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Prediction of the potential 
distribution of Piptanthus 
nepalensis in China under future 
climate scenarios 
Ye Yanhui† , Jing Aohang† and Han Yanying* 

Resources and Environment College, Xizang Agriculture and Animal Husbandry University, Nyingchi, 
China 

Introduction: Climate change is driving unprecedented shifts in ecosystems, 

altering species distributions, abundance, and richness. This study aims to 

predict the potential distribution of the alpine endemic species Piptanthus 

nepalensis in China under current and future climate scenarios and assess its 

response to climate change. 

Methods: We employed the Maximum Entropy (MaxEnt) model, rigorously 

optimized using ENMeval, to predict distribution patterns. Key environmental 

variables were selected for model calibration. Model performance was evaluated 

using the Area Under the Receiver Operating Characteristic Curve (AUC). 

Results: The optimized MaxEnt model demonstrated excellent predictive 

performance (AUC = 0.985). Key findings are: (1) The current total suitable 

habitat area is 25.78 × 104 km2 , with high-suitability zones (6.90 × 104 km2) 

concentrated along the Sichuan-Yunnan-Tibet border; (2) Under future climate 

scenarios, low-suitability areas expand (peaking at 31.29 × 104 km2 under 

SSP370-2050s), while high-suitability areas contract substantially (declining to 

3.92 × 104 km2 under SSP585-2050s); (3) Habitat quality is negatively correlated 

with climate emission intensity. High-suitability zones show relative stability 

under SSP126 (core retention rate: 0.71%–0.83%) but exhibit pronounced 

“expansion-contraction oscillations” under SSP585. 

Discussion: These results highlight the significant threat climate change poses 

to P. nepalensis, particularly under high-emission scenarios. Conservation efforts 

should prioritize the core Sichuan-Yunnan-Tibet regions and closely monitor 

ecological risks associated with expanding low-suitability habitats. This study 

provides critical scientific insights for the climate-adaptive management of 

alpine endemic species. 

KEYWORDS 

climate change, species adaptation, distribution prediction, Piptanthus nepalensis, 
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1 Introduction 

P. nepalensis D. Don (syn. P. nepalensis auct. non-Hook.), a species within the class 
Magnoliopsida and genus Piptanthus, is an evergreen shrub endemic to the Tibetan 
Plateau. This species is characterized by its dense inflorescences, extended flowering period, 
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and high adaptability to alpine environments. It exhibits notable 
drought resistance, resilience to nutrient-poor soils, and minimal 
susceptibility to pests and diseases, making it an ecologically 
valuable species for ecosystem restoration and aorestation eorts 
(Cun and Wang et al., 2010; Wang et al., 2015). Beyond its 
ecological role, P. nepalensis holds economic significance, serving 
as an ornamental plant, livestock forage, and a key component 
in soil and water conservation strategies across high-altitude 
landscapes. Given its multiple ecosystem services, understanding 
its spatial distribution and responses to climate change is critical 
for promoting sustainable land management and biodiversity 
conservation for the harsh habitats in the alpine ecosystems 
(Wilson et al., 2004). 

Climate change has profoundly transformed ecosystems, 
leading to significant shifts in species distributions, population 
dynamics, and biodiversity across multiple taxa and spatial scales 
(Chen et al., 2011). The Intergovernmental Panel on Climate 
Change (IPCC) projects global temperature increases ranging from 
0.3–1.7 (minimum) to 2.6–4.8◦C (maximum) by 2100, potentially 
driving bioclimatic zones upward by 500–700 m (Hickling et al., 
2006; Hiddink and Ter Hofstede, 2007). These changes pose severe 
threats to alpine plant species, particularly those with narrow 
ecological niches, as habitat fragmentation and loss accelerate 
their extinction risks (Guisan and Thuiller, 2005). Understanding 
the ecological responses of such species under changing climatic 
conditions is essential for biodiversity conservation and ecosystem 
stability (Hutchinson, 1957). 

