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Introduction: Mapping forest fire risk is essential for effective prevention and
efficient resource allocation, as it accurately assesses fire hazards across regions.
This study conducts a comparative evaluation of the Analytical Hierarchy
Process (AHP), the Fuzzy Analytical Hierarchy Process (F-AHP), and the Dong
model for forest fire risk mapping in Liangshui National Nature Reserve by
analyzing the weights of the factors contributing to fire risk.

Methodology: The forest fire risk maps were developed based on several
contributing factors: aspect, elevation, slope, topographic wetness index,
proximity to roads, distance to settlements, population density, Land Use Land
Cover, temperature, precipitation, wind speed, normalized difference vegetation
index (NDVI), and normalized difference moisture index (NDMI).

Results: Receiver Operating Characteristic (ROC) curve analysis was employed
to validate and assess the predictive performance of the models. The evaluation
of the Area Under the Curve (AUC) values revealed that the Analytical Hierarchy
Process (AHP) model achieved high prediction accuracy with an AUC of 0.92,
while the Dong model slightly lowered with an AUC of 0.91. In contrast, the
Fuzzy Analytical Hierarchy Process (F-AHP) yielded an AUC of 0.90. These results
indicate that the fire risk map generated by the AHP provides the most accurate
and reliable prediction.

Conclusion: Overall, the findings underscore the effectiveness of the proposed
modeling approaches and demonstrate their potential to enhance decision-
making processes in forest fire risk management and the strategic allocation
of prevention resources.

KEYWORDS

fuzzy logic, Dong model, wildfire vulnerability, spatial risk analysis, forest fire
susceptibility
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1 Introduction

Forest fires pose a significant threat to both human safety and
the ecosystem globally (Mehmood et al, 2024). This enduring
problem presents substantial environmental, economic, and social
hazards on a global scale (Xiong et al., 2020). Understanding burn
severity is crucial for assessing the impact of fire on vegetation and
ecosystems, which helps forest managers and decision-makers to
develop effective restoration strategies (Muhammad et al., 2024).
The occurrence of forest fires is influenced by several factors:
Climate, flammable materials in forests, and geographical features
(Shao et al,, 20225 Zhu et al., 2022). Fire activities for a given region
are driven mainly by fire-weather variability (Gao et al., 2023).

Integrating geospatial technologies, particularly Geographic
Information Systems (GIS), is crucial in providing both spatial
and temporal data, allowing for effective fire risk assessments
(Lamat et al, 2021; Modugno et al., 2016). Various methods,
from fundamental to complex models, have been suggested for
2022). The models
used for creating a fire risk model are neural networks (Jafari

evaluating forest fires (Sivrikaya and Kiiik,

Goldarag et al., 2016), Random Forest (Breiman, 2001), and fuzzy
analysis (Abedi Gheshlaghi etal., 2020; Li et al., 2018). Some models
often require previous fire data to validate their efficiency. However,
the methodologies mentioned above rely on partial historical fire
data, which may lead to inaccurate fire risk maps in certain
locations where complete fire records are unavailable (Zhao et al.,
2021; Matin et al., 2017).

The Geographic Information System (GIS)-based Analytical
Hierarchy Process (AHP) (Jia et al., 2019; Hong et al, 2019
Chuvieco and Congalton, 1989). Fuzzy AHP and the Dong model
(Nikoli¢ et al., 2023; Eskandari and Miesel, 2017; Kumi-Boateng
et al, 2021) have proven to be effective tools for generating
forest fire risk (FFR) maps. When used in combination, these
methodologies offer valuable support for fire authorities in both
preventing wildfires and promoting sustainable post-fire land
management (Nuthammachot and Stratoulias, 2021b). One of
the most popular techniques in Multi-Criteria Decision Analysis
(MCDA), the AHP, combined with GIS approaches, has been
widely effective in identifying fire danger zones globally (Rahmati
et al, 2015; Pourghasemi et al, 2016). AHP is a structured
decision-making tool that is particularly effective in environments
where expert opinion plays a crucial role. At the same time,
F-AHP addresses the uncertainty inherent in fire risk modeling
using fuzzy logic. Though less explored, the Dong Model offers a
parameter-based approach with spatial adaptability (Kayet et al,
2018; Eskandari and Miesel, 2017). For example (Fekir et al,
2022) employed and compared two models i.e., (AHP) and Dong
considering three effective factors including topography, vegetation
cover and anthropogenic integrated by these two methods in
Algeria. Forest fire risk zonation prepared by AHP and Dong
Model was compared with burn severity map. The result after
statistical calculation demonstrated that a significant portion of
the burned area is classified within the moderate, high, and very
high-risk zones, with rates of 64.27% for the Dong model and
69.41% for the AHP model. Sinha et al. (2023) also employed
geospatial tools, specifically the AHP and fuzzy AHP models,
for analysis. The purpose of this different zone selection was
to assess the effectiveness of the models by taking the forest
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fire responsible factors. The selected sites for this research and
application of modeling were severely hit by almost 100 forest fire
events in history.

