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This study investigates the distribution and habitat suitability of canopy and non-
canopy species in Taraba State, Nigeria, using remote sensing indices (NDVI, NDRE) 
and species distribution modeling (MaxEnt). Forest ecosystems in this region are 
increasingly threatened by deforestation, climate change, and land-use change, 
emphasizing the need for robust monitoring tools to guide conservation strategies. 
NDVI and NDRE data from 2013 to 2025 were analyzed across six forests, including 
Gashaka-Gumti National Park, to evaluate vegetation health and distribution. Results 
revealed clear differences in the sensitivity of canopy and non-canopy species to 
environmental drivers, with precipitation and temperature variability emerging as 
the dominant factors influencing distribution. MaxEnt modeling further highlighted 
the significance of rainfall and temperature seasonality in shaping habitat suitability, 
showing that non-canopy species are particularly vulnerable to moisture stress 
during the dry season. Several forests—notably Ngel Yaki (mean NDVI = 0.24), 
Gashaka-Gumti (0.23), and Gembu (0.21)—exhibited declining vegetation health, 
emphasizing the urgent need for protection and restoration. The MaxEnt model 
demonstrated strong predictive performance (AUC = 0.985), providing valuable 
insights for forest conservation, biodiversity management, and climate adaptation 
in northern Nigeria, where desertification risk is intensifying.
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1 Introduction

Forests provide essential cultural and social benefits, supplying resources such as food, 
fuel, timber, and bioproducts. They also play a vital role in maintaining ecological balance by 
purifying air and water, sequestering carbon, and recycling nutrients—functions that are 
fundamental to human well-being (Hogarth et al., 2013; Khuc et al., 2023). Increasing forest 
cover through rehabilitation and restoration initiatives enhances the well-being of rural 
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communities, strengthens biodiversity and ecosystem services, and 
contributes to mitigating the impacts of climate change (Erbaugh and 
Oldekop, 2018; Phang et al., 2023; Rawat et al., 2022; Shukla et al., 
2021). Therefore, understanding the drivers of forest change is 
essential for effective management and sustainable transitions. 
Although the concept of forest transition has existed for more than 
two decades, it has only recently gained prominence within the 
broader discourse on climate change (Ernst et al., 2013; Gupta et al., 
2025; Haq et al., 2024; Hosonuma et al., 2012). Forest transitions are 
influenced by multiple factors, including economic expansion, scarcity 
of forest resources, global integration, community displacement, 
intensified land use by smallholders, and government forest policies 
(Long et  al., 2021; López-Carr, 2021; Syaban and Appiah-Opoku, 
2024) While much of the world’s forest area is now in the post-
transition stage, many regions remain in the pre-transition or early 
phases (Hosonuma et al., 2012).

According to the Global Forest Resources Assessment (FAO, 
2020), an estimated 4.06 billion hectares of forest remain worldwide, 
of which approximately 1.11 billion hectares are classified as primary 
or native forests that have been largely unaffected by human 
disturbance. Despite this, global forest loss persists. Since 1990, about 
420 million hectares of forest have been lost to deforestation (FAO and 
UNEP, 2020). Nonetheless, the report notes a decline in the annual 
rate of net forest loss, which decreased from an average of 7.8 million 
hectares per year between 1990 and 2000 to 4.7 million hectares per 
year between 2010 and 2020 (FAO, 2020).

Across much of Sub-Saharan Africa, including Nigeria, ecological 
environments and forest resources are being degraded as a result of 
land-cover changes driven by deforestation (Figures 1b,c). Despite 
widespread recognition of its impacts, deforestation remains a critical 
challenge that continues to threaten many of the world’s fragile 
ecosystems, as repeatedly documented in the literature (Ibrahim et al., 
2023; Ojeh et al., 2022; Yahaya et al., 2024). Deforestation is a prevalent 
environmental issue that profoundly affects the stability and spread of 
forests beyond geographic boundaries (Gorte and Sheikh, 2010).

Between 2002 and 2020, Nigeria lost approximately 141,000 
hectares of humid primary forest, representing 14% of the country’s 
total tree cover loss during this period. Overall, the extent of humid 
primary forests declined by 7.4%. From 2001 to 2019, 14% of national 
tree cover loss occurred in areas heavily impacted by deforestation. 
Regionally, Edo State experienced the greatest decline, with 268,000 
hectares lost, followed by Ondo (107,000 hectares), Cross River 
(102,000 hectares), Taraba (91,100 hectares), and Ogun (82,000 
hectares). Together, these states accounted for 54% of Nigeria’s total 
tree cover loss between 2001 and 2020. Edo State’s losses far exceeded 
the national average of 28,200 hectares per state. In contrast, between 
2001 and 2012, Nigeria recorded only a modest gain of 60,300 hectares 
in tree cover, contributing less than 0.1% to the global total.

In 2010, Taraba State had approximately 1.64 million hectares of 
tree cover, representing 27% of its total land area. However, by 2020, 
the state had lost 7,820 hectares of this cover, resulting in an estimated 
2.39 million tons of CO₂ emissions. In addition, in 2021, wildfires 
affected about 4.0 million hectares of land across Nigeria, further 
intensifying the country’s overall forest loss.

Taraba State, located in north-eastern Nigeria, is renowned for its 
rich biodiversity and varied landscapes. The state is home to the 
Mambila Plateau, Nigeria’s highest plateau, as well as the Gashaka-
Gumti National Park, which is the largest national park in the country 

and a critical haven for wildlife conservation. In addition, Taraba 
contains several key forest reserves, including the Montane Forest, 
Ngel Yaki, and others that provide vital ecosystem services, 
sustain  local livelihoods, and serve as important carbon sink 
(Chapman et al., 2004; Danladi et al., 2025). These natural areas are 
vital for maintaining ecological balance, sustaining diverse flora and 
fauna, and providing essential ecosystem services. However, they face 
mounting pressures from deforestation driven by agricultural 
expansion, illegal logging, population growth, and urbanization 
(Danladi et al., 2025). Human activities, coupled with the impacts of 
climate change, have accelerated severe forest depletion in Taraba 
State. This degradation has resulted in habitat loss, soil erosion, and 
rising carbon emissions. The continued destruction of Taraba’s forests 
not only threatens biodiversity but also undermines the region’s 
ecological balance. If unchecked, these pressures will further 
exacerbate the risk of desertification spreading across northern 
Nigeria, with serious implications for both the environment and local 
livelihoods (Ibrahim et  al., 2024). As the land’s capacity to retain 
moisture declines, desert-like conditions continue to expand. In 
response, Nigeria has acknowledged the urgency of combating 
deforestation by aligning national policies with international 
frameworks such as the United Nations Sustainable Development 
Goals and by adopting environmental protection conventions. 
Confronting these challenges is essential to safeguarding the long-
term sustainability of the region’s natural resources and ensuring the 
well-being of its population.

In this study, we employ species distribution modeling (MaxEnt) 
using bioclimatic variables (BIO1–BIO10 and BIO12–BIO19) from the 
WorldClim database (Fick and Hijmans, 2017; Poggio et al., 2018). Key 
variables include BIO1 (Annual Mean Temperature), BIO12 (Annual 
Precipitation), and BIO19 (Precipitation of Coldest Quarter). 
We distinguish two functional groups: Canopy species: Trees forming the 
uppermost forest layer (>10 m height) non-canopy species: understory 
vegetation including shrubs, herbs, and saplings (<10 m height).

This study addresses the following research questions:

	 a)	 What is the relationship between bioclimatic variables (e.g., 
temperature variability, precipitation) and the distribution of 
canopy versus non-canopy species?

	b)	 How does habitat suitability influence plant distribution and 
mitigate climate change impacts on forest ecosystems?

