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Climate change is placing stress on forests, making silvicultural planning more 
challenging in many temperate regions. Since some major tree species are prone 
to drought, there is an increasing interest in selecting native broadleaf minor 
species, which are believed to have greater drought tolerance. Therefore, it is 
crucial to evaluate the growth performance and vitality of these tree species in 
the light of the changing climate. Based on tree-ring width data, we analysed the 
drought response of four minor tree species Acer campestre L., Fraxinus ornus L., 
Quercus pubescens Willd. and Tilia tomentosa Moench. in relation with a major 
tree species Quercus cerris L. in different mixed stands along a precipitation 
gradient in Hungary with the aim to compare the species’ drought tolerance. All 
the species analysed showed a high drought tolerance, with only minor differences 
among them. A. campestre, F. ornus and T. tomentosa showed an overall greater 
climate sensitivity than the oak species, but drought resilience was high in all 
species. Furthermore, none of the species showed signs of dieback on the study 
sites with recent climate warming, suggesting that all studied native tree species 
are also well suited as admixed species in future forest stands.
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1 Introduction

Droughts could trigger a long-term decrease in forest productivity (Peltier et al., 2016; 
Camarero et  al., 2018; D’Orangeville et  al., 2018; Mátyás et  al., 2018), reduce carbon 
sequestration or, ultimately lead to forest decline and mortality (Allen et al., 2015; Móricz et al., 
2018; Schuldt et al., 2020; Senf et al., 2020; Hammond et al., 2022). A decrease in tree growth 
due to prolonged drought periods might diminish the future economic value of currently 
productive forests (Hanewinkel et  al., 2012), which also requires the study also of tree 
physiological adaptations (Andreu-Hayles et al., 2011; Gagen et al., 2011).

In Central Europe, over the past three decades, the frequency and severity of droughts 
have increased (Spinoni et  al., 2017; Ionita and Nagavciuc, 2021). These changes pose 
significant challenges to silvicultural concepts. Various forest management strategies have been 
proposed to alleviate drought stress, including reducing stand density (Schmitt et al., 2020; 
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Steckel et al., 2020), replacing monocultures with mixtures (Pretzsch 
et al., 2013; Pretzsch et al., 2020), transferring propagating material 
from drought-adapted populations (Mátyás, 2021) and introducing 
more drought-tolerant native or non-native temperate tree species 
(Zimmermann et al., 2015; Kunz et al., 2018; Latte et al., 2020; Fuchs 
et al., 2021b; Schmucker et al., 2023; Bouwman et al., 2025). Among 
these strategies, species mixing and stand thinning are favored 
silvicultural practices to address challenges posed by climate change, 
particularly in maintaining stable forest cover in drought-prone 
regions. However, the choice of suitable drought-tolerant native tree 
species which are currently secondary tree species, seems more 
convincing and gaining growing interest. Native trees are generally 
preferable to non-native species because they present fewer 
uncertainties regarding pests, wildlife interactions, wood utilization, 
and their overall impact on ecosystem services (Castro-Díez et al., 
2019; Sapsford et al., 2020; Matevski and Schuldt, 2021). Therefore, it 
is crucial to evaluate the potential of minor domestic tree species by 
examining their general growth patterns, economic viability, and 
drought tolerance even though these tree species are of lower 
economic importance. Nevertheless, only a limited number of 
dendroecological studies have included minor tree species from older 
age classes that are assumed to be more drought-tolerant in Central 
Europe (Hemery et al., 2010; de Jaegere et al., 2016; Kunz et al., 2018; 
Leuschner et al., 2019; Kasper et al., 2022; Schmucker et al., 2023; 
Leuschner et al., 2024). In Hungary, tree species from the genera Acer, 
Fraxinus and Tilia are commonly found as admixed species in forest 
communities. Their geographical distribution extends into the more 
continental climate of eastern Central Europe, suggesting that they 
may be more drought-tolerant than the major native tree species (de 
Rigo et al., 2016). Among native species, field maple (Acer campestre 
L.), manna ash (Fraxinus ornus L.), pubescent oak (Quercus pubescens 
Willd.) and silver lime (Tilia tomentosa Moench.) seem to 
be promising options for admixture in Central European forests.

The diffuse-porous species A. campestre has a broad ecological 
range, covering most of Europe, though it is most commonly found in 
mesophile stands, especially in deciduous oak forests (Zecchin et al., 
2016). It has moderate water demand and avoids waterlogging, 
preferring calcareous soils (Nagy and Ducci, 2004). A combined 
analysis of species distribution models and local growth responses 
revealed that A. campestre displayed a relatively high drought tolerance 
(Walentowski et al., 2014). An extensive study of the drought tolerance 
of minor tree species in southwest Germany suggested that 
A. campestre exhibits similar drought tolerance to that of sessile oak 
(Kunz et al., 2018). F. ornus has the smallest distribution range among 
the ashes, primarily found from southeast France through Central 
Europe (Hungary) and the Balkan peninsula to western Turkey 
(Caudullo and de Rigo, 2016). This ring-porous species requires a 
minimum mean annual precipitation of at least 500 mm but 
demonstrates good drought resistance due to ability to store water in 
its densely branched roots and its low transpiration rate (Italiano et al., 
2024). The ring-porous species Q. pubescens has a wide distribution, 
covering nearly all of central and southern Europe (Pasta et al., 2016) 
and able to survive in drought-prone environments (Damesin and 
Rambal, 1995; Nardini and Pitt, 1999; Pasta et al., 2016). It is known 
for its conservative water usage, largely due to to the anatomy of its 
conducting tissues (Eilmann et  al., 2006; Vodnik et  al., 2019). 
T. tomentosa is a fast-growing tree species with diffuse-porous tree-
rings, predominantly found in the Balkans and Hungary. It behaves 

more like a water-spending and drought-avoiding tree species with 
high leaf tissue elasticity and the ability to tolerate temporary leaf 
wilting (Eaton et al., 2016; Leuschner et al., 2019). However, research 
indicates that T. tomentosa shows relatively high drought sensitivity in 
western Romania, showing negative growth trends and lower 
resilience to drought conditions compared to oak species (Kasper 
et al., 2022). The sites chosen in Hungary for A. campestre are located 
within its main distribution area in Europe. In contrast, the sample 
areas for the other tree species included in this study are situated near 
the northern limit of their distribution.

