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This study investigates the distribution and habitat suitability of canopy and non-
canopy species in Taraba State, Nigeria, using remote sensing indices (NDVI, NDRE)
and species distribution modeling (MaxEnt). Forest ecosystems in this region are
increasingly threatened by deforestation, climate change, and land-use change,
emphasizing the need for robust monitoring tools to guide conservation strategies.
NDVI and NDRE data from 2013 to 2025 were analyzed across six forests, including
Gashaka-Gumti National Park, to evaluate vegetation health and distribution. Results
revealed clear differences in the sensitivity of canopy and non-canopy species to
environmental drivers, with precipitation and temperature variability emerging as
the dominant factors influencing distribution. MaxEnt modeling further highlighted
the significance of rainfall and temperature seasonality in shaping habitat suitability,
showing that non-canopy species are particularly vulnerable to moisture stress
during the dry season. Several forests—notably Ngel Yaki (mean NDVI = 0.24),
Gashaka-Gumti (0.23), and Gembu (0.21)—exhibited declining vegetation health,
emphasizing the urgent need for protection and restoration. The MaxEnt model
demonstrated strong predictive performance (AUC = 0.985), providing valuable
insights for forest conservation, biodiversity management, and climate adaptation
in northern Nigeria, where desertification risk is intensifying.

KEYWORDS

canopy species, hon-canopy species, species distribution modeling, MaxEnt,
soil erosion, forest conservation

1 Introduction

Forests provide essential cultural and social benefits, supplying resources such as food,
fuel, timber, and bioproducts. They also play a vital role in maintaining ecological balance by
purifying air and water, sequestering carbon, and recycling nutrients—functions that are
fundamental to human well-being (Hogarth et al., 2013; Khuc et al., 2023). Increasing forest
cover through rehabilitation and restoration initiatives enhances the well-being of rural
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communities, strengthens biodiversity and ecosystem services, and
contributes to mitigating the impacts of climate change (Erbaugh and
Oldekop, 2018; Phang et al., 2023; Rawat et al., 2022; Shukla et al,,
2021). Therefore, understanding the drivers of forest change is
essential for effective management and sustainable transitions.
Although the concept of forest transition has existed for more than
two decades, it has only recently gained prominence within the
broader discourse on climate change (Ernst et al., 2013; Gupta et al,
2025; Haq et al., 2024; Hosonuma et al., 2012). Forest transitions are
influenced by multiple factors, including economic expansion, scarcity
of forest resources, global integration, community displacement,
intensified land use by smallholders, and government forest policies
(Long et al., 2021; Lopez-Carr, 2021; Syaban and Appiah-Opoku,
2024) While much of the world’s forest area is now in the post-
transition stage, many regions remain in the pre-transition or early
phases (Hosonuma et al., 2012).

According to the Global Forest Resources Assessment (FAO,
2020), an estimated 4.06 billion hectares of forest remain worldwide,
of which approximately 1.11 billion hectares are classified as primary
or native forests that have been largely unaffected by human
disturbance. Despite this, global forest loss persists. Since 1990, about
420 million hectares of forest have been lost to deforestation (FAO and
UNEP, 2020). Nonetheless, the report notes a decline in the annual
rate of net forest loss, which decreased from an average of 7.8 million
hectares per year between 1990 and 2000 to 4.7 million hectares per
year between 2010 and 2020 (FAO, 2020).

Across much of Sub-Saharan Africa, including Nigeria, ecological
environments and forest resources are being degraded as a result of
land-cover changes driven by deforestation (Figures 1b,c). Despite
widespread recognition of its impacts, deforestation remains a critical
challenge that continues to threaten many of the world’s fragile
ecosystems, as repeatedly documented in the literature (Ibrahim et al,
2023; Ojeh etal,, 2022; Yahaya et al., 2024). Deforestation is a prevalent
environmental issue that profoundly affects the stability and spread of
forests beyond geographic boundaries (Gorte and Sheikh, 2010).

Between 2002 and 2020, Nigeria lost approximately 141,000
hectares of humid primary forest, representing 14% of the country’s
total tree cover loss during this period. Overall, the extent of humid
primary forests declined by 7.4%. From 2001 to 2019, 14% of national
tree cover loss occurred in areas heavily impacted by deforestation.
Regionally, Edo State experienced the greatest decline, with 268,000
hectares lost, followed by Ondo (107,000 hectares), Cross River
(102,000 hectares), Taraba (91,100 hectares), and Ogun (82,000
hectares). Together, these states accounted for 54% of Nigeria’s total
tree cover loss between 2001 and 2020. Edo State’s losses far exceeded
the national average of 28,200 hectares per state. In contrast, between
2001 and 2012, Nigeria recorded only a modest gain of 60,300 hectares
in tree cover, contributing less than 0.1% to the global total.

In 2010, Taraba State had approximately 1.64 million hectares of
tree cover, representing 27% of its total land area. However, by 2020,
the state had lost 7,820 hectares of this cover, resulting in an estimated
2.39 million tons of CO, emissions. In addition, in 2021, wildfires
affected about 4.0 million hectares of land across Nigeria, further
intensifying the country’s overall forest loss.

Taraba State, located in north-eastern Nigeria, is renowned for its
rich biodiversity and varied landscapes. The state is home to the
Mambila Plateau, Nigeria’s highest plateau, as well as the Gashaka-
Gumti National Park, which is the largest national park in the country
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and a critical haven for wildlife conservation. In addition, Taraba
contains several key forest reserves, including the Montane Forest,
Ngel Yaki, and others that provide vital ecosystem services,
sustain local livelihoods, and serve as important carbon sink
(Chapman et al., 2004; Danladi et al., 2025). These natural areas are
vital for maintaining ecological balance, sustaining diverse flora and
fauna, and providing essential ecosystem services. However, they face
mounting pressures from deforestation driven by agricultural
expansion, illegal logging, population growth, and urbanization
(Danladi et al., 2025). Human activities, coupled with the impacts of
climate change, have accelerated severe forest depletion in Taraba
State. This degradation has resulted in habitat loss, soil erosion, and
rising carbon emissions. The continued destruction of Taraba’s forests
not only threatens biodiversity but also undermines the region’s
ecological balance. If unchecked, these pressures will further
exacerbate the risk of desertification spreading across northern
Nigeria, with serious implications for both the environment and local
livelihoods (Ibrahim et al., 2024). As the land’s capacity to retain
moisture declines, desert-like conditions continue to expand. In
response, Nigeria has acknowledged the urgency of combating
deforestation by aligning national policies with international
frameworks such as the United Nations Sustainable Development
Goals and by adopting environmental protection conventions.
Confronting these challenges is essential to safeguarding the long-
term sustainability of the region’s natural resources and ensuring the
well-being of its population.

In this study, we employ species distribution modeling (MaxEnt)
using bioclimatic variables (BIO1-BIO10 and BIO12-BIO19) from the
WorldClim database (Fick and Hijmans, 2017; Poggio et al., 2018). Key
variables include BIO1 (Annual Mean Temperature), BIO12 (Annual
Precipitation), and BIO19 (Precipitation of Coldest Quarter).
We distinguish two functional groups: Canopy species: Trees forming the
uppermost forest layer (>10 m height) non-canopy species: understory
vegetation including shrubs, herbs, and saplings (<10 m height).

This study addresses the following research questions:

a) What is the relationship between bioclimatic variables (e.g.,
temperature variability, precipitation) and the distribution of
canopy versus non-canopy species?

b) How does habitat suitability influence plant distribution and
mitigate climate change impacts on forest ecosystems?

