted-OA, weighted-kappa, weighted-F1 and weighted-macro-
F1, were calculated to provide a more comprehensive evaluation
of accuracy.

4 Results

4.1 Model validation

Five-fold cross-validation was employed to evaluate the model
performance and generalization ability based on 2 years data,
with accuracy variations and F1-scores for each species shown in
Figure 4. The model showed stable performance across different
folds, with an average Kappa of 0.78, OA of 0.82, and macro-F1 of
0.80. The F1-scores for each tree species were also consistent, with
average values as follows: LP 0.83, PT 0.88, PB 0.76, PO 0.83, QW
0.76, PA 0.84, PS 0.76, OT 0.75. The lowest standard deviation was
for PT 0.003, while the LP, PB, PO, QW, and BA were around 0.013,
highest standard deviation was for OT 0.037. These results indicate
that the model is stable and reliable for tree species classification,
and the final accuracy to be confirmed by the testing samples.

4.2 The impacts of time series data
construction

We first tested the model using only data from June to July
2022, and the results achieved an OA of only 0.49, Kappa of

FIGURE 4

The results of 5-fold cross-validation. (A) Box plots for Kappa, OA,
and macro-F1. (B) F1 scores for each tree species (bars represent
the mean values, and error bars indicate the standard deviation).

0.38 and macro-F1 of 0.38. We then gradually extended the time
series by adding 1 month of data at both the start and end in
each iteration, analyzing the impact of varying time series length
(Figure 5). The results showed that increasing the input length
gradually improves the performance of the model. When the series
was extended to include data from April to September, which is
commonly used for vegetation and crop remote sensing studies,
the classification accuracy significantly improved, with an OA of
0.68, Kappa of 0.62, and macro-F1 of 0.64. This time range covers
the greenness rise and fall period for most tree species, as well as
the leaf-on and off period for deciduous species. As the temporal
depth increased to cover the late leaf-fall period of deciduous
trees, feature differences between evergreen and deciduous species
grew, resulting in a gradual improvement in each classification
accuracy metrics. The OA approached 0.8, with a macro-F1 of 0.78,
using monthly data for all of 2022, demonstrating effective species
differentiation.

Additionally, we incorporated data from the following year
(2023) into the time series, adding one month at a time (13–
24 months represent January to December 2023). This approach
aimed to determine whether extending the time series beyond an
entire growth cycle would enhance accuracy of the model and
capture more potential time dependencies and hidden features
across annual data. The results showed that extending the length
slightly improved classification accuracy, but the gains were much
smaller than those seen when the temporal data did not cover
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FIGURE 5

Accuracy and F1 Score variations of different time series construction (1–12 represent January to December 2022, 13–24 represent January to
December 2023).

a complete growth cycle. Moreover, simply extending the time
series does not guarantee improved accuracy. For instance, when
the data was extended by an additional 3 months (i.e., 1–15
months) beyond the full year of 2022, here was little improvement
in accuracy, with the macro-F1 fluctuating around 0.77 and no
increase in OA or Kappa. This indicating that the new data may
lack significant additional information. As data from the second
year (2023) growing season was incorporated, all metrics continued
to grow gradually. Extending the temporal length to 24-months,
covering 2 years, all accuracy metrics reached their highest level:
OA 0.847, Kappa 0.815, and macro-F1 0.836, Both the accuracy
metrics and the F1 score growth curve approached a stable state
(Figure 5). We also tested the model using only Sentinel-2 24-
months data for classification, and the results showed slightly lower
accuracy compared to the combination of two data sources, with

an OA of 0.819, Kappa of 0.782, and macro-F1 of 0.805 (confusion
matrix in Supplementary Table S2).

The Inverse sampling-intensity weighted method was used to
account for potential estimation bias from the spatial distribution
of samples. Additional weighted accuracy metrics were calculated,
with the confusion matrix shown in Table 2 (Estimated sampling
intensity and sample weights distribution in Supplementary
Figure S4). The results show a slight decrease in F1 scores for
several species, with PO and BA decreasing from 0.85 and 0.86
to 0.81, respectively. There were also adjustments in the overall
accuracy metrics, with OA decreasing from 0.847 to 0.834 and
macro-F1 dropping from 0.836 to 0.813. These adjustments further
improved the reliability of the results, and the overall performance
remains satisfactory.