Topographical, human, and meteorological factors collectively
influence fire intensity, spread, and ignition, making it essential to
understand and integrate them into forest fire risk modeling and
decision-making processes (Gupta et al., 2023). A key advantage
of comparing these models lies in their capacity to incorporate
multiple factors influencing forest fire risk, including topography,
forest structure, climate, and human-related criteria (Zacharakis
and Tsihrintzis, 2023). Each model differs in its methodological
framework, accuracy, and ability to integrate multiple factors
influencing fire susceptibility (Pourtaghi et al., 2016). AHP and
F-AHP are widely used multi-criteria decision-making (MCDA)
methods that incorporate expert knowledge and spatial data,
whereas the Dong Model follows a distinct parameter-based
approach (Nikoli¢ et al., 2023). While AHP is effective in structured
decision-making, it struggles with handling uncertainty, which
F-AHP addresses using fuzzy logic (Tesfamariam and Sadig, 2006).
Key criteria for comparison include spatial correlation, model
correctness, and adaptability to varied geographical situations.
Studies demonstrate that AHP works well in fire risk assessment
(Sivrikaya and Kiigiik, 2022; Ersoy et al, 2025), yet F-AHP,
due to its ability to manage uncertainty, often provides more
refined risk maps (Kayet et al., 2018; Cardone et al., 2024). The
Dong Model’s effectiveness, however, remains relatively unexplored
in comparison, but a study by Eskandari and Miesel (2017)
demonstrated that the F-AHP and spatial correlation methods
outperformed the Dong model in predicting high-risk areas. GIS
integration enhances the applicability of these models by enabling
spatial analysis of forest fire risk factors such as topography, climate,
and human influences (Parvar et al., 2024).

According to the China Forestry Administration, forest fires
in China have exceeded 10,000 annually over the past decade,
with general fires (less than 1 hectare) and larger fires (1-100
hectares) causing notable social and environmental consequences
(Yang et al, 2015). Northern regions, especially the Northeast,
experience particularly severe wildfires due to the vast natural
forest cover and distinctive climatic conditions (Wang et al., 2023).
Conventional fire vulnerability methods, such as logistic regression,
fuzzy analysis, and neural networks, typically rely on historical fire
data for validation. However, in regions like the Liangshui National
Nature Reserve, where historical fire data is sparse or incomplete,
these approaches may result in limited model generalizability
and reduced predictive performance due to insufficient validation
inputs. To address this, we will develop a Fire Risk Index (FRI)-
based model that enables the creation of reliable fire risk maps
without depending on historical fire records. Fire points were
extracted for validation using the MODIS temperature anomaly
and fire. This method has shown over 90% accuracy in identifying
fire locations (Zhao et al., 2008). In our study, fire points were
identified between 2013 and 2023 and used to evaluate the model’s
performance.

This study introduces a novel comparative assessment of three
spatially integrated forest fire risk models i.e., AHP, F-AHP, and
the Dong model in the context of the Liangshui National Nature
Reserve, where historical fire data are limited. Unlike previous
studies that largely depend on past fire occurrences for model
validation, this research develops a Fire Risk Index (FRI)-based
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FIGURE 1

Geographical location and elevation classes of the study area.

approach validated through MODIS-derived fire points, offering a
more accurate and adaptable methodology for fire risk mapping in
data-scarce regions.

2 Materials and methods

2.1 Study area

The study was conducted in the Liangshui National Nature
Reserve, located in the southern part of the Xiaoxing'anling
Mountains, spanning an area of 12,133 hectares in the eastern
mountainous region of Northeast China. The reserve is positioned
between 47°6/497-47°16'10" N latitude and 128°47'8"-
128°57'19” longitude, boasting a remarkable forest coverage
of 97% (Zhao et al., 2023; Wu et al, 2024). The area exhibits a
unique fire regime due to its ecological, climatic, and historical
characteristics. The temperate mixed conifer-broadleaf forest
ecosystem in this region is particularly susceptible to fires due to
the combustible nature of its vegetation type (Zhen et al., 2013;
Gul et al., 2022). The study area is situated on the eastern edge
of the Eurasian continent and is significantly influenced by the
oceanic climate. It exhibits the typical characteristics of a temperate
continental monsoon climate. Winters are dominated by cold,
dry continental air masses, resulting in low temperatures and
occasional snowfall. Summers are influenced by warm, humid
subtropical oceanic air masses, bringing high temperatures. Spring
and autumn are transitional and highly variable, with spring
characterized by strong winds, low humidity, and limited rainfall,
creating conditions that are conducive to forest fire ignition and
spread. These seasonal and climatic variations play a critical role
in influencing forest fire risk patterns in the region. The reserve
has a significant altitude range from 291 to 719 m above sea level
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at its lowest and highest points, respectively (Figure 1). This area
holds considerable potential for understanding the dynamics of
fire risk and developing effective management strategies due to its
unique ecological characteristics and susceptibility to fire-prone
conditions.

