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Forests play a crucial role in maintaining the ecological balance of the Earth. 
While existing publicly available datasets typically offer high accuracy in identifying 
large-scale forest concentrations, discrepancies arise in forest extraction within 
smaller regions. This variation complicates the selection of appropriate forest 
cover datasets for specific areas. This study focuses on the southern and northern 
regions of China, represented by Hunan Province and Heilongjiang Province, 
respectively. It systematically evaluates the performance of eight forest cover 
datasets from 2020 in terms of forest area estimation, spatial consistency, and 
classification accuracy. Through confusion analysis of classification in low-
consistency areas, the study identifies the confusion patterns between forests 
and other land cover types in different regions. Additionally, the study explores 
the causes of discrepancies between datasets by considering topographic factors 
and human activities. The results show that the CRLC 2020 outperforms others in 
terms of both area estimation and classification accuracy, achieving classification 
accuracies of 90.88% in Hunan Province and 91.69% in Heilongjiang Province. 
High-consistency areas (levels 6–8) in Hunan account for 69.4%, lower than 
Heilongjiang’s 77%. This comprehensive analysis provides valuable insights for 
forestry practitioners in selecting appropriate forest cover datasets in areas with 
complex land cover, offering reliable recommendations for forest cover mapping 
and the formulation of sound mapping strategies.
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1 Introduction

Forests, as a key component of terrestrial ecosystems, provide vital services such as 
biodiversity habitats, carbon storage, soil protection, and water conservation (Oldekop et al., 
2020; Sudmeier-Rieux et al., 2021). Their role is critical for climate regulation, ecological 
balance, and sustainable human development (Keenan et al., 2015). Forest cover area is a core 
input for biomass estimation and achieving the goals of “carbon peak” and “carbon neutrality.” 
Currently, deforestation and forest degradation driven by human activities continue to result 
in significant declines in forest cover and the loss of biodiversity (Fagan et al., 2022; Jiang 
et al., 2022). Real-time forest cover monitoring allows for the accurate acquisition of forest 
distribution information, facilitating sustainable forest resource management. In recent years, 
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significant advancements have been made in forest monitoring 
techniques. Due to cost and timeliness considerations, remote 
sensing technologies have been widely employed in forest surveys 
and monitoring, significantly enhancing the efficiency of forest 
mapping (Reiner et al., 2023; Liu Y. et al., 2024; Ma et al., 2023). Many 
official agencies, universities, research institutes, and relevant 
companies provide a wealth of land cover datasets and forest-specific 
datasets (Liang and Gamarra, 2020). These datasets have offered high 
precision reports, and have better accessibility and timeliness than 
national forest survey data, and have played an important role in 
large-scale forest survey applications and research (Potapov 
et al., 2011).

However, these datasets often adopt varying definitions of forests, 
rely on different remote sensing data sources, and employ diverse 
classification algorithms, inevitably leading to inconsistencies (Wang 
et  al., 2023; Li et  al., 2024; Pitkänen et  al., 2024). The study of 
inconsistencies in forest cover datasets is of significant importance for 
improving the accuracy of forest dynamic monitoring. It enables more 
effective identification and response to threats such as illegal logging 
and forest fires, thereby reducing forest resource losses (Blickensdörfer 
et al., 2024; Cheng et al., 2024). Furthermore, the carbon sequestration 
capacity of forest ecosystems largely depends on the accurate 
assessment of forest cover area. Consistent forest cover datasets 
provide reliable data support for evaluating forest carbon sink 
potential and scientifically planning afforestation activities, while also 
promoting the coordinated implementation of regional forestry 
policies. This contributes to the achievement of sustainable forest 
management and global climate goals (Nesha et al., 2021; Estoque 
et al., 2022). At present, several scholars have conducted studies on the 
consistency and accuracy of datasets in different regions (Kang et al., 
2020). Cui et al. (2023) conducted a study in Northeast China using 
high-resolution imagery for visual interpretation to collect sample 
points for accuracy and consistency assessments of the cropland cate-
gory across multiple land cover datasets. The results showed that the 
2020 CLCD exhibited the highest classification accuracy for cropland 
in the region, while the 100 m resolution dataset performed the worst. 
Liu S. et al. (2023) studied the consistency and accuracy of five land 
cover datasets across eight land cover types in the arid region of 
Xinjiang, China. Their results indicated that GlobaLand30 had the 
highest overall accuracy in the study area, with inconsistencies 
primarily occurring in areas with non-homogeneous landscapes. Zhao 
et al. (2023) employed stratified random sampling to collect sample 
points for accuracy and consistency analysis of multiple land cover 
types across six land cover datasets on both global and regional scales. 
Their findings revealed that ESA WorldCover had the highest overall 
accuracy, and as landscape heterogeneity increase, the mapping 
accuracy of global land cover products decreased to varying ex-tents. 
Peng et al. (2023) assessed the spatial consistency and accuracy of six 
forest cover datasets across China. They designed a progressive 
stratified random sampling scheme for selecting samples and found 
that ESA WorldCover 10 had the highest accuracy in China. 
Additionally, datasets with a 10 m resolution generally outperformed 
those with a 30 m resolution in terms of classification accuracy. Yang 
et al. (2017) evaluated eight moderate-resolution (30–50 m) forest 
cover datasets and found that GlobeLand30 exhibited the highest 
overall accuracy in the ecologically fragile Loess Plateau region of 
China. They also noted that terrain attributes, such as elevation and 
slope, should be  considered in forest mapping. Xing et  al. (2021) 

analyzed the inconsistency of eight forest cover datasets in Myanmar, 
considering climatic factors. Their results showed that GlobalLand30 
had the highest forest inversion accuracy in Myanmar, even 
outperforming 10 m resolution products. However, these studies 
either focus on the overall classification accuracy evaluation of 
multiple classification categories or on the accuracy evaluation of 
specific land cover categories, or they focus on the regional accuracy 
assessment of the forest category. There is a lack of comparative 
analysis and discussion on the differences in forest category 
recognition between datasets across different regions, especially the 
contribution of low consistency levels and the detailed comparison of 
misclassified categories in low-consistency areas for each dataset in 
southern and northern China.