Species distribution models (SDMs) serve as pivotal analytical 
tools in contemporary biogeography, enabling quantitative 
assessments of habitat suitability and niche dynamics across 
environmental gradients. Globally and within China, SDMs 
have been extensively applied to predict climate change impacts 
on species distributions, including alpine flora on the Tibetan 
Plateau. For instance, studies have documented significant range 
shifts in endemic species like Larix species (Guo et al., 2023) 
and Sophora moorcroftiana (Yang et al., 2021), highlighting the 
vulnerability of high-altitude ecosystems. Nationally, research 
on the Qinghai-Tibet Plateau’s flora using SDMs has grown 
substantially, focusing on genetic diversity, niche modeling, 
and conservation prioritization (Guo et al., 2023; Yang et al., 
2021; Wang et al., 2015). Diverse algorithmic frameworks 
address this challenge through distinct ecological assumptions: 
Climate-envelope models such as BIOCLIM delineate species’ 
climatic tolerances using percentile thresholds of environmental 
variables, yet oversimplify biotic interactions (Guisan and 
Zimmermann, 2000). Distance-based approaches exemplified by 
DOMAIN calculate habitat similarity through environmental 
space metrics, proving eective in insular ecosystems but sensitive 
to variable selection (Elith and Leathwick, 2009). Machine learning 
paradigms, including Random Forests (RF), leverage ensemble 
decision trees to manage high-dimensional data structures, 
though requiring extensive occurrence records for model stability 
(Xu et al., 2019). Contrastingly, parametric techniques like 
Generalized Linear/Additive Models (GLMs/GAMs) oer 
transparent ecological interpretations but constrain non-linear 
response modeling (Phillips et al., 2006).The Maximum Entropy 
(MaxEnt) framework addresses these limitations through a 
presence-background learning algorithm that maximizes entropy 
under environmental constraints, demonstrating exceptional 

performance specifically with sparse occurrence data (a common 
challenge for endemic alpine species like P. nepalensis) and in 
capturing complex covariate interactions (Liu et al., 2013). Its 
proven capacity to mitigate spatial autocorrelation artifacts while 
maintaining ecological interpretability (Phillips et al., 2017), 
and its widespread and successful application in predicting 
distributions for Himalayan-Tibetan flora under climate change 
scenarios (Li et al., 2022), make it particularly suitable for 
our objectives. Our study employs MaxEnt 3.4.1 to predict 
habitat suitability, capitalizing on its proven capacity to mitigate 
spatial autocorrelation artifacts while maintaining ecological 
interpretability (Phillips et al., 2017). Model outputs (0–1 
probability surfaces) enabled precise identification of conservation 
priority zones within fragmented landscapes, underscoring its 
utility in spatial biodiversity planning (Valavi et al., 2022). 

Climate change has significantly altered the distribution 
patterns of alpine species on the Tibetan Plateau, such as Larix 
spp. and Sophora moorcroftiana (Guo et al., 2023; Yang et al., 
2021). Larch populations have shifted upward in elevation in 
response to rising temperatures, while S. moorcroftiana faces 
habitat contraction due to increased aridity and soil degradation. 
These changes highlight the vulnerability of species with similar 
ecological niches, including P. nepalensis, which is primarily 
distributed in high-altitude regions of the Himalayas. These 
habitats are particularly susceptible to climate change impacts, 
including rising temperatures, altered precipitation regimes, and 
increased frequency of extreme weather events, which can lead 
to habitat fragmentation, reduced genetic diversity, and range 
shifts. Despite its ecological importance, the impacts of climate 
change on P. nepalensis remain poorly understood, particularly 
its potential range shifts, habitat stability, and adaptive capacity 
under future climatic scenarios. Empirical data on its ecological 
thresholds and responses to environmental changes are scarce, 
underscoring the need for comprehensive studies to assess its 
spatial and temporal habitat dynamics. Such research is critical for 
informing conservation strategies and mitigating climate-induced 
biodiversity losses in high-altitude ecosystems. 

This study aims to: (1) map the current spatial distribution and 
identify key environmental drivers; (2) project future distribution 
shifts under varying emission scenarios (SSP1-2.6, SSP2-4.5, 
SSP3-7.0, SSP5-8.5); and (3) characterize habitat stability and 
contraction-expansion patterns. 

2 Materials and methods 

2.1 Species occurrence data 

To construct a robust species distribution model (SDM) for 
Piptanthus nepalensis, occurrence records were compiled from 
two authoritative biodiversity databases: the Chinese Virtual 
Herbarium (CVH) (visited on 20 April 2024)1 and the Global 
Biodiversity Information Facility (GBIF) (visited on 20 April 
2024).2 Given the potential for spatial clustering, taxonomic 