The region climate and the prevalence of Pinus koraiensis
forests increase susceptibility to fires, particularly during spring and
fall. The dominant forest type is mixed, featuring extensive tracts
of original Pinus koraiensis forest alongside secondary birch and
broad-leaved forests. According to Nefu (n.d.) Liangshui National
Nature Reserve is home to a diverse range of species, including 90
leafy lichens, 95 mosses, 445 angiosperms, 252 birds, 44 mammals,
and thousands of fungi and insects.

2.2 Methodology of the study

Our approach integrated diverse expert opinions and extensive
literature to determine the weights of the rules and conditioning
criteria for all three models. We employ thirteen criteria to
comprehensively assess the potential impacts of various forest
fire activities and preconditions, incorporating aspect, elevation,
slope, topographic wetness index, proximity to roads, distance to
settlements, population density, LULC, temperature, precipitation,
wind speed, NDVI, and NDMI (Table 1).

The Shuttle Radar Topography Mission (SRTM) was used
to download 30 m resolution Digital Elevation Model (DEM)
data from Earth Explorer. Elevation, TWI, aspect, and slope were
extracted from the DEM. Euclidean distance analysis assessed
the proximity to highways, resulting in raster files with buffer
zones of different ranges. Satellite imagery was used to classify
vegetation indices, including NDVI and NDMI, which matched
pre-existing classification methods. Terrain analysis techniques on
GIS platforms identified topographic features, such as TWL
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TABLE 1 Data sources.

10.3389/ffgc.2025.1635041

Data (shapefile or raster) Website/google earth engine platform

Boundary

NDVI, NDMI

https://glovis.usgs.gov/app
Temperature, precipitation, and wind speed
Elevation, slope, aspect, and TWI

Distance from road, Distance from settlements
population density and LULC

Fire data (2013-2023)

2.3 Preparation of thematic layers

During data collection, preprocessing techniques were used to
standardize all inputs and guarantee consistency across layers. The
mapping of forest topography utilizing a variety of quantitative
terrain descriptors is made possible by the SRTM, which provides
30 m DEM images. The elevation map was created using SRTM
data, which provides high-resolution elevation information. First,
masking was applied to the SRTM dataset to focus on the study
area, removing regions outside the boundaries of interest. Next,
multiple SRTM tiles were mosaicked to create a seamless elevation
map. Slope maps were generated from the DEM using the Spatial
Analyst and classified into five distinct slope zones. An aspect
map illustrating terrain steepness and orientation was generated
and classified into ten categories: Flat, North, Northeast, East,
Southeast, South, Southwest, West, and Northwest. Equation | was
used to calculate the Topographic Wetness Index (TWI), a key
indicator of hydrological processes (Beven and Kirkby, 1979). The
entire process was carried out in ArcGIS 10.8.

a
TWI = ln(mnﬂ) (1)

Where a is the upslope contributing area per unit width (measured

in square meters per meter), 8 is the slope angle in radians.

Landsat-8 imagery was first stacked and masked using the
study areas shapefile, and then NDVI and NDMI were applied to
assess vegetation cover and moisture content by analyzing specific
spectral band combinations using Equation 2 (Tien Buietal,, 2016):

NDVI — NIR + RED @)
NIR — RED
Normalized difference moisture index, reflecting vegetation health
and biomass linked to fire fuel load, and NDVI, used to classify
imagery and generate vegetation maps, were applied using red and
near-infrared reflectance to estimate moisture content in soil and
vegetation using Equation 3 (Ding et al., 2014):
NDmr — MR+ SWIR 3)
NIR — SWIR
The shortwave infrared band (SWIR) and the near-infrared band
(NIR) represent the resultant frequencies.