2 Literature review

To ensure a rigorous and transparent review of existing studies, a
structured search strategy was employed. Relevant literature was
retrieved from Scopus, Web of Science, and Google Scholar, covering
the period 2010 to 2024 to capture both foundational and recent
developments in the field. The search employed a combination of
keywords and Boolean operators, including “NDVI AND forest
monitoring” “NDRE AND vegetation stress, “species distribution
modeling OR MaxEnt,” ‘canopy species AND understory species,” and
“Nigeria OR West Africa AND forest cover change.” The inclusion
criteria were limited to peer-reviewed journal articles, scholarly books,
and high-quality conference proceedings written in English. Exclusion
criteria encompassed grey literature, studies lacking methodological
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transparency, and publications not directly focused on tropical or
subtropical forest ecosystems. This methodological framework
ensured that the review incorporated both seminal works and recent
contributions relevant to remote sensing indices, land-use/land-cover
change analysis, and species distribution modeling in
forest ecosystems.

Remote sensing has become an indispensable tool for monitoring
changes in forest cover, vegetation health, and land use/land cover
(LULC) (Mashala et al., 2023; Olorunfemi et al., 2020; Twisa and
Buchroithner, 2019). Among the most widely applied indices, the
Normalized Difference Vegetation Index (NDVI), derived from
satellite imagery, has proven highly effective in assessing vegetation
health, productivity, and forest cover dynamics (Akbar et al., 20205
Robinson et al, 2017; Zaitunah et al, 2018). NDVI has been
extensively used to monitor forest dynamics (Hansen et al., 2013),
evaluate deforestation trends (Townshend et al., 2012), and estimate
carbon stocks in tropical regions (Glennie and Anyamba, 2018;
Saatchi et al., 2011). Long-term NDVI analysis enables researchers to
capture spatial and temporal variations in forest ecosystems, thereby
offering critical insights into the impacts of human activities and
climate change.

Land use and land cover (LULC) analysis, which tracks changes
in land cover and land utilization over time, is another critical
approach for assessing forest loss and landscape transformation.
Remote sensing facilitates multi-temporal LULC classification,
enabling researchers to examine how forests are converted into
agricultural land or urban areas (Kumar, 2017; Shawul and Chakma,
2019; Zoungrana et al., 2015). For instance, studies have demonstrated
that agricultural expansion and urbanization in northern Nigeria have
driven extensive forest fragmentation (Adenle and Ifejika
Speranza, 2020).

Although NDVI is widely used for monitoring vegetation cover,
it has limitations in dense forests where canopy structures can distort
reflectance signals (Chu and Guo, 2013; Ecke et al., 2022; Vélez et al,
2023). To address these limitations, the Normalized Difference Red
Edge (NDRE) index has gained prominence for assessing chlorophyll
concentration and nitrogen levels in vegetation canopies (Easterday
et al., 2019; Sims and Gamon, 2002; Zhao et al., 2025). While NDRE
is primarily employed to evaluate photosynthetic activity rather than
vertical stratification, its sensitivity to upper canopy properties
(Gitelson et al., 2005) provides a valuable complement to NDVI for
comprehensive vegetation assessment. In this study, NDRE is applied
alongside NDVT to capture differential responses to environmental
stressors between canopy species (dominant upper-layer trees) and
non-canopy species (understory vegetation) in Taraba’s multi-layered
forests (Abiem et al., 2023; Adedibu et al., 2022; Garkida et al., 2024).
Recent studies in comparable ecosystems further highlight NDRE’s
potential in detecting stress responses across vegetation strata
(Adelabu et al., 2014; Hamada et al., 2023).

NDVI and NDRE are established tools for assessing forest health,
productivity, and species distributions (Pettorelli et al, 2011;
Tuominen et al., 2009). For instance, NDVI effectively monitors
canopy stress and phenological shifts in boreal forests (Myneni et al.,
2007), while NDRE enables species-level discrimination of invasive
plants (Luo et al., 2021) and detects early chlorophyll deficiency in
conifers (Carle, 2023; Zarco et al.,, 2018).

Species distribution modeling (SDM) has become an essential
approach for predicting the potential distributions of plant and animal
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species in relation to environmental variables. Among the available
methods, the Maximum Entropy (MaxEnt) model is one of the most
widely applied, particularly in regions with limited occurrence data, due
to its strong predictive performance and ability to handle presence-only
datasets (Phillips et al., 2006). MaxEnt predicts species’ potential
distributions using known occurrence points together with
(e.g,
precipitation, temperature) and vegetation indices such as NDVI (Elith
etal, 2011).

MaxEnt has been successfully used to model species

environmental variables, including bioclimatic factors

distributions in tropical forests, comparing the habitat preferences
of canopy and understory species. Canopy species generally require
specific environmental conditions, such as adequate sunlight and
stable temperature ranges, while understory species may be more
tolerant of low light and varying moisture conditions (Elith et al.,
2011). By using MaxEnt, studies have revealed the different habitat
preferences of these species, allowing for better forest management
and conservation strategies (Abolmaali et al., 2018; Zhao
etal., 2023).

Although considerable research on species distribution
modeling and forest monitoring has been conducted in Nigeria,
most studies have emphasized broad trends such as deforestation
and general vegetation change, with little attention given to the
specific dynamics of canopy versus non-canopy species. While
NDVTI and LULC analyses are commonly employed to track forest
cover and land-use change, the application of NDRE (Normalized
Difference Red Edge) for distinguishing canopy and non-canopy
species—particularly in tropical and subtropical forests such as those
in Taraba State—remains limited. Moreover, comparative
assessments of forest health across multiple sites are scarce, despite
clear variability in vegetation structure and condition across
the region.

This study integrates NDVI, NDRE, and MaxEnt to model
distribution patterns of canopy and non-canopy species using
environmental variables. This multi-method approach provides a
more comprehensive framework for assessing species-habitat
relationships and climate change impacts, with potential applications
for conservation planning in northern Nigerias desertification-
threatened forests.

3 Materials and methods

3.1 Study area

Taraba State, located in northern Nigeria, is bordered by
Adamawa, Benue, Plateau, Bauchi, and Gombe states, and shares an
international boundary with Cameroon to the east. Covering
approximately 54,000 km? (Figure 1a), the state lies within Nigeria’s
Middle Belt and encompasses diverse landscapes, including tropical
forests, savannas, and wetlands (Mayomi and Yohanna, 2019). It
supports rich biodiversity, most notably within Gashaka-Gumti
National Park—the largest in Nigeria—which harbors species such as
chimpanzees and elephants. The Mambila Plateau, situated in the
southeastern part of the state, is characterized by montane forests and
a cooler climate. Taraba experiences a tropical climate with distinct
wet (April-October) and dry seasons. In the lowlands, annual rainfall
ranges from 1,000 to 1,500 mm, with temperatures varying between
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FIGURE 1
(a) Shows the location of Taraba State; (b) African continent showing 54 countries; (c) Nigeria's map where the study area is located.

20 °C and 33 °C, while on the Mambila Plateau, temperatures may fall
to around 15 °C during the dry season (Adebayo and Oruonye, 2013).

3.2 Data collection and pre-processing

3.2.1 Satellite data acquisition
Time series analysis (2013-2025) utilized:

1. Landsat 8-9 OLI:
o Total images: 126 scenes
o Years: 2013, 2016, 2019, 2022, 2025 (dry season: Nov-Mar)
o Product: Surface Reflectance Tier 1 (L2SP)
« Source: USGS Earth Explorer'
« Spatial Resolution: 30 m

2. Sentinel-2 MSI:
o Total images: 38 scenes (Gashaka Gumti National Park only)
« Product: Level-2A (Bottom-of-Atmosphere reflectance)
« Source: Copernicus Open Access Hub?
o Spatial Resolution: 10 m (resampled to 30m for cross-
sensor consistency)

1 https://earthexplorer.usgs.gov/
2 https://scihub.copernicus.eu/dhus
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3. Image Selection Criteria

« Cloud Cover Threshold: <20% per scene

o Temporal Window: +15 days of target anniversary date

» Data Gap Mitigation:

o Cloud-contaminated  pixels  replaced  via  linear
temporal interpolation

o Adjacent year data used when target-year data unavailable
(validated with <5% coverage deviation) (Table 1).