1 http://www.cvh.ac.cn 

2 https://www.gbif.org 
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inconsistencies, and georeferencing errors in raw biodiversity 

data, a rigorous data preprocessing pipeline was implemented. 
First, duplicate records and erroneous occurrences (e.g., those 

falling outside the known ecological range of P. nepalensis) were 

identified and removed. Ecological range validation was conducted 

through a three-step process: (1) Geographically filtering records 
beyond the species’ documented elevational limits (3,200–4,500 

m) (Wink, 2013); (2) Excluding points exhibiting bioclimatic 

extremes exceeding the 99th percentile of occurrence-based climate 

envelopes for Bio6 (minimum temperature of coldest month: > – 

8.5◦C) and Bio12 (annual precipitation: < 800 mm) (Owens 
et al., 2013); (3) Removing localities in ecoregions with no prior 

field confirmation of P. nepalensis presence according to the 

Chinese Vegetation Atlas (Editorial Committee of Vegetation 

Map of China., 2001). These criteria ensure alignment with 

the species’ realized niche while maintaining conservatism in 

FIGURE 1 

Current occurrence records of Piptanthus nepalensis across its native range. 
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range delineation. To minimize sampling bias and ensure 
spatial independence, occurrence thinning was conducted using 
ENMTools at a spatial resolution of 30 arcseconds (∼1 km2), 
retaining only one occurrence point per grid cell. This resolution 
aligns with the native grain of the bioclimatic and elevation 
variables (WorldClim/HWSD) and mitigates overrepresentation of 
densely sampled regions while preserving ecologically meaningful 
habitat heterogeneity. Following quality control and validation 
procedures, a final dataset comprising 72 georeferenced occurrence 
points was obtained. These refined records were systematically 
formatted in CSV format, with standardized columns for species 
name, longitude, and latitude, serving as the foundation for 
subsequent modeling and analysis (Figure 1). This article is 
based on the standard map with review number GS (2024) 0650 
downloaded from the standard map service website of the Ministry 
of Natural Resources, with no modifications to the base map. 

2.2 Environmental variables 

A total of 56 environmental variables were initially considered 
for modeling, encompassing 19 bioclimatic variables (Bio1–Bio19), 
three topographic factors (aspect, elevation, and slope), and 34 soil 
parameters. Bioclimatic and elevation data, with a spatial resolution 
of 30 arcseconds (∼1 km), were obtained from the WorldClim 
database (visited on 20 April 2024) (Hijmans et al., 2005), 

while soil attributes were extracted from the FAO Harmonized 
World Soil Database (HWSD). To assess the potential impact 
of climate change on the distribution of P. nepalensis, future 
climatic projections were incorporated using the EC-Earth3-Veg 
model under the Coupled Model Intercomparison Project Phase 
6 (CMIP6). This model was selected based on its demonstrated 
skill in simulating temperature and precipitation extremes in 
high-elevation Asian ecosystems (Wang et al., 2021), a dynamic 
vegetation module capable of capturing critical feedbacks between 
plant functional types and microclimate (Wyser et al., 2020), 
along with its widespread application in prior species distribution 
modeling studies specifically investigating alpine flora across the 
Himalayan-Tibetan ecoregion (Li et al., 2022). Four distinct 
Shared Socioeconomic Pathways (SSPs) were considered: SSP126 
(sustainable development, limiting warming to approximately 
2◦C), SSP245 (intermediate emissions scenario with warming 
below 3◦C), SSP370 (regional rivalry scenario with temperature 
increases up to 4◦C), and SSP585 (a fossil-fuel-intensive trajectory 
leading to warming of nearly 5◦C). Aspect and slope were derived 
from elevation data using ArcGIS 10.8 to enhance topographic 
characterization. 

Given the potential confounding eects of multicollinearity 
among environmental variables, a rigorous variable selection 
process was employed to ensure robust and ecologically meaningful 
model predictions. Correlation analysis was performed on the 56 
environmental variables using ENMTools (Warren et al., 2010), 

FIGURE 2 

Correlation matrix of the eight retained environmental predictors. 
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FIGURE 3 

Consistently high predictive accuracy (AUC > 0.98) of the MaxEnt model across all climate scenarios (Time period abbreviations: current, 
2021–2040_30s, 2041–2060_50s, 2061–2080_70s, 2081–2100_90s). 