To enhance the applicability of our findings concerning minor 
tree species for forest managers and scientists, we compare them with 
Quercus cerris. As this oak species is a dominant tree species with 
economic importance in most Southeast European countries, and its 
growth and drought reactions are already well studied (Ciceu et al., 
2020; Móricz et al., 2021; Mészáros et al., 2022). Generally, Q. cerris 
exhibits a high drought tolerance and is expected to maintain stable 
growth even under drier and hotter conditions (Mazza et al., 2021; 
Kasper et al., 2022).

The main goal of the study is to retrospectively evaluate the 
growth response of four minor tree species - A. campestre, F. ornus, 
Q. pubescens and T. tomentosa - compared to the major tree species 
Q. cerris, particularly in the context of changing climatic conditions in 
drought-prone forest areas of Hungary. Our research aims to address 
the following questions: (1) Which climate variables most significantly 
influence the radial growth of the species analysed? (2) Is there a 
variation in drought tolerance among the different tree species?

2 Data and methods

2.1 Study sites and tree species

Five study sites were designated in Hungary (Figure 1, Table 1). 
These sites exhibit annual precipitation ranging from 562 mm to 
705 mm and annual air temperatures between 9.3°C and 
10.3°C. The southwestern regions typically have moister climates, 
while the northeastern areas are characterized by drier conditions. 
None of the selected sites have access to groundwater and they are 
situated at elevations between 215 m and 370 m above mean sea 
level (Table 1). Since 1971, annual precipitation at the sampling 
sites has not shown a significant trend, however, the drier sites 
showed greater interannual variability (Figure 2). In contrast, air 
temperature has exhibited a clearer overall trend and significant 
interdecadal variability. A notable cooler period occurred during 
the 1980s at all sites, but since 1990, warmer years have been 
recorded. Over the study period, all sites have experienced a 
warming trend, with particularly steep increases in annual mean 
temperature of 0.05°C to 0.06°C per year in the past 30 years 
(Figure 2). For this study, we designated one species-rich mixed 
forest stand at each selected site, featuring varying species 
composition and age, ranging from 42 to 82 years. Each tree 
species was represented in at least two of the mixed forest stands 
(Table 2). The five tree species investigated - Acer campestre L., 
Fraxinus ornus L., Quercus pubescens Willd., Tilia tomentosa 
Moench. and Quercus cerris L.—are commonly found in Central 
European broadleaf mixed forests. They typically occur in 
communities classified under the phytosociological alliances 
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Carpinion betuli (oak-hornbeam forests), Quercetum petraeae-
cerris (sessile-Turkey oak forests), Aceri campestri and tatarici-
Quercetum (maple-oak forests) (Leuschner and Ellenberg, 2017). 
To minimize the impact of forest management practices—such as 
selective thinning and regeneration cutting - on growth-climate 
relationships, we  selected forest stands with low management 
intensity over the past few decades. Additionally, to reduce 
competition, we avoided selecting suppressed trees, as they exhibit 
larger growth responses to various interventions compared to trees 
in the upper canopy (Nowacki and Abrams, 1997). The selected 
trees were primarily grown from seed, with a smaller portion being 
coppice regeneration.

2.2 Meteorological data and soil water 
budget calculations

Meteorological data were obtained from the HUCLIM daily 
gridded climate dataset of the Hungarian Meteorological Service 
(HMS, https://odp.met.hu/). This dataset has an approximate spatial 
resolution of 10 km and covers the period from 1971 to 2022. 

We assigned the nearest grid points to the study sites and aggregated 
daily mean temperatures and total precipitation into monthly 
averages. To account for the altitude differences between the study 
sites and the corresponding grid points, we  adjusted the mean 
monthly temperature data using monthly elevation gradients 
(Péczely, 1979).

The monthly water balance (WB) was calculated as the difference 
between precipitation and potential evapotranspiration, following the 
method, described by McCabe and Markstrom (2007). WB serves as 
an ecologically relevant indicator of water availability for tree growth 
and has a strong correlation with the radial growth of various tree 
species (Stojanović et al., 2018; Vitasse et al., 2019). WB effectively 
reflects the negative impacts of increased temperatures on water 
availability (Vitasse et  al., 2019). We  calculated WB for different 
periods ranging from 1 to 12 months, starting in August of the current 
year of growth. In addition to WB, we used the Forestry Aridity Index 
(FAI) (Führer et al., 2011) which is defined as the ratio of the mean 
temperature of July and August and the precipitation sums of May to 
July plus the precipitation sum recorded from July to August. This 
index is particularly relevant for assessing tree growth (Führer 
et al., 2011).

FIGURE 1

Study sites in Hungary (1. Gödöllő Hills—GOD, 2. Vértes Mts.—VER, 3. Somogy Hills—SOM, 4. Keszthely Mts.—KES, 5. Zselic—ZSE), the color shaded map 
shows the annual mean precipitation sum (mm) for the period 1971–2022 (HMS, 2022).

TABLE 1 Main site characteristics.