2 Literature review

To ensure a rigorous and transparent review of existing studies, a 
structured search strategy was employed. Relevant literature was 
retrieved from Scopus, Web of Science, and Google Scholar, covering 
the period 2010 to 2024 to capture both foundational and recent 
developments in the field. The search employed a combination of 
keywords and Boolean operators, including “NDVI AND forest 
monitoring,” “NDRE AND vegetation stress,” “species distribution 
modeling OR MaxEnt,” “canopy species AND understory species,” and 
“Nigeria OR West Africa AND forest cover change.” The inclusion 
criteria were limited to peer-reviewed journal articles, scholarly books, 
and high-quality conference proceedings written in English. Exclusion 
criteria encompassed grey literature, studies lacking methodological 
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transparency, and publications not directly focused on tropical or 
subtropical forest ecosystems. This methodological framework 
ensured that the review incorporated both seminal works and recent 
contributions relevant to remote sensing indices, land-use/land-cover 
change analysis, and species distribution modeling in 
forest ecosystems.

Remote sensing has become an indispensable tool for monitoring 
changes in forest cover, vegetation health, and land use/land cover 
(LULC) (Mashala et  al., 2023; Olorunfemi et al., 2020; Twisa and 
Buchroithner, 2019). Among the most widely applied indices, the 
Normalized Difference Vegetation Index (NDVI), derived from 
satellite imagery, has proven highly effective in assessing vegetation 
health, productivity, and forest cover dynamics (Akbar et al., 2020; 
Robinson et  al., 2017; Zaitunah et  al., 2018). NDVI has been 
extensively used to monitor forest dynamics (Hansen et al., 2013), 
evaluate deforestation trends (Townshend et al., 2012), and estimate 
carbon stocks in tropical regions (Glennie and Anyamba, 2018; 
Saatchi et al., 2011). Long-term NDVI analysis enables researchers to 
capture spatial and temporal variations in forest ecosystems, thereby 
offering critical insights into the impacts of human activities and 
climate change.

Land use and land cover (LULC) analysis, which tracks changes 
in land cover and land utilization over time, is another critical 
approach for assessing forest loss and landscape transformation. 
Remote sensing facilitates multi-temporal LULC classification, 
enabling researchers to examine how forests are converted into 
agricultural land or urban areas (Kumar, 2017; Shawul and Chakma, 
2019; Zoungrana et al., 2015). For instance, studies have demonstrated 
that agricultural expansion and urbanization in northern Nigeria have 
driven extensive forest fragmentation (Adenle and Ifejika 
Speranza, 2020).

Although NDVI is widely used for monitoring vegetation cover, 
it has limitations in dense forests where canopy structures can distort 
reflectance signals (Chu and Guo, 2013; Ecke et al., 2022; Vélez et al., 
2023). To address these limitations, the Normalized Difference Red 
Edge (NDRE) index has gained prominence for assessing chlorophyll 
concentration and nitrogen levels in vegetation canopies (Easterday 
et al., 2019; Sims and Gamon, 2002; Zhao et al., 2025). While NDRE 
is primarily employed to evaluate photosynthetic activity rather than 
vertical stratification, its sensitivity to upper canopy properties 
(Gitelson et al., 2005) provides a valuable complement to NDVI for 
comprehensive vegetation assessment. In this study, NDRE is applied 
alongside NDVI to capture differential responses to environmental 
stressors between canopy species (dominant upper-layer trees) and 
non-canopy species (understory vegetation) in Taraba’s multi-layered 
forests (Abiem et al., 2023; Adedibu et al., 2022; Garkida et al., 2024). 
Recent studies in comparable ecosystems further highlight NDRE’s 
potential in detecting stress responses across vegetation strata 
(Adelabu et al., 2014; Hamada et al., 2023).

NDVI and NDRE are established tools for assessing forest health, 
productivity, and species distributions (Pettorelli et  al., 2011; 
Tuominen et  al., 2009). For instance, NDVI effectively monitors 
canopy stress and phenological shifts in boreal forests (Myneni et al., 
2007), while NDRE enables species-level discrimination of invasive 
plants (Luo et al., 2021) and detects early chlorophyll deficiency in 
conifers (Carle, 2023; Zarco et al., 2018).

Species distribution modeling (SDM) has become an essential 
approach for predicting the potential distributions of plant and animal 

species in relation to environmental variables. Among the available 
methods, the Maximum Entropy (MaxEnt) model is one of the most 
widely applied, particularly in regions with limited occurrence data, due 
to its strong predictive performance and ability to handle presence-only 
datasets (Phillips et  al., 2006). MaxEnt predicts species’ potential 
distributions using known occurrence points together with 
environmental variables, including bioclimatic factors (e.g., 
precipitation, temperature) and vegetation indices such as NDVI (Elith 
et al., 2011).

MaxEnt has been successfully used to model species 
distributions in tropical forests, comparing the habitat preferences 
of canopy and understory species. Canopy species generally require 
specific environmental conditions, such as adequate sunlight and 
stable temperature ranges, while understory species may be more 
tolerant of low light and varying moisture conditions (Elith et al., 
2011). By using MaxEnt, studies have revealed the different habitat 
preferences of these species, allowing for better forest management 
and conservation strategies (Abolmaali et  al., 2018; Zhao 
et al., 2023).

Although considerable research on species distribution 
modeling and forest monitoring has been conducted in Nigeria, 
most studies have emphasized broad trends such as deforestation 
and general vegetation change, with little attention given to the 
specific dynamics of canopy versus non-canopy species. While 
NDVI and LULC analyses are commonly employed to track forest 
cover and land-use change, the application of NDRE (Normalized 
Difference Red Edge) for distinguishing canopy and non-canopy 
species—particularly in tropical and subtropical forests such as those 
in Taraba State—remains limited. Moreover, comparative 
assessments of forest health across multiple sites are scarce, despite 
clear variability in vegetation structure and condition across 
the region.

This study integrates NDVI, NDRE, and MaxEnt to model 
distribution patterns of canopy and non-canopy species using 
environmental variables. This multi-method approach provides a 
more comprehensive framework for assessing species-habitat 
relationships and climate change impacts, with potential applications 
for conservation planning in northern Nigeria’s desertification-
threatened forests.

3 Materials and methods

3.1 Study area

Taraba State, located in northern Nigeria, is bordered by 
Adamawa, Benue, Plateau, Bauchi, and Gombe states, and shares an 
international boundary with Cameroon to the east. Covering 
approximately 54,000 km2 (Figure 1a), the state lies within Nigeria’s 
Middle Belt and encompasses diverse landscapes, including tropical 
forests, savannas, and wetlands (Mayomi and Yohanna, 2019). It 
supports rich biodiversity, most notably within Gashaka-Gumti 
National Park—the largest in Nigeria—which harbors species such as 
chimpanzees and elephants. The Mambila Plateau, situated in the 
southeastern part of the state, is characterized by montane forests and 
a cooler climate. Taraba experiences a tropical climate with distinct 
wet (April–October) and dry seasons. In the lowlands, annual rainfall 
ranges from 1,000 to 1,500 mm, with temperatures varying between 
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20 °C and 33 °C, while on the Mambila Plateau, temperatures may fall 
to around 15 °C during the dry season (Adebayo and Oruonye, 2013).

3.2 Data collection and pre-processing

3.2.1 Satellite data acquisition
Time series analysis (2013–2025) utilized:

	 1.	 Landsat 8–9 OLI:
	•	 Total images: 126 scenes
	•	 Years: 2013, 2016, 2019, 2022, 2025 (dry season: Nov-Mar)
	•	 Product: Surface Reflectance Tier 1 (L2SP)
	•	 Source: USGS Earth Explorer1

	•	 Spatial Resolution: 30 m

	 2.	 Sentinel-2 MSI:
	•	 Total images: 38 scenes (Gashaka Gumti National Park only)
	•	 Product: Level-2A (Bottom-of-Atmosphere reflectance)
	•	 Source: Copernicus Open Access Hub2

	•	 Spatial Resolution: 10 m (resampled to 30 m for cross-
sensor consistency)

1  https://earthexplorer.usgs.gov/

2  https://scihub.copernicus.eu/dhus

	 3.	 Image Selection Criteria
	•	 Cloud Cover Threshold: ≤20% per scene
	•	 Temporal Window: ±15 days of target anniversary date
	•	 Data Gap Mitigation:
	•	 Cloud-contaminated pixels replaced via linear 

temporal interpolation
	•	 Adjacent year data used when target-year data unavailable 

(validated with ≤5% coverage deviation) (Table 1).