FIGURE 4 

Regularization training chart. 
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with a threshold correlation coeÿcient (r) of 0.8 to identify 
redundant variables (Dormann et al., 2013). The final eight 
predictors (Bio4, slope, elevation, Bio18, S_CACO3, Bio11, aspect, 
and soil pH) exhibited pairwise correlations below the threshold 
(Figure 2), ensuring model stability. High collinearity among 
predictor variables can lead to overfitting in the MaxEnt model, 
distorting both the relative importance of environmental factors 
and the accuracy of predicted species distributions (Merow et al., 
2013). Initially, all environmental variables and species occurrence 
records were imported into MaxEnt for preliminary modeling, 
during which variables contributing 0% to model performance 
were excluded (Phillips et al., 2017). Subsequently, correlation 
analysis was conducted using ENMTools, and for highly correlated 
variables (r ≥ 0.8), the one with the greater contribution to 
model performance was retained. Through this iterative refinement 
process, eight key environmental predictors were ultimately 
selected for final modeling, ensuring the model’s interpretability 
and predictive reliability. To address potential confounding eects 
of elevation as a proxy variable (Zurell et al., 2009), an alternative 
model excluding elevation was evaluated, which retained seven 
predictors for comparative analysis. Given that topographic and 
soil characteristics are relatively stable over ecological timescales, 
they were assumed to remain constant in future climate projections. 
This allowed the model to focus on climatic influences when 
assessing potential habitat shifts of Piptanthus nepalensis while 
controlling for static environmental factors. 

To address potential collinearity between elevation and 
bioclimatic variables, we evaluated an alternative model excluding 
elevation. However, the primary model was retained due to its 
higher predictive accuracy and ecological interpretability. 

2.3 Model optimization, construction, 
and validation 

MaxEnt’s sensitivity to sampling bias and model complexity, 
governed by feature class selection (FC: linear, quadratic, product, 
threshold, and hinge [LQPTH]) and regularization multipliers 
(RM: 0–4), necessitated systematic optimization to enhance model 
performance and minimize overfitting (Zhu and Qiao, 2016). To 
achieve this, the “kuenm” package in R 4.4.1 was employed to 
evaluate 1,240 parameter combinations through cross-validation, 
ensuring optimal model calibration. The selection of the best-
performing configuration was guided by two primary criteria: 
omission rates below 5% and minimal delta Akaike Information 
Criterion corrected (AICc) values, ensuring both ecological realism 
and statistical robustness (Cobos et al., 2019). Based on these 
criteria, the optimal model settings were determined as RM = 1.8 
with a linear feature class (FC = L), balancing predictive accuracy 
and generalizability. 

Additional modeling parameters were carefully configured to 
enhance reliability. The output format was set to logistic, enabling 
probability-based predictions of habitat suitability. To mitigate 
ordering bias, occurrence records were randomly shued before 
partitioning into a 75% training and 25% testing dataset. A random 
seed was enabled to ensure reproducibility of the shued data 
split. Model robustness was further ensured through 10 bootstrap 
replicates, and a maximum of 5,000 iterations was allowed to 

facilitate convergence. All other hyperparameters were maintained 
at their default settings to preserve consistency with previous 
studies (Dormann, 2007; Li et al., 2020). 

Post-modeling, habitat suitability was classified in ArcGIS 10.8 
into four categories to facilitate ecological interpretation: non-
suitable (0–0.2), low suitability (0.2–0.4), moderate suitability (0.4– 
0.6), and high suitability (0.6–1.0), reflecting the likelihood of 
P. nepalensis presence across the landscape (Yang et al., 2013). 
Model accuracy was rigorously evaluated using the Area Under the 
Receiver Operating Characteristic Curve (AUC), a widely accepted 
metric for Species Distribution Model (SDM) performance 
assessment. AUC quantifies the model’s ability to discriminate 
between presence and background locations, with values ranging 
from 0 (random prediction) to 1 (perfect prediction). AUC values 
exceeding 0.9 indicate excellent predictive performance, while 
values between 0.7 and 0.9 denote good accuracy, and those below 
0.7 suggest limited reliability (Xu et al., 2019). The combination 
of rigorous parameter tuning, robust classification schemes, and 
objective validation metrics ensures that the final distribution 
model provides a high-confidence assessment of P. nepalensis 
habitat dynamics under current and future climatic conditions. 

To quantify habitat change under future climate scenarios, we 
analyzed current and projected habitat suitability maps with spatial 
overlays, and regions were categorized as: stable zones (no change 
in suitability category or ≤ 10% change in continuous value), 
expanding zones (current unsuitable to suitable), andcontracting 
zones (current suitable to unsuitable). 

3 Results 

3.1 Model optimization results and 
validation 

After cross-validating 1,240 hyperparameter combinations of 
feature classes (FC) and regularization multipliers (RM), two 
combinations met the omission rate threshold (< 5%). The 
optimal hyperparameters (RM = 1.8, FC = L) were selected 
based on minimal delta AICc values (Santini et al., 2021). 
The model achieved an average test AUC of 0.985 across all 

TABLE 1 Full name of the variable and its contribution. 