Site Lat./ Lon. Elevation (a.m.s.l) MAP (mm) MAT (°C) Genetic soil type

Gödöllő Hills (GOD) 47.58 N/19.42E 300 562 9.5 Cambiosol (brown earth)

Vértes Mts. (VER) 47.44 N/18.41E 350 620 9.8 Cambiosol (brown earth)

Somogy Hills (SOM) 46.86 N/17.94E 215 632 10.3 Cambiosol (brown earth)

Keszthely Mts. (KES) 46.81 N/17.32E 370 702 9.3 Leptosols (rendzina)

Zselic (ZSE) 46.22 N/17.72E 240 705 10.2
Luvisols (brown forest soils 

with clay illuviation)

MAP, Mean annual precipitation (1971–2022); MAT, Mean annual temperature (1971–2022).
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For monthly soil water balance modelling, we  used the 
Thornthwaite-type model (Thornthwaite, 1948) covering the period 
from 1971 to 2022. The input variables for the model included 
monthly mean air temperature, precipitation sum, the latitude of the 
sites and the plant-available soil-water storage capacity (AWC). To 
estimate the AWC of the soil, we collected 4–5 soil samples from 

individual soil horizons down to a depth of 100 cm. These samples 
were analysed for various chemical and physical parameters (Table 3). 
Field capacity and wilting point water content of the soil samples were 
estimated from the particle composition and base rock fraction 
content using pedo-transfer functions and the Rosetta3 model within 
the “soilDB” package of R software (Zhang and Schaap, 2017). 

FIGURE 2

Trends of annual precipitation sum (mm) and annual mean temperature (°C) at the study sites during the period 1971–2022 (HMS, 2022). The dashed 
horizontal lines represent the average values of the reference period 1971–2000; the curves are smoothed using a 5-year trailing moving average for 
better visualization of climatic trends. The color code for site labels indicates the gradient of mean annual precipitation (orange: low, green: high).

TABLE 2 Main stand characteristics.

Site Species n TA (years)b MR (%)a SH (m)b DBH (cm)b Density (trees/
ha)a

GOD

A. campestre 17 50 ± 10 17

23

27 ± 4.5 60

F. ornus 23 54 ± 8 16 29 ± 4.9 109

Q. cerris 24 67 ± 11 38 32 ± 3.8 137

Q. pubescens 22 52 ± 7 10 30 ± 5.3 19

VER

A. campestre 23 47 ± 8 18

22

22 ± 5.4 159

F. ornus 21 51 ± 13 32 36 ± 8.4 295

Q. cerris 23 60 ± 10 50 35 ± 4.7 434

Q. pubescens 17 82 ± 22 5 33 ± 6.0 14

SOM
Q. cerris 24 47 ± 5 15

15
32 ± 3.5 100

T. tomentosa 24 42 ± 8 9 29 ± 4.8 60

KES

F. ornus 24 45 ± 5 4

11

19 ± 3.4 84

Q. cerris 24 47 ± 5 73 23 ± 3.4 971

Q. pubescens 23 46 ± 4 5 22 ± 3.6 78

ZSE

A. campestre 14 67 ± 14 4

27

25 ± 4.7 14

Q. cerris 24 71 ± 10 48 38 ± 5.2 177

T. tomentosa 20 69 ± 9 18 41 ± 6.6 36

n, number of trees; TA, Mean tree age in 2022 ± SD, estimated as the measured mean number of tree rings to the pith at breast height; MR, mixing ratio of species stems; SH, mean stand 
height; DBH, mean diameter at breast height ±SD. For site abbreviations see Figure 1.
aNational Forestry Database (2021).
bField measurement.
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We summed the differences in water content between field capacity 
(pF = 2.5) and permanent wilting point (pF = 4.2) over the entire 
rooting depth, which exceeded 1 meter at all sites, as indicated by 
visual observations of fine roots in the soil samples. Finally, 
we calculated the summer water stress index (Is) by dividing soil water 
deficit and the maximum extractable water for 120 cm soil depth or 
up to the bedrock depth, assuming uniform soil texture below 100 cm 
depth, as described by Granier et al. (1999).

2.3 Tree-ring data and chronology building

We selected up to 24 trees of each species based on the available 
number of trees in each stand and extracted one core at breast height 
(1.3 m) from each tree (Fritts, 1976). A total of 375 cores were collected, 
using a Pressler increment borer (Haglöf, Långsele, Sweden), where the 
influence of tension wood and other anomalies were assumed to 
be  smallest. The cores were then air-dried and glued to grooved 
wooden mounting boards (Speer, 2010). Afterwards, we sanded and 
scanned the cores at a resolution of 1,200 dpi (EPSON Expression 
11000XL Model: J331A) (Supplementary Figure S1). We measured 
tree-ring widths (TRW) on the digital images with an accuracy of 
0.01 mm using WinDENDRO software ver. 2014a (Regent Instruments 
Inc., Canada). The resulting TRW series were visually checked for 
characteristic rings and cross-dated using the software COFECHA 
with 50 years segments lagged successively by 25 years (Holmes, 1983). 
Cores that did not meet the default cross-dating correlation threshold 
were excluded, leaving a total of 346 cores available for further analysis. 
Tree age was estimated based on the number of tree rings counted from 
the bark to the pith (Table 2). The number of missing rings to the pith 
was approximated using the diameter and core length of each tree with 
the radius-length method (Norton et al., 1987).

To account for age and size-dependent trends, we applied rigorous 
detrending techniques since the stands varied in age and potential 
management intensity. As the focus was on single-year climate-growth 
interactions and short-term responses to drought events, flexible cubic 
smoothing splines with a 50% frequency cut-off at 25 years were used 
to detrend and standardize the raw ring-width series (Cook and Peters, 
1981; Speer, 2010). We did not remove the first-order autocorrelation as 
it could significantly affect drought legacies (Yue et al., 2011). Detrended 
chronologies were built for all populations via Tukey’s biweight robust 
mean (Mosteller and Tukey, 1977) and truncated to the period of 1972–
2021 to exclude younger tree life stages (Supplementary Figure S2). The 
signal strength of the final chronologies was assessed by the expressed 
population signal (EPS) and mean inter-series correlation (Rbar).