To investigate the consistency differences among various forest 
cover datasets across southern and northern China, the spatial 
distribution of classification confusion, and the potential influence 
mechanisms of production environments and geographic factors on 
dataset consistency, this study conducted a systematic evaluation and 
analysis of multiple medium-resolution forest cover datasets in 
representative regions. Hunan Province and Heilongjiang Province 
were selected as typical study areas for the south and north zones, 
respectively. Auxiliary data such as topographic factors and 
population distribution were incorporated, and eight widely used and 
publicly available forest cover datasets were integrated for 
comparative analysis, including Global 30 m Spatial Distribution of 
Forest Cover 2020 (GFC30 2020) (Zhang et  al., 2020), Global 
PALSAR-2 Forest/Non-Forest map 2020 (JAXA FNF 2020) (Shimada 
et al., 2014), ESA WorldCover 10 m 2020 (ESA 2020) (Zanaga et al., 
2021), ESRI 2020 Land Cover (ESRI 2020) (Karra et al., 2021), Cross-
Resolution Land-Cover mapping 2020 (CRLC 2020) (Liu Y. et al., 
2023), China 30 m Annual Land Cover Dataset 2020 (CLCD 2020) 
(Yang and Huang, 2021), Global Land Cover Mapping at 30 m 
resolution 2020 (GlobaLand30 2020) (Jun et al., 2014; Chen et al., 
2015), and the Land-Cover Classification 30 m with a Fine 
Classification System 2020 (GLC-FCS 2020) (Zhang et  al., 2019, 
2021). The datasets were compared in terms of area estimation, 
spatial consistency, and classification accuracy. In addition, 
low-consistency areas were specifically examined to identify 
confusion patterns between forest and non-forest land cover types. 
The effects of terrain complexity and anthropogenic disturbance on 
classification consistency were further analyzed. Results reveal 
significant regional discrepancies among datasets, with lower 
consistency observed in areas characterized by flat terrain or intensive 
human activity. Datasets with finer spatial resolution generally 
demonstrated superior forest recognition performance. These 
findings provide theoretical support and practical guidance for 
improving forest classification accuracy, optimizing mapping 
strategies, and promoting sustainable forest management.

2 Study area and datasets

2.1 Study area

This study selected Hunan Province and Heilongjiang Province 
as the experimental areas (the location and topography are shown in 
Figure  1), primarily based on the significant differences in 
geographical environment and ecosystem types between the two 

https://doi.org/10.3389/ffgc.2025.1627998
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Zhu et al. 10.3389/ffgc.2025.1627998

Frontiers in Forests and Global Change 03 frontiersin.org

provinces, which can represent the distinct land use and forest 
resource characteristics of southern and northern China. Hunan 
Province is located in southern China, with a total area of 
approximately 211,800 km2. The climate is warm and humid, and the 
province is rich in forest resources, with a forest cover rate of 59.82% 
(Huang et al., 2022). The major forest types in the province include 
typical evergreen broad-leaved forests, coniferous forests, mixed 
evergreen and deciduous forests, deciduous broad-leaved forests, 
and mossy dwarf forests (Tang et al., 2023). Natural and planted 
forests are interspersed throughout the region, particularly in 
mountainous and hilly areas. The forestry resources play a crucial 
role in both the province’s economy and its ecosystems. However, 
with the expansion of agriculture and the acceleration of 
urbanization, issues such as forest fragmentation and degradation 
have become increasingly prominent (Shen et al., 2022; Zhang et al., 
2023). Heilongjiang Province, located in the northeastern part of 
China, has a total area of approximately 454,000 km2 and belongs to 
the frigid temperate zone, with a cold climate. The forest cover rate 
is 43.78% (Zhang Q. et al., 2024). The forest resources in Heilongjiang 
are primarily composed of frigid temperate coniferous forests and 
temperate mixed forests, with key species including Larix gmelinii 
and Picea jezoensis. As an important timber production base in 
China, the forestry resources of Heilongjiang make a significant 
contribution to the national economy, though the province also faces 
challenges such as forest degradation and illegal logging (Chang 
et al., 2016; Venter et al., 2022).

Hunan Province and Heilongjiang Province are both 
significant agricultural regions in China, characterized by complex 
land cover types and frequent human activities, with notable forest 
disturbance and recovery phenomena. In terms of landscape 
patterns, forests in Heilongjiang are primarily concentrated in 
mountainous areas with gentle terrain relief, exhibiting strong 
landscape continuity and clear boundaries between forests and 
agricultural lands. Although Hunan is also dominated by 
mountainous forests, its forest fragmentation is higher due to 
fragmented topography and human disturbances, featuring 
numerous small forest patches with complex and widely 
distributed forest edges. Morphological Spatial Pattern Analysis 
(MSPA) (Wu et al., 2025) based on the CRLC 2020 forest mask 
data (Tables 1, 2) shows that the proportion of Core areas in 
Heilongjiang is significantly greater than in Hunan, indicating 
stronger overall forest landscape connectivity. Conversely, Hunan 
exhibits higher proportions of Edge and Bridge areas than 
Heilongjiang, further confirming that its forests are more 
fragmented and have more complex edge structures, as illustrated 
in Figure  2. The two provinces represent contrasting forest–
non-forest coupling patterns: Heilongjiang exemplifies a 
contiguous and aggregated landscape structure, while Hunan 
reflects a fragmented and dispersed pattern, making them suitable 
as comparative reference areas for accuracy difference analyses. A 
deeper exploration of their classification confusion characteristics 
not only contributes to improving forest monitoring accuracy but 

FIGURE 1

Location and topography of the study area. (a) Heilongjiang Province, (b) Hunan Province.
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also provides representative cases for forest monitoring, 
management, and ecological restoration in globally similar 
ecological zones.

2.2 Forest cover datasets

This study collected eight publicly available medium-resolution 
(10–30 m) forest cover datasets, including two forest-specific datasets 
and six land cover datasets. These datasets were developed by well-
established universities, research institutions, or major companies, 
and are widely accessible via platforms such as Google Earth Engine 
(GEE) and GitHub. The basic information of these datasets is shown 
in Table 3, with the details provided as follows:

2.2.1 GFC30 2020
The GFC30 2020 is a global forest coverage map generated using 

machine learning algorithms applied to images from Landsat series 
satellites, GF-1, and GF-6, with a resolution of 30 m (Zhang et al., 
2020). By integrating high-resolution imagery and field survey data, 
39,900 validation points were selected globally for accuracy 
assessment. The results indicate that the overall accuracy exceeds 85%. 
This dataset uses the forest definition provided by the Food and 
Agriculture Organization of the United Nations (FAO), which 
specifies that forests are areas larger than 0.5 hectares, with tree 
heights exceeding 5 m and canopy cover greater than 10%.

2.2.2 JAXA FNF 2020
The JAXA FNF 2020 produced by the Japan Aerospace 

Exploration Agency (JAXA), is based on the L-band synthetic aperture 
radar (PALSAR-2) aboard JAXA’s Advanced Land Observing 

Satellite-2 (ALOS-2) (Shimada et al., 2014). Using machine learning 
algorithms, the dataset has a resolution of 25 m. The forest definition 
used is also in accordance with the FAO.