Code Percent 
contribution/% 

Note 

ELE 37 Altitude 

Slope 26.3 

Bio_4 18.2 Temperature seasonality 

(SD × 100) 

S_CO3 8.9 Subsoil calcium carbonate 

Bio_18 7.9 Precipitation of warmest quarter 

t_cec 1 Topsoil CEC (clay) 

S_usda 0.4 Subsoil USDA texture 

classification 

Bio_11 0.3 Mean temperature of coldest 
quarter 
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FIGURE 5 

Non-linear responses of habitat suitability to critical bioclimatic thresholds. 
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FIGURE 6 

Concentration of high-suitability habitats in the Hengduan Mountains under current climate. 

scenarios, indicating exceptional predictive accuracy (Peterson, 
2003; Figure 3). 

3.2 Key environmental drivers 

Jackknife analysis identified elevation (37% contribution), 
slope (26.3%), and temperature seasonality (Bio4: 18.2%) as the 
dominant factors shaping P. nepalensis distribution (Figure 4). Soil 
variables (e.g., subsoil calcium carbonate) collectively contributed 
10.3%, while climatic extremes (Bio11: coldest quarter temperature; 
Bio18: warmest quarter precipitation) showed minor but critical 
roles (Table 1). Its response curve further reveals the eect of 
changes in environmental variables on the fitness of Figure 5. 

3.3 Current potential distribution 

Under contemporary climatic conditions, the total suitable 

habitat for P. nepalensis spans approximately 25.78 × 104 km2 

(2.69% of the total study area), reflecting the species’ extensive 

distribution across high-altitude regions. Within this range, areas 
classified as highly suitable (suitability index: 0.6–1.0) cover 

6.90 × 104 km2 (0.72%), primarily concentrated in the Hengduan 

Mountains, which encompass regions of Sichuan, Yunnan, and 

Tibet. These core habitats represent the most ecologically favorable 

zones, where environmental conditions align optimally with the 

species’ physiological and ecological requirements. The moderately 

suitable habitat, defined by a suitability index of 0.4–0.6, extends 
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FIGURE 7 

Divergent trends in habitat suitability classes across future climate scenarios (Future period abbreviations: 2021–2040_2030s, 2041–2060_2050s, 
2061–2080_2070s, 2081–2100_2090s). 

over 11.32 × 104 km2 (1.18%), predominantly along the eastern 
Tibetan Plateau, where the species maintains stable populations 
under slightly less favorable climatic and edaphic conditions. 
Additionally, marginally suitable areas, with a suitability index 
ranging from 0.2 to 0.4, account for 7.56 × 104 km2 (0.79%), 
largely distributed across the Himalayan foothills and the 
Yunnan-Guizhou Plateau. These regions, while oering suboptimal 
conditions, may still support fragmented populations or serve as 
potential buer zones under shifting climatic regimes. The spatial 
distribution patterns underscore the species’ strong aÿnity for 
mountainous terrains and high-altitude ecosystems, highlighting 
its ecological resilience and potential vulnerability to climate-
induced habitat shifts (Figure 6). 

3.4 Future habitat projections 

The total suitable habitat area expands across all future climate 
scenarios; however, the extent of high- and moderate-suitability 
zones declines. Under SSP585, the most extreme warming scenario, 
high-suitability habitats undergo the most pronounced contraction, 
shrinking from 0.68 to 0.52% of the total area. The overall 
suitable habitat for P. nepalensis is projected to expand under all 
future climate scenarios; however, this increase is accompanied 

by a reduction in the extent of high- and moderate-suitability 
zones. Notably, under SSP585—the most extreme warming 
trajectory—high-suitability habitats experience the most significant 
contraction, decreasing from 0.68 to 0.52% of the total area 
(Figures 7–11). 

3.5 Spatial pattern dynamics 

The classification of habitat stability, expansion, and 
contraction was based on overlap analysis between current and 
future suitability categories. Spatial dynamics compared to current 
total habitat (Figures 12–16) revealed divergent trends across 
scenarios: Under SSP126, stability peaked at 4.68% (2041–2060) 
but declined to 3.41% by 2100, with contraction areas surging to 
1.53% by the end-century; SSP245 showed steady stability increases 
from 2.20 to 4.43%, coupled with abrupt expansion declines 
from 3.80 to 0.04% linked to mid-century climate variability; 
SSP370 exhibited maximum stability at 5.74% (2041–2060) before 
collapsing to 3.90% by 2100 due to extreme heat and rainfall 
shifts; SSP585 displayed high volatility in stability (4.15 to 2.09 to 
4.10%), with persistent contraction exceeding 1.09% throughout 
the projection period. 
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FIGURE 8 

Distribution of P. nepalensis, 2021–2040. 