3.3 Vegetation index calculation NDVI and 
NDRE

3.3.1 Temporal compositing protocol
To ensure phenological consistency, yearly NDVI and NDRE 

values were derived from dry-season composites (November–March). 
The following protocol was applied (Equations 1, 2):

	 1.	 Landsat-based NDVI (for all six forests):
	•	 All available Landsat 8/9 Operational Land Imager (OLI) scenes 

meeting the cloud cover threshold (≤20%) were selected for 
each year

	•	 A median of 5–7 scenes per year per forest was used
	•	 Annual NDVI composites were generated using a pixel-wise 

median to minimize atmospheric noise
	•	 Spatial resolution: 30 m

FIGURE 1

(a) Shows the location of Taraba State; (b) African continent showing 54 countries; (c) Nigeria’s map where the study area is located.
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	 2.	 Sentinel-based NDRE (for Gashaka Gumti National Park only):
	•	 Level-2A scenes (median 4–6 per year) meeting ≤20% cloud 

threshold were selected
	•	 Annual NDRE composites were generated using 95th 

percentile method
	•	 Data resampled to 30 m resolution using bilinear interpolation
	•	 Spatial resolution: Native 10 m resampled to 30 m

3.3.2 Index calculation
The Normalized Difference Vegetation Index (NDVI) and 

Normalized Difference Red Edge Index (NDRE) were calculated for 
each scene using the following formulas:

	 NDVI = 
− 

 + 

NIR RED
NIR RED

	 (1)

	 NDRE = − 
 + 

NIR RE
NIR RE

	 (2)

3.3.2.1 Ecological interpretation
The synergy of NDVI and NDRE enhances vertical forest 

stratification assessment:

	•	 NDVI provides broad vegetation health across canopy-
understory continuum

	•	 NDRE shows superior sensitivity to chlorophyll in upper canopy 
layers (>70% signal from top canopy in tropical forests) 
(Darvishzadeh et al., 2019) (Table 2).

3.3.3 Validation approach
Consistent with established remote sensing principles 

(Chang-Hua et al., 2010; Delegido et al., 2011; Zhang et al., 2022). 
NDRE exhibits stronger correlation with upper canopy dynamic. 
NDVI captures integrated vegetation health across strata 
(Table 3).

3.4 Land use land cover (LULC) analysis

The inclusion of LULC classification is central to achieving the 
study’s objectives. Distinguishing between dense forest (canopy-
dominated), open forest or shrubland (mixed or degraded canopy), 

and bareland or non-forest areas allows for a more precise analysis of 
canopy versus non-canopy species distributions over time. By 
integrating LULC classification with NDVI and NDRE indices, the 
study evaluates how changes in vegetation health correspond to land-
cover transitions such as forest degradation, shrubland conversion, 
and bareland expansion. This integration enhances the ecological 
interpretation of vegetation dynamics within Gashaka-Gumti 
National Park.

3.4.1 Training data collection protocol
Training data were developed through remote sensing  

methods:

	 1.	 Total training samples: 500 polygons (100 per LULC class)
	 2.	 Source: Visual interpretation of high-resolution imagery
	•	 Maxar Vivid Basemap (0.5 m resolution, 2023)
	•	 Google Earth Engine historical imagery
	 3.	 Sampling methodology:
	•	 Stratified random sampling across all six forests
	•	 Minimum polygon size: 30 × 30 m (1 Landsat pixel)
	•	 Interpretation by two independent analysts

3.4.2 Supervised classification methodology
	 1.	 Algorithm: Maximum Likelihood Classifier (da Silva 

et al., 2019).
	 2.	 Thematic classes:
	•	 Waterbodies (rivers, lakes)
	•	 Dense Forests (>80% canopy cover)
	•	 Open forests (30–80% canopy cover)
	•	 Built Areas (urban/rural developments)
	•	 Shrubland (grasses, shrubs)
	•	 Barelands (eroded areas)

TABLE 1  Pre-processing workflow (ENVI 5.6 + Python) processing applied uniformly unless specified.

Step Landsat 8–9 Sentinel-2

1. Radiometric QUAC atmospheric correction Level-2A BOA used directly

2. Geometric
Ground control points (GCPs) alignment to WGS84 UTM Zone 32 N 

(Required due to terrain distortions)
No correction applied (Level-2A includes terrain correction)

3. Cloud mask Fmask 4.2 (cloud/shadow probability >80%) (Zhu and Woodcock, 2012) SEN2COR scene classification map (Main-Knorn et al., 2017)

4. Mosaicking Performed for Taraba State (6 tiles) and Gashaka Gumti (3 tiles) Single-tile coverage for Gashaka Gumti

5. Resampling Sentinel-2 data resampled to 30 m using bilinear interpolation

TABLE 2  Band specifications.

Sensor Band Name Wave length

Landsat 8/9 B4 Red 0.64–0.67 μm

B5 Near Infrared 0.85–0.88 μm

Sentinel 2 B4 Red 665 nm

B5 Red Edge 705 nm

B8 Near Infrared 842 nm
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3.4.3 Classification
The maximum likelihood classifier estimates the posterior 

probability that a pixel belongs to a given class Ck, based on the 
likelihood function and prior class probabilities (Equation 3):

	 ( )= kCP x =
( )

( )

 
 
 

k
k

xp p c
c
p x

	
(3)

Where

	•	 ( )kCP x  probability pixel belongs to class Ck

	•	 Accuracy Assessment
	•	 Validation dataset: 600 independent points
	•	 Validation methodology:
	•	 Visual interpretation using Maxar Vivid basemap
	•	 Sentinel-2 10 m resolution imagery
	•	 Accuracy metrics:
	•	 Overall Accuracy: 88.5%
	•	 Kappa Coefficient: 0.84

3.5 Environmental variables

In this study, 18 environmental variables, encompassing climate, 
topography, and social factors, were selected as auxiliary variables to 
construct the species distribution model (Table 4). These include 19 
widely used bioclimatic factors from the WorldClim dataset (version 
2.1), specifically Bio1 to Bio10 and Bio12 to Bio19, which represent 
key climate-related variables essential for assessing species distribution 
and habitat suitability3 (GBIF.org, 2025). The species distribution 
model was then applied to investigate the responses of canopy and 
non-canopy species in the study area.

3.5.1 Study species and occurrence data

3.5.1.1 Identification of canopy species
This study focused on strict canopy-dominant tree species, 

defined as mature individuals typically attaining the uppermost layer 
of the forest structure (≥20 m in height) and whose crowns contribute 
significantly to the spectral signal captured by satellite sensors. Species 
selection was based on botanical surveys and checklists specific to 
Gashaka Gumti National Park and the Guinean-Congolian/Sudanian 

3  https://www.worldclim.org, accessed on 22 March 2025.

transition zone (Durrieu et  al., 2024; Vogt, 2021; Zadbagher 
et al., 2023).

The primary canopy species targeted in this study include:

Khaya senegalensis (Desr.) A.Juss. (African Mahogany).
Isoberlinia doka Craib & Stapf (Doka Tree).
Daniellia oliveri (Rolfe) Hutch. & Dalziel (African Copaiba 

Balsam Tree).
Antiaris toxicaria Lesch. (Upas Tree).
Ceiba pentandra (L.) Gaertn. (Kapok Tree).
Entandrophragma angolense (Welw.) C.DC. (Mahogany).
Lophira lanceolata Tiegh. ex Keay (False Shea Tree).
Parkia biglobosa (Jacq.) R.Br. ex G.Don (Locust Bean Tree).

These species were selected due to their ecological dominance, 
known canopy-forming habit, and economic importance, which 
makes their accurate distribution mapping a conservation priority. 
Understory tree species (e.g., Carissa edulis Vahl, various shrub 

TABLE 3  Justification for compositing approach.

Method Purpose References

Pixel-wise median Reduces atmospheric 

noise and outliers

White et al. (2014)

95th percentile Captures peak 

vegetation conditions

Jenkins and Frazier (2010)

Dry-season focus Minimizes cloud/

moisture interference

Michaelides et al. (2009)

TABLE 4  Environmental variables.