3.3 Vegetation index calculation NDVI and
NDRE

3.3.1 Temporal compositing protocol

To ensure phenological consistency, yearly NDVI and NDRE
values were derived from dry-season composites (November-March).
The following protocol was applied (Equations 1, 2):

1. Landsat-based NDVI (for all six forests):

o All available Landsat 8/9 Operational Land Imager (OLI) scenes
meeting the cloud cover threshold (<20%) were selected for
each year

« A median of 5-7 scenes per year per forest was used

o Annual NDVI composites were generated using a pixel-wise
median to minimize atmospheric noise

« Spatial resolution: 30 m

04 frontiersin.org
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TABLE 1 Pre-processing workflow (ENVI 5.6 + Python) processing applied uniformly unless specified.

Step Landsat 8—-9

1. Radiometric QUAC atmospheric correction

Sentinel-2

Level-2A BOA used directly

2. Geometric
(Required due to terrain distortions)

Ground control points (GCPs) alignment to WGS84 UTM Zone 32 N

No correction applied (Level-2A includes terrain correction)

3. Cloud mask

Fmask 4.2 (cloud/shadow probability >80%) (Zhu and Woodcock, 2012)

SEN2COR scene classification map (Main-Knorn et al., 2017)

4. Mosaicking

Performed for Taraba State (6 tiles) and Gashaka Gumiti (3 tiles)

Single-tile coverage for Gashaka Gumti

5. Resampling

Sentinel-2 data resampled to 30 m using bilinear interpolation

2. Sentinel-based NDRE (for Gashaka Gumti National Park only):
o Level-2A scenes (median 4-6 per year) meeting <20% cloud
threshold were selected
o Annual NDRE composites were generated using 95th
percentile method
o Data resampled to 30 m resolution using bilinear interpolation
« Spatial resolution: Native 10 m resampled to 30 m

3.3.2 Index calculation

The Normalized Difference Vegetation Index (NDVI) and
Normalized Difference Red Edge Index (NDRE) were calculated for
each scene using the following formulas:

NDVI < | TR —RED 1)
" NIR+RED

NDRE = | MR-RE @)
NIR +RE

3.3.2.1 Ecological interpretation
The synergy of NDVI and NDRE enhances vertical forest
stratification assessment:

o NDVI provides broad vegetation health across canopy-
understory continuum

« NDRE shows superior sensitivity to chlorophyll in upper canopy
layers (>70% signal from top canopy in tropical forests)
(Darvishzadeh et al., 2019) (Table 2).

3.3.3 Validation approach

Consistent with established remote sensing principles
(Chang-Hua et al., 2010; Delegido et al., 2011; Zhang et al., 2022).
NDRE exhibits stronger correlation with upper canopy dynamic.
NDVI captures integrated vegetation health across strata
(Table 3).

3.4 Land use land cover (LULC) analysis
The inclusion of LULC classification is central to achieving the

study’s objectives. Distinguishing between dense forest (canopy-
dominated), open forest or shrubland (mixed or degraded canopy),
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TABLE 2 Band specifications.

Sensor Band Name Wave length
Landsat 8/9 B4 Red 0.64-0.67 pm

B5 Near Infrared 0.85-0.88 pm
Sentinel 2 B4 Red 665 nm

B5 Red Edge 705 nm

B8 Near Infrared 842 nm

and bareland or non-forest areas allows for a more precise analysis of
canopy versus non-canopy species distributions over time. By
integrating LULC classification with NDVI and NDRE indices, the
study evaluates how changes in vegetation health correspond to land-
cover transitions such as forest degradation, shrubland conversion,
and bareland expansion. This integration enhances the ecological
interpretation of vegetation dynamics within Gashaka-Gumti
National Park.

3.4.1 Training data collection protocol
Training data were developed through remote sensing
methods:

1. Total training samples: 500 polygons (100 per LULC class)
2. Source: Visual interpretation of high-resolution imagery

o Maxar Vivid Basemap (0.5 m resolution, 2023)

« Google Earth Engine historical imagery
3. Sampling methodology:

« Stratified random sampling across all six forests

o Minimum polygon size: 30 x 30 m (1 Landsat pixel)

« Interpretation by two independent analysts

3.4.2 Supervised classification methodology
1. Algorithm: Maximum Likelihood Classifier (da Silva
etal., 2019).
2. Thematic classes:
« Waterbodies (rivers, lakes)
« Dense Forests (>80% canopy cover)
« Open forests (30-80% canopy cover)
o Built Areas (urban/rural developments)
o Shrubland (grasses, shrubs)
« Barelands (eroded areas)
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TABLE 3 Justification for compositing approach.
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TABLE 4 Environmental variables.

Method Purpose References Variable Description Type
Pixel-wise median Reduces atmospheric White et al. (2014) BIO1 Annual mean air Climatic
noise and outliers temperature/_C
95th percentile Captures peak Jenkins and Frazier (2010) BIO2 Mean diurnal temperature Climatic
vegetation conditions range/_C
Dry-season focus Minimizes cloud/ Michaelides et al. (2009) BIO3 Isothermality/_C Climatic
moisture interference BIO4 Temperature seasonality Climatic
BIO5 Maximum temperature of Climatic
g . warmest month
3.4.3 Classification - i o o
. . . . . . 6 in Temperature of Coldest imatic
The maximum likelihood classifier estimates the posterior Month/ 2
o1 . . onth/_
probability that a pixel belongs to a given class Ck, based on the
likelihood function and prior class probabilities (Equation 3): BIO7 Temperature annual Climatic
range/_C
X 3 BIO8 Mean temperature of wettest Climatic
&, /)7 2 Jpter) ® P
P= . = \ Ck quarter/C
p(X) BIO9 Mean temperature of driest Climatic
Where quarter/_C
C > . BIO10 Mean temperature of Climatic
o P|~K/ | probability pixel belongs to class C;
X warmest quarter/C
o Accuracy Assessment
« Validation dataset: 600 independent points BIO12 Annual precipitation/mm Climatic
« Validation methodology: BIO13 Precipitation of wettest Climatic
o Visual interpretation using Maxar Vivid basemap month/mm
« Sentinel-2 10 m resolution imagery BIO14 Precipitation of driest month/ Climatic
o Accuracy metrics: mm
. 0,
» Overall Accuracy: 88.5% BIO15 Precipitation seasonality Climatic
« Kappa Coeflicient: 0.84
BIO16 Precipitation of wettest Climatic
quarter/mm
3.5 Environmental variables BIO17 Precipitation of driest Climatic
quarter/mm
In this study, 18 environmental variables, encompassing climate, BIO18 Precipitation of Warmest Climatic
topography, and social factors, were selected as auxiliary variables to Quarter/mm
construct the species distribution model (Table 4). These include 19 BIO19 Precipitation of coldest Climatic
widely used bioclimatic factors from the WorldClim dataset (version quarter/mm

2.1), specifically Biol to Biol0 and Biol2 to Biol9, which represent
key climate-related variables essential for assessing species distribution
and habitat suitability’> (GBIF.org, 2025). The species distribution
model was then applied to investigate the responses of canopy and
non-canopy species in the study area.

3.5.1 Study species and occurrence data

3.5.1.1 Identification of canopy species

This study focused on strict canopy-dominant tree species,
defined as mature individuals typically attaining the uppermost layer
of the forest structure (>20 m in height) and whose crowns contribute
significantly to the spectral signal captured by satellite sensors. Species
selection was based on botanical surveys and checklists specific to
Gashaka Gumti National Park and the Guinean-Congolian/Sudanian

3 https://www.worldclim.org, accessed on 22 March 2025.
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transition zone (Durrieu et al, 2024; Vogt, 2021; Zadbagher
etal., 2023).
The primary canopy species targeted in this study include:

Khaya senegalensis (Desr.) A.Juss. (African Mahogany).