2.2.3 ESA 2020
ESA 2020 is a land cover dataset created by the European Space 

Agency (ESA) using supervised classification based on Sentinel-1 and 
Sentinel-2 data, with a resolution of 10 m (Zanaga et al., 2021). In this 
dataset, forest cover is defined as areas with tree canopy cover of 10% 
or more, and it includes shrubs below the canopy, buildings, 
permanent water bodies, plantations (such as oil palm and olive trees), 
and areas with seasonal or permanent freshwater inundation of tree 
cover, excluding mangroves. The dataset’s accuracy and spatial 
uncertainty were assessed using over 200,000 reference points, with 
an overall accuracy determined to be 74.4%.

2.2.4 ESRI 2020
The ESRI 2020 land cover dataset was developed by ESRI using 

Sentinel-2 imagery and a deep learning-based approach, with an 
overall accuracy of 85% (Karra et al., 2021). In this dataset, forests are 
defined as dense vegetation areas with trees taller than 15 m, typically 
characterized by closed or dense canopies. This includes tall or dense 
vegetation in grasslands, plantations, wetlands, and mangroves.

2.2.5 CRLC 2020
CRLC 2020 is a national 10 m resolution land cover mapping 

dataset, produced by Wuhan University, based on the Cross-
Resolution Land Cover (CRLC) framework, which utilizes sample 
noise learning (Liu Y. et al., 2023). The dataset was generated using a 
deep semantic segmentation method. Its land cover classification 
system references the definitions of GlobeLand30, and the selection 
of training samples also relies on the GlobeLand30 dataset. 
Accordingly, the forest is defined as land covered by trees with 
vegetation coverage exceeding 30%, including deciduous forests, 
coniferous forests, as well as sparse woodland with coverage between 
10 and 30%.

2.2.6 CLCD 2020
The China 30 m Annual Land Cover Dataset (CLCD) was 

developed by Wuhan University, using Landsat series satellite data 
(Yang and Huang, 2021). The dataset was generated using a 
combination of random forest classification, spatiotemporal filtering, 
and logical post-processing. Its quality was evaluated by integrating 
third-party land cover products with visual interpretation, resulting 
in an overall classification accuracy of 79.31%. According to its 
original publication, the dataset adopts a land cover classification 
system that is similar to that of FROM_GLC (Gong et al., 2013), which 
defines forest as areas where tree height exceeds 3 meters and tree 
cover is greater than 15%. Based on this, it can be concluded that the 
forest definitions used in the two datasets are largely consistent.

2.2.7 GlobaLand30 2020
The GlobeLand30 2020 developed by National Geomatics Center 

of China, uses a Pixel- and Object-based Knowledge (POK) mapping 
methodology (Jun et al., 2014; Chen et al., 2015). It was de-rived from 
over 20,000 Landsat and HJ-1 satellite images, with a resolution of 
30 m. The dataset boasts an overall classification accuracy of over 80%. 
In this dataset, forests are defined as areas with tree cover where the 

TABLE 2 Area proportion of each MSPA type.

MSPA type
Proportion of each MSPA type

Hunan Heilongjiang

Core 0.68 0.77

Islet 0.03 0.05

Perforation 0.05 0.05

Edge 0.11 0.06

Loop 0.02 0.02

Bridge 0.06 0.02

Branch 0.04 0.03

TABLE 1 MSPA types and implications.

Type Implications of MSPA type

Core Interior area excluding perimeter.

Islet Disjoint and too small to contain Core.

Perforation Internal object perimeter.

Edge External object perimeter.

Loop Connected to the same Core area.

Bridge Connected to different Core areas

Branch Connected at one end to Edge, Perforation, Bridge, or Loop.
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canopy density exceeds 30%, including broadleaf forests (deciduous 
and evergreen), coniferous forests (deciduous and ever-green), mixed 
forests, and sparse forests with a canopy cover of 10–30%.

2.2.8 GLC-FCS 2020
The GLC-FCS30 2020 dataset developed by Chinese Academy 

of Sciences, this is the world’s first 30 m resolution fine land cover 
classification product at a global scale (Zhang et al., 2019, 2021). 
The dataset integrates methods for detecting continuous changes 
in dense time-series Landsat imagery, a locally adaptive update 

model, and spatiotemporal optimization algorithms. Forests in the 
dataset are classified into open and closed types based on canopy 
cover, using a 40% threshold to distinguish between them. 
Specifically, the classification includes evergreen and deciduous 
broadleaved forests (Classes 51–52, 61–62), evergreen and 
deciduous needle-leaved forests (Classes 71–72, 81–82), and mixed 
forests composed of both broadleaved and needle-leaved species 
(Classes 91–92). Open forests are defined as those with canopy 
cover between 15 and 40%, while closed forests have canopy cover 
greater than 40%.

FIGURE 2

Forest landscape types of Hunan province and Heilongjiang province. (a) Heilongjiang Province, (b) Heilongjiang Province.

TABLE 3 The basic information of the datasets used in this study.

Dataset Resolution Satellite Algorithm Coverage Provider

GFC30 2020 30 m

Landsat series

GF-1

GF-6

Machine learning Global
Chinese Academy of 

Sciences

JAXA FNF 2020 25 m ALOS-2 Machine learning Global
Japan Aerospace 

Exploration Agency

ESA 2020 10 m
Sentinel-1

Sentinel-2
Supervised classification Global European Space Agency

ESRI 2020 10 m Sentinel-2 Deep learning Global
Environmental Systems 

Research Institute

CRLC 2020 10 m Sentinel-2

Cross-resolution land-

cover mapping framework 

based on noisy label 

learning

China Wuhan University

CLCD 2020 30 m Landsat series Random forest China Wuhan University

GlobaLand30 2020 30 m
Landsat series

HJ-1

Pixel-and object-based 

methods with knowledge
Global

National Geomatics 

Center of China

GLC-FCS 2020 30 m Landsat series Supervised classification Global
Chinese Academy of 

Sciences
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2.3 Auxiliary data

2.3.1 Accuracy validation data
In this study, a stratified random sampling method was used to 

select samples within the study area, dividing the area into forest and 
non-forest strata (Liu B. et al., 2023). To ensure that the minimum 
sample size for accuracy validation was met, the minimum sample size 
for the stratified random sampling was first determined using 
Equation (1), based on the proportion of forest and non-forest 
coverage area (Olofsson et al., 2014).