Variable Description Type

BIO1 Annual mean air 

temperature/_C

Climatic

BIO2 Mean diurnal temperature 

range/_C

Climatic

BIO3 Isothermality/_C Climatic

BIO4 Temperature seasonality Climatic

BIO5 Maximum temperature of 

warmest month

Climatic

BIO6 Min Temperature of Coldest 

Month/_C

Climatic

BIO7 Temperature annual 

range/_C

Climatic

BIO8 Mean temperature of wettest 

quarter/C

Climatic

BIO9 Mean temperature of driest 

quarter/_C

Climatic

BIO10 Mean temperature of 

warmest quarter/C

Climatic

BIO12 Annual precipitation/mm Climatic

BIO13 Precipitation of wettest 

month/mm

Climatic

BIO14 Precipitation of driest month/

mm

Climatic

BIO15 Precipitation seasonality Climatic

BIO16 Precipitation of wettest 

quarter/mm

Climatic

BIO17 Precipitation of driest 

quarter/mm

Climatic

BIO18 Precipitation of Warmest 

Quarter/mm

Climatic

BIO19 Precipitation of coldest 

quarter/mm

Climatic
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species), sub-canopy trees, and woody lianas were explicitly excluded 
from this analysis to ensure a direct mechanistic link between 
recorded species presence and the canopy-level spectral indices 
(NDVI, NDRE) used as predictors.

3.5.1.2 Sourcing and processing of occurrence data
Species occurrence data (geographic coordinates) were 

compiled from a combination of sources to ensure robust spatial  
coverage:

	 1.	 Systematic Field Surveys: Ground-truthing expeditions were 
conducted within GGNP during the dry seasons of (September 
2024). Using handheld GPS devices (Garmin GPSMAP 64 s; 
accuracy < 3 m), the coordinates of individual mature trees of 
the target species were recorded. Identification was performed 
by trained botanists following the Flora of West Tropical Africa 
(Gosling et al., 2013; Mcllwaine, 1999)

	 2.	 Verification via Remote Sensing: For large, distinctive species 
such as Ceiba pentandra and Khaya senegalensis, presence 
points were further verified by visually interpreting high-
resolution baseline imagery in Google Earth Pro to confirm the 
location and canopy characteristics.

	 3.	 Public Biodiversity Repositories: Data were supplemented 
with records from the Global Biodiversity Information 
Facility (GBIF.org, 2025), To ensure high quality and 
temporal relevance, GBIF data were subjected to a rigorous 
filtering process: only records with (i) coordinate uncertainty 
less than 1,000 m, (ii) no evident geographic or taxonomic 
issues as flagged by the CoordinateCleaner R package 
(Aiello-Lammens et al., 2015), (v2.0–20), and (iii) collection 
dates post-2000 were retained to align with the temporal 
range of our satellite imagery

3.5.1.3 Spatial thinning and bias reduction
To mitigate the effects of spatial autocorrelation and sampling 

bias, which can inflate model performance metrics, the combined 
occurrence dataset was spatially rarefied. Using the spThin R 
package (v0.2.0), we applied a thinning distance of 1 km, ensuring 
that no two presence points for a single species were closer than this 
threshold. This process resulted in a final, environmentally 
representative dataset of 500 unique occurrence points for 
model calibration.

3.6 Model construction and evaluation

Environmental variables were sourced from the WorldClim 
database (Version 2.1) (Fick and Hijmans, 2017) at a spatial resolution 
of 30 arc-seconds (~1 km2). These variables represent long-term 
average conditions for the period 1970–2000. The eighteen bioclimatic 
variables were initially considered due to their established relevance 
to plant physiological tolerances. To mitigate multicollinearity, a 
pairwise Pearson correlation analysis was performed. For any pair of 
variables with a correlation coefficient |r| > 0.8, the variable with the 
clearer ecological interpretation for canopy trees was retained. The 
final set of 18 variables used in the model included Bio 12 (Annual 
Precipitation), Bio 4 (Temperature Seasonality), and Bio 15 
(Precipitation Seasonality).

3.6.1 Model construction and evaluation
Species distribution modeling was performed using Maximum 

Entropy modeling implemented in the MaxEnt software (version 
3.4.4) (Zhao et al., 2024). The model input consisted of two elements:

	 1.	 Species Occurrence Data: The spatially thinned presence-only 
(POE) data for the target canopy species. The final dataset 
comprised a total of 500 points across all species

	 2.	 Environmental Predictors: The processed ASCII raster files of 
the selected bioclimatic and spectral variables.

The optimal model complexity was determined using the 
ENMeval R package to test combinations of feature classes (L, 
LQ, H, LQH, LQHP) and regularization multipliers (a range from 
0.5 to 4). The model with the lowest delta AICc score was 
selected for final production (Li et al., 2023). The final model 
used a regularization multiplier of 0.5 and linear and quadratic  
features.

Model performance was evaluated using the Area Under the 
Receiver Operating Characteristic Curve (AUC). The AUC score 
quantifies the model’s ability to distinguish between presence and 
background locations, with a value of 0.5 representing random 
prediction and 1.0 representing perfect discrimination. The reported 
AUC value of 0.985 was derived from the average test AUC across 
5-fold cross-validation runs, not the training AUC. This high-test 
AUC indicates excellent predictive performance. To further guard 
against overfitting, we:

	•	 Employed 5-fold cross-validation, which partitions the data into 
training and test sets, ensuring the performance metric is based 
on predictions to unseen data.

	•	 Used a regularization multiplier to penalize model complexity.
	•	 Critically evaluated the response curves to ensure they reflected 

ecologically plausible relationships.

3.7 Regression analysis

Regression analysis is a statistical technique used to explore the 
relationship between a dependent (response) variable and independent 
(predictor) variables (Arum et al., 2025; Chatterjee and Hadi, 2015). 
It is commonly employed for prediction and modeling, helping to 
understand how independent variables influence the dependent 
variable (Harrell, 2001; Xu et al., 2019).

Linear regression was selected due to its ability to model 
straightforward relationships between bioclimatic variables and 
NDVI values, providing clear insights into the effects of 
environmental variables on vegetation health over time (Equation 4). 
All regression analyses were performed using R software (version 
4.3.1; R Core Team, 2023) with the built-in lm() function for linear 
modeling. In this study, we apply regression analysis to predict the 
future NDVI values of six forest and game reserve locations: Ngel 
Yaki, Gashaka Gumti, Baissat, Gembu, Kwazun, and Kashimbila. 
Our goal is to predict the future conditions of these forests and 
identify which areas require immediate attention. The analysis is 
based on five time periods (2013, 2016, 2019, 2022, and 2025), 
where we extract the mean NDVI values for each reserve during 
these years (Figure 2).
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While correlation analysis helps identify relationships between 
variables, it does not clarify the direction or strength of the 
dependency. Therefore, we use regression analysis to model linear 
relationships between dependent and independent variables (Franzese 
and Iuliano, 2018).

The regression model used in this analysis can be expressed as:

	 β β β β= + + +…+ +∈0 1 1 2 2 n nY X X X 	 (4)

	•	 Y  Is the Dependent Variable (The predicted NDVI Value 
for 2028).

	•	 …1, 2, nX X X are the dependent variables (predictors, including 
factors such as year, precipitation, temperature, etc.).

	•	 β0 is the intercept β β…1, , n are the regression coefficients and ∈ 
is the error term

This approach will allow us to predict the NDVI value in 2028, 
providing insight into future forest conditions and guiding 
conservation efforts. This comprehensive methodology will allow us 
to model species distributions, predict future forest conditions, and 
assess the impacts of climate change and land use on forest health, 
providing vital data for conservation strategies in Taraba State.

4 Results and discussions

4.1 Normalized difference vegetation index 
(NDVI) analysis for Taraba State

The NDVI values derived from Landsat 8 and 9 satellite data 
for different land-cover categories (Waterbody, Land, Shrubs, and 
Vegetation) show fluctuating patterns of vegetation health in 
Taraba State over the years. These values provide an indication of 
vegetation density and health, with higher NDVI values 
representing denser, healthier vegetation. NDVI, which ranges 
from −1 to +1, provides valuable insights into vegetation density 
and health, with higher values indicating better vegetation 
conditions (Meneses-Tovar, 2011; Peters et al., 2002). This range of 
values allows us to interpret trends in vegetation health, especially 
when comparing different land-cover categories across 
multiple years.