Isoberlinia doka Craib & Stapf (Doka Tree).

Daniellia oliveri (Rolfe) Hutch. & Dalziel (African Copaiba
Balsam Tree).

Antiaris toxicaria Lesch. (Upas Tree).

Ceiba pentandra (L.) Gaertn. (Kapok Tree).

Entandrophragma angolense (Welw.) C.DC. (Mahogany).

Lophira lanceolata Tiegh. ex Keay (False Shea Tree).

Parkia biglobosa (Jacq.) R.Br. ex G.Don (Locust Bean Tree).

These species were selected due to their ecological dominance,
known canopy-forming habit, and economic importance, which
makes their accurate distribution mapping a conservation priority.
Understory tree species (e.g., Carissa edulis Vahl, various shrub

frontiersin.org


https://doi.org/10.3389/ffgc.2025.1631859
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.worldclim.org

Yahaya et al.

species), sub-canopy trees, and woody lianas were explicitly excluded
from this analysis to ensure a direct mechanistic link between
recorded species presence and the canopy-level spectral indices
(NDVI, NDRE) used as predictors.

3.5.1.2 Sourcing and processing of occurrence data

Species occurrence data (geographic coordinates) were
compiled from a combination of sources to ensure robust spatial
coverage:

1. Systematic Field Surveys: Ground-truthing expeditions were
conducted within GGNP during the dry seasons of (September
2024). Using handheld GPS devices (Garmin GPSMAP 64 s;
accuracy < 3 m), the coordinates of individual mature trees of
the target species were recorded. Identification was performed
by trained botanists following the Flora of West Tropical Africa
(Gosling et al., 2013; Mcllwaine, 1999)

2. Verification via Remote Sensing: For large, distinctive species
such as Ceiba pentandra and Khaya senegalensis, presence
points were further verified by visually interpreting high-
resolution baseline imagery in Google Earth Pro to confirm the
location and canopy characteristics.

3. Public Biodiversity Repositories: Data were supplemented
with records from the Global Biodiversity Information
Facility (GBIForg, 2025), To ensure high quality and
temporal relevance, GBIF data were subjected to a rigorous
filtering process: only records with (i) coordinate uncertainty
less than 1,000 m, (ii) no evident geographic or taxonomic
issues as flagged by the CoordinateCleaner R package
(Aiello-Lammens et al., 2015), (v2.0-20), and (iii) collection
dates post-2000 were retained to align with the temporal
range of our satellite imagery

3.5.1.3 Spatial thinning and bias reduction

To mitigate the effects of spatial autocorrelation and sampling
bias, which can inflate model performance metrics, the combined
occurrence dataset was spatially rarefied. Using the spThin R
package (v0.2.0), we applied a thinning distance of 1 km, ensuring
that no two presence points for a single species were closer than this
threshold. This process resulted in a final, environmentally
representative dataset of 500 unique occurrence points for
model calibration.

3.6 Model construction and evaluation

Environmental variables were sourced from the WorldClim
database (Version 2.1) (Fick and Hijmans, 2017) at a spatial resolution
of 30 arc-seconds (~1km?). These variables represent long-term
average conditions for the period 1970-2000. The eighteen bioclimatic
variables were initially considered due to their established relevance
to plant physiological tolerances. To mitigate multicollinearity, a
pairwise Pearson correlation analysis was performed. For any pair of
variables with a correlation coeflicient |r| > 0.8, the variable with the
clearer ecological interpretation for canopy trees was retained. The
final set of 18 variables used in the model included Bio 12 (Annual
Precipitation), Bio 4 (Temperature Seasonality), and Bio 15
(Precipitation Seasonality).
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3.6.1 Model construction and evaluation

Species distribution modeling was performed using Maximum
Entropy modeling implemented in the MaxEnt software (version
3.4.4) (Zhao et al., 2024). The model input consisted of two elements:

1. Species Occurrence Data: The spatially thinned presence-only
(POE) data for the target canopy species. The final dataset
comprised a total of 500 points across all species

2. Environmental Predictors: The processed ASCII raster files of
the selected bioclimatic and spectral variables.

The optimal model complexity was determined using the
ENMeval R package to test combinations of feature classes (L,
LQ, H, LQH, LQHP) and regularization multipliers (a range from
0.5 to 4). The model with the lowest delta AICc score was
selected for final production (Li et al., 2023). The final model
used a regularization multiplier of 0.5 and linear and quadratic
features.

Model performance was evaluated using the Area Under the
Receiver Operating Characteristic Curve (AUC). The AUC score
quantifies the model’s ability to distinguish between presence and
background locations, with a value of 0.5 representing random
prediction and 1.0 representing perfect discrimination. The reported
AUC value of 0.985 was derived from the average test AUC across
5-fold cross-validation runs, not the training AUC. This high-test
AUC indicates excellent predictive performance. To further guard
against overfitting, we:

« Employed 5-fold cross-validation, which partitions the data into
training and test sets, ensuring the performance metric is based
on predictions to unseen data.

« Used a regularization multiplier to penalize model complexity.

o Critically evaluated the response curves to ensure they reflected
ecologically plausible relationships.

3.7 Regression analysis

Regression analysis is a statistical technique used to explore the
relationship between a dependent (response) variable and independent
(predictor) variables (Arum et al., 2025; Chatterjee and Hadi, 2015).
It is commonly employed for prediction and modeling, helping to
understand how independent variables influence the dependent
variable (Harrell, 2001; Xu et al., 2019).

Linear regression was selected due to its ability to model
straightforward relationships between bioclimatic variables and
NDVI values, providing clear insights into the effects of
environmental variables on vegetation health over time (Equation 4).
All regression analyses were performed using R software (version
4.3.1; R Core Team, 2023) with the built-in Im() function for linear
modeling. In this study, we apply regression analysis to predict the
future NDVT values of six forest and game reserve locations: Ngel
Yaki, Gashaka Gumti, Baissat, Gembu, Kwazun, and Kashimbila.
Our goal is to predict the future conditions of these forests and
identify which areas require immediate attention. The analysis is
based on five time periods (2013, 2016, 2019, 2022, and 2025),
where we extract the mean NDVI values for each reserve during
these years (Figure 2).
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While correlation analysis helps identify relationships between
variables, it does not clarify the direction or strength of the
dependency. Therefore, we use regression analysis to model linear
relationships between dependent and independent variables (Franzese
and Iuliano, 2018).

The regression model used in this analysis can be expressed as:

Y=0+/ X1+ 56X +.. .+ 0 X, +€E (4)

o Y Is the Dependent Variable (The predicted NDVI Value
for 2028).

o X} X5 ...Xyare the dependent variables (predictors, including
factors such as year, precipitation, temperature, etc.).

o [ is the intercept f3,..., B, are the regression coefficients and €
is the error term

This approach will allow us to predict the NDVI value in 2028,
providing insight into future forest conditions and guiding
conservation efforts. This comprehensive methodology will allow us
to model species distributions, predict future forest conditions, and
assess the impacts of climate change and land use on forest health,
providing vital data for conservation strategies in Taraba State.

10.3389/ffgc.2025.1631859

4 Results and discussions

4.1 Normalized difference vegetation index
(NDVI) analysis for Taraba State

The NDVI values derived from Landsat 8 and 9 satellite data
for different land-cover categories (Waterbody, Land, Shrubs, and
Vegetation) show fluctuating patterns of vegetation health in
Taraba State over the years. These values provide an indication of
vegetation density and health, with higher NDVI values
representing denser, healthier vegetation. NDVI, which ranges
from —1 to +1, provides valuable insights into vegetation density
and health, with higher values indicating better vegetation
conditions (Meneses-Tovar, 2011; Peters et al., 2002). This range of
values allows us to interpret trends in vegetation health, especially
when comparing different land-cover

categories  across

multiple years.