4 Discussion 

4.1 Key environmental constraints on 
distribution 

The MaxEnt model identified eight key environmental drivers 
shaping the distribution of P. nepalensis, with elevation (37% 
contribution), slope (26.3%), and temperature seasonality (Bio4: 
18.2%) emerging as the most influential factors. These findings are 
consistent with previous studies emphasizing the dominant role of 
topographic and climatic variables in determining the distribution 
of alpine species (Xu et al., 2019). While elevation exhibited high 
contribution in the primary model, its role likely reflects indirect 
mediation of bioclimatic gradients rather than direct physiological 
tolerance. Supporting this, the alternative model excluding 
elevation retained strong predictive power (AUC = 0.972) (Xu et al., 
2019), with temperature seasonality and slope compensating for 
elevational eects. This interpretation corroborates prior studies 

conceptualizing elevation as a composite variable integrating 
abiotic filters rather than a direct niche axis (Zurell et al., 
2009).Slope influences local hydrology and soil stability, thereby 
aecting nutrient retention and water availability. Temperature 
seasonality (Bio4) captures annual thermal fluctuations, which 
are critical for phenological cycles, while precipitation during the 
warmest quarter (Bio18) highlights the importance of moisture 
availability during the growing season. 

Although soil variables contributed a modest cumulative 
influence (10.3%), the specificity of subsoil calcium carbonate 
(S_CACO3) underscores its ecological significance. The presence 
of calcareous substrates suggests that conservation and restoration 
eorts should prioritize limestone-rich soils while avoiding 
acidification through inappropriate fertilization practices. 
However, the model’s reliance on a relatively small occurrence 
dataset (72 points) may introduce spatial biases, particularly in 
high-elevation regions where sampling eorts remain limited 
(Komori et al., 2020). Our occurrence records exhibit clustering in 
mid-elevation zones (3,200–4,000 m), with limited representation 
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FIGURE 9 

Distribution of P. nepalensis, 2041–2060. 

above 4,200 m—a critical elevation under future warming. 
This uneven coverage risks underestimating P. nepalensis’s 
upper elevational limits and thermal tolerances, as high-altitude 

refugia remain undersampled. Such bias could artificially inflate 

the importance of elevation while obscuring microclimatic 

adaptations. Future studies should prioritize stratified surveys 
across the full elevational gradient (3,200–4,500 m). 

A critical limitation of the current model is its exclusion 

of biotic interactions, particularly plant-pollinator dynamics. 
P. nepalensis relies on Bombus pollinators, and habitat contraction 

under climate change may disrupt these mutualistic networks, 
potentially threatening reproductive success and genetic 

connectivity (Schweiger et al., 2010). Future research should 

integrate species distribution models (SDMs) with individual-
based models (IBMs) to better capture demographic processes, 
dispersal limitations, and gene flow, oering a more comprehensive 

understanding of the species’ adaptive potential under changing 

environmental conditions (Zurell et al., 2018). 

4.2 Habitat suitability and spatial 
dynamics 

The current core distribution of P. nepalensis is centered in 
Déqên County, Yunnan (98◦12’14.48”E, 28◦19’4.75”N), a region 
characterized by a cold-temperate montane monsoon climate with 
a mean annual temperature of 4.7◦C, average precipitation of 
633.7 mm, and extreme temperature fluctuations ranging from – 
27.4 to 25.1◦C. The pronounced vertical climatic zonation and 
distinct seasonal hydrological patterns in this region create highly 
favorable ecological conditions for the species, supporting its 
growth and persistence in montane habitats. 

Our analysis reveals a distinct “quality-space decoupling” 
(Dullinger et al., 2012) in the response of P. nepalensis to 
climate change, wherein total habitat availability expands while 
high-quality habitats contract. This pattern arises from species-
specific responses to key climatic variables. Rising temperature 
seasonality (Bio4), projected to increase by 12% under SSP5-8.5 
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FIGURE 10 

Distribution of P. nepalensis, 2061–2080. 

by 2100, disrupts phenological synchrony in mid-elevation zones 
(3,200–4,200 m). Populations in these regions face heightened 
frost risk during flowering (April–June) and heat stress during 
seed maturation (September–October), driving upward migration 
to thermally stable refugia above 4,200 m where Bio4 remains 
below 850 (coeÿcient of variation × 100) (Dormann et al., 
2013). Concurrently, declining precipitation in the warmest quarter 
(Bio18), which drops by 18% under SSP5-8.5, reduces soil moisture 
during critical growth periods (July–August), particularly in arid 
valleys such as the upper Yarlung Tsangpo. In contrast, moderate 
Bio18 increases (+ 5% under SSP1-2.6) enhance establishment in 
humid microhabitats along eastern Himalayan slopes. 