4.1.1 Waterbody class
The Waterbody class showed relatively stable NDVI values 

throughout the study period, ranging from −0.17 to −0.11. These 
values are characteristic of non-vegetated areas, with water bodies 
exhibiting low or negative NDVI values. In 2013, Waterbody coverage 
was 1187.31 hectares, significantly increasing to 8998.01 hectares by 
2025. The sharp increase in waterbody area suggests natural 

FIGURE 2

(a) Illustrates the mean NDVI values extracted from six forest reserves over time. (b) Shapefiles of the study area for these six forests and game reserves. 
(c) Photographs of the six forest reserve areas.
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phenomena like flooding (Bako et al., 2016; Gabriel et al., 2018) or 
land use and water management changes that exposed more water 
surfaces. Despite the area increase, the NDVI values remained low, 
indicating that the expansion of water bodies did not contribute to the 
increase in vegetation health.

4.1.2 Bareland class
For the Land class, the NDVI values remained low, ranging from 

0.11 to 0.18, reflecting areas with sparse or minimal vegetation cover, 
possibly urbanized areas, agricultural land, or bare soil. The Land 
category experienced a fluctuating coverage pattern, starting at 
30087.87 hectares in 2013, dropping to 25760.76 hectares in 2019, and 
increasing again to 33,605 hectares in 2025. The fluctuations in area 
coverage may be attributed to urbanization, agricultural activities, or 
land-use reclassification over time (Ijafiya et al., 2023; Yusuf and Jauro, 
2024). Although the NDVI values remained relatively constant, the 
changes in the Land area are significant and suggest shifts in land-use 
dynamics (Figures 3a–d).

4.1.3 Shrubs class
The Shrubs class exhibited NDVI values ranging from 0.18 to 0.23, 

indicative of moderate vegetation health. These values reflect areas 

with scrublands or low-density vegetation. However, the observed 
NDVI values may be influenced by the mixed-pixel effect, where the 
pixel values may include both vegetated areas (such as shrubs) and 
non-vegetated surfaces (e.g., bare soil), which could dilute the NDVI 
signal, leading to potentially lower values than would be observed in 
purely vegetated areas.

Despite this, the overall NDVI trend suggests that the shrubland 
areas maintained relatively healthy vegetation conditions, although 
the low NDVI values indicate that the shrub coverage is not as dense 
as that of forested areas. The increase in shrub coverage from 20,547.55 
hectares in 2013 to 23,770.11 hectares in 2019 may reflect natural 
vegetation recovery or reduced land-use pressures, such as less 
intensive agricultural practices.

However, by 2025, the reduction in shrubland area to 12,253.75 
hectares suggests that these areas may have been converted to other 
land uses, such as agricultural expansion or deforestation (Figure 3d). 
The fluctuating NDVI values over time reflect a complex interplay of 
factors, including land cover changes, land-use pressures, and the 
limitations of NDVI as a vegetation health indicator in mixed-pixel 
environments. Despite fluctuations, the NDVI values indicate that 
shrubland areas remained relatively healthy, although some decline 
was noted towards 2025.

FIGURE 3

Normalized difference vegetation index (NDVI) in Taraba State from 2013 to 2015. This figure illustrates the changes in the vegetation index over the 
specified years, highlighting the ecological trends in the region.
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4.1.4 Vegetation class
The Vegetation class, indicative of dense vegetation or forest 

areas, experienced moderate to high NDVI values, ranging from 
0.23 to 0.47. These values reflect healthy vegetation but show a 
slight decline over time, particularly in the later years of the study. 
Vegetation coverage started at 8310.75 hectares in 2013 and 
decreased to 5244.26 hectares by 2025 (Figure 3). The decline in 
vegetation health (NDVI) and area suggests significant 
degradation, possibly due to deforestation, illegal logging, or 
agricultural land conversion. The NDVI values of 0.23 to 0.47 for 
Vegetation highlight that while the area still maintains some forest 
cover, the overall health and vitality of the forest are decreasing, 
consistent with the observed area loss over time (Abba et al., 2021; 
Ojeh et al., 2022).

The analysis of NDVI data and land cover in Taraba State 
reveals a significant decline in healthy vegetation, particularly in the 
Vegetation and Shrub categories. This decline indicates the region’s 
ecosystems’ vulnerability to natural and human-induced pressures 
(James, 2019; James and Ngala, 2015; Omijeh, 2021; Oruonye et al., 
2024). Immediate conservation efforts are essential in areas 
experiencing substantial vegetation loss. Notably, the increase in 

Waterbody area does not correlate with improved vegetation health, 
suggesting changes in hydrology or land use that negatively affect 
forest vitality (Table 5).

4.2 Land use land cover (LULC) analysis for 
Taraba State

Figures 4, 5 present area coverage changes in hectares for different 
land-use categories in Taraba State from 2013 to 2025. The figures 
reveal important land-use dynamics trends, showing gains and losses 
across the study period.

4.2.1 Waterbody
The Waterbody category shows a general decline in coverage over 

time, with a reduction from 294.11 hectares in 2013 to 328.56 
hectares in 2025, marking a loss of −34.45 hectares. This decrease 
might reflect shrinking water bodies due to climate change, reduced 
precipitation, or land-use alterations, such as diversifying water 
resources for agriculture or infrastructure (Bako et al., 2016; Gabriel 
et al., 2018).

FIGURE 4

Land use land cover (LULC) in Taraba State from 2013 to 2015. This figure illustrates the spatiotemporal changes over the specified years, highlighting 
the ecological trends in the region.
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4.2.2 Built-up area
The Built-up category shows substantial expansion between 2013 

and 2025. Starting at 1,523.57 hectares in 2013, the built-up area 
increased to 12,922.07 hectares by 2025. This represents a net increase 
of 11,398.50 hectares (748% growth), indicating rapid urbanization 
driven by population growth and development projects (Bako et al., 
2016; Gabriel et al., 2018).

4.2.3 Dense forest
The dense forest category’s area declined from 9484.88 hectares in 

2013 to 6134.42 hectares in 2025, showing a net loss of −3350.46 
hectares. This loss highlights the severe impact of deforestation, likely 
caused by logging, agricultural expansion, and infrastructure 
development. The decrease in dense forests reflects a degradation in 
the quality of the forest ecosystem, potentially leading to the loss of 
biodiversity and critical ecosystem services, such as carbon 
sequestration and water regulation.

4.2.4 Open forest
Open forest also showed a decline in area, from 18978.88 hectares 

in 2013 to 11011.62 hectares in 2025, reflecting a loss of −7967.26 
hectares. The reduction in open forests, which may represent 
secondary forests or areas under lesser vegetation cover, further 
underscores the trends of land-use conversion and deforestation. 
These areas could have been replaced by agriculture, urban 
development, or barren land over time.

4.2.5 Shrubland
The Shrubland category showed substantial fluctuation, starting 

at 11487.71 hectares in 2013, peaking at 17324.78 hectares in 2016, 
and then declining to 5453.09 hectares by 2025. This overall loss of 
−6034.62 hectares could be due to land conversion to agriculture or 
urbanization, as well as climate impacts such as drought or fire. 
Shrublands are often transitional habitats, so their decline can indicate 
ecosystem changes, potentially affecting wildlife species dependent on 

TABLE 5  Showing the NDVI range of each class and the area covered in hectares from 2013 to 2025.

Year Waterbody_
NDVI

Waterbody_
Area (ha)

Land_
NDVI

Land_
Area 
(ha)

Shrubs_
NDVI

Shrubs_
Area (ha)

Vegetation_
NDVI

Vegetation_
Area (ha)

2013 −0.17 1187.31 0.11 30087.87 0.18 20547.5 0.23 8310.75

2016 −0.13 3342.65 0.11 29042.7 0.2 20734.2 0.25 6958.08

2019 −0.14 1401.12 0.12 25760.76 0.22 23770.1 0.3 9137.43

2022 −0.18 4445.62 0.11 32665.39 0.21 16147.6 0.28 6824.82

2025 −0.17 8998.01 0.11 33,605 0.23 12253.7 0.23 5244.26

FIGURE 5

(a) Land use and land cover changes show a trend in sq. meter. (b) Land use land cover anomaly. (c) Changes in land cover classes 2013–2025. (d) 
Land use and land cover changes show a trend in sq. kilometer.
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such areas. In Figure 5d, it was observed that the decline of shrubland 
in 2019 resulted in a significant increase in bare land through 2025.