4.1.1 Waterbody class

The Waterbody class showed relatively stable NDVI values
throughout the study period, ranging from —0.17 to —0.11. These
values are characteristic of non-vegetated areas, with water bodies
exhibiting low or negative NDVI values. In 2013, Waterbody coverage
was 1187.31 hectares, significantly increasing to 8998.01 hectares by
2025. The sharp increase in waterbody area suggests natural

FIGURE 2

(c) Photographs of the six forest reserve areas.
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phenomena like flooding (Bako et al., 2016; Gabriel et al., 2018) or
land use and water management changes that exposed more water
surfaces. Despite the area increase, the NDVI values remained low,
indicating that the expansion of water bodies did not contribute to the
increase in vegetation health.

4.1.2 Bareland class

For the Land class, the NDVI values remained low, ranging from
0.11 to 0.18, reflecting areas with sparse or minimal vegetation cover,
possibly urbanized areas, agricultural land, or bare soil. The Land
category experienced a fluctuating coverage pattern, starting at
30087.87 hectares in 2013, dropping to 25760.76 hectares in 2019, and
increasing again to 33,605 hectares in 2025. The fluctuations in area
coverage may be attributed to urbanization, agricultural activities, or
land-use reclassification over time (Jjafiya et al., 2023; Yusuf and Jauro,
2024). Although the NDVI values remained relatively constant, the
changes in the Land area are significant and suggest shifts in land-use
dynamics (Figures 3a-d).

4.1.3 Shrubs class
The Shrubs class exhibited NDVI values ranging from 0.18 to 0.23,
indicative of moderate vegetation health. These values reflect areas

10.3389/ffgc.2025.1631859

with scrublands or low-density vegetation. However, the observed
NDVI values may be influenced by the mixed-pixel effect, where the
pixel values may include both vegetated areas (such as shrubs) and
non-vegetated surfaces (e.g., bare soil), which could dilute the NDVI
signal, leading to potentially lower values than would be observed in
purely vegetated areas.

Despite this, the overall NDVI trend suggests that the shrubland
areas maintained relatively healthy vegetation conditions, although
the low NDVI values indicate that the shrub coverage is not as dense
as that of forested areas. The increase in shrub coverage from 20,547.55
hectares in 2013 to 23,770.11 hectares in 2019 may reflect natural
vegetation recovery or reduced land-use pressures, such as less
intensive agricultural practices.

However, by 2025, the reduction in shrubland area to 12,253.75
hectares suggests that these areas may have been converted to other
land uses, such as agricultural expansion or deforestation (Figure 3d).
The fluctuating NDVI values over time reflect a complex interplay of
factors, including land cover changes, land-use pressures, and the
limitations of NDVTI as a vegetation health indicator in mixed-pixel
environments. Despite fluctuations, the NDVI values indicate that
shrubland areas remained relatively healthy, although some decline
was noted towards 2025.

2013

FIGURE 3

specified years, highlighting the ecological trends in the region.

Normalized difference vegetation index (NDVI) in Taraba State from 2013 to 2015. This figure illustrates the changes in the vegetation index over the
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4.1.4 Vegetation class

The Vegetation class, indicative of dense vegetation or forest
areas, experienced moderate to high NDVI values, ranging from
0.23 to 0.47. These values reflect healthy vegetation but show a
slight decline over time, particularly in the later years of the study.
Vegetation coverage started at 8310.75 hectares in 2013 and
decreased to 5244.26 hectares by 2025 (Figure 3). The decline in
vegetation health (NDVI) and area suggests significant
degradation, possibly due to deforestation, illegal logging, or
agricultural land conversion. The NDVI values of 0.23 to 0.47 for
Vegetation highlight that while the area still maintains some forest
cover, the overall health and vitality of the forest are decreasing,
consistent with the observed area loss over time (Abba et al., 2021;
Ojeh et al., 2022).

The analysis of NDVI data and land cover in Taraba State
reveals a significant decline in healthy vegetation, particularly in the
Vegetation and Shrub categories. This decline indicates the region’s
ecosystems’ vulnerability to natural and human-induced pressures
(James, 2019; James and Ngala, 2015; Omijeh, 2021; Oruonye et al.,
2024). Immediate conservation efforts are essential in areas
experiencing substantial vegetation loss. Notably, the increase in

10.3389/ffgc.2025.1631859

Waterbody area does not correlate with improved vegetation health,
suggesting changes in hydrology or land use that negatively affect
forest vitality (Table 5).

4.2 Land use land cover (LULC) analysis for
Taraba State

Figures 4, 5 present area coverage changes in hectares for different
land-use categories in Taraba State from 2013 to 2025. The figures
reveal important land-use dynamics trends, showing gains and losses
across the study period.

4.2.1 Waterbody

The Waterbody category shows a general decline in coverage over
time, with a reduction from 294.11 hectares in 2013 to 328.56
hectares in 2025, marking a loss of —34.45 hectares. This decrease
might reflect shrinking water bodies due to climate change, reduced
precipitation, or land-use alterations, such as diversifying water
resources for agriculture or infrastructure (Bako et al., 2016; Gabriel
etal., 2018).

FIGURE 4

Land use land cover (LULC) in Taraba State from 2013 to 2015. This figure illustrates the spatiotemporal changes over the specified years, highlighting

the ecological trends in the region.
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TABLE 5 Showing the NDVI range of each class and the area covered in hectares from 2013 to 2025.

Year Waterbody_ Waterbody_ Land_ Land_ Shrubs_ Shrubs_ Vegetation_ Vegetation_
NDVI Area (ha) NDVI Area NDVI Area (ha) NDVI Area (ha)
(ha)
2013 —0.17 1187.31 0.11 30087.87 0.18 20547.5 0.23 8310.75
2016 —0.13 3342.65 0.11 29042.7 0.2 20734.2 0.25 6958.08
2019 —0.14 1401.12 0.12 25760.76 0.22 23770.1 0.3 9137.43
2022 —0.18 4445.62 0.11 32665.39 0.21 16147.6 0.28 6824.82
2025 -0.17 8998.01 0.11 33,605 0.23 12253.7 0.23 5244.26
a 1610 Land Cover Change Over Time (2013 - 2025) b Land Cover Change Over Time (2013 - 2025)
251" and Cover Types a0
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FIGURE 5
(a) Land use and land cover changes show a trend in sg. meter. (b) Land use land cover anomaly. (c) Changes in land cover classes 2013-2025. (d)
Land use and land cover changes show a trend in sq. kilometer.

4.2.2 Built-up area

The Built-up category shows substantial expansion between 2013
and 2025. Starting at 1,523.57 hectares in 2013, the built-up area
increased to 12,922.07 hectares by 2025. This represents a net increase
of 11,398.50 hectares (748% growth), indicating rapid urbanization
driven by population growth and development projects (Bako et al.,
2016; Gabriel et al., 2018).

4.2.3 Dense forest

The dense forest category’s area declined from 9484.88 hectares in
2013 to 6134.42 hectares in 2025, showing a net loss of —3350.46
hectares. This loss highlights the severe impact of deforestation, likely
caused by logging, agricultural expansion, and infrastructure
development. The decrease in dense forests reflects a degradation in
the quality of the forest ecosystem, potentially leading to the loss of
biodiversity and critical ecosystem services, such as carbon
sequestration and water regulation.

Frontiers in Forests and Global Change 11

4.2.4 Open forest

Open forest also showed a decline in area, from 18978.88 hectares
in 2013 to 11011.62 hectares in 2025, reflecting a loss of —7967.26
hectares. The reduction in open forests, which may represent
secondary forests or areas under lesser vegetation cover, further
underscores the trends of land-use conversion and deforestation.
These areas could have been replaced by agriculture, urban
development, or barren land over time.