 

( )

( ) ( ) ( )
 ∑ ∑ = ≈
   + ∑   

22

2 21
ˆˆ /

i i i i

i i

w s w sn
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(1)

In the formula, N represents the number of pixels in the study 
area, ( )ˆS O  denotes the standard error of the expected estimate 
accuracy, indicates the percentage of the area occupied by the i-th 
class, and is the standard deviation of the i-th stratum. The standard 
deviation can be expressed as ( )= −1i i is U U  (Stehman, 2012). When 
N is sufficiently large, the equation can be approximated using the 
right side, where 1U  represents user accuracy. We set the standard 
error of the expected overall accuracy ( )ˆS O  for both provinces to 0.01. 
For Hunan Province, the reference proportion of forest area 1w  is 60% 
(Huang et al., 2022), while the proportion of non-forest area 2w  is 40%. 
For Heilongjiang Province, the reference proportion of forest area 1w  
is 44% (Zhang Q. et al., 2024), and the proportion of non-forest area 
2w  is 56%. Using the forest user accuracy reported in the accuracy 

assessment of ESA WorldCover as a reference (Zanaga et al., 2021), 
the forest user accuracy 1U  for both provinces was set to 80%, which 
was used to calculate 1s . Similarly, based on the non-forest user 

accuracy reported in the accuracy assessment of JAXA FNF (Shimada 
et al., 2014), the non-forest user accuracy 2U  for both provinces was 
set to 87%, which was used to calculate 2s . As a result, the minimum 
sample size for Hunan Province was determined to be 1,402, with 841 
samples allocated to forest and 561 to non-forest, based on the area 
proportion. For Heilongjiang Province, the minimum sample size was 
determined to be  1,326, with 583 samples for forest and 743 for 
non-forest.

We utilized high-resolution real-time and historical remote 
sensing imagery provided by Google Earth, along with geotagged field 
photos available on the platform, to select samples through visual 
interpretation by overlaying the consistency distribution map. For 
areas where it was challenging to definitively distinguish between 
forest and non-forest regions, we supplemented the sampling process 
with data from the National Forest and Grassland Resource Smart 
Management Platform. Subsequently, a 100 × 100 m buffer was 
created around each sample obtained in this process for inspection. 
Within each buffer, samples with evident mislabeling or unreasonable 
distribution were removed. This inspection was repeated twice to 
improve sample quality and reduce excessive clustering of most 
samples, while still preserving the uneven spacing characteristic of 
random samples. Finally, 1,462 forest samples and 1,598 non-forest 
samples were obtained for Hunan Province, while 2,322 forest samples 
and 2,477 non-forest samples were collected for Heilongjiang 
Province. These sample sizes far exceeded the minimum required for 
the study. The distribution of the sample points is shown in Figure 3.

2.3.2 Other data
To further investigate the factors influencing the consistency of 

forest cover datasets, this study utilized DEM data and population 
distribution data, focusing on topographic factors and human 
activities for analysis and discussion.

FIGURE 3

Sample distribution. (a) Sample distribution in Hunan Province, (b) sample distribution in Heilongjiang Province.
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2.3.2.1 DEM data
The DEM data used in this study is the SRTM v3 provided by 

NASA and the National Geospatial-Intelligence Agency (NGA) with 
a resolution of 1 arc-second (~30 m) and vertical accuracy better than 
10 m (relative) (Farr and Kobrick, 2000; Rabus et al., 2003). Slope 
information was derived based on this DEM.

2.3.2.2 Population data
The population distribution data comes from the GlobPOP 

(Global gridded population) product provided by the team led by 
Cao at Beijing Normal University (Liu L. et  al., 2024). This 
product uses clustering analysis and statistical learning methods, 
combining five existing datasets (GHS-POP, GRUMP, GPWv4, 
LandScan, and WorldPop) to generate a continuous global gridded 
population dataset.

3 Method

3.1 Data preprocessing

Due to significant differences in the definitions of forest types 
across datasets, as well as variations in spatial resolution and 
classification systems (Chazdon et al., 2016; Nabil et al., 2020), this 
study sequentially applied uniform projection coordinate systems, 
unified resolution, and forest cover extraction with a binary 
classification (forest and non-forest) to each dataset. The definitions 
of forest and the binary classification transformations for each dataset 
are summarized in Supplementary Table S1. Figures 4, 5 present the 
results of the FNF mapping.

3.2 Spatial consistency evaluation

In this study, spatial consistency was evaluated by comparing the 
spatial distribution differences among different datasets, with pixels 
serving as the basic unit of analysis (Chazdon et al., 2016; Wang et al., 
2022). This method operates similarly to a voting mechanism, where 
if a pixel is classified as forest by multiple datasets, it is assigned a 
higher “vote” score, indicating a higher level of spatial consistency 
(Fang et al., 2020). As described in Section 3.1, the forest thematic 
maps generated after preprocessing assign a value of 1 to forest areas 
and 0 to non-forest areas. Subsequently, a spatial overlay analysis was 
performed on each dataset to calculate the spatial consistency of forest 
coverage. For example, a spatial consistency level of 8 indicates that all 
eight datasets classify the location as forest, signifying extremely high 
spatial consistency for that pixel. A value of 1 implies that only one 
dataset classifies the pixel as forest, reflecting low spatial consistency 
but not necessarily indicating that the area is non-forest. Conversely, 
a value of 0 represents a common non-forest area identified across all 
eight datasets. Spatial overlay is shown in Figure 6.

3.3 Accuracy assessment

The confusion matrix quantitatively describes the confusion 
between different land cover types and is widely regarded as one of the 
best methods for evaluating the accuracy of land cover maps (Shi 
et al., 2023; Wang et al., 2024). The composition of its elements is 
illustrated in Figure  7. In this study, we  constructed confusion 
matrices based on the obtained sample data, and used the Kappa 
coefficient (Kappa), overall accuracy (OA), producer accuracy (PA), 

FIGURE 4

FNF mapping results after preprocessing for eight datasets in Hunan Province. (a) GFC30 2020, (b) JAXA FNF 2020, (c) ESA 2020, (d) ESRI 2020, (e) 
CRLC 2020, (f) CLCD 2020, (g) GlobaLand30 2020, (h) GLC-FCS 2020.
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and user accuracy (UA) as the key metrics for accuracy assessment. 
The formulas for these metrics are shown in Equations (2–5):

 

( )( ) ( )( )

0 e

e

0 e 2

P PKappa ,
1 P

TP FP TP FN TN FN TN FP
P OA,P

n

−
=

−
 + + + + +

= =  
   

(2)

 
+

=
+ + +
TP TNOA

TP TN FP FN 
(3)

 
=

+
TPPA

TP FN  
(4)

 
=

+
TPUA

TP FP  
(5)

Where P0 refers to the proportion of correctly classified samples, 
in which the dataset’s forest and non-forest labels match the reference 
data, relative to the total number of samples. Pe refers to the 
probability that the classification results of the dataset coincide with 
the true samples by chance. True positive (TP) and true negative 
(TN) refer to points where both the samples and the dataset agree on 
classifying the location as forest or non-forest. False positive (FP) 
indicates points where the dataset classifies a location as forest but the 
sample labels it as non-forest, while false negative (FN) refers to the 
opposite case.