4.2.6 Bareland
The Bareland category, representing areas with minimal or no 

vegetation, has consistently increased over the years, from 18356.04 
hectares in 2013 to 24242.91 hectares in 2025, reflecting an increase 
of 5886.87 hectares. The expansion of barelands likely reflects soil 
erosion, degradation, and deforestation (Abba et al., 2021; Danung 
et al., 2025). The trend could also be associated with unsustainable 
land-use practices like overgrazing, poor agricultural practices, and 
urban expansion, which expose the land to erosion and reduced 
vegetation cover.

The combined analysis of NDVI values and land-cover area 
changes reveals significant trends in Taraba State. The expansion of 
Built-up areas and the loss of dense forest, Open Forest, and Shrubland 
highlight the pressure on the region’s natural landscapes. The increase 
in Bareland and the corresponding decrease in forested areas suggest 
ongoing land degradation. These findings highlight the need for 
urgent conservation and land-use management efforts to reverse these 
trends and protect the region’s ecosystems.

4.3 Natural parks and forest reserves 
assessment in Taraba

Taraba State is known for its rich biodiversity and landscapes, 
such as the Mambila Plateau and Gashaka-Gumti National Park. 
These areas are vital for ecological balance and support diverse flora 
and fauna. Nevertheless, analyzing the vegetation index and land 
use land cover is essential. However, due to the rapid increase in 
Nigeria’s population (Yahaya et  al., 2024), it is tough to keep 
urbanization and urban migration in check. However, we  can 
restore the damaged forests and limit anthropogenic activities in the 
restricted areas.

This paper inspects the vegetation level in the study area’s six 
forests and game reserves from 2013 to 2025 (Table 6 and Figure 6).

We analyzed the temporal trends in NDVI for six forests in Taraba 
State: Ngel-Yaki, Gashaka Gumti, Gembu, Baissat, Kwazun, and 
Kashimbila. For each forest, we calculated the annual mean NDVI 
across all pixels within the forest boundaries. The mean NDVI 
provides a representative measure of overall vegetation health for the 
entire forest area. To account for variability, we also computed the 
standard deviation (SD) of NDVI for each year, which reflects the 
spatial heterogeneity within the forest.

The trends were assessed using linear regression, where the 
independent variable was the year and the dependent variable was the 
annual mean NDVI. The strength and direction of the trend were 
quantified by the slope (m) and the correlation coefficient (r). The 
statistical significance of the trend was determined by the p-value 
(with p < 0.05 considered significant). The goodness of fit of the 
regression model was evaluated using the coefficient of determination 
(R2). The regression equation for each forest is:

	 = +NDVI mx b	 (5)

Using this equation, we predicted the mean NDVI for the year 
2028. The 95% confidence intervals for the predictions were also 
calculated to indicate the uncertainty (Equation 5).

Ngel-Yaki Forest (Figure 6a): The mean NDVI showed minimal 
change from 2013 to 2025 (slope = −0.00069, R = −0.1048 p = 0.866 
R2 = 0.01). The standard deviation ranged from 0.02 to 0.03, indicating 
moderate spatial variability. The weak, non-significant negative 
correlation suggests that vegetation health has remained relatively 
stable. The predicted NDVI for 2028 is 0.2425 (95% CI, 0.2201–0.2649).

Gashaka Gumti (Figure 6b): Similarly, a weak negative trend was 
observed (slope = −0.00095, r = −0.13, p = 0.82, R2 = 0.02). The 
spatial variability (SD: 0.01–0.029) was consistent. The forest exhibited 
stable vegetation health. The predicted NDVI for 2028 is 0.2343 (95% 
CI, 0.2105–0.2581).

Baissat Forest (Figure 6c): A strong negative trend was found 
(slope = −0.01590, r = −0.91, p < 0.02, R2 = 0.837), indicating 
significant degradation. The predicted NDVI for 2028 is 0.6296.

Gembu (Figure 6d): This forest also displayed a weak negative 
trend (slope = −0.00016, r = −0.043, p = 0.94, R2 = 0.0019). The 
predicted NDVI for 2028 is 0.2111 (95% CI, 0.1902–0.2320).

Kwazun Forest: Strong negative trend (slope = −0.0053, 
r = −0.827, p = 0.0837, R2 = 0.684). The predicted NDVI for 2028 
is 0.4136.

Kashimbila Forest: Strong negative trend (slope = −0.0106, 
r = −0.8600, p = 0.06512, R2 = 0.739). The predicted NDVI for 2028 
is 0.5036.

Note: The slope indicates the annual change in mean 
NDVI. Negative slopes represent declining trends.

Although Ngel-Yaki, Gashaka Gumti, and Gembu show 
statistically non-significant trends (p > 0.05), their projected NDVI 
values for 2028 are below 0.25, which is considered a threshold for 
moderate vegetation health in this region. This suggests that even 
without a strong historical trend, these forests may be approaching 
critical low levels of vegetation health. Therefore, immediate 
conservation efforts are warranted.

TABLE 6  Showing the NDVI range of each class and the area covered in hectares from 2013 to 2028.

Forests X-Coord Y-Coord ndvi_13 ndvi_16 ndvi_19 ndvi_22 ndvi_25 ndvi_28

Ngel-yaki 11.12820637 7.078259757 0.25382024 0.194244027 0.199337721 0.260533303 0.210317925 0.2425

GGNP 11.49004269 7.305932779 0.224392295 0.168839097 0.235863388 0.235690638 0.176672518 0.2343

Baissat 10.53733564 7.282119493 0.332799643 0.196835294 0.193088248 0.171520159 0.106929645 0.6296

Gembu 11.27434141 6.722258373 0.211109743 0.187239945 0.219434619 0.226242274 0.189159334 0.2111

Kwazun 11.56204501 8.600037627 0.299320817 0.272380799 0.299326211 0.243754953 0.233750984 0.4136

Kashimbila 9.85590623 6.86026811 0.258152723 0.252093494 0.266334563 0.161773846 0.143604666 0.5036
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In contrast, Baissat, Kwazun, and Kashimbila exhibit statistically 
significant and steep declines, indicating active degradation. These 
forests require urgent intervention (Table 6).

4.4 Gashaka Gumti National Park (GGNP)

Given the observed decline in vegetation within Gashaka-Gumti 
National Park (GGNP), we  conducted an NDVI and NDRE 
correlation analysis from 2013 to 2015, focusing on the Red Edge band 
in NDRE to more accurately assess the park’s vegetation condition 
(Figures 7, 8).

The correlation between NDVI (Normalized Difference 
Vegetation Index) and NDRE (Normalized Difference Red Edge) 
from 2013 to 2025 provides valuable insights into the vegetation 

health and dynamics of Gashaka-Gumti National Park (GGNP). 
NDVI is widely used to assess vegetation cover and productivity. 
In contrast, NDRE is particularly sensitive to the red edge of the 
electromagnetic spectrum (Boiarskii and Hasegawa, 2019; 
Davidson et al., 2022; Eitel et al., 2011; Li et al., 2024), which helps 
distinguish between canopy and non-canopy species. This offers 
a more detailed understanding of vegetation health, especially in 
densely forested areas.

4.5 NDVI and NDRE correlation

The NDVI values for GGNP range from 0.74 to −0.15 in 2013, 
with fluctuations observed over the years. The overall trend shows a 
slight decline in mean NDVI values by 2025. Notably, the minimum 

FIGURE 6

Correlation analysis of six forests and game reserves under Taraba States: (a) Ngel –Yaki, (b) Gashaka Gumti, (c) Baissat, (d) Gembu, (e) Kwazun, and (f) 
Kashimbila.
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FIGURE 7

Normalized different vegetation index in GGNP from 2013 to 2025.