4.2.5 Shrubland

The Shrubland category showed substantial fluctuation, starting
at 11487.71 hectares in 2013, peaking at 17324.78 hectares in 2016,
and then declining to 5453.09 hectares by 2025. This overall loss of
—6034.62 hectares could be due to land conversion to agriculture or
urbanization, as well as climate impacts such as drought or fire.
Shrublands are often transitional habitats, so their decline can indicate
ecosystem changes, potentially affecting wildlife species dependent on
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such areas. In Figure 5d, it was observed that the decline of shrubland
in 2019 resulted in a significant increase in bare land through 2025.

4.2.6 Bareland

The Bareland category, representing areas with minimal or no
vegetation, has consistently increased over the years, from 18356.04
hectares in 2013 to 24242.91 hectares in 2025, reflecting an increase
of 5886.87 hectares. The expansion of barelands likely reflects soil
erosion, degradation, and deforestation (Abba et al., 2021; Danung
et al., 2025). The trend could also be associated with unsustainable
land-use practices like overgrazing, poor agricultural practices, and
urban expansion, which expose the land to erosion and reduced
vegetation cover.

The combined analysis of NDVI values and land-cover area
changes reveals significant trends in Taraba State. The expansion of
Built-up areas and the loss of dense forest, Open Forest, and Shrubland
highlight the pressure on the region’s natural landscapes. The increase
in Bareland and the corresponding decrease in forested areas suggest
ongoing land degradation. These findings highlight the need for
urgent conservation and land-use management efforts to reverse these
trends and protect the region’s ecosystems.

4.3 Natural parks and forest reserves
assessment in Taraba

Taraba State is known for its rich biodiversity and landscapes,
such as the Mambila Plateau and Gashaka-Gumti National Park.
These areas are vital for ecological balance and support diverse flora
and fauna. Nevertheless, analyzing the vegetation index and land
use land cover is essential. However, due to the rapid increase in
Nigerias population (Yahaya et al, 2024), it is tough to keep
urbanization and urban migration in check. However, we can
restore the damaged forests and limit anthropogenic activities in the
restricted areas.

This paper inspects the vegetation level in the study area’s six
forests and game reserves from 2013 to 2025 (Table 6 and Figure 6).

We analyzed the temporal trends in NDVT for six forests in Taraba
State: Ngel-Yaki, Gashaka Gumti, Gembu, Baissat, Kwazun, and
Kashimbila. For each forest, we calculated the annual mean NDVI
across all pixels within the forest boundaries. The mean NDVI
provides a representative measure of overall vegetation health for the
entire forest area. To account for variability, we also computed the
standard deviation (SD) of NDVI for each year, which reflects the
spatial heterogeneity within the forest.

10.3389/ffgc.2025.1631859

The trends were assessed using linear regression, where the
independent variable was the year and the dependent variable was the
annual mean NDVI. The strength and direction of the trend were
quantified by the slope (m) and the correlation coefficient (r). The
statistical significance of the trend was determined by the p-value
(with p <0.05 considered significant). The goodness of fit of the
regression model was evaluated using the coefficient of determination
(R?). The regression equation for each forest is:

NDVI=mx+b (5)

Using this equation, we predicted the mean NDVT for the year
2028. The 95% confidence intervals for the predictions were also
calculated to indicate the uncertainty (Equation 5).

Ngel-Yaki Forest (Figure 6a): The mean NDVI showed minimal
change from 2013 to 2025 (slope = —0.00069, R = —0.1048 p = 0.866
R?=0.01). The standard deviation ranged from 0.02 to 0.03, indicating
moderate spatial variability. The weak, non-significant negative
correlation suggests that vegetation health has remained relatively
stable. The predicted NDVTI for 2028 is 0.2425 (95% CI, 0.2201-0.2649).

Gashaka Gumti (Figure 6b): Similarly, a weak negative trend was
observed (slope =—0.00095, r=—0.13, p=0.82, R*=0.02). The
spatial variability (SD: 0.01-0.029) was consistent. The forest exhibited
stable vegetation health. The predicted NDVI for 2028 is 0.2343 (95%
CIL, 0.2105-0.2581).

Baissat Forest (Figure 6¢): A strong negative trend was found
(slope = —0.01590, r=-091, p<0.02, R*=0.837), indicating
significant degradation. The predicted NDVI for 2028 is 0.6296.

Gembu (Figure 6d): This forest also displayed a weak negative
trend (slope = —0.00016, r=—0.043, p=0.94, R*=0.0019). The
predicted NDVT for 2028 is 0.2111 (95% CI, 0.1902-0.2320).

Kwazun Forest: Strong negative trend (slope=—0.0053,
r=—0.827, p=0.0837, R* = 0.684). The predicted NDVI for 2028
is 0.4136.

Kashimbila Forest: Strong negative trend (slope =—0.0106,
r=-0.8600, p = 0.06512, R* = 0.739). The predicted NDVI for 2028
is 0.5036.

Note: The slope indicates the annual change in mean
NDVI. Negative slopes represent declining trends.

Although Ngel-Yaki, Gashaka Gumti, and Gembu show
statistically non-significant trends (p > 0.05), their projected NDVI
values for 2028 are below 0.25, which is considered a threshold for
moderate vegetation health in this region. This suggests that even
without a strong historical trend, these forests may be approaching
critical low levels of vegetation health. Therefore, immediate
conservation efforts are warranted.

TABLE 6 Showing the NDVI range of each class and the area covered in hectares from 2013 to 2028.

Forests X-Coord Y-Coord ndvi_13

ndvi_16

ndvi_19 ndvi_22

ndvi_25

Ngel-yaki 11.12820637 7.078259757 0.25382024 0.194244027 0.199337721 0.260533303 0.210317925 0.2425
GGNP 11.49004269 7.305932779 0.224392295 0.168839097 0.235863388 0.235690638 0.176672518 0.2343
Baissat 10.53733564 7.282119493 0.332799643 0.196835294 0.193088248 0.171520159 0.106929645 0.6296
Gembu 11.27434141 6.722258373 0.211109743 0.187239945 0.219434619 0.226242274 0.189159334 0.2111
Kwazun 11.56204501 8.600037627 0.299320817 0.272380799 0.299326211 0.243754953 0.233750984 0.4136
Kashimbila 9.85590623 6.86026811 0.258152723 0.252093494 0.266334563 0.161773846 0.143604666 0.5036
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FIGURE 6
Correlation analysis of six forests and game reserves under Taraba States: (a) Ngel —Yaki, (b) Gashaka Gumti, (c) Baissat, (d) Gembu, (e) Kwazun, and (f)
Kashimbila.

In contrast, Baissat, Kwazun, and Kashimbila exhibit statistically
significant and steep declines, indicating active degradation. These
forests require urgent intervention (Table 6).

4.4 Gashaka Gumti National Park (GGNP)

Given the observed decline in vegetation within Gashaka-Gumti
National Park (GGNP), we conducted an NDVI and NDRE
correlation analysis from 2013 to 2015, focusing on the Red Edge band
in NDRE to more accurately assess the parK’s vegetation condition
(Figures 7, 8).

The correlation between NDVI (Normalized Difference
Vegetation Index) and NDRE (Normalized Difference Red Edge)
from 2013 to 2025 provides valuable insights into the vegetation
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health and dynamics of Gashaka-Gumti National Park (GGNP).
NDVI is widely used to assess vegetation cover and productivity.
In contrast, NDRE is particularly sensitive to the red edge of the
electromagnetic spectrum (Boiarskii and Hasegawa, 2019;
Davidson et al., 2022; Eitel et al., 2011; Li et al., 2024), which helps
distinguish between canopy and non-canopy species. This offers
a more detailed understanding of vegetation health, especially in
densely forested areas.