TABLE 2 Confusion matrix of the classification model using 24-months data.

Map
class

Reference class (samples) Accuracy

LP PT PB PO QW BA PS OT UA PA F1
score

Weighted-
F1

score

LP 4,349 229 0 4 117 181 15 10 0.88 0.81 0.84 0.81

PT 253 9,411 6 43 276 113 74 21 0.92 0.86 0.89 0.89

PB 7 46 2,318 277 357 1 0 33 0.76 0.82 0.79 0.77

PO 13 83 270 4,472 423 22 0 21 0.84 0.87 0.85 0.81

QW 230 793 177 293 6,763 212 29 124 0.78 0.81 0.80 0.79

BA 427 181 0 16 157 4,279 23 7 0.84 0.88 0.86 0.81

PS 48 93 1 8 22 22 756 4 0.79 0.84 0.81 0.78

OT 28 57 28 7 167 2 9 1,126 0.79 0.83 0.81 0.81

OA = 0.847 Kappa = 0.815 macro-F1 = 0.836

OA_w = 0.834 Kappa_w = 0.791 macro-F1_w = 0.813

Confusion matrix along with accuracy metrics, and adjusted metrics using Inverse sampling-intensity weighted (Weighted-F1 Score, OA_w, Kappa_w, and macro-F1_w represent the
weighted metrics).
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FIGURE 6

Tree species map of study area. A-G represent the comparison regions with: (1) Sentinel-2 RGB from July 2023 (2) forest investigation map and (3)
predicted tree species map.

4.3 Forest tree species and biodiversity
map

By using 24 months data, the model demonstrated its ability
to produce high-quality tree species classification. We applied
the trained model to process time series data of all forest pixels,
producing a tree species distribution map for the entire region
(Figure 6). The map showed good spatial consistency with the
forest inventory reference data, demonstrating the reliability of
the classification outcomes. The area statistics for each tree
species are as follows: Pinus tabuliformis covers the largest area at
2,368.54 km2, followed by Quercus wutaishanica at 760.14 km2.
Larix principis-rupprechtii, Pinus bungeana and Betula spp. have
similar coverage, with 138.64 km2, 145.14 km2, and 136.29 km2,
respectively. Populus spp. occupies a small area of 17.36 km2, while
Others (mainly broadleaf) cover 123.53 km2.

Three biodiversity indices were calculated using the tree species
distribution map and displayed the results (Figure 7). The Species
Richness ranges from 1 to 8, indicating the number of tree species

within a unit. The Shannon-Wiener Index ranges from 0 to 1.949,
with higher values indicating a more complex and even tree species
composition. The Simpson’s Diversity Index ranges from 0 to
0.851, with values closer to 1 indicating that most individuals are
concentrated in a few species, reflecting lower evenness. These
results illustrate the biodiversity of the study area forest, offering
insights into the health and resilience of ecosystem.

4.4 Key features analysis by statistical
methods

The global separability index (SI-global) combines the feature
variable separability of various tree species, as shown in Figure 8A,
where the intensity of colors indicates differentiation of a feature
variable among tree species at a specific time point, reflecting
its overall capability to distinguish between species. The results
showed that the vegetation indices (e.g., NDVI, GNDVI, NDre1,
CIre, etc.) calculated from NIR and red-edge bands demonstrate
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FIGURE 7

Biodiversity indices of the forest in study area. (A) Species Richness. (B) Shannon-Wiener Index. (C) Simpson’s Diversity Index.

FIGURE 8

Separability index. The horizontal and vertical axes represent time points (months) and SI of variables, and the color of each cell indicates the
separability value. (A) SI-global: Overall separability across all tree species pairs for spectral-temporal features. (B) SI for two pairs of the same tree
type (both evergreen or both deciduous). (C) SI for two pairs of different tree types (evergreen vs. deciduous).
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FIGURE 9

Principal component analysis. (A) Explained variance of first 8 principal components. (B) Biplot of Variable Loadings on PC1 and PC2.
(C, D) Contributions of top 10 variables to PC1 and PC2.