FIGURE 8

Normalized different red edge in GGNP from 2013 to 2025.
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NDVI values reached approximately −0.45 in 2025, which typically 
correspond to water bodies or non-vegetated surfaces. This suggests 
possible changes in water extent or increased exposure of 
non-vegetated areas within the park. Concurrently, NDRE values, 
which are more sensitive to vegetation health, fluctuated from 0.60 to 
−0.26 in 2013 and 0.57 to −0.33 in 2025. The decline in NDRE values, 
particularly the minimum values in 2025, signals potential 
degradation in the canopy layer and vegetation health. This 
degradation could be  attributed to disturbances such as illegal 
logging, climate variability, or other anthropogenic activities affecting 
the park’s ecological integrity (Dong et al., 2025; Krivoguz, 2024).

Assessing NDVI and NDRE is crucial for understanding the long-
term vegetation dynamics in GGNP. While NDVI gives a broad view 
of vegetation cover, NDRE offers more targeted insights into the 
health of the canopy and understory vegetation, making it a more 
effective tool for analyzing forest health, particularly in tropical 
environments like GGNP. Combining both indices makes 
differentiating between canopy species and non-canopy species easier, 
offering a more nuanced view of forest degradation and health. 
Moreover, assessing these indices over a long period from 2013 to 
2025 (Figure 9) provides a detailed temporal analysis, revealing trends 
in vegetation health and potential areas of concern. This is especially 
important as GGNP is a biodiversity hotspot, and any changes in 
vegetation cover or forest structure could have significant implications 
for local species, ecosystem services, and the overall health of the park.

Despite the increasing interest in Gashaka-Gumti National Park 
and its importance as a protected area, few studies have used NDRE 
in combination with NDVI for vegetation monitoring. This is likely 
due to the technical complexity of NDRE analysis and the limited 
availability of high-resolution satellite data. However, with 
advancements in satellite technology and the availability of high-
resolution imagery (e.g., Sentinel-2), the use of NDRE has become 
more feasible, providing more accurate data on forest canopies and 
vegetation health, especially in dense forest environments.

Moreover, studies relying solely on NDVI may miss important 
nuances in canopy structure and health. NDVI tends to saturate dense 
vegetation areas, offering limited differentiation between canopy and 
understory vegetation. NDRE is better suited for this purpose as it 
detects subtle changes in the red edge spectrum, offering a more 
precise view of vegetation composition and health (Table 7).

4.6 Canopy and non-canopy species 
distributions

4.6.1 MaxEnt model evaluation for canopy 
species

The MaxEnt model predicted the potential distribution of canopy 
and non-canopy species within Taraba State, explicitly focusing 
on Gashaka-Gumti National Park (GGNP). The model 
integrates environmental variables, including bioclimatic 
factors Bio 1–10 to Bio12-19 (temperature and precipitation), 
to assess habitat suitability for different species over time.

The MaxEnt model results for the canopy species are illustrated in 
Figure  10 above, which includes model performance metrics and 
response to environmental variables.

	(a)	 Cumulative Threshold vs. Fractional Value:

This plot shows the relationship between the cumulative 
threshold and the fractional value of background predicted and 
omission on training samples. A sharp rise in the red curve 
(representing omission on training samples) indicates that the model 
initially struggles to correctly classify the presence of canopy species, 
with omission rates decreasing significantly as the threshold 
increases. This suggests that training the model with more data 
improves its ability to predict the habitat suitability for 
canopy species.

	(b)	 Sensitivity vs. 1-Specificity:

This is the Receiver Operating Characteristic (ROC) curve, 
showing the sensitivity (True Positive Rate) against the false positive 
rate (1-specificity). The training data curve shows a high AUC (0.985) 
(Chou et  al., 2021), indicating that the MaxEnt model performs 
exceptionally well in distinguishing between suitable and unsuitable 
habitats for the canopy species. The black curve, representing random 
prediction, has an AUC of 0.5, which is expected as a random model 
would produce no meaningful predictions. The high AUC value 
confirms that the model is highly reliable for predicting the 
distribution of canopy species.

	(c)	 Predicted Suitability Map:

This habitat suitability map shows the spatial distribution of 
suitable habitats for canopy species across the study area. The colour 
gradient ranges from blue (low suitability) to red (high suitability). 
Areas with high suitability are concentrated in forest areas with 
adequate precipitation and temperature stability, which are critical for 
canopy species. This map provides valuable spatial insights into where 
conservation efforts should be focused, as areas with high suitability 
will likely be the primary habitats for canopy species.

	(d)	 Variable Contribution to Model Performance:

The bar chart illustrates the contribution of each environmental 
variable to the model’s performance, shown by regulated training gain. 
The red bars indicate the importance of all variables, while the blue 
bars represent the importance when individual variables are included 
in the model. Variables like precipitation, temperature, and bioclimatic 
factors (BIO1-10 to BIO 12-BIO19) have the most substantial 
influence on the model’s ability to predict habitat suitability for canopy 
species. This analysis suggests that canopy species in the study area 
depend highly on specific climatic conditions, with Isothermality/_C 
playing a key role in determining suitable habitats.

The response curve for BIO3 (Figure 11) shows a sharp increase 
in suitability as the Isothermality value rises, suggesting that canopy 
species prefer regions with more stable temperatures throughout the 
year. This aligns with the fact that canopy species generally thrive in 
stable climates with minimal temperature extremes, which supports 
forest growth (Nakamura et al., 2017). BIO7 (Temperature Annual 
Range): The curve for BIO7 demonstrates a sharp decline in habitat 
suitability as the temperature range increases. This suggests that 
canopy species are more suited to regions with low-temperature 
variability. High-temperature extremes likely reduce their habitat 
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suitability, as they are sensitive to drastic shifts in temperature 
(Figure 12).

The response curve for BIO14 indicates that canopy species 
show high suitability in regions with consistent, substantial rainfall 
during the wettest months. This reinforces the dependency of 
canopy species on water availability for growth and survival. BIO16 
(Precipitation of Wettest Quarter): Similar to BIO14, the curve for 
BIO16 shows that increased precipitation in the wettest quarter 

increases habitat suitability for canopy species, confirming the 
importance of regular rainfall for forest health. The other variables, 
such as BIO2 (Mean Diurnal Temperature Range), BIO9 
(Precipitation of Driest Month), and BIO15 (Precipitation 
Seasonality), show minimal influence on the model, as reflected in 
the flat response curves. This suggests that these variables do not 
significantly affect the habitat suitability for canopy species in 
Taraba State.

FIGURE 9

Correlation of NDVI and NDRE analysis of GGNP from 2013 to 2025.
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The second set of response curves offers insights into 
environmental factors affecting canopy species distribution. Unlike 
the first set, which focuses on temperature and precipitation, this set 
examines factors like temperature seasonality and specific 
precipitation patterns (e.g., wettest quarter and driest month). These 
elements are essential for understanding how canopy species adapt to 
seasonal temperature and water availability changes, which are critical 
for their growth and survival.

For instance, the response curve for BIO4 (Temperature 
Seasonality) indicates that canopy species thrive in areas with lower 
fluctuations in seasonal temperatures. This distinction was not 
emphasized in the initial set of curves. Similarly, the BIO14 
(Precipitation of Wettest Month) curve illustrates that canopy species 
favor regions with stable rainfall during the wet season, a critical factor 
for sustaining healthy forest cover. These additional variables offer a 
more nuanced understanding of the environmental conditions that 
support canopy species, particularly in areas facing fluctuating 
climate conditions.

The second set is important because it addresses the seasonal 
dynamics that influence canopy species, which are often overlooked 
in broader environmental assessments. Integrating these additional 
variables makes the model more robust, offering insights vital for 
targeted conservation efforts. While the first set provides a general 
overview of the key climate factors, the second set deepens the analysis 
by considering the more specific temporal and spatial variations that 
significantly impact forest ecosystems.

The second set of response curves is essential for offering a more 
comprehensive and refined model of canopy species distribution. It 
complements the first set by focusing on seasonal temperature and 
precipitation variables, ultimately helping to guide more precise forest 
conservation strategies.

4.6.2 MaxEnt model evaluation for canopy 
species

The MaxEnt model was also applied to the non-canopy species 
to understand how various bioclimatic variables influence their 
habitat suitability. The following interpretation discusses the results 
shown in the response curves (Figures 13–15), highlighting the key 
environmental variables affecting the distribution of 
non-canopy species.