4.5 NDVI and NDRE correlation
The NDVT values for GGNP range from 0.74 to —0.15 in 2013,

with fluctuations observed over the years. The overall trend shows a
slight decline in mean NDVI values by 2025. Notably, the minimum
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Normalized different red edge in GGNP from 2013 to 2025.
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NDVI values reached approximately —0.45 in 2025, which typically
correspond to water bodies or non-vegetated surfaces. This suggests
possible changes in water extent or increased exposure of
non-vegetated areas within the park. Concurrently, NDRE values,
which are more sensitive to vegetation health, fluctuated from 0.60 to
—0.261in 2013 and 0.57 to —0.33 in 2025. The decline in NDRE values,
particularly the minimum values in 2025, signals potential
degradation in the canopy layer and vegetation health. This
degradation could be attributed to disturbances such as illegal
logging, climate variability, or other anthropogenic activities affecting
the park’s ecological integrity (Dong et al., 2025; Krivoguz, 2024).

Assessing NDVI and NDRE is crucial for understanding the long-
term vegetation dynamics in GGNP. While NDVT gives a broad view
of vegetation cover, NDRE offers more targeted insights into the
health of the canopy and understory vegetation, making it a more
effective tool for analyzing forest health, particularly in tropical
environments like GGNP. Combining both indices makes
differentiating between canopy species and non-canopy species easier,
offering a more nuanced view of forest degradation and health.
Moreover, assessing these indices over a long period from 2013 to
2025 (Figure 9) provides a detailed temporal analysis, revealing trends
in vegetation health and potential areas of concern. This is especially
important as GGNP is a biodiversity hotspot, and any changes in
vegetation cover or forest structure could have significant implications
for local species, ecosystem services, and the overall health of the park.

Despite the increasing interest in Gashaka-Gumti National Park
and its importance as a protected area, few studies have used NDRE
in combination with NDVT for vegetation monitoring. This is likely
due to the technical complexity of NDRE analysis and the limited
availability of high-resolution satellite data. However, with
advancements in satellite technology and the availability of high-
resolution imagery (e.g., Sentinel-2), the use of NDRE has become
more feasible, providing more accurate data on forest canopies and
vegetation health, especially in dense forest environments.

Moreover, studies relying solely on NDVI may miss important
nuances in canopy structure and health. NDVI tends to saturate dense
vegetation areas, offering limited differentiation between canopy and
understory vegetation. NDRE is better suited for this purpose as it
detects subtle changes in the red edge spectrum, offering a more
precise view of vegetation composition and health (Table 7).

4.6 Canopy and non-canopy species
distributions

4.6.1 MaxEnt model evaluation for canopy
species

The MaxEnt model predicted the potential distribution of canopy
and non-canopy species within Taraba State, explicitly focusing
on Gashaka-Gumti National Park (GGNP). The model
integrates environmental variables, including bioclimatic
factors Bio 1-10 to Bio12-19 (temperature and precipitation),
to assess habitat suitability for different species over time.

The MaxEnt model results for the canopy species are illustrated in

Figure 10 above, which includes model performance metrics and
response to environmental variables.
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(a) Cumulative Threshold vs. Fractional Value:

This plot shows the relationship between the cumulative
threshold and the fractional value of background predicted and
omission on training samples. A sharp rise in the red curve
(representing omission on training samples) indicates that the model
initially struggles to correctly classify the presence of canopy species,
with omission rates decreasing significantly as the threshold
increases. This suggests that training the model with more data
improves its ability to predict the habitat suitability for
canopy species.

(b) Sensitivity vs. 1-Specificity:

This is the Receiver Operating Characteristic (ROC) curve,
showing the sensitivity (True Positive Rate) against the false positive
rate (1-specificity). The training data curve shows a high AUC (0.985)
(Chou et al., 2021), indicating that the MaxEnt model performs
exceptionally well in distinguishing between suitable and unsuitable
habitats for the canopy species. The black curve, representing random
prediction, has an AUC of 0.5, which is expected as a random model
would produce no meaningful predictions. The high AUC value
confirms that the model is highly reliable for predicting the
distribution of canopy species.

(c) Predicted Suitability Map:

This habitat suitability map shows the spatial distribution of
suitable habitats for canopy species across the study area. The colour
gradient ranges from blue (low suitability) to red (high suitability).
Areas with high suitability are concentrated in forest areas with
adequate precipitation and temperature stability, which are critical for
canopy species. This map provides valuable spatial insights into where
conservation efforts should be focused, as areas with high suitability
will likely be the primary habitats for canopy species.

(d) Variable Contribution to Model Performance:

The bar chart illustrates the contribution of each environmental
variable to the model’s performance, shown by regulated training gain.
The red bars indicate the importance of all variables, while the blue
bars represent the importance when individual variables are included
in the model. Variables like precipitation, temperature, and bioclimatic
factors (BIO1-10 to BIO 12-BIO19) have the most substantial
influence on the model’s ability to predict habitat suitability for canopy
species. This analysis suggests that canopy species in the study area
depend highly on specific climatic conditions, with Isothermality/_C
playing a key role in determining suitable habitats.

The response curve for BIO3 (Figure 11) shows a sharp increase
in suitability as the Isothermality value rises, suggesting that canopy
species prefer regions with more stable temperatures throughout the
year. This aligns with the fact that canopy species generally thrive in
stable climates with minimal temperature extremes, which supports
forest growth (Nakamura et al., 2017). BIO7 (Temperature Annual
Range): The curve for BIO7 demonstrates a sharp decline in habitat
suitability as the temperature range increases. This suggests that
canopy species are more suited to regions with low-temperature
variability. High-temperature extremes likely reduce their habitat
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Correlation of NDVI and NDRE analysis of GGNP from 2013 to 2025.

suitability, as they are sensitive to drastic shifts in temperature
( ).

The response curve for BIO14 indicates that canopy species
show high suitability in regions with consistent, substantial rainfall
during the wettest months. This reinforces the dependency of
canopy species on water availability for growth and survival. BIO16
(Precipitation of Wettest Quarter): Similar to BIO14, the curve for
BIO16 shows that increased precipitation in the wettest quarter

Frontiers in
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increases habitat suitability for canopy species, confirming the
importance of regular rainfall for forest health. The other variables,
such as BIO2 (Mean Diurnal Temperature Range), BIO9
(Precipitation of Driest Month), and BIO15 (Precipitation
Seasonality), show minimal influence on the model, as reflected in
the flat response curves. This suggests that these variables do not
significantly affect the habitat suitability for canopy species in
Taraba State.
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TABLE 7 Annual NDVI and NDRE range for vegetation health assessment
in GGNP (2013-2025).

Year NDVI_ NDVI_ NDRE_ NDRE_
Min Max Min N
2013 —0.15 0.74 —-0.26 0.6
2016 —0.13 0.73 —-0.27 0.6
2019 —0.16 0.78 —-0.25 0.65
2022 —0.17 0.78 —0.26 0.65
2025 —0.45 1 —-0.33 0.57

The second set of response curves offers insights into
environmental factors affecting canopy species distribution. Unlike
the first set, which focuses on temperature and precipitation, this set
examines factors like temperature seasonality and specific
precipitation patterns (e.g., wettest quarter and driest month). These
elements are essential for understanding how canopy species adapt to
seasonal temperature and water availability changes, which are critical
for their growth and survival.

For instance, the response curve for BIO4 (Temperature
Seasonality) indicates that canopy species thrive in areas with lower
fluctuations in seasonal temperatures. This distinction was not
emphasized in the initial set of curves. Similarly, the BIO14
(Precipitation of Wettest Month) curve illustrates that canopy species
favor regions with stable rainfall during the wet season, a critical factor
for sustaining healthy forest cover. These additional variables offer a
more nuanced understanding of the environmental conditions that
support canopy species, particularly in areas facing fluctuating
climate conditions.