higher separability, compared to the original band values from
satellite sensors. The specific separability indices of all pairs
are shown in Supplementary Figure S5. We found that the
distinction between deciduous and evergreen species exhibited
significantly separability, and extracted the separability index map
(Figures 8B,C) for four pairs of tree species (one pair of evergreen
species (PT-PO), one pair of deciduous species (LP-BA), and two
pairs of mixed deciduous and evergreen species (PT-BA and LP-
PT).) The SI heatmaps for same-type species pairs showed low
separability, indicating minimal differences in shallow features. In
contrast, different species pairs exhibited significant separability,
particularly from January to April, October to December, and July
to September, with higher index values during these periods. Most
deciduous trees are in leafless stages during these periods, leading
to significant differences from evergreens in spectral reflectance.
These results also highlighted the challenge of distinguishing
species with similar phenology.

PCA was used for dimensionality reduction on the dataset with
33 variables. The results (Figure 9A) showed that the majority of the
variance in tree species samples is concentrated in PC1 (37.91%)
and PC2 (19.83%). We further analyzed the composition of the two
principal components by displaying the distribution of variables
(Figure 9B) and the top 10 important variables for each component
(Figures 9C,D). Vegetation indices have high contributions in PC1,
while optical bands dominate PC2, and SAR data shows minimal
contribution in the PCA analysis. In PC1, the red edge indices
(NDre1, NDre2, MSReN, MSRre, NDVIre1, Clre) and the optical
vegetation indices calculated using near-infrared bands (NDVI,
mSAVI, GNDVI, LSWI) contribute significantly, these variables
primarily reflect the physiological indicators such as chlorophyll.
PC2 is primarily influenced by the original optical satellite bands,
reflecting the surface forest canopy’s spectral information, such as
leaf color and brightness. To further investigate the importance
of each variable at different time points, PCA was performed on
monthly data (2023) to assess the contributions to the first two
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FIGURE 10

Self-attention weight matrices. The axes represent time points(months). (A) Attention weight distributions for the 8 heads in Layer 1 (LP samples).
(B) Average attention weights across three layers.

PCs, ranking changes are shown in Supplementary Figure S6,
and monthly variable loadings in Supplementary Figure S7.
While contributions fluctuated over time, the trend remained
consistent with previous analysis. Vegetation indices made the
largest contribution to PC1, consistently showing the highest
contributions across different time. In contrast, PC2 was primarily
influenced by the Sentinel-2 bands.

4.5 Multidimensional analysis of deep
learning classification model

4.5.1 Self-attention weight distribution
The multi-head and layers architecture of the model helps

capture information from complex time series data, focusing on
different aspects and learning dependencies at multiple levels. In
the first layer, weight matrices across tree species are similar, but
differences emerge in the second and third layers. We used one
species (LP) as an example to illustrate how the model processes
information, and all attention weights matrices from the first
layer for LP samples was visualized firstly (Figure 10A). In the
initial layer, the model aims to extract as much useful information
as possible from the input by focusing on various time points.
The attention weight matrices showed dispersed attention to help
capture global features and some weight matrices exhibited patterns
resembling spectral characteristics of tree. For instance, head-1

exhibited high self-attention occurs between 5–9 and 17–21 months
(5–9 months of 2023), likely capturing seasonal features linked
to leaf growth to shedding periods, as well as the fluctuation of
vegetation indices. Conversely, head-3 corresponded to the leafless
period of deciduous trees, highlighting the differentiation from
evergreens. Head-6 and 7 exhibited attention focused on similar
time periods, such as 1–4 and 10–15 or 21–24 months (non-growth
seasons), as well as between 4 and 9 months and the corresponding
period in the following year. These suggested the model capability
to capture correlations, demonstrating its effectiveness in extracting
cross-year and seasonal information.

We averaged the attention weights from all heads in each of the
three layers and visualized the resulting matrices to gain a clearer
understanding of the model processing mechanism (Figure 10B).
In the higher attention layers, the model concentrates on key
features and significant time points derived from the shallow
features of lower layers, assigning them greater weight. In the
second layer, feature extraction converged, with high attention
concentrated on fewer time points. The attention weights became
more dispersed in next layer, as the model integrates information
and revisits valuable features and time points that may have been
overlooked. This improvement helps prevent model overfitting
to specific features and enhances its generalization, enabling
it to more effectively capture both similarities and differences
between species, ultimately leading to more reliable identification
of tree species.
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FIGURE 11

Visualization of feature separability based on t-SNE. (A) Original features. (B–D) Hidden features from each layer.