FIGURE 5

FNF mapping results after preprocessing for eight datasets in Heilongjiang Province. (a) GFC30 2020, (b) JAXA FNF 2020, (c) ESA 2020, (d) ESRI 2020, 
(e) CRLC 2020, (f) CLCD 2020, (g) GlobaLand30 2020, (h) GLC-FCS 2020.

FIGURE 6

Illustration of a spatial overlay used to study spatial consistency between different datasets.

FIGURE 7

The illustration of the composition of confusion matrix elements.
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3.4 Analysis of topographic influencing 
factors on consistency

This study utilized the SRTM v3 Digital Elevation Model (DEM) 
to incorporate topographic variables into the analysis of factors 
affecting the consistency among forest cover datasets. Elevation was 
extracted from the DEM and categorized into four classes based on 
common landscape morphology: plains (<200 m), hills (200–500 m), 
low mountains (500–1,000 m), and medium-to-high mountains 
(>1,000 m). Slope was derived from the elevation data and classified 
according to forestry standards into flat (<5°), gentle (5–15°), 
moderate (15–25°), and steep or hazardous slopes (>25°). For each 
elevation and slope interval, the area percentage of each forest 
consistency level (1–8) relative to the total forest area in that interval 
was computed. The formula for calculating detailed percentages is 
shown in Equation (6):

 

( )

( )
=i
S

A
S
ij Forest

j
i Forest  

(6)

In these formulas, represents the percentage of area occupied by 
consistency level j within a given elevation or slope interval. Sij(Forest) 
denotes the area of consistency level j in the interval, while Si(Forest) 
refers to the total forest area within the interval. Where j (the 
consistency level) ranges from 1 to 8.

This enabled an in-depth assessment of how different levels of 
spatial consistency are distributed across various topographic 
conditions, thereby revealing the relationship between terrain factors 
and dataset agreement. The flow chart of this study is shown in 
Figure 8.

4 Results

4.1 Forest area statistics

By performing calculations, we statistically analyzed the forest area 
and its proportion for the eight datasets, as presented in Table  4. 
Subsequently, these datasets were compared against the forest cover 
rates of Hunan Province and Heilongjiang Province, as reported in the 
literature (Zhang Q. et al., 2024; Huang et al., 2022). It is evident that 
the eight datasets exhibit varying degrees of overestimation or 
underestimation across these two regions. In Hunan Province, the 
datasets CRLC 2020, CLCD 2020, and GLC-FCS 2020 show values that 
are relatively close to the reference data, while ESA 2020 demonstrates 
a noticeable overestimation. In contrast, the GFC30 2020 dataset 
significantly underestimates the forest area. In Heilongjiang Province, 
the datasets ESRI 2020, CRLC 2020, and JAXA FNF 2020 are relatively 
close to the reference values, while CLCD 2020 and GLC-FCS 2020 
exhibit substantial overestimation, and the GFC30 2020 dataset shows 
significant underestimation. Overall, CRLC 2020 demonstrates the 
most consistent performance across both regions, while GFC30 2020 
consistently underestimates the forest area. Meanwhile, CLCD 2020 
and GLC-FCS 2020 are closer to the reference data in Hunan, but 
exhibit severe overestimation in Heilongjiang. These findings suggest 
that forest area estimation varies across different datasets and regions, 
displaying regionally unstable characteristics. Relying on a single 
dataset to represent forest cover is highly limiting, as discrepancies in 
area estimates are primarily attributed to multiple objective factors 
such as the remote sensing data sources, classification systems, and 
definitions of forest cover used by the datasets. Therefore, spatial 
consistency analysis across multiple datasets is essential. Moreover, area 
statistics solely reflect the forest area of each dataset and do not account 
for the classification accuracy of the datasets.

FIGURE 8

The methodological flowchart of this study.
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4.2 Spatial consistency evaluation results

By performing spatial consistency calculations on the eight 
datasets, Figures 9, 10 were generated. Figure 9 illustrates the trend of 
the consistent area in both regions, which initially decreases and then 
increases with the improvement in consistency level. Specifically, the 
areas with consistency levels 7 and 8  in Hunan and Heilongjiang 
provinces are 30,289.5 km2 and 71,272.6 km2, respectively, and 
48,764.6 km2 and 125,552.1 km2, respectively, which are significantly 
higher than other levels. However, low consistency areas still occupy 
a substantial portion, with areas of consistency level 1 in Hunan and 
Heilongjiang provinces being 16,127.4 km2 and 21,973.7 km2, 
accounting for 9.7 and 8.8%, respectively. Nevertheless, overall, as the 
two regions with the highest consistency levels collectively account for 
more than 60%—nearly 70% in Heilongjiang—it can be concluded 
that the selected datasets exhibit good spatial consistency across the 
two study areas.

From a spatial distribution perspective, as shown in Figure 11, the 
consistency of the forest cover datasets is particularly high in the 
western, southern, and eastern regions of Hunan Province, as well as 
the northwestern, central, and southern regions of Heilongjiang 
Province. These areas share the common characteristic of concentrated 
forest distribution, often exhibiting contiguous patches. In contrast, 
the low-consistency regions are more scattered, primarily located in 
the northern and central parts of Hunan, as well as the central-western 
and eastern areas of Heilongjiang. Supplementary Figures S1, S2 
illustrate the localized forest identification of each dataset and 
consistency distribution in Hunan Province and Heilongjiang Province.

Further correlation statistics between the datasets are presented 
in Figure 12. The results show that, as the consistency level increases, 
the overlapping area between the datasets gradually expands, and their 
correlation strengthens accordingly. In Hunan Province, ESRI 2020, 
CRLC 2020, and CLCD 2020 all exhibit similar trends, with a higher 
contribution at higher consistency levels. In Heilongjiang Province, 
ESRI 2020 and CRLC 2020 demonstrate identical behavior. Datasets 
that previously exhibited overestimation of forest area, such as ESA 
2020  in Hunan, consistently show a strong contribution at each 
consistency level, significantly higher than other datasets. This is 
primarily because ESA 2020 adopts a forest definition that leans more 
toward the concept of “trees,” which often leads to misclassification of 
orchards (classified as cropland) as forests in southern China. 
Conversely, GFC30 2020 exhibited the lowest contributions across 
different consistency levels in both provinces. This is because the 

dataset prioritizes mapping efficiency during its production process, 
simplifying input features for machine learning and adopting the 
relatively fast random forest algorithm, leading to a more conservative 
approach to forest identification. Therefore, differences in forest 
definitions, remote sensing data sources, and classification algorithms 
all influence the consistency contributions of various datasets. 
Combining this with Figure  9, it is apparent that although each 
dataset’s contribution to low-consistency regions is relatively small, 
these regions still occupy a substantial proportion. This phenomenon 
primarily arises from the low overlap in low consistency areas, which 
leads to gradual accumulation of area in numerical terms, thus 
keeping the area of low-consistency regions at a relatively high level.