To assess long-term growth trends, we used the regional curve 
standardization (RCS) method (Briffa et al., 1983; Biondi and Qeadan, 
2008) to age-detrend the ring-width series. We estimated the regional 
age trend for all investigated species by aligning the tree-ring series for 
each species based on cambial age. The estimated average growth 
curve was then used to detrend individual series. After this, 
we  constructed RCS chronologies using Tukey’s bi-weight robust 
mean. We evaluated the significance of growth trends over the period 
from 1972 to 2021 using the Mann-Kendall trend test. All detrending 
procedures and the statistical analyses of the chronologies were 
performed using the software R (version 4.0, R Core Team, Vienna) 
with the “dplr” package (Bunn, 2008).

2.4 Climate sensitivity analysis

Large-scale pest outbreaks can significantly impact tree growth 
and confound the climate sensitivity analysis. Considering the 
occurrence of such events (Hirka, 2022), we assessed any potential 
biotic effects on radial growth by utilizing Cook’s distance in the linear 
regression between detrended growth and water balance (calculated 
from the previous September to the current August) for each 
population (Cook and Weisberg, 1982). This approach helped us 
identify any outlier years in the datasets that aligned with reports of 
biotic damage from local forest managers.

We assessed the relationship between climate variables (monthly 
temperature and precipitation, and derived indices FAI, WB, and Is) and 
standard chronologies using Pearson correlation coefficients. Monthly 
temperature and precipitation were examined throughthe response-
function analysis taking into account the inter-correlations among the 
climatic variables using the “treeclim” package (Zang and Biondi, 2015). 
We  analysed monthly meteorological data over the preceding 
16 months, from June of the previous year until September of the actual 
year of ring formation. For FAI and Is, the correlation coefficient was 
computed on an annual basis, while for WB, we considered all seasons 
(March–May, June–August, September–November and December–
February). Additionally, the correlation for WB was calculated for a 
3-to-12-month window from August of the current year until 
September of the previous year. The significance of the correlations was 
tested using bootstrap resampling (Zang and Biondi, 2015). We also 
explored whether there were significant differences in the climate-
growth correlations among different tree species within a specific stand. 
The Pearson r values were transformed to Fisher’s z to normalize the 
variance, followed by a pairwise t-test. This way we  were able to 
determine if the differences among correlation coefficients were 

TABLE 3 Soil characteristics at the studied sites.

Site Soil texture pH Humus content 
(%)a

CaCO3 content 
(%)

Stone content 
(%)a

AWC (mm)a

GOD Sandy loam 7.28 3.69 13.1 0 142

VER Loam 4.19 3.34 0 0 185

SOM Loam 6.86 3.73 6.5 0 178

KES Sandy loam 7.39 4.04 1.1 42 62

ZSE Loam 4.68 2.65 0 0 190

Soil texture, mean pH (measured in H2O), mean humus content (%), mean CaCO3 content (%) and mean stone content (%) of the top 50 cm of the profile and the profile total available soil 
water capacity (mm, 0–120 cm soil depth). For site abbreviations see Figure 1.
aLaboratory measurement.
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statistically significant. After identifying the climatic parameter with the 
highest correlations, we calculated the correlation coefficients for this 
parameter using a moving window approach (window size: 20 years, 
window offset: 1 year). This allowed us to search for temporal changes 
in growth sensitivity to this climatic driver over a period of 50 years.

We evaluated growth synchrony by calculating the mean inter-
series correlation (Rbar), which reflects the average Pearson correlation 
among all tree-ring series within a specific chronology (Wigley et al., 
1984). To obtain running synchrony values (Rbar), we used a 20-year 
moving window. Additionally, we assessed the significance of trends 
for the period from 1972 to 2021 using the Mann-Kendall trend test.

2.5 Growth response to droughts

A certain year was considered a drought year when the standardized 
12-month water balance (from August of the current year until 
September of the previous year) was lower than −0.84 (Fuchs et al., 
2021b), regardless of any observed growth reductions, as suggested by 
Schwarz et al. (2020). The range of the standardized 12-month water 
balance varied from −2.2 to 3.4. We selected all drought events for 
conducting the superposed epoch analysis (SEA) of growth depressions. 
For multi-year droughts, we selected the year with the most negative 
water balance. An epoch of 11 years was chosen, encompassing five years 
before and after each drought year. SEA calculates the mean departure 
in growth performance for each year within the epoch from the mean of 
all analysed epochs per chronology (Lough and Fritts, 1987). To define 
95% confidence intervals of the departures, we employed bootstrapping 
with 5,000 random draws from the respective chronology. SEAs were 
conducted using the “dplR” package in R (Bunn, 2008).

We calculated three indices of drought response for each population 
based on the detrended radial growth (Lloret et al., 2011). These indices 
assess how the trees withstand drought (resistance), recover from 
growth reduction during the drought (recovery) and their capacity to 
reach pre-drought growth levels (resilience). We analysed the effects of 
drought on these indices using reference periods of varying lengths: 1 
year, 3 years and 5 years of mean radial growth before and after the 
drought event. This approach helped limit the influence of other factors, 
such as defoliation caused by insects (Schwarz et al., 2020). For multi-
year droughts, the resistance and recovery indices were calculated by 
averaging the radial growth across successive drought years.

To test for differences in drought indices - resistance, recovery and 
resilience - among species and sites, a simple one-way ANOVA and 
for pair-wise comparison Tukey HSD test was used (Abdi and 
Williams, 2010). We also analysed the relationship between recovery 
and resistance for each tree species across all sites and available 
drought events using linear regressions by examining the ANOVA 
p-value from the interaction of resistance by species and comparing 
the slopes in the R package “lsmeans” (Lenth, 2016).