Distance-to-road maps were generated using the Euclidean
distance function, while rainfall, temperature, and wind speed
data were collected from weather stations and LULC data from
Landsat 8; all datasets were reprojected to WGS 1984 for spatial
alignment, visually and statistically validated, clipped to the study

Frontiers in Forests and Global Change

https://data.humdata.org/dataset/cod-ab-chn?

https://crudata.uea.ac.uk/cru/data/hrg/
https://earthexplorer.usgs.gov/srtm

OSM + Euclidean distance and GPWv4 (NASA SEDAC)

https://firms.modaps.eosdis.nasa.gov/

Shapefile

Vegetation indices (30 m)
Climate data
Topographic data (30 m)

Anthropogenic factors

Forest fire data (accessed on 5 January 2025)

area, and resampled for consistent resolution. Population density
data was obtained from the Gridded Population of the World
version 4 (GPWv4) provided by NASA SEDAC, which offers global
population estimates in raster format. The dataset was clipped to
the study area and resampled as needed, then normalized to a 0-
1 scale using raster calculation techniques to ensure compatibility
within the Analytical Hierarchy Process (AHP) framework for
fire risk assessment. In parallel, settlement data were extracted
from OpenStreetMap (OSM) in the form of building and urban
area polygons. These vector features were converted into a
continuous raster surface using the Euclidean Distance tool in
ArcGIS, representing proximity to human habitation. The resulting
distance layer was reclassified and standardized to align with other
input criteria in the fire risk model, enabling spatial analysis of
anthropogenic fire risk.

In the preprocessing of forest fire risk mapping all factors
are standardized and normalized in all three models to ensure
consistency and comparability of data. The Analytic Hierarchy
Process (AHP), Fuzzy AHP (F-AHP), and the Dong model each
utilize these processes differently.

In AHP, standardization and normalization are crucial for
converting diverse factors into a consistent scale so that they can
be compared and weighted accordingly. The AHP model typically
involves using expert judgment to assign weights to various factors
based on their relative importance in contributing to forest fire
risks. While F-AHP introduces fuzziness to handle uncertainty
and vagueness in expert assessments. The factors are standardized
into fuzzy sets, which are then used to calculate fuzzy weights
through extent analysis. This allows for a more nuanced handling
of data variances and expert opinion variations. The Dong model
on the other hand also standardizes and normalizes factors for
better integration into the risk mapping process. Although specific
details about the normalization techniques used within the Dong
Model were not provided in the context, a general approach often
involves scaling raw data to a 0-1 range or transforming them
for comparability.

2.4 Analytical hierarchy process

The Analytical Hierarchy Process is a widely used multi-
criteria decision-making method that integrates expert judgment
with quantitative analysis, utilizing a pairwise comparison matrix
to assess the relative importance of various factors. AHP uses a
1-9 scale (1 = Equal, 3 = Moderately, 5 = Strongly, 7 = Very,
9 = Extremely) to compare elements within a hierarchical structure,
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converting subjective assessments into numerical values (Table 2).
The process involves determining the Eigenvector, weighting
coefficients (Wi, where i = 1, 2, 3 ---, n), and a consistency
ratio (CR) to ensure reliability. The consistency index (CI) is
calculated and divided by a random index (RI), with a CR of
less than 0.1 indicating acceptable consistency. This approach
allows for systematic evaluation and prioritization of criteria while
incorporating a mechanism to assess the reliability of the results
(Lamat et al., 2021).

The principal eigenvalue (Amax) was calculated with the
eigenvector using Equation 4.

(CV);

W, 4

1 n
Mmax ; ZWt,-
Where Wt represents the corresponding eigenvector of Amax, Wt;
defines the weight for ranking, CV represents the consistency
vector, and n symbolizes the total number of classes. CV is
computed by multiplying the pair-wise comparison matrix with
the weight matrix as presented in Equation 5. A was computed by
dividing the elements of CV by the corresponding weights. The
average of these values is represented by Amax.

CV = ajj X Wt; (5)
al a2 ... ain Wt
a1 ax ... a Wt
cV — 21 422 2n % 2
anl Ap2 - .. Apn Wt,

Where a;; defines a pair-wise comparison matrix in which
aii = 1 and a;; = 1/aj;. Wt; defines the weight value for ranking.
Values of i and j range from 1 to n (number of criteria).

The Consistency Index (CI) represents the degree of
consistency and is calculated using Equation 6. The Consistency
Ratio (CR) defines the final consistency of the weights assigned to
the causative criteria (Equation 7).

Amax —n

Cl = (6)

n—1

TABLE 2 The fundamental scale of Saaty (1990).

10.3389/ffgc.2025.1635041

CI

CR = —
RI

™)
where 7 is the number of classes. CR should be less than 0.10 for
consistent weights. The Random Index (RI) value is referred to in
Table 3.

The FFR index is calculated by integrating all the causative
criteria of forest fires using a weighted linear combination equation,
as shown in Equation 8.

The rank value (Cy) represents the relative contribution of each
factor class to fire risk and is assigned based on expert judgment.
These values are then integrated with the normalized weights
(NW;) in the weighted linear combination model to compute the
Forest Fire Risk (FFR) index.