4.3 Accuracy assessment results

Based on the collected samples, confusion matrices (as shown in 
Supplementary Table S2) were constructed to calculate the Kappa 
coefficient, OA, PA for forest areas, and UA, with the results 
summarized in Table 5. From the table, it is evident that, with the 
exception of GFC30 2020, all other datasets achieved an OA exceeding 
85%. Among them, CRLC 2020 demonstrated the highest OA in both 
Hunan and Heilongjiang provinces, reaching 90.88 and 91.69%, 
respectively. This was followed by ESRI 2020, with OA of 90.78 and 
90.16% in the two provinces. However, some datasets exhibited 
notable fluctuations in performance across different provinces. For 
instance, CLCD 2020 achieved an OA of 90.52% in Hunan Province 
but declined to 88.39% in Heilongjiang Province.

It is noteworthy that the OA differences between the datasets in 
the two regions are relatively small. In this context, the PA and UA 
serve as complementary metrics to better understand misclassification. 
In Heilongjiang Province, GFC30 2020 exhibited the highest forest 
UA, reaching 93.57%, but its PA was only 73.90%, indicating that 
approximately 26.1% of the forest samples were misclassified as 
non-forest areas. Meanwhile, GLC-FCS 2020 demonstrated a forest 
PA of 87.48% and UA of 91.43% in Hunan Province. In Heilongjiang 
Province, these values were 94.70 and 82.95%, respectively, suggesting 
that the product performs more balanced in Hunan, while in 
Heilongjiang, it misclassified approximately 17% of non-forest 
samples as forest.

We conducted a comparative analysis of the confusion matrices 
for each dataset to further determine whether there were significant 
differences between them (Congalton and Green, 1999). The results 

TABLE 4 Area and percentage of forest cover in the eight datasets in the study area.

Datasets Hunan Province Heilongjiang Province

Area/km2 Percentage/% Area/km2 Percentage/%

GFC30 2020 106,616.6 50.29 162,454.9 35.87

JAXA FNF 2020 120,149.3 56.67 206,566.4 45.61

ESA 2020 142,304.5 67.11 212,991.2 47.03

ESRI 2020 134,776.9 63.57 197,806.7 43.68

CRLC 2020 127,514.3 60.14 193,336.6 42.69

CLCD 2020 131,240.4 61.90 221,291.9 48.86

GlobaLand30 2020 118,692.2 55.98 181,863.7 40.16

GLC-FCS 2020 123,776.7 58.38 222,216.8 49.07
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of the kappa analysis are presented in Figure 13. At a significance level 
of 0.05, a Z statistic greater than 1.96 indicates a significant difference 
between the two matrices. It can be observed that datasets with lower 
overall accuracy exhibited larger Z statistic values when compared to 
datasets with higher overall accuracy. For instance, the Z statistic 
values for GFC30 2020 and CRLC 2020  in Hunan Province and 
Heilongjiang Province reached 8.92 and 10.55, respectively, indicating 
significant differences in their classification results. In contrast, 
datasets with higher overall accuracy generally had smaller Z statistic 
values. For example, the Z statistic value between CRLC 2020 and 
ESRI 2020 in Hunan Province was only 0.14, suggesting that their 
classification results showed no significant differences under the same 
validation sample.

As inferred from the previous analysis, classification differences 
among datasets are primarily reflected in areas with low 
consistency, such as regions with complex land cover or fragmented 
forests. Increasing sample sizes in these regions would better 

facilitate the study of classification differences among datasets. 
Additionally, incorporating more independent sample sets could 
more effectively mitigate biases arising from reliance on a single 
validation set.

4.4 Influence of topographic factors on 
spatial consistency

To investigate the impact of topographic factors on spatial 
consistency, we categorized the elevation of both provinces into four 
intervals: less than 200 m, 200–500 m, 500–1,000 m, and greater than 
1,000 m. Considering the more complex topography of Hunan 
Province compared to Heilongjiang, we divided Hunan’s slope into six 
intervals: less than 5°, 5–15°, 15–25°, 25–35°, 35–45°, and greater than 
45°. In contrast, Heilongjiang’s slope was divided into four intervals: 
less than 5°, 5–15°, 15–25°, and greater than 25°. We then mapped the 

FIGURE 9

Area statistics of consistency level.

FIGURE 10

Percentage statistics of consistency level. (a) Percentage of consistency level in Hunan Province, (b) percentage of consistency level in Heilongjiang 
Province.
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areas corresponding to the eight consistency levels into these 
topographic intervals, as shown in Figures 14, 15.

From the perspective of elevation, in both provinces, regions with 
elevations less than 200 m corresponded to a substantial proportion 
of low-consistency areas, with the majority of these regions falling into 
consistency level 1. As elevation gradually in-creased, the proportion 

of low-consistency areas decreased, while the proportion of high-
consistency areas rose. In the intervals of 200–500 m, 500–1,000 m, 
and greater than 1,000 m, the proportion of areas with consistency 
levels 6–8 exceeded 50% in each case.

Regarding slope, in Hunan Province, the low-consistency areas 
were more prominent in the slope intervals of less than 5° and 

FIGURE 11

Spatial consistency distribution. (a) Consistency distribution map of Hunan Province, (b) consistency distribution map of Heilongjiang Province, (c-f) 
consistency distribution of region (1–4), (g-j) Optical remote sensing images of region (1–4), (k-n) Consistency distribution of region (5-8), (o-r) Optical 
remote sensing images of region (5–8).
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5–15°, but in the intervals of 15–25°, 25–35°, 35–45°, and greater 
than 45°, the proportion of high-consistency areas rapidly 
increased. In Heilongjiang Province, the majority of 
low-consistency areas were located in regions with a slope of less 
than 5°. However, in the slope intervals of 5–15°, 15–25°, and 

greater than 25°, the proportion of areas with consistency levels 
6–8 exceeded 80%.

In summary, it is evident that topographic factors exert a similar 
influence on the spatial consistency of forest cover datasets in both 
provinces. In mountainous areas, as elevation and slope increase, 
forest distribution becomes more concentrated, which facilitates the 
accurate extraction and classification of forests by the datasets, thereby 
resulting in higher spatial consistency. In contrast, in flatter regions, 
the complexity of land cover types and the fragmented nature of forest 
distribution lead to increased confusion with other categories, 
significantly impairing the accurate extraction of forests and 
consequently reducing the spatial consistency.