3 Results

3.1 General characteristics of the 
chronologies

The mean annual tree-ring width (MRW) of the analysed species 
ranged from 1.3 to 3.0 mm, with no clear trend observed as we moved 

from moister to drier sites (Table 4). The standard deviation of ring 
widths for the two diffuse-porous species A. campestre and T. tomentosa 
was approximately 25% higher (ranging from 1.21 to 1.66 mm) 
compared to the ring-porous species Q. cerris, Q. pubescens and F. ornus, 
which ranged from 1.07 to 1.22 mm (Table 4). Among the sites, the 
lowest annual radial growth was observed in the Keszthely Mts. 
(1.88 mm) and the highest in the Somogy Hills (2.81 mm). The MRW 
did not show any significant relationship with tree age, suggesting that 
the populations experienced a stable growth rate during the period 
analyzed. Instead, the MRW of the tree populations was more closely 
associated with site conditions. Growth rates were lower in the Keszthely 
Mountains, which have low water-holding capacity, while areas with 
greater soil water capacity, such as Zselic, Vértes, and Szántód, exhibited 
higher growth rates (Tables 2, 4). The expressed population signal (EPS) 
was remarkably high, ranging from 0.85 to 0.99 for all species, 
consistently reaching or exceeding the generally accepted threshold of 
0.85 (Wigley et al., 1984) (Table 4).

We observed only a few significant growth trends during the 
studied period. Specifically, the growth of A. campestre in Gödöllő 
Hills and Q. pubescens in Vértes Mts. has increased, while Q. cerris in 
Keszthely Mts. and T. tomentosa in the Zselic have shown a decline 
(Supplementary Figure S3).

3.2 Climate sensitivity of growth

The outlier analysis using Cook’s distance revealed that the growth 
of Q. cerris and Q. pubescens was significantly affected by the spongy 
moth outbreak (Lymantria dispar L.) in the Keszthely Mts. and the 

TABLE 4 Dendrochronological statistics for the ring-width series (raw 
data) and index-based chronologies (all truncated to the period 1972–
2021) of the populations.

Site Species Raw ring-width 
data

Chronologies

MRW 
(mm)

AC (1) Rbar EPS

GOD

A. campestre 1.96 ± 1.09 0.32 ± 0.15 0.28 0.87

F. ornus 2.10 ± 1.18 0.47 ± 0.13 0.43 0.95

Q. cerris 1.87 ± 1.03 0.59 ± 0.17 0.67 0.98

Q. pubescens 2.17 ± 1.22 0.71 ± 0.13 0.52 0.96

VER

A. campestre 2.00 ± 1.22 0.51 ± 0.12 0.37 0.93

F. ornus 3.03 ± 1.48 0.45 ± 0.21 0.32 0.91

Q. cerris 2.33 ± 1.24 0.68 ± 0.11 0.55 0.97

Q. pubescens 1.33 ± 0.73 0.55 ± 0.24 0.26 0.86

SOM
Q. cerris 2.86 ± 1.37 0.46 ± 0.15 0.74 0.99

T. tomentosa 2.75 ± 1.87 0.59 ± 0.14 0.65 0.98

KES

F. ornus 1.94 ± 0.99 0.52 ± 0.16 0.37 0.93

Q. cerris 1.94 ± 1.06 0.64 ± 0.15 0.57 0.97

Q. pubescens 1.76 ± 1.26 0.69 ± 0.10 0.49 0.96

ZSE

A. campestre 1.94 ± 1.32 0.64 ± 0.13 0.30 0.86

Q. cerris 2.27 ± 1.02 0.66 ± 0.15 0.49 0.96

T. tomentosa 2.75 ± 1.44 0.70 ± 0.12 0.34 0.92

MRW: mean ring width of all series ±SD, AC (1): first-order autocorrelation ±SD, Rbar: 
mean inter-series correlation (growth synchrony), EPS: expressed population signal. For site 
abbreviations see Figure 1.
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Somogy Hills sites in 2005 (Csóka and Hirka, 2009). This outbreak 
had a considerable effect on radial growth, obscuring the influence of 
climate during that year, leading us to exclude that year from further 
analysis in the affected populations.

Pearson’s correlation coefficients between monthly 
precipitation and ring widths were highest in May, June, and July 
of the current year, as well as in September of the previous year 
with r values reaching up to 0.52 (Figure 3A). Significant negative 
correlations with temperature were mainly observed from May to 
August of the current year with r values dropping to −0.48 
(Figure  3B). Considering the intercorrelations among climatic 
variables considerably reduced the number of significant climatic 
variables (Supplementary Figure S4). Correlations of precipitation 
mostly remained significant during the May–July period and for 
September of the previous year (Supplementary Figure S4A). 
Furthermore, the temperature signals of May and June continued 
to show significance, particularly for A. campestre (Supplementary  
Figure S4B).

The derived indices demonstrated a strong correlation with radial 
growth. The mean correlation coefficient for FAI was r = 0.45, while 
the mean for Is was r = 0.55 when considering all populations. The 
water balance displayed the highest positive correlation (ranging from 

r = 0.36 to r = 0.63) with radial growth during the current summer 
across different populations. The water balances in the spring of the 
current year and the autumn of the prior year also positively 
influenced tree growth. The radial growth of A. campestre, Q. cerris 
and T. tomentosa showed a moderate correlation (ranging from 
r = 0.38–0.52) with summer water balance, but only Q. cerris and 
T. tomentosa showed a higher correlation with winter water balance 
(r = 0.29 for both species) compared to the other species.

The 12-month water balance between previous year September 
and current year August (WBsep-aug) exhibited the highest 
correlation among the monthly aggregated water balance variables 
with radial growth, achieving an average correlation coefficient of 
r = 0.6 across most populations (Figure 4).