FFRR = > Z;zl(NWt "G

Where NW; symbolizes the normalized weight, C; represents the
rank value, m defines the number of criteria, and # defines the

®)

number of classes.

2.5 Fuzzy-analytical hierarchy process

The F-AHP is an advanced decision-making tool that extends
the traditional AHP method by incorporating fuzzy logic theory
to handle uncertainty, imprecision, and vagueness in expert
judgments using Triangular Fuzzy Numbers (TFNs) (Shapiro and
Koissi, 2017, Testamariam and Sadig, 2006). F-AHP addresses
issues such as null weights for factors and scores for alternatives
using TFNs, thereby preserving consistency in the results. Fuzzy
AHP simplifies computation and enhances decision-making by
handling uncertainty in expert judgments, making it well-suited
for complex tasks like fire risk assessment (Yuen, 2014). F-AHP
enhances traditional AHP by employing fuzzy set theory to manage
imprecise data, thereby providing a more robust framework
for assessing risk factors and expert opinions in uncertain
environments. The fundamental scale for F-AHP is explained
in Table 4. The following were the crucial steps in the F-AHP
modeling process:

AHP scale of Relative importance Explanation
importance

1 Equal importance Two elements contribute equally to the objective

3 Moderate importance Decision slightly supports one element over another

5 Strong importance Decision strongly supports one element over another

7 Very strong importance One element is supported very strongly over another

9 Extremely strong importance Highest possible order for supporting one element over another

2,4,6,8 Intermediate values When compromise is required

Reciprocal Opposites Used for inverse comparison

TABLE 3 Random index (RI) for different numbers of criteria (n).

‘ 0.90 ‘ 1.12 ‘ 1.24

‘ 0.58

1.32

‘ 1.41 ‘ 1.45 ‘ 1.49 ‘ 1.51 ‘ 1.48
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The fuzzy triangle scale for the comparison matrix was (1/4, 1/3,
1/2). The mean fuzzy comparison matrix (matrix A) is produced as
follows when the expert assessments are represented as triangular
fuzzy numbers (Chang, 1996). Equation 9 depicts the matrix:

k Kk k
ap 4y - Gy
k k
~ as. ... a
Aads = | ™ 2 ©)
k  k k
Apy Gy - Gy

Where A defines the pair-wise comparison matrix and az-
symbolizes the expert’s opinion on the ith attribute relative to
the jth attribute. A TFN is denoted as a;; = (lij, mij, uij) and
a’l; = ﬁj,m%.j,uiijandforl,jzl,...,nandlyéj

The geometric mean of the fuzzy comparison values for
each criterion is calculated and used to obtain the fuzzy weights

(Equation 10).

=<
=
Il

. 1/n
(Hj . aij) (10)

whilei=1,2,3...n

Wi=n® (nQ@" r2...ra) =" = (i mj, uy)
where 7 represents TFN, Wi represents the fuzzy weights, and )"
denotes the extended multiplication of two fuzzy numbers.

Since (I;, m;, u;) are still TFNs, they must be defuzzified
(Chou and Chang, 2008) and then normalized using the following
Equations 11, 12.

Ii . .
Mi — 1+ mi+ ui an
3
NWi Mi (12)
1= ———
Z?ZIMi

Where Mi is a crisp and non-fuzzy number, and NW; represents
normalized weights.

The forest risk map was generated through the linear
combination of the 13 previously stated criteria, as outlined in
Equation 13. The estimation from the F-AHP is used to allocate
weights to each criterion.

m n
FFR = thlzle(NFW;“FCf) (13)

TABLE 4 The fundamental scale of Fuzzy Analytical
Hierarchy Process (AHP).

Relative Definition Fuzzy
importance reciprocal
scale

1 Equal importance (1,1,1) (1,1,1)

3 Moderate (1,3,5) (1/5,1/3,1)
importance

5 Strong importance (3,5,7) (1/7,1/5,1/3)

7 Very Strong (5,7,9) (1/9,1/7,1/5)
importance

9 Extremely strong (7,9,9) (1/9,1/9,1/7)
importance
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2.6 Dong model

The Dong model is a GIS-based approach that creates a fire
risk map by combining several anthropogenic and environmental
factors, as outlined in the Dong et al. (2005) model. Numerous
published research (Dong et al., 2005; Eskandari and Miesel, 2017;
Bager Rasooli and Bonyad, 2019; Fekir et al., 2022) have shown its
widespread application in various fields. The methodology involves
preparing thematic layers that encompass topographic factors
(slope, aspect, elevation, and TWI), vegetation indices (NDVI,
NDMI), climatic variables (temperature, precipitation, and wind
speed), and anthropogenic influence factors (proximity to roads,
Settlements and population density and LULC). The goal of forest
fire risk assessment is established, and the criteria are identified and
organized in a hierarchical structure.