4.5.2 Dynamics of hidden features separability
400 samples for each specie were selected randomly to illustrate

the hidden features extraction process. First, samples with the
original 33 features was projected into a two-dimensional space
by t-SNE (Figure 11A). The results revealed that the samples
from different tree species could not be effectively distinguished,
highlighting substantial similarities among the species in the
original feature space. This indicated that relying solely on the
original features makes it difficult to capture and express the
distinct differences between tree species.

Next, the samples data was inputted into the trained
classification model, which consists of three Transformer layers
with hidden features of 512 dimensions. The hidden representation
outputs from each layer was projected and visualized in a two-
dimensional space (Figure 11). The hidden feature output of
each layer consists of 512-dimensional representations for each
sample across all time points. We averaged these features along
the time dimension for t-SNE processing and projection into two-
dimensional space. As shown in Figure 11, the hidden features
extracted and processed through the Transformer layers exhibited
more pronounced clustering of similar samples as the model
progresses into deeper layers. After being processed by the first
layer, a noticeable trend of clustering among similar samples
emerged compared to the projection of original features, with
LP and PT samples beginning to form clusters. By the second
layer, distinct clustering and separation of all tree species became
apparent (Figure 11C), and the projection of final layer showed
even more pronounced inter-species separation (Figure 11D). The
result showed that the samples of deciduous trees, including LP,
QW, BA, PS, are closely positioned after dimensionality reduction.
Similarly, the evergreen species PB and PO are also near each other.

4.5.3 Soft outputs variations in time series
We tested the impact of time series construction on the

classification model in section 4.2, that longer time series
data provides additional information beneficial for classification.
Additionally, we extracted the soft outputs from models to
illustrate how the model confidence in its predictions varies with
the increasing length of time series, represented by prediction
scores ranging from 0 to 1. The soft outputs for most time
series constructions are presented as histograms, divided into 10
intervals of 0.1 (Figure 12A). Details of all tree species prediction
scores across these time series constructions are presented in
Supplementary Figure S8.

Similarly, when using only June-July 2022 data, the lack of
temporal variation and significant phenological changes resulted in
very low prediction scores, indicating inadequate model confidence
and failure to identify tree species, with a macro-F1 below 0.4.
With data from May to August, a noticeable shift in sample scores
occurred, transitioning from a concentration in the lower range to a
more even distribution across each interval. The average score also
increased, and the proportion of samples with scores above 0.9 grew
significantly. When data was extended to cover April to September,
the average score reached 0.63, accompanied by a marked increase
in high-scoring samples. The soft output prediction scores revealed
the rapid accuracy improvement noted in section 4.2 from an
internal model perspective, showing that the richer phenological
information from April to September greatly enhances the model
confidence in identifying tree species. As the time series covered
the entire year of 2022, the proportion of samples with prediction
scores between 0.9 and 1.0 rose to 64%, with an average score of 0.8,
reflecting improved confidence in the classification model outputs.
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FIGURE 12

Soft outputs predicted scores. (A) The variation in average predicted scores across different time series compositions (Each value represents the
sample percentage within each interval, the red dashed lines represent average score for all species). (B) The comparison of scores between
12-month (blue) and 24-month (red) data.

Incorporating data from the following year into the time
series did not significantly raise the average prediction score, but
the proportion of the 0.9–1.0 range steadily increased, reaching

70% when covering 2 years, representing a 6% improvement
compared to the 1-year results. We compared the prediction
scores of each tree species using 1 year (1–12) and 2 years
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FIGURE 13

Variation in OA, macro-F1 and F1 Score between Non-pretrained and Pretrained models.

(1–24) of data (Figure 13B), revealing that extending the time
series consistently improved the model prediction confidence for
nearly all species. However, the average prediction score and
the proportion of samples above 0.9 for PB decreased. Despite
this, the F1-scores in the two composition were 0.74 and 0.79,
confirming improved classification accuracy. The model likely
overestimated PB in the 1 year of data, with an average score
of 0.9, significantly higher than other species. The extended
time series provided additional information, enabling better
feature capture, which optimized the scores while improved
classification accuracy.