This correlation was notably high for the climatically drier 
sites, with average coefficient values of r > =0.6, while it was 
comparatively lower for wetter sites (ranging from r = 0.42 to 
r = 0.55) (Figure 4). In the Keszthely Mts, the radial growth of 
Q. cerris and Q. pubescens showed the highest correlation with the 
four-month water balance from May to August of the current year. 
In contrast, A. campestre and T. tomentosa had stronger 
correlations with the summer water stress index (Is) in the Zselic 
(Figure 4).

FIGURE 3

Correlation coefficients between monthly precipitation (A) and temperature (B) for the five tree species at the five sites. Months abbreviated with lower 
case letters refer to the previous year, months with capital letters to the current year. The color code indicates the gradient of mean annual 
precipitation (orange: low, green: high). Significant departures (p < 0.05) are shown with black bars. For site abbreviations see Figure 1.
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The temporal change in correlations between the detrended 
chronologies and the seasonal water balance revealed the increasing 
(positive) effect of winter water balance on most sites and tree 
species, particularly over the past two decades (Figure 5). However, 
this trend was not apparent for A. campestre and T. tomentosa. 
Generally, the summer water balance played a crucial role for all 
populations, showing only a slight decline in the strength of its 
positive correlation in recent years. For the drier sites—GOD, VER, 
and SOM - the effect of spring water balance was significant, while it 
had a lesser impact on the wetter sites, KES and ZSE. Finally, the 
autumn water balance typically exhibited a negative correlation with 
radial growth, although some sites showed an increase in correlation 
(Figure 5).

Growth synchrony (Rbar) of the detrended chronologies was 
higher for Q. cerris, T. tomentosa and Q. pubescens than for 
A. campestre and F. ornus (Table 4). Generally, growth synchrony was 
lowest at the wettest site (Zselic) and highest at the driest site (Gödöllő) 
for most species. The lower growth synchrony of A. campestre at 
certain sites was due to the limited number of sampled trees and 
difficulties in accurately dating its tree rings, which often resulted 
from a high occurrence of uncertain ring boundaries. Notably, 
two-thirds of the populations exhibited a significant change in growth 
synchrony during the analysed period, most of which were increases 
(Figure 6). Recently, there has been a decrease in growth synchrony 
for most of populations except in Somogy Hills, where it has increased 
and remained at high levels for both Q. cerris and T. tomentosa over 
the past few decades (Figure 6).

3.3 Growth response to drought years

Drought years were rare events between 1971 and 1990 but their 
frequency and severity increased significantly afterward 
(Supplementary Figure S5). We identified 5–7 drought years across 

different sites (1983, 1990, 1992–1993, 2000–2003, 2007, 2011–2012 
and 2017). Superposed epoch analysis (SEA) revealed a significant 
(p < 0.05) reduction in growth for all populations in the drought years 
(Figure 7). Among the analysed tree species, Q. pubescens, Q. cerris 
and A. campestre experienced the strongest growth reductions. Most 
sites showed no significant differences between ring-porous and 
diffuse-porous species. However, T. tomentosa demonstrated a lag 
effect after drought years at both study sites, showing reduced growth 
in subsequent years (Figure 7). Moving further away from the drought 
year, the differences become increasingly difficult to interpret, 
particularly since droughts have occurred every 2–3 years in 
recent decades.

The combined data from all sites and drought events indicated 
comparable resistance levels among the five tree species (Figure 8). In 
terms of the recovery index, Q. cerris demonstrated the highest recovery 
value following drought, while F. ornus exhibited the least recovery in the 
5 years after the drought event. Over the one-year reference period, a 
tendency of lower recovery can be  seen for T. tomentosa 
(Supplementary Figure S6). The variability in recovery data was extensive 
for the two diffuse-porous species but more concentrated for the three 
ring-porous species. The growth resilience among the species was 
balanced (close to 1) with no significant differences noted during the 
five-year reference period, although a tendency for lower resilience in 
T. tomentosa was apparent in the distribution of index values (Figure 8).

Regression analysis of resistance and recovery for all species 
indicated that A. campestre, F. ornus and T. tomentosa generally have 
higher recovery values for lower resistance levels, than the two oak 
species (Figure 9). For the one-year reference period, we found no 
significant differences among the tree species, although the slope of 
regression was more gradual for T. tomentosa and F. ornus 
(Supplementary Figure S8). The slope of the linear regression between 
resistance and recovery values was significantly steeper for A. campestre 
compared to Q. cerris and Q. pubescens for both the three- and five-
year reference periods (Supplementary Figure S9, Figure 9).

FIGURE 4

Correlation between radial growth (ring width index values) and the water balance (WB) for 3–12 months-window from the August of the current year 
until September of the previous year for the tree species at the five sites. Months abbreviated with lower case letters refer to the previous year, months 
with capital letters to the current year. The color spectrum from orange to green indicates the position of the site in the gradient of mean annual 
precipitation. Significant correlations are denoted with filled circles (p < 0.05).
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4 Discussion

4.1 Climate sensitivity of growth

Under stressful climatic conditions, particularly at the distribution 
margins of tree species, strong environmental drivers such as drought 
would commonly affect entire populations, leading to high growth 
synchrony among individuals (Shestakova et al., 2016; del Río et al., 
2021). In contrast, in optimal climatic conditions, individual 
competitive abilities can develop better, resulting in more diverse 
growth patterns. In our study sites, we observed a constantly rising 
summer water deficit over the study period (Supplementary Figure S10). 