The fuzzy synthetic extent for each factor is computed, and
the results are defuzzified using the centroid method to obtain
crisp weights. For a triangular fuzzy number (I,m,u), the defuzzified
weight is calculated using Equation 14.

I+m—+u

Wi = — (14)

The crisp weights are normalized to ensure they sum to 1, using the
Equation 15.

Crisp Weight of Factor i (15)
w; =
! Z]": | Crisp Weight of Factor j

The normalized weights are applied in the Dong model formula
to calculate the Fire Risk Index (FRI) as a weighted sum of the
normalized factor values, as shown in Equation 16.

FRI = w.X14+m).Xp+w3.X3+ ... +®10.X10 (16)

Where X1, X2, X3...X10 represent the normalized values of the
factors and w;, wy, w3 ... wig are their respective weights. The
Dong model’ fire risk classification categorizes FRI values into five
risk levels, ranging from extremely low to extremely high. The fire
risk map is generated using the ArcGIS Raster Calculator, and risk
zones are visually represented with distinct colors. The fire risk
map is compared with Terra’s Thermal Anomalies and Fire data
to validate the model. The Dong model is widely applied due to its
effective integration of multiple risk factors into a simple yet reliable
fire risk assessment framework.

2.7 Model validation

Model validation was conducted to assess the predictive
performance and spatial accuracy of fire susceptibility models
developed using the Analytic Hierarchy Process (AHP), Fuzzy
AHP, and the Dong fuzzy method. The validation employed
MODIS active fire data (MOD14A1.061) from the Terra and Aqua
satellites, which provide daily global fire detection at 1 km spatial
resolution based on mid-infrared and thermal-infrared analysis.
These datasets offer timely and reliable information on the study
area’s thermal anomalies and fire occurrences. To ensure data
quality, spatial filtering techniques were applied to remove cloud-
contaminated pixels, irrelevant records, and outliers beyond the
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Modis fire map.
study boundaries. The cleaned fire occurrence points were then 4 Resgylts

overlaid on the continuous susceptibility maps generated by each
model. An overlay analysis was employed to quantify model
accuracy by determining the number of fire points in high- and very
high-risk fire zones.

A Receiver Operating Characteristic (ROC) curve analysis
was employed as a threshold-independent method to assess
classification accuracy for statistical evaluation. Susceptibility maps
were transformed into ascending value classes, and pixels were
categorized as fire-prone (positive) or non-fire-prone (negative)
at varying thresholds. Fire occurrence data were then used to
calculate true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). ROC curves were plotted by
comparing sensitivity (TP rate) against 1-specificity (FP rate)
across all thresholds. The Area Under the Curve (AUC) values
were computed using GIS software’s “ROC” module, supported by
additional statistical analysis in Python and R. AUC values closer
to 1.0 indicated excellent predictive performance, values between
0.7 and 0.9 reflected acceptable to good accuracy, while values near
0.5 suggested random prediction. This comprehensive validation
approach objectively compared the three modeling techniques and
demonstrated their effectiveness in generating spatially accurate fire
susceptibility maps (Figure 2).

Frontiers in Forests and Global Change

3.1 Thematic layers for AHP, F-AHP and
the dong model

Figure 3 shows the details of all factors (aspect, elevation,
slope, topographic wetness index, proximity to roads, distance to
settlements, population density, temperature, LULC, precipitation,
wind speed, NDVI, and NDMI) are standardized and normalized
in different models to ensure consistency and comparability of data
for forest fire risk mapping in our study area. The maps are then
classified using natural breaks, manual, and equal intervals. The
details for each factor are presented below.

Elevation is a crucial physiographic factor that influences the
volume and duration of rainfall, exposure to the dominant wind,
and fire behavior (Gaither et al., 2011). The diverse microclimates of
Liangshui, shaped by variations in elevation, contribute to varying
levels of fire susceptibility across the landscape. The reserve’s
elevation ranges from 291 to 719 m, with an average of almost
400 m. The topography typically drops from north to south, and the
region has a moderate continental monsoon climate, which makes

it vulnerable to spring and fall droughts. The corresponding weight
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is allocated to the five classes. includes the map of the study
area’s elevation classes.

The slope is the other most crucial factor contributing to the
spread of fire. Fires typically spread uphill faster than downbhill.
Slope was used as a key criterion in fire susceptibility modeling
through the AHP, Fuzzy AHP, and the Dong model methods.
The slope values were classified into five risk categories: 0-15° as
extremely low risk, 15-30° as low risk, 30-45° as moderate risk,
45-60° as high risk, and > 60.82° as extremely high risk ( ).