5 Discussion

5.1 Confusion in the low consistency areas 
of the datasets

To further investigate the confusion among datasets within the 
study area, we selected regions with consistency levels ranging from 1 to 
4 and quantitatively compared the classification results of six land cover 
datasets within these areas. For analytical clarity, we extracted common 
classification labels from these datasets, grouping the land cover into 
nine categories: forest, shrub, grass, cropland, wetland, impervious 
surface, water, barren, and herbaceous cover (a unique category in 
GLC-FCS 2020). The summarized classification results for both 
provinces are presented in Figures 16, 17. Although the classification 
categories within these regions are complex, it is evident that, apart from 
the forest category, cropland, grass, shrub, and herbaceous cover 
constitute significant proportions across different datasets. This suggests 
that forest areas are most prone to misclassification with these land cover 
types. Furthermore, the con-fusion patterns between datasets exhibit 
distinct characteristics in Hunan and Heilongjiang Provinces. In the low 
consistency regions, with the exception of forest and cropland, 

FIGURE 12

Contribution of each dataset to different consistency levels. (a) Contribution of each dataset to consistency in Hunan Province, (b) contribution of 
each dataset to consistency in Heilongjiang Province.

TABLE 5 Summary of forest identification accuracy assessment for eight 
datasets in the study area.

Area Datasets Kappa/% OA/% PA/% UA/%

Hunan 

Province

GFC30 2020 66.54 83.16 75.34 90.87

JAXA FNF 

2020
73.45 86.70 83.23 90.54

ESA 2020 74.61 87.42 95.43 83.02

ESRI 2020 81.48 90.78 93.93 89.03

CRLC 2020 81.69 90.88 93.37 89.61

CLCD 2020 80.98 90.52 92.37 89.78

GlobaLand30 

2020
72.47 86.27 87.86 86.13

GLC-FCS 

2020
78.37 89.18 87.48 91.43

Heilongjiang 

Province

GFC30 2020 69.59 84.91 73.90 93.57

JAXA FNF 

2020
77.80 88.89 91.42 86.41

ESA 2020 79.20 89.58 93.88 85.89

ESRI 2020 80.32 90.16 90.96 88.96

CRLC 2020 83.38 91.69 93.15 90.04

CLCD 2020 76.86 88.39 95.17 83.26

GlobaLand30 

2020
73.73 86.92 80.84 91.16

GLC-FCS 

2020
76.12 88.02 94.70 82.95
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Heilongjiang exhibits the highest proportions of grass, shrub, and 
herbaceous cover, whereas in Hunan, grass, barren, and impervious 
surfaces are more prominent. The localized land cover conditions of the 
datasets for the two provinces are shown in Figures 18, 19.

Although the ESRI 2020 dataset exhibits a considerable presence 
of impervious surfaces and barren in the regions of Hunan Province 
with consistency levels ranging from 1 to 4, it ranks second in overall 
accuracy within the province. This observation does not necessarily 
indicate poor forest classification performance. On the contrary, due 
to its reliance on remote sensing imagery with a 10 m spatial 
resolution, this dataset theoretically offers superior spatial analytical 
capability, allowing for more accurate differentiation of various land 
cover types in forest and non-forest transitional areas. We therefore 
hypothesize that similar confusion may originate from other datasets 
that misclassify complex non-forest areas as forested regions. Such 

datasets typically exhibit a higher proportion of forest coverage in 
low-consistency areas, where forests often display low overlap with 
other land cover types. As a result, these low-consistency regions fail 
to exhibit clear correlations across different datasets, which may 
be one of the primary factors contributing to the complexity of the 
confusion categories. As the consistency level increases, the proportion 
of land cover types and non-forest areas in each dataset gradually 
decreases, while the proportion of forested areas progressively increases.

5.2 Impact of forest definition on spatial 
inconsistency across the datasets

The above analysis reveals substantial inconsistencies among 
different forest cover datasets in Hunan and Heilongjiang 

FIGURE 13

The paired Z-test results of the confusion matrices for the eight datasets in Hunan Province and Heilongjiang Province. (a) Paired Z-test results for 
Hunan Province, (b) paired Z-test results for Heilongjiang Province.

FIGURE 14

Elevation and consistency correspondence. (a) Elevation and consistency correspondence for Hunan Province, (b) elevation and consistency 
correspondence for Heilongjiang Province.
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Provinces—two regions representative of the distinct monsoonal 
climates in southern and northern China. The above analysis reveals 
substantial inconsistencies among different forest cover datasets in 
Hunan and Heilongjiang Provinces—two regions representative of the 
distinct monsoonal climates in southern and northern China. These 
discrepancies are primarily attributable to differences in forest 
definitions, which serve as a key factor driving the variation in forest 
cover classification across datasets. In particular, variations in 
threshold settings for parameters such as tree height and canopy cover 
within transitional zones between forest and non-forest areas lead to 
divergent interpretations across datasets. Consequently, regions with 
fragmented or heterogeneous forest landscapes are more prone to 
misclassification compared to areas with contiguous forest cover.

It is noteworthy that the original labels of the ESA 2020 and ESRI 
2020 datasets are “tree cover” and “tree,” respectively, whereas other 
datasets uniformly use the term “forest.” In principle, ESA 2020 and 
ESRI 2020 adopt a more “liberal” definition of forest, which tends to 
misclassify urban green belts, orchards in mountainous areas, and tall, 
dense crops in plains as isolated forest patches. However, due to a tree 
height constraint of greater than 15 m in ESRI 2020, its overestimation 
is substantially mitigated compared to ESA 2020, which uses a canopy 
cover threshold of 10%. This improvement is particularly evident in 
Hunan Province.

Among datasets targeting “forest” classification, GLC-FCS 2020 
performs well in Hunan Province but exhibits notable overestimation 
in Heilongjiang Province. This overestimation is due to its forest 
category encompassing a wide variety of forest types and relying solely 
on canopy cover thresholds, which results in the misclassification of 
tall, dense shrubs as forest at the northern forest margins. It is also 
important to highlight that, despite CRLC 2020 and GlobaLand30 
2020 sharing consistent forest definitions, and JAXA FNF 2020 
aligning with GFC30 2020, significant differences remain in their forest 

identification performances. Due to the non-open-source nature of 
their classification algorithms and remote sensing source data, detailed 
investigations beyond forest definition discrepancies are constrained. 
Overall, forest cover datasets that incorporate both canopy cover and 
tree height thresholds, while focusing on less complex tree species 
compositions, generally achieve better classification accuracy.