However, most populations have shown a bell-shaped growth 
synchrony curve with decreasing tendencies in recent decades 
(Figure 6). Although the number of stands examined was small, this 
may suggest an increased within-population diversity in responses to 
drought, i.e., that some individuals have a better capacity to adapt to 
the stressor (Muffler et  al., 2020). Therefore, decreasing growth 
synchrony could signify conditions conducive for natural selection 
leading to local adaptation under changing climatic conditions, 
whereas high synchrony may reflect a lower adaptive potential, even 
in the face of significant stress. Factors such as microenvironmental 
heterogeneity, differing availability of deep soil water pools, and 
variable intrinsic tree characteristics—like tree height—could also 
explain the observed decrease in growth synchrony (Vilà-Cabrera 

FIGURE 5

Moving window correlation analysis of climate-growth relationships in the five species at five sites for the period 1972–2021. Shown are the central 
years of the respective 20-year periods, testing for the correlation between the seasonal water balance variables (current spring: March–May, current 
summer: June–August, current autumn: September–November and previous winter: December–February) and annual ring width indices. The color 
code indicates the gradient of mean annual precipitation (orange: low, green: high). Significant periods are denoted with bold lines (p < 0.05). For site 
abbreviations see Figure 1.

FIGURE 6

Moving averages of growth synchrony (Rbar: the mean correlation between all tree-ring index series in a chronology) of the five species at the five 
sites from 1972 to 2021 with loess regressions and 95% confidence intervals (span value: 1). Shown are the central years of the respective 20-year 
periods. The color code for site labels indicates the gradient of mean annual precipitation (orange: low, green: high). For site abbreviations see Figure 1.

https://doi.org/10.3389/ffgc.2025.1625371
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Móricz et al. 10.3389/ffgc.2025.1625371

Frontiers in Forests and Global Change 10 frontiersin.org

et al., 2019; Muffler et al., 2020; Ripullone et al., 2020; González de 
Andrés et al., 2021).

The water balance was more important for the radial growth of all 
species than precipitation or temperature alone. This indicates that soil 
water availability, in conjunction with atmospheric evaporative 
demand regulates the water status of leaves, stems, and roots, 
ultimately affecting cambial growth activity in the investigated sites 
(Trotsiuk et al., 2021). It is worth mentioning that beyond the available 
soil water, extreme heat events can impact a wide variety of tree 
functions. At the leaf level, photosynthesis may be  reduced, 
photooxidative stress can increase, leaves may abscise and at the whole 
plant level the growth rates can decrease (Teskey et al., 2015). Of the 

seasons analysed, the summer water balance had the most substantial 
impact on growth, a finding that aligns with several studies conducted 
in Central Europe (Fuchs et al., 2021b; Kasper et al., 2022; Mészáros 
et al., 2022). In the preceding year, only the precipitation in September 
was notable for all tree species and there was no significant carry-over 
effect from the past summer, as observed with F. sylvatica (Di Filippo 
et al., 2007; Müller-Haubold et al., 2015). Most populations showed 
the strongest correlations between growth and the water balance of 
the preceding 12 months, between September of the previous year and 
August of the growth year, similar to the observations on Quercus 
species in Serbia (Stojanović et al., 2018). However, in the Keszthely 
Mts (KES) the growth of oaks (Q. cerris and Q. pubescens) showed the 

FIGURE 7

Results of superposed epoch analyses on the response of radial growth of the five species at the five sites to all drought events. Shown is the deviation 
of mean ring width in a 11-year period with the drought years in the center from the mean ring widths in all analysed 11-year epochs of the 
chronology. The color code for site labels indicates the gradient of mean annual precipitation (orange: low, green: high). Significant departures 
(p < 0.05) are displayed in black. For site abbreviations see Figure 1.

FIGURE 8

Resistance, recovery and resilience of radial growth of the five species from all sites and drought events using the five-year reference period. The violin 
plots depict the distributions of drought indices data using density curves. The width of each curve corresponds with the approximate frequency of 
data points in each region. Horizontal black lines of the violins are the medians.
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strongest correlation with the water balance between May and July. A 
very similar growth response was found for oak stands studied 
~30–40 km westward from the KES site (Kern et al., 2009). This trend 
is likely due to the low soil water capacity at that site (Table 3), which 
might contribute significantly to the limiting summer conditions 
for growth.

We found that the dry populations were more sensitive to climate 
than those in wetter locations (Figures 4, 5). This aligns with regional 
and European-wide studies that reported stronger growth responses 
in areas with low water availability compared to wetter sites 
(Scharnweber et al., 2011; Bose et al., 2021; Bouwman et al., 2025). 
Following the year 2000, we  observed an increasing positive 
correlation between radial growth and winter water balance (Figure 5). 
This upward trend was more pronounced for the studied deep-rooting 
oak species than for the other investigated species with a more 
horizontal root system (Crow, 2005; Taneda and Sperry, 2008). The 
likely reason for this change is the shift in the overall water balance in 
our study sites over recent decades, driven by increased 
evapotranspiration pressure from rising temperatures, while 
precipitation levels have largely remained unchanged (Figure  2) 
(Trotsiuk et al., 2021). Consequently, the tree species in the examined 
sites may increasingly rely on deep soil water sources due to worsening 
drought conditions during the growing season, as reported in other 
studies involving various tree species (Mészáros et al., 2022).