Under low-emission scenarios (SSP126), high-suitability areas 
(0.71–0.83%) largely coincide with stable zones (3.41–4.68%), 
suggesting that local adaptation mechanisms may buer against 
moderate climatic shifts. The species’ potential for vertical 

migration, facilitated by the observed lapse rate of 0.6◦C cooling per 
100 m elevation gain, could mitigate thermal stress, aligning with 
established altitudinal adaptation strategies observed in Himalayan 
flora (Chettri et al., 2010). The interplay between thermal and 
hydrological shifts further modulates range dynamics. Warming 
winter temperatures (Bio11 increases of + 2.3◦C under SSP5-8.5) 
lower mortality at high elevations (> 4,500 m), enabling expansion 
into previously uninhabitable areas. However, this potential is 
counteracted by Bio4-driven instability, resulting in ephemeral 
“ghost habitats” with low establishment success. 

In contrast, high-emission scenarios (SSP585) project a severe 
contraction of high-suitability habitats from 0.68 to 0.52%, with 
contraction zones expanding drastically to 8.15 × 104 km2 

(1.09%), indicative of irreversible habitat degradation driven 
by intensified heat extremes and altered precipitation regimes. 
While low-suitability “ghost habitats” emerge transiently–such 
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FIGURE 11 

Distribution of P. nepalensis, 2081–2100. 

FIGURE 12 

Spatial changes in habitat for P. nepalensis across time periods (Future period abbreviations: 2021–2040_2030s, 2041–2060_2050s, 
2061–2080_2070s, 2081–2100_2090s). 
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FIGURE 13 

Changes in distribution of P. nepalensis, Current–2030s. 

as the expansion to 31.29 × 104 km2 under SSP370–they lack 
ecological functionality, raising concerns about the persistence 
of viable populations. The expansion of total habitat alongside 
the contraction of high-suitability areas reflects both ecological 
constraints and methodological limitations, with P. nepalensis’ 
narrow thermal tolerance (Bio6/Bio18) and edaphic specialization 
on calcareous soils driving core habitat loss at intermediate 
elevations (3,200–4,200 m), and methodological factors like 
collinearity between elevation and bioclimatic variables inflating 
topographic importance (Dormann et al., 2013), neglect of 
dispersal limitations in novel climates (Elith et al., 2010), and 
logistic thresholds exaggerating marginal habitat gains (Liu et al., 
2013) potentially amplifying this pattern. 

The pathway–specific dynamics further illustrate the 
dierential impacts of climate trajectories. Under SSP126, 
stable suitable habitats remain relatively consistent, accounting 

for 4.55–4.68% of the study area between 2041 and 2080, with 
minimal fluctuation (± 0.12%) in highly suitable regions. This 
relative stability suggests that the species may counteract climate-
driven pressures through altitudinal shifts, mirroring the adaptive 
strategies of other alpine taxa. Under SSP245, stability gains from 
2.20 to 4.43% mask a simultaneous decline in high-suitability 
habitats (0.75–0.40%), likely a result of hydrothermal imbalances, 
including a projected + 1.5◦C increase in the coldest quarter 
temperature (Bio11) (Thuiller et al., 2005). The SSP370 scenario 
presents a mid-century peak in stability (5.74%) before a sharp 
post-2060 collapse, with contraction zones increasing to 2.38%, 
possibly linked to CO2-induced photosynthetic inhibition (Wang 
et al., 2014). Under SSP585, oscillating stability levels (4.15 to 
2.09 to 4.10%) and persistent contraction (> 1.09%) reflect 
the compounding impacts of extreme climatic events under 
high-emission trajectories. 
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FIGURE 14 

Changes in distribution of P. nepalensis, 2030s–2050s. 

Horizontal expansion into northeastern valleys (e.g., Salween-
Mekong divide) is further constrained by Bio18 thresholds 
(> 250 mm warmest quarter precipitation) and dispersal 
limitations imposed by gravity-dependent seeds (Xu et al., 2017). 
Compared to Himalayan endemic species such as Meconopsis 
horridula (Wang et al., 2021), P. nepalensis exhibits greater low-
suitability habitat expansion (3.62% vs. 1.8%) but demonstrates 
weaker resilience in high-suitability zones, contracting 1.3 times 
more severely. This discrepancy may be attributed to its shallow 
root system and gravity-dispersed seed traits, which limit its 
capacity for long-distance colonization and physiological tolerance 
to shifting environmental conditions (Xu et al., 2017). These 
findings underscore the importance of targeted conservation 
strategies that consider not only projected habitat shifts but also 
species-specific dispersal limitations and adaptive potential in 
response to climate change. 