The second set is important because it addresses the seasonal
dynamics that influence canopy species, which are often overlooked
in broader environmental assessments. Integrating these additional
variables makes the model more robust, offering insights vital for
targeted conservation efforts. While the first set provides a general
overview of the key climate factors, the second set deepens the analysis
by considering the more specific temporal and spatial variations that
significantly impact forest ecosystems.

The second set of response curves is essential for offering a more
comprehensive and refined model of canopy species distribution. It
complements the first set by focusing on seasonal temperature and
precipitation variables, ultimately helping to guide more precise forest
conservation strategies.

4.6.2 MaxEnt model evaluation for canopy
species

The MaxEnt model was also applied to the non-canopy species
to understand how various bioclimatic variables influence their
habitat suitability. The following interpretation discusses the results
shown in the response curves (Figures 13-15), highlighting the key
environmental  variables affecting the distribution of
non-canopy species.

The ROC curve (Figure 13) shows that the model’s performance
demonstrates a high AUC value of 0.985 for training data. This
suggests that the model reliably predicts the habitat suitability for
non-canopy species, significantly outperforming random predictions
(AUC = 0.5). A higher AUC indicates a better ability of the model to

discriminate between suitable and unsuitable areas for the species.
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The bar graph provides insights into the relative importance of each
environmental variable. It was observed that most of the bio-climatic
variables show considerable effects in non-canopy species
(Figure 13d). It shows that BIO10 (Mean temp), BIO1 (Annual mean
air temp), and BIO8 (mean temperature of wettest quarter) are the
most influential predictors, with BIO12 showing the precipitation
gain. This means that non-canopy species are most sensitive to
temperature stability and precipitation patterns, which are critical in
shaping their distribution.

The suitability map in Figure 13c shows areas with the highest
habitat suitability for non-canopy species based on the environmental
variables considered. Areas with low to moderate temperature
fluctuations and consistent rainfall are identified as the most suitable
for non-canopy species, which aligns with the response curves
indicating their preference for stable climatic conditions.

Non-canopy species demonstrate a high suitability across various
environmental conditions. They adapt well to a wide range of annual
mean temperatures (BIO1) and prefer regions with lower diurnal
temperature variation (BIO2) and low-temperature seasonality
(BIO4). Their adaptability is also evident in their tolerance to
moderate Isothermality (BIO3) and a necessity for consistent
moisture, as seen in their higher suitability with moderate precipitation
during the wettest quarter (BIO6) and higher precipitation during the
driest quarter (BIO9). Furthermore, they thrive in areas with adequate
annual and monthly rainfall (BIO12 and BIO14) while slightly
decreasing suitability with increasing environmental interaction
complexity (BIO17).

The response curves —2 for various environmental factors
indicate that non-canopy species are susceptible to temperature and
moisture conditions. For BIO1 (Annual Mean Temperature), habitat
suitability sharply declines beyond 20 °C, while BIO2 (Mean Diurnal
Temperature Range) shows high suitability only with moderate
temperature fluctuations. Habitat suitability increases with
Isothermality (BIO3) and decreases with temperature seasonality
(BIO4), reflecting a preference for stable conditions. Non-canopy
species thrive under varying rainfall during the wettest quarter
(BIO6) but become increasingly vulnerable to low precipitation in the
driest period (BIO9). Additionally, they favor moderate to high
annual rainfall (BIO12) and significant moisture during the wettest
month (BIO14). Finally, BIO17 indicates a slight increase in habitat
suitability with environmental interactions, emphasizing the interplay
between soil moisture and temperature.

5 Conclusion

This study provides valuable insights into the distribution and
habitat suitability of both canopy and non-canopy species in
Taraba State, Nigeria, using remote sensing data (NDVI, NDRE)
and species distribution modeling (MaxEnt). The findings reveal
the significant impact of climatic variables on forest ecosystems,
particularly in areas affected by climate change, deforestation, and
land-use changes. Our analysis of NDVI and NDRE data from
2013 to 2025 highlights distinct trends in vegetation health,
showing how canopy and non-canopy species respond differently
to environmental stressors.

For canopy species, temperature seasonality and precipitation
patterns emerged as the most influential factors determining their
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The MaxEnt model results for the canopy species. (a) Cumulative threshold vs. fractional. (b) Sensitivity vs. 1-specificity: value. (c) Predicted suitability
map. (d) Variable contribution to model performance.
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FIGURE 11
Response curve 1—bio-climatic variables in response to habitat suitability for canopy tree species in GGNP.

distribution. In contrast, non-canopy species were more sensitive to  forest health. Similar studies in other regions, such as those conducted
precipitation during the driest periods and temperature extremes.  in tropical rainforests (Phillips et al., 2006) and temperate (Yang et al.,
These species-specific responses emphasize the importance of  2024) have also observed temperature and precipitation as critical
understanding the nuanced effects of environmental conditions on  drivers of species distribution, further supporting our findings. Our
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Response curve 2—bio-climatic variables in response to habitat suitability for canopy tree species in GGNP.
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The MaxEnt model results for the non-canopy species. (a) Cumulative threshold vs. fractional. (b) Sensitivity vs. 1-specificity: value. (c) Predicted
suitability map. (d) Variable contribution to model performance.

study contributes to this body of research by providing context- The MaxEnt modeling results further elucidate the habitat
specific data for the forests of Taraba State, offering a comprehensive  suitability of both species groups, highlighting rainfall and
look at the intersection of climate and vegetation health in  temperature as key bioclimatic factors for both canopy and
West Africa. non-canopy species. Seasonal variations in these factors were
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Response curve 2—bio-climatic variables in response to habitat suitability for non-canopy species in GGNP.

particularly significant for non-canopy species, whose habitat
suitability sharply declined during the dry season with increasing
temperature and decreasing moisture. This finding highlights the
vulnerability of non-canopy species to climate fluctuations and their
reliance on consistent moisture and temperature stability. Similar
trends have been observed in studies on species distributions in arid
and semi-arid ecosystems (Tabari et al., 2012) reinforcing the broader
applicability of our results.

Frontiers in Forests and Global Change 20

The study also identified critical areas such as the forests of Ngel-Yaki,
GGNP, and Gembu that exhibit declining vegetation health and high
vulnerability to deforestation and climate stress. These areas require
immediate conservation and restoration efforts, particularly in light of the
climate projections for 2028. The robustness of the MaxEnt model, as
demonstrated by its AUC values and response curves, highlights its
potential as a powerful tool for forest conservation, particularly for
predicting species distribution in the face of environmental change.
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5.1 Limitations

However, there are limitations to this study. The reliance on a
thirteen-year dataset restricts our ability to assess long-term trends, and
the spatial resolution of the satellite imagery may not capture finer-scale
vegetation changes in highly dense forests. Additionally, the use of
bioclimatic variables alone does not account for other ecological factors,
such as soil quality and topography, that influence species distribution.
Future research could integrate these factors, along with higher-resolution
satellite data, to improve the accuracy of species distribution models.

Looking ahead, it would be valuable to incorporate future bioclimatic
forecasts into species distribution models to develop potential scenarios
for vegetation shifts in response to climate change. This would broaden
the scope of the research, enabling long-term management and planning
for forest ecosystems in Taraba State and similar regions. By forecasting
future trends in species distributions, such studies could help inform
climate adaptation strategies, policy decisions, and land management
practices aimed at ensuring the sustainability of forest ecosystems in the
face of ongoing environmental changes.

In conclusion, this study makes a significant contribution to our
understanding of the distribution and health of both canopy and
non-canopy species in Taraba State. The findings offer critical insights
for forest monitoring, biodiversity conservation, and climate adaptation
strategies in northern Nigeria. By providing a clearer picture of how
climate change impacts these ecosystems, this research can guide future
conservation efforts and improve land management practices to
safeguard the long-term sustainability of forest ecosystems in the region.
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