From the perspective of forest landscape distribution, agricultural 
areas in Heilongjiang Province are relatively concentrated in the 
western and eastern regions, while forests predominantly occupy 
sparsely populated mountainous areas. The forest landscapes in 
Heilongjiang exhibit greater continuity, with relatively fewer forest–
non-forest interfaces, resulting in higher accuracy and consistency in 
forest identification across datasets compared to Hunan Province. In 
contrast, Hunan Province features more complex terrain and 
considerable human activity even within mountainous regions, 
leading to extensive transitional zones. Notably, regional landscapes 
such as terraced fields within some forested areas add to this 
complexity, posing significant challenges to the applicability of forest 
definitions in these transitional zones. The population distribution of 
the two provinces is shown in Figure 20.

5.3 Future perspectives

Compared with previous studies that primarily focused on large-
scale or single-region assessments, this study selected representative 
regions in both southern and northern China to systematically 
investigate the consistency differences of forest cover datasets under 
varying geographic conditions from a comparative regional 
perspective. By conducting a comprehensive comparison of eight 
forest cover datasets, the study revealed substantial discrepancies in 
forest area estimation and classification accuracy, with pronounced 

FIGURE 15

Slope and consistency correspondence. (a) Slope and consistency correspondence for Hunan Province, (b) slope and consistency correspondence for 
Heilongjiang Province.
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regional variations. These inconsistencies are largely attributed to a 
combination of factors, including forest definitions, remote sensing 
data sources, and classification algorithms. The findings highlight the 
importance of considering local vegetation types, topographic 
features, and other natural conditions when conducting regional forest 
mapping, and of identifying the specific contributions of these factors 
to mapping accuracy (Zhu et  al., 2016). This work expands the 

research framework for assessing the adaptability of forest cover 
datasets across diverse geographic settings and provides more robust 
and scientifically grounded technical support for forest resource 
management, carbon stock estimation, and climate change monitoring.

Most mainstream forest cover datasets currently have a spatial 
resolution of 10–30 m, with some reaching sub-meter levels. These 
datasets generally exhibit high consistency and accuracy in densely 

FIGURE 16

Land cover dataset land classification percentage statistics in the low consistency regions of Hunan Province, (a–d) Correspond to forest consistency 
distribution levels 1–4.
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forested areas with high canopy cover. However, their performance 
deteriorates in fragmented forests or transitional zones with intensive 
human activities, where mapping becomes considerably more 
challenging. During the sample preparation process, the consistency 
of multiple high-resolution datasets can serve as auxiliary information, 
enabling the direct selection of highly consistent areas as forest sample 
regions and thereby significantly improving mapping efficiency.

With the advancement of ecological restoration projects such as 
the “Grain for Green” program, forest succession has accelerated and 
associated biophysical characteristics have become increasingly 
complex. The integration of multi-source remote sensing data—
particularly the synergistic use of optical and radar imagery—can 
enhance the extraction of spectral information, vegetation indices, and 
texture features, thus improving the accuracy of forest identification 

FIGURE 17

Land cover dataset land classification percentage statistics in the low consistency regions of Heilongjiang Province, (a–d) correspond to forest 
consistency distribution levels 1–4.
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(Xia et al., 2022; Kalinaki et al., 2023; Yuh et al., 2023; Zhang X. et al., 
2024). Looking ahead, the optimization of deep learning algorithms 
and the widespread application of cloud computing platforms (e.g., 
Google Earth Engine) are expected to provide a solid foundation for 
large-scale and automated forest mapping, promoting simultaneous 
improvements in both mapping efficiency and accuracy (Gorelick 
et al., 2017; Pande et al., 2024).

Due to the non-open-source nature of certain remote sensing data 
sources and classification algorithms, this study is primarily based on 
the classification results of existing datasets and does not delve into the 
internal data production processes. Future research could incorporate 
sensitivity analysis and other quantitative methods to identify and assess 
the key factors affecting forest mapping accuracy in different regions, 

thereby enhancing the overall precision and applicability of forest cover 
mapping. Moreover, this study focuses on representative monsoon forest 
regions in China, and its findings may provide useful references for 
ecologically similar areas worldwide. However, arid and semi-arid forest 
ecosystems were not included in this study, and related forest mapping 
research in these regions still requires further systematic investigation.

6 Conclusion

This study provides a comprehensive analysis of eight forest 
cover datasets from 2020, focusing on their area, spatial consistency, 

FIGURE 18

Localized identification of the six land cover datasets in Hunan Province and forest consistency distribution. (a) Remote sensing image, (b) ESA 2020, 
(c) ESRI 2020, (d) CRLC 2020, (e) CLCD 2020, (f) GlobaLand30 2020, (g) GLC-FCS 2020, and (h) Consistency distribution.

FIGURE 19

Localized identification of the six land cover datasets in Heilongjiang Province and forest consistency distribution. (a) Remote sensing image, (b) ESA 
2020, (c) ESRI 2020, (d) CRLC 2020, (e) CLCD 2020, (f) GlobaLand30 2020, (g) GLC-FCS 2020, and (h) Consistency distribution.
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and accuracy across southern and northern China, with Hunan and 
Heilongjiang provinces representing the two regions. Six of the 
eight datasets were used to conduct a detailed statistical comparison 
of land cover classification confusion in low consistency (levels 
1–4). Additionally, the study further explores and discusses the 
factors influencing spatial consistency and accuracy, including 
terrain factors and regional differences between southern and 
northern China.

The results indicate that the overall accuracy of these datasets 
is generally high. Among them, the 10 m resolution CRLC 2020 and 
ESRI 2020 datasets demonstrate higher accuracy compared to the 
others in both provinces, with overall accuracies of 90.88 and 
90.78% in Hunan Province, and 91.69 and 90.16% in Heilongjiang 
Province, respectively. In Hunan Province, high consistency regions 
(levels 6–8) account for 69.4%, while low consistency regions (levels 
1–3) account for 20.2%. Similarly, in Heilongjiang Province, high 
consistency regions account for 77%, whereas low consistency 
regions account for 16.1%. Comparatively, Hunan Province exhibits 
a lower level than Heilongjiang Province. Overall, datasets exhibit 
lower consistency in areas with complex land cover types, such as 
those with elevations below 200 m and slopes less than 5°, while 
higher consistency is observed in regions with elevations above 
500 m and slopes greater than 5%, where forest distribution tends 
to be more uniform.

In Hunan Province, forests are prone to confusion with cropland, 
grass, barren, and impervious surfaces, while in Heilongjiang Province, 
they are more likely to be confused with cropland, grass, shrub, and 
herbaceous cover. A comprehensive comparative analysis of these 
datasets helps producing agencies integrate regional characteristics and 
comprehensively consider factors such as forest definitions, data 
sources, and algorithms to develop forest mapping schemes tailored to 
different regions. Additionally, it helps users select the most appropriate 
forest cover dataset based on the specific characteristics of the region 
and also offers useful experiences for forest management and ecological 
restoration in other regions of China.
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