4.2 Growth response to drought years

Lloret indices have revealed only a few significant differences in 
the drought response among the species. However, it was evident that 
A. campestre, F. ornus and T. tomentosa exhibited higher variability in 
their drought indices, particularly when compared to the two oak 
species studied (Figure  8, Supplementary Figure S6, S7). This 
observation aligns with previous studies, such as those by Kunz et al. 
(2018) and Schmucker et  al. (2023), regarding A. campestre and 
Italiano et  al. (2024) for F. ornus. In our study, A. campestre 
demonstrated a great capacity for recovery across all three reference 
periods, particularly during extreme droughts. In contrast, 

Q. pubescens showed the lowest variability of the drought indices and 
therefore the most balanced growth among the analysed tree species. 
This phenomenon is well-documented for temperate tree species that 
generally display lower resistance but tend to have higher recovery 
rates than their more resistant counterparts (Gazol et  al., 2017; 
Schwarz et al., 2020). All examined tree species showed high resilience, 
with values around one, indicating their ability to maintain vitality 
and growth even after experiencing extreme droughts. Nonetheless, 
both the superposed epoch analysis and the Lloret indices revealed 
that T. tomentosa took longer to return to its pre-drought growth rate 
compared to the other species studied (Figure  7, 
Supplementary Figure S6). This finding is consistent with low 
resilience values for T. tomentosa in two- and five-year assessments 
following drought events in western Romania (Kasper et al., 2022). 
Leuschner et al. (2024) also found that Tilia (T. cordata Mill.) exhibits 
moderate drought resistance hardly withstanding extreme droughts, 
as noted by de Jaegere et al. (2016).

The seasonality and duration of drought events impact species 
resistance and resilience (D’Orangeville et al., 2018). However, due to 
the limited number of available drought events (ranging from 5 to 7 
events per site), we could not take this into account. This is important 
because different tree species exhibit varying growth dynamics and 
wood anatomy, leading to different vulnerability to spring or summer 
droughts (Michelot et al., 2012). Additionally, in ring-porous species, 
the formation of earlywood is heavily influenced by the remobilization 
of stored carbon, making it less reflective of the actual weather 
conditions during that time (Michelot et  al., 2012). Furthermore, 
we did not sample dead trees, as only a few were encountered during 
our study. Consequently, we were unable to evaluate any climatic 
factors that might have a fatal impact on tree growth.

In the absence of long-term mortality records for unmanaged 
stands of the studied species, it remains debatable whether tree species 
that are less responsive to droughts are more successful than those that 
are highly sensitive. Recently, Gessler et al. (2020) proposed that the 
delayed recovery of trees following a disturbance is not necessarily 
indicative of vitality loss due to the negative impacts of drought rather 
it may signify physiological acclimation processes. Drought-induced 
growth legacies and wood anatomical adjustments can lead to 

FIGURE 9

Relationship between the resistance and recovery values of the five species from all sites and available drought events using the five-year reference 
period. Solid blue lines denote linear regressions with confidence intervals (97.5%) are shown as shaded areas around the fit for the datapoints.
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improved resistance to recurrent droughts (Tomasella et al., 2019). In 
this context, a reduction in growth following a drought can be viewed 
as a positive adjustment aimed at enhancing a tree’s long-term survival 
(Galiano et  al., 2017). In contrast, fast-growing tree species often 
adopt a riskier strategy. After experiencing drought, damaged xylem 
conduits need to be rebuilt, which may decrease pest defence capacity 
and make these species more vulnerable to subsequent droughts 
(Beloiu et al., 2022).

The properties of the hydraulic system are also of central 
importance for the drought tolerance of tree species. The water-
conducting channels in trees can withstand varying degrees of 
tension before embolisms—air bubbles forming in the xylem—
occur. Hydraulic safety margins refer to the relationship between 
resistance at the xylem level and stomatal control (Meinzer et al., 
2009). Specifically, these margins are defined as the difference 
between the minimum leaf water potential and a measure of 
xylem embolism resistance (e.g., P50). This represents a tree’s 
hydraulic strategy conservatism (Choat et al., 2012). Generally, 
Quercus species exhibit wider hydraulic safety margins and greater 
drought resistance (Cochard et al., 1992; Nardini and Pitt, 1999; 
Lobo et al., 2018). In contrast, Acer and Fraxinus species show 
variable but often moderate resistance (Schumann et al., 2019). 
Tilia, on the other hand, has narrower margins, making it more 
vulnerable to hydraulic dysfunction during severe drought 
conditions (Fuchs et  al., 2021a). Conversely, the tree species, 
which display higher responsiveness to drought and narrower 
hydraulic safety margins may face considerable vulnerability to 
future climate change. In the current study, this is particularly true 
for A. campestre, F. ornus and T. tomentosa, consistent with 
findings by Kunz et al. (2018) in Germany. Additionally, other 
factors must be  considered, such as the trunk’s water storage 
capacity, the rooting depth, and the competition among crowns 
and roots within a stand. Understanding the differences among 
tree species is essential for predicting how they will respond to 
climate change. This necessitates a more comprehensive approach 
to assessing the resilience of individual species and selecting the 
most appropriate species for planting in various environments.

5 Conclusion

All analysed species demonstrate high resilience to drought, with 
only slight differences among them. The tree species A. campestre, 
F. ornus and T. tomentosa show higher variability in their drought 
indices, particularly in terms of recovery and resilience, compared to 
the two oak species studied. A. campestre exhibits the greatest 
sensitivity to changing climatic conditions, as indicated by a significant 
increase in growth synchrony during the study period. In contrast, the 
age-independent growth of F. ornus remained stable and showed no 
clear changes in growth synchrony. Although it is slightly less sensitive 
to drought than A. campestre, the impact of winter water balance on 
its growth has increased. T. tomentosa displays similar sensitivity to 
drought and growth patterns as A. campestre and F. ornus; however, it 
shows a pronounced drought legacy in the first year following drought 
events. The decreasing trend in its growth and higher growth 
synchrony observed at the drier site suggest this species’ vulnerability. 
On the other hand, both Q. cerris and Q. pubescens exhibit a high 
degree of resilience to climate change. Their stable growth over recent 

decades, combined with lower variability in drought resistance and 
resilience, positions them as solid foundations for future forest stands 
even in drier climate conditions. Despite the differences, all analysed 
species are valuable options for enriching forest stands, as they 
demonstrate high resilience to drought and have not shown signs of 
dieback at the study sites.
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