5 Discussion

5.1 Pretraining effects on model
performance

The pretrain and fine-tune approach was employed to
enhance the classification model ability to identify tree species.
We trained a model without pretraining, and compared the
changes in OA and macro-F1 during the training process
with pretrained model, as well as the final F1 scores for each
tree species (Figure 13). The results demonstrated that the
model, which was pretrained on forest pixels, significantly
improved the accuracy for classification, with noticeable
enhancements in the identification accuracy across all species.
Additionally, the accuracy curve over training epochs shows
that the pretrained model reached the performance ceiling
of the non-pretrained model around the 20th epoch, further
boosting the accuracy ceiling. The cross-validation results
further confirm the enhanced consistency of the pretrained
model (Supplementary Figure S9). Existing studies have shown
that pretraining models can effectively enhance generalization
ability and performance (Jing and Tian, 2021; Misra and Van
Der Maaten, 2020). But creating a pretraining task that aligns
well with the target task is challenging and requires further
research, such as transfer learning strategies and general models
(Miller et al., 2024).

5.2 Significance of spectral-temporal
features

Extending time series data generally improved classification
accuracy for tree species in most cases (Figure 5), highlighting
the advantage of using time series images with more varying
information (Foerster et al., 2012). Using only June and July data
resulted in an OA of just 0.49. Despite the period being the
peak growing season for most plants, the shorter series lacked
phenological variation, leaving the model to rely almost entirely
on spectral reflectance values. Trees with similar phenological
traits tend to exhibit highly similar spectral signatures, but key
phenological changes are crucial for species identification, and
longer time series capturing these shifts provide more information
for better differentiation (Liu et al., 2023). Extending the data
beyond a full year can still slightly improve accuracy of identifying
tree species, but the gains were less significant than adding
within-year data, and some additional data may not contribute
valuable information. Visualizing the model soft outputs showed
that adding an extra year of data boosts prediction confidence,
allowing better identification of subtle differences between tree
species and optimizing predictions (Figure 12). As time series
length increases, classification accuracy for individual tree species
and overall performance stabilized at a satisfactory level, and we
believe that further extension may not significantly enhance true
classification accuracy.

The physiological differences between deciduous and evergreen
trees result in distinct spectral reflectance patterns, leading to
a more pronounced separability between these two groups. The
results indicated that during the leaf fall period, distinct types
tree species show significant separability (Figure 8). In contrast,
similar growth processes among the same type species lead to
insignificant difference in feature values across time series, making
accurate identification difficult using only original bands and
indices. Many studies emphasize the significance of NIR and Red-
edge indices for vegetation research (Frampton et al., 2013; Li
et al., 2014), we also found that original bands are less effective
for distinguishing between species compared to index variables,
even when comparing two distinct types of trees. Vegetation
indices effectively highlight differences between tree species by
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sensitively reflecting physiological indicators like chlorophyll and
water content. PCA results also confirm the importance of
vegetation index variables (Figure 9), with a high contribution from
vegetation indices in the most significant principal component
(PC1). PC1 primarily captures seasonal subtle variations in tree
physiological characteristics, while PC2, influenced mainly by
original bands, reflects differences in leaf color, consistent with
previous studies (Schulz et al., 2024). There is variability in the
importance of different variables to the principal components
across different time periods, due to differences in sensitivity
to phenological characteristics at various stages. However, the
primary contributors to the two principal components remain
the vegetation indices and spectral bands, respectively. We also
calculated Pearson’s correlation coefficients among the 33 feature
variables to assess inter-variable relationships (Supplementary
Figure S10). The results revealed higher correlations and possible
redundancy among optical bands with similar wavelengths and
their derived vegetation indices, as well as among SAR-derived
variables. In contrast, the correlations between variables from
the two different sources were generally low. This suggests that
adding SAR data to optical inputs may provide complementary
information for distinguishing tree species, as the combined data
achieved higher tree species classification accuracy compared to
using only optical features, with macro-F1 scores of 0.836 and
0.805, respectively. This aligns with previous studies integrating
multiple data sources, suggesting that additional information
provided by SAR, such as vegetation structural characteristics,
may contribute to improved classification performance, which is
also reflected in the distinct backscatter profiles across species
(Supplementary Figure S2).