These mechanisms align with observed shifts in Himalayan 
congeners like Meconopsis horridula (Wang et al., 2021), but 
P. nepalensis exhibits heightened sensitivity to Bio4 variability due 
to its shallow root system and prolonged flowering period. 

4.3 Conservation strategies 

The identification of climate refugia is crucial for safeguarding 
alpine biodiversity and ensuring the long-term persistence of 
species under changing environmental conditions (Baumgartner 
et al., 2018). Our projections highlight stable habitat zones, 
including Lijiang, Diqing, Liangshan, Aba, and Nyingchi, as 
critical conservation priorities for P. nepalensis. To address the 
divergent migration trends observed across SSP scenarios (2041– 
2100), integrated strategies must account for both vertical and 
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FIGURE 15 

Changes in distribution of P. nepalensis, 2050s–2070s. 

horizontal habitat shifts. Under low-emission pathways (SSP1-
2.6), core populations are projected to migrate upward to 

3,800–4,500 m, maintaining 62% overlap with current habitats, 
whereas high-emission trajectories (SSP5-8.5) drive fragmentation, 
reducing overlap to 28%. Simultaneously, low-suitability habitats 
expand northeastward along valley corridors (e.g., Salween-
Mekong divide), though natural dispersal may lag due to gravity-
dependent seed limitations (Xu et al., 2017). 

The primary conservation focus should prioritize in situ 

protection of stable refugia (e.g., Diqing and Nyingchi) through 

grazing bans and tourism regulations, ensuring the preservation 

of calcareous substrates (S_CACO3 > 15%) and optimal slope 

conditions (15–30◦). Another key direction involves restoring 

connectivity across fragmented habitats by establishing ecological 
corridors along the Yarlung Tsangpo and Salween River basins, 

where assisted colonization and soil pH management (7.0– 

8.5) could mitigate SSP3-7.0-induced isolation. Furthermore, 
community-based agroforestry initiatives in expansion zones (e.g., 
western Sichuan Plateau) could enhance socioeconomic resilience 

while safeguarding pollinator networks (Bombus spp.), whose 

collapse threatens reproductive success under intensified warming 

(Schweiger et al., 2010). 
Despite these measures, critical uncertainties remain. The 

model does not fully resolve dispersal constraints imposed by seed 

traits, necessitating individual-based models (IBMs) to quantify 

colonization thresholds. Soil-microbe interactions, particularly 

arbuscular mycorrhizal fungi mediating calcareous adaptation, 
require experimental validation. Additionally, extreme climate 

heterogeneity (e.g., drought pulses) warrants integration with 

dynamic vegetation models to refine habitat forecasts. 
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FIGURE 16 

Changes in distribution of P. nepalensis, 2070s–2090s. 

5 Conclusion 

This study robustly demonstrates that climate change will 
fundamentally reshape the distribution of Piptanthus nepalensis, 
with critical implications for conservation planning in Himalayan 

ecosystems. Integrated modeling reveals three key conclusions: 
while total suitable habitat may expand by 12–22% under 

dierent scenarios, high-quality habitats will decline by 16–40%, 
creating an “ecological illusion” where quantity masks deteriorating 

quality. Five critical counties (Lijiang, Diqing, Liangshan, Aba, 
Nyingchi) emerge as persistent climate refugia, maintaining > 55% 

habitat stability across all emission scenarios and serving as 
biodiversity arks. Given the species’ limited dispersal capacity and 

specialized calcareous soil requirements, immediate protection of 

core areas and proactive corridor development are imperative. 
Proposed conservation pathways include establishing altitudinal 
connectivity corridors (3,200–4,500 m), genotype banking in 

contraction zones (Yarlung Tsangpo valleys), community-led 

microrefugia management in Diqing and Nyingchi, and real-
time soil moisture monitoring in expansion zones. Limitations 
include gravity-dependent seed dispersal constraints, unmodeled 

pollinator network disruptions, 1-km resolution overlooking 

microrefugia, and simplified soil carbonate dynamics. Protecting 

P. nepalensis safeguards a keystone ecological engineer for 

high-altitude soil stabilization, water regulation, and pastoral 
communities. Implementing a three-tier strategy (core protection, 
connectivity enhancement, climate-adaptive management) by 

2040 can transform projected habitat contraction into resilience. 
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Future research should prioritize integrating genomic adaptation 
signatures with distribution models to identify evolutionarily 
significant units for persistence under climate change. 
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