The ROC curve (Figure 13) shows that the model’s performance 
demonstrates a high AUC value of 0.985 for training data. This 
suggests that the model reliably predicts the habitat suitability for 
non-canopy species, significantly outperforming random predictions 
(AUC = 0.5). A higher AUC indicates a better ability of the model to 
discriminate between suitable and unsuitable areas for the species. 

The bar graph provides insights into the relative importance of each 
environmental variable. It was observed that most of the bio-climatic 
variables show considerable effects in non-canopy species 
(Figure 13d). It shows that BIO10 (Mean temp), BIO1 (Annual mean 
air temp), and BIO8 (mean temperature of wettest quarter) are the 
most influential predictors, with BIO12 showing the precipitation 
gain. This means that non-canopy species are most sensitive to 
temperature stability and precipitation patterns, which are critical in 
shaping their distribution.

The suitability map in Figure 13c shows areas with the highest 
habitat suitability for non-canopy species based on the environmental 
variables considered. Areas with low to moderate temperature 
fluctuations and consistent rainfall are identified as the most suitable 
for non-canopy species, which aligns with the response curves 
indicating their preference for stable climatic conditions.

Non-canopy species demonstrate a high suitability across various 
environmental conditions. They adapt well to a wide range of annual 
mean temperatures (BIO1) and prefer regions with lower diurnal 
temperature variation (BIO2) and low-temperature seasonality 
(BIO4). Their adaptability is also evident in their tolerance to 
moderate Isothermality (BIO3) and a necessity for consistent 
moisture, as seen in their higher suitability with moderate precipitation 
during the wettest quarter (BIO6) and higher precipitation during the 
driest quarter (BIO9). Furthermore, they thrive in areas with adequate 
annual and monthly rainfall (BIO12 and BIO14) while slightly 
decreasing suitability with increasing environmental interaction 
complexity (BIO17).

The response curves −2 for various environmental factors 
indicate that non-canopy species are susceptible to temperature and 
moisture conditions. For BIO1 (Annual Mean Temperature), habitat 
suitability sharply declines beyond 20 °C, while BIO2 (Mean Diurnal 
Temperature Range) shows high suitability only with moderate 
temperature fluctuations. Habitat suitability increases with 
Isothermality (BIO3) and decreases with temperature seasonality 
(BIO4), reflecting a preference for stable conditions. Non-canopy 
species thrive under varying rainfall during the wettest quarter 
(BIO6) but become increasingly vulnerable to low precipitation in the 
driest period (BIO9). Additionally, they favor moderate to high 
annual rainfall (BIO12) and significant moisture during the wettest 
month (BIO14). Finally, BIO17 indicates a slight increase in habitat 
suitability with environmental interactions, emphasizing the interplay 
between soil moisture and temperature.

5 Conclusion

This study provides valuable insights into the distribution and 
habitat suitability of both canopy and non-canopy species in 
Taraba State, Nigeria, using remote sensing data (NDVI, NDRE) 
and species distribution modeling (MaxEnt). The findings reveal 
the significant impact of climatic variables on forest ecosystems, 
particularly in areas affected by climate change, deforestation, and 
land-use changes. Our analysis of NDVI and NDRE data from 
2013 to 2025 highlights distinct trends in vegetation health, 
showing how canopy and non-canopy species respond differently 
to environmental stressors.

For canopy species, temperature seasonality and precipitation 
patterns emerged as the most influential factors determining their 

TABLE 7  Annual NDVI and NDRE range for vegetation health assessment 
in GGNP (2013–2025).

Year NDVI_
Min

NDVI_
Max

NDRE_
Min

NDRE_
Max

2013 −0.15 0.74 −0.26 0.6

2016 −0.13 0.73 −0.27 0.6

2019 −0.16 0.78 −0.25 0.65

2022 −0.17 0.78 −0.26 0.65

2025 −0.45 1 −0.33 0.57
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distribution. In contrast, non-canopy species were more sensitive to 
precipitation during the driest periods and temperature extremes. 
These species-specific responses emphasize the importance of 
understanding the nuanced effects of environmental conditions on 

forest health. Similar studies in other regions, such as those conducted 
in tropical rainforests (Phillips et al., 2006) and temperate (Yang et al., 
2024) have also observed temperature and precipitation as critical 
drivers of species distribution, further supporting our findings. Our 

FIGURE 10

The MaxEnt model results for the canopy species. (a) Cumulative threshold vs. fractional. (b) Sensitivity vs. 1-specificity: value. (c) Predicted suitability 
map. (d) Variable contribution to model performance.

FIGURE 11

Response curve 1—bio-climatic variables in response to habitat suitability for canopy tree species in GGNP.
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study contributes to this body of research by providing context-
specific data for the forests of Taraba State, offering a comprehensive 
look at the intersection of climate and vegetation health in 
West Africa.

The MaxEnt modeling results further elucidate the habitat 
suitability of both species groups, highlighting rainfall and 
temperature as key bioclimatic factors for both canopy and 
non-canopy species. Seasonal variations in these factors were 

FIGURE 12

Response curve 2—bio-climatic variables in response to habitat suitability for canopy tree species in GGNP.

FIGURE 13

The MaxEnt model results for the non-canopy species. (a) Cumulative threshold vs. fractional. (b) Sensitivity vs. 1-specificity: value. (c) Predicted 
suitability map. (d) Variable contribution to model performance.
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particularly significant for non-canopy species, whose habitat 
suitability sharply declined during the dry season with increasing 
temperature and decreasing moisture. This finding highlights the 
vulnerability of non-canopy species to climate fluctuations and their 
reliance on consistent moisture and temperature stability. Similar 
trends have been observed in studies on species distributions in arid 
and semi-arid ecosystems (Tabari et al., 2012) reinforcing the broader 
applicability of our results.

The study also identified critical areas such as the forests of Ngel-Yaki, 
GGNP, and Gembu that exhibit declining vegetation health and high 
vulnerability to deforestation and climate stress. These areas require 
immediate conservation and restoration efforts, particularly in light of the 
climate projections for 2028. The robustness of the MaxEnt model, as 
demonstrated by its AUC values and response curves, highlights its 
potential as a powerful tool for forest conservation, particularly for 
predicting species distribution in the face of environmental change.

FIGURE 14

Response curve 1—bio-climatic variables in response to habitat suitability for non-canopy species in GGNP.

FIGURE 15

Response curve 2—bio-climatic variables in response to habitat suitability for non-canopy species in GGNP.

https://doi.org/10.3389/ffgc.2025.1631859
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Yahaya et al.� 10.3389/ffgc.2025.1631859

Frontiers in Forests and Global Change 21 frontiersin.org

5.1 Limitations

However, there are limitations to this study. The reliance on a 
thirteen-year dataset restricts our ability to assess long-term trends, and 
the spatial resolution of the satellite imagery may not capture finer-scale 
vegetation changes in highly dense forests. Additionally, the use of 
bioclimatic variables alone does not account for other ecological factors, 
such as soil quality and topography, that influence species distribution. 
Future research could integrate these factors, along with higher-resolution 
satellite data, to improve the accuracy of species distribution models.

Looking ahead, it would be valuable to incorporate future bioclimatic 
forecasts into species distribution models to develop potential scenarios 
for vegetation shifts in response to climate change. This would broaden 
the scope of the research, enabling long-term management and planning 
for forest ecosystems in Taraba State and similar regions. By forecasting 
future trends in species distributions, such studies could help inform 
climate adaptation strategies, policy decisions, and land management 
practices aimed at ensuring the sustainability of forest ecosystems in the 
face of ongoing environmental changes.

In conclusion, this study makes a significant contribution to our 
understanding of the distribution and health of both canopy and 
non-canopy species in Taraba State. The findings offer critical insights 
for forest monitoring, biodiversity conservation, and climate adaptation 
strategies in northern Nigeria. By providing a clearer picture of how 
climate change impacts these ecosystems, this research can guide future 
conservation efforts and improve land management practices to 
safeguard the long-term sustainability of forest ecosystems in the region.
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