5.3 Insights from model visualization

In addition to producing high-accuracy tree species
classification maps using deep learning models on SITS, visualizing
the model can help us understand its internal processes and bolster
its reliability. Multi-head attention weight matrices revealed the
model behavior in capturing information from various aspects
of the input time series, including key phenological changes
and periods of features similarity (section 4.5.1). The model
employed nonlinear transformations and multi-head self-attention
mechanisms to continuously extract and integrate features,
enhancing class-relevant information while diminishing irrelevant
features. This process evolves the input features into a more
abstract and separable form, illustrating the significant advantage
of deep learning in processing time series data and capturing
information (Vaswani et al., 2017; Xu et al., 2020).

Projecting hidden features from each model layer and
the original features, clearly illustrated how low-level inputs
are transformed into high-level representations that effectively
distinguish tree species (section 4.5.2). In the shallow layers of
model, input retains low-level features closely tied to their original
forms, leading to mixed distributions of different tree species.
As the model progresses to deeper layers, it captures features of
increasing complexity most relevant to the categories, transforming
hidden features to project different tree species into a more distinct
feature space for precise separation (Goodfellow et al., 2016). We

also found that the samples of deciduous species cluster closely
after projection, as do the evergreen species, which aligns with
our feature analysis, indicating smaller differences and reduced
separability among similar tree species. In the final output layer,
we observed significant inter-class separation among samples,
indicating that deeper phenological features are captured by the
model. Similarities lead to close proximity in the projected space,
while differences create distinct clusters.

5.4 Tree species distribution and
biodiversity

The tree species distribution map and forest biodiversity results
revealed a certain correlation between tree species distribution
and elevation (Figure 6). Pinus tabuliformis dominates the forests
of study area, primarily located in the low-elevation regions of
eastern Taiyue Mountain and near the Huodong coal mining area,
which also exhibited lower levels of biodiversity. According to
information gathered from forestry departments, this trend may
be attributed to large-scale plantings in the 1980s and reclamation
plantings after mining activities, leading to a lack of species
diversity. In contrast, Taiyue Mountain is predominantly covered
by primary forests, which exhibited a richer species composition
and higher levels of biodiversity. Many studies have found that
primary forests have higher species diversity and biomass than
planted and second-growth forests (Cavanaugh et al., 2014; Shirima
et al., 2015). The second largest tree species in the study area,
Quercus wutaishanica, is mainly in the southern part of Taiyue
Mountain. Pinus bungeana is distributed along the western edge of
Taiyue, forming a continuous strip, while Platycladus orientalis is
located in the northwest, near the Pinus bungeana. Larix principis-
rupprechtii and Quercus wutaishanica are concentrated in the high-
altitude central region. The distribution and biodiversity data of
tree species provided crucial information and effective support for
forest ecosystem management and ecological research. For mining
areas, where forest harvesting and replanting is a recurring process,
it is crucial to implement more comprehensive and diverse planting
strategies to protect and enhance both forest biodiversity and
carbon sequestration capacity.

6 Conclusion

In this study, we presented a deep learning-based method
with SITS to achieve high-precision forest tree species and
tree species biodiversity mapping. By pretraining the model on
unlabeled forest pixels, the model performance was significantly
enhanced, resulting in faster convergence and higher accuracy
compared to the non-pretrained. Increasing the time series length
improves classification accuracy, indicating that incorporating
multi-temporal information across different phenological stages
benefits tree species classification. While adding data beyond a
full year can still improve model performance and confidence to
some extent, the improvement is neither guaranteed nor limitless.
Most vegetation indices, such as NDVIre, NDre and MSRre, are
more sensitive than satellite bands in reflecting differences between
tree species during key phenological stages, particularly between
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evergreen and deciduous trees. The Transformer-based model
effectively captures and processes these key features, enabling
accurate species classification. The methodologies designed for tree
species classification and multidimensional interpretation, facilitate
efficient species identification and enhance understanding of the
integration of SITS and deep learning. This is valuable for related
ecological research, and more studies are needed in the future to
further explore the combination of SITS and deep learning to gain
a clearer understanding of ecosystems.
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