Aspect was included as a critical input. The aspect values were
classified based on slope orientation and their potential influence
on fire susceptibility. South and northeast-facing slopes were
assigned as extremely high risk, followed by west-facing slopes high
risk, flat and northwest-facing slopes moderate risk, southwest-
facing slopes low risk, and east and north-facing slopes extremely
low risk. The classification was grouped into ten categories: Flat,
North, Northeast, East, Southeast, South, Southwest, West, and
Northwest. This categorization integrates regional characteristics to
support accurate fire susceptibility mapping ( ).

Topographic Wetness Index is an exploration of DEM
data, revealing the intricate relationship of the hydrological
landscape. TWI assists in locating areas in Liangshui where
water accumulation is more likely to occur, resulting in increased
soil moisture levels. TWI has a direct influence on how forest
fire scenarios are developed and specifies the geographical
distribution of soil moisture (

; ), such as (1) < 5.8, (2) 5.8-7.11, (3) 7.11-8.56, (4)
8.58-10.6, and (5) 10.67 >.

Distance from roads is a critical factor in assessing fire risk,
as areas closer to roads are more accessible and hence more
vulnerable to human-induced ignition. In this study, the region
was divided into five risk classes based on proximity to roads: areas
within 0-375.145 m were classified as extremely high risk; 375.145-
795.76 m as high risk; 795.76-1273.22 m as moderate risk; 1273.22-
1864.36 m as low risk; and distances beyond 1864.36-2898.85 m
as extremely low risk. The Liangshui National Nature Reserve,
situated on the eastern slope of the Dali Range in the southern
Lesser Xing’an Range, contains an extensive network of forest
roads that serve as vital infrastructure for forest management and
fire emergency access. This spatial classification was integrated to
reflect how road proximity influences fire susceptibility ( )-

The distance from settlements plays a significant role in
assessing forest fire risk due to the anthropogenic influences that
settlements often bring. Proximity to human settlements has been
identified as a critical factor influencing the likelihood of forest fires,
as human activities can increase fire hazards through both direct
and indirect actions. This includes agricultural practices, disposal of
flammable materials, and increased traffic from roads and pathways
leading to potential ignition sources ( ).

Population density plays a significant role in forest fire risk
assessment due to its impact on the vulnerability and exposure of
areas to fire hazards. Higher population densities tend to increase
the likelihood of fires, primarily because populated areas often
contain infrastructural elements, human activity, and economic
assets that can both cause and be affected by wildfires. In forest
fire risk assessments, population density is considered a key factor
in understanding and managing the potential impact on human
life, property, and economic activities. Forest fire risk assessments
often integrate population density with other factors such as land
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use, topography, and meteorology to create comprehensive risk
models. For instance, the combination of population density with
variables like distance from roads and settlements has shown strong
relationships with wildfire occurrence ( ).

Temperature is directly proportional to forest fires. High
temperatures increase the risk of forest fires because they make
fuels more flammable ( ). The base map for
temperature is divided into five classes: low temperature, low risk;
high temperature, high risk; and so on ( ).

Precipitation is an important meteorological factor that plays
an important role in FFR assessment. The small difference in
precipitation between the “Extremely High Risk” and “Extremely
Low Risk” categories may seem minor. Still, in the context of fire
risk assessment, even small variations in precipitation can have
a significant impact. The classification system of MCDA aims to
capture the nuances of how slight changes in environmental factors
can affect fire risk. In regions like the Liangshui National Nature
Reserve, small changes in precipitation can significantly affect fuel
moisture and, in turn, fire risk. The precipitation map was also
categorized into five classes: high precipitation leads to low risk,
while less precipitation leads to high fire risk ( ).

One of the meteorological factors that significantly affects an
area’s fire intensity and spread is wind speed. Wind speed increases
the quantity of new oxygen in the fire, causing the flames to ignite
more quickly and instantly ( ;

). The base map for wind speed is also divided into five classes:
slow wind speed for lower risk, more wind for high fire risk, and so
on ( ).

The vegetation cover was almost 96% in Liangshui National
Nature Reserve ( ). However, according to our land
use land cover (LULC) analysis, which is now 97% ( ).
The area is rich in flammable wood, significantly influencing the
likelihood of fire ignition. Since different vegetation types have
varying moisture contents, their chances of igniting also differ. The
NDMI is especially important because it shows the trees’ moisture
content, which directly affects their ignition susceptibility. Based on
the classification criteria and weight. NDMI can be divided into five
levels ( ).

Normalized difference vegetation index is a widely used
vegetation indicator that correlates with vegetation density and
health, two key factors in determining the potential severity and
spread of wildfires. Therefore, it is crucial to incorporate it into
fire risk assessment. NDVI is a crucial tool for evaluating the
condition of plant cover. Positive values on the NDVT scale signify
the presence of green vegetation, while lower values indicate other
surface features. NDVI classes have also been made ( ).

Normalized difference moisture index indicates vegetation
health and biomass, which are directly related to the fuel load
available for fires. RED signifies red band reflectance, and NIR
denotes near-infrared reflectance. The images were categorized
using NDVI, creating NDVI maps for the study area. The
NDMI was used to estimate the moisture content in both
soil and vegetation.

3.2 Forest fire risk mapping using AHP

This study employs the AHP to evaluate wildfire risk factors
in the Liangshui National Nature Reserve. Using a pairwise
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comparison approach, the AHP methodology allowed us to
systematically assess factors, including aspect, elevation, slope,
topographic wetness index, proximity to roads, distance to
settlements, population density, temperature, precipitation, wind
speed, NDVI, and NDMI (Table 5). After pairwise comparison,
each factor was then normalized (Table 6).

By classifying and processing the data utilized in this model,
we produced a hierarchical analysis of the factors influencing the
risk of forest fires. Each factor was categorized into five risk levels
from extremely low to extremely high (Table 7). Finally, a forest
fire risk map was created that reflected the risk levels in Liangshui
National Nature Reserve locations. Each location is categorized
based on the overall influence of the weighted elements (Figure 4).
The importance of the weights was confirmed by calculating the
consistency index (CI) and the consistency ratio (CR). The CR
is 0.0107, which is less than 0.1 and falls within the acceptable
range, suggesting that the pairwise comparisons are consistent and
the model is reliable. The results indicate that areas classified as

10.3389/ffgc.2025.1635041

extremely low, low, moderate, high, and extremely high fire risk are
represented accordingly, with their spatial distribution illustrated
in Figure 4.

Value of lambda max (\) 13.2, Consistency index
(CI) = 0.016, Consistency ratio (CR) = 0.0107

3.2.1 Fuzzy-AHP based fire risk map

Thirteen key criteria were selected for FFR assessment: aspect,
elevation, slope, topographic wetness index, proximity to roads,
distance to settlements, population density, temperature, LULC,
precipitation, wind speed, NDVI, and NDMI. Based on Saaty’s
Scale, expert judgment was used to produce a pairwise comparison
matrix that ranked the relevance of each criterion compared to the
others (Table 8). Each column of the matrix was normalized, and
the average value of each row was computed to derive the final
weights of each criterion, as explained in Tables 9, 10. The principal
eigenvalue (M\;qx) was computed, followed by the Consistency
Index (CI) and the Consistency Ratio (CR). A CR value below 0.1

TABLE 5 Pairwise comparison matrix of Analytical Hierarchy Process (AHP) factors.

Factors (€1 | (c2) | (C3) | (c4) | (c5) | (co) | (c7) | (C9) | (C10)| (C11) | (C12) | (C13)
Temperature (C1) 1.000 1.167 0.966 0.933 1.292 1.333 1.037 0.988 1.063 1.077 1.091 1.217 1.050
NDVI (C2) 0.857 1.000 0.828 0.792 1.097 1.143 0.889 0.863 0.941 0.957 0.976 1111 0.957
Distance from roads (C3) 1.036 1.208 1.000 0.967 1.323 1.386 1.099 1.063 1.152 1.171 1.195 1.364 1.152
LULC (C4) 1.072 1.263 1.034 1.000 1.375 1.449 1.151 1.118 1.203 1.227 1.250 1.449 1.203
NDMI (C5) 0.774 0.912 0.756 0.727 1.000 1.062 0.857 0.824 0.899 0.923 0.942 1.136 0.923
Wind speed (C6) 0.750 0.875 0.722 0.691 0.942 1.000 0.817 0.786 0.861 0.882 0.901 1.099 0.882
Precipitation (C7) 0.963 1.135 0.911 0.869 1.167 1.223 1.000 0.976 1.050 1.075 1.099 1.311 1.050
Distance from settlements (C8) 1.012 1.159 0.941 0.902 1.214 1.273 1.025 1.000 1.077 1.102 1.129 1.364 1.102
Population density (C9) 0.941 1.139 0.908 0.875 1.113 1.163 0.952 0.929 1.000 1.038 1.063 1.313 1.038
Aspect (C10) 0.929 1.128 0.854 0.820 1.084 1.136 0.930 0.908 0.964 1.000 1.039 1.296 1.039
Elevation (C11) 0.910 1.111 0.840 0.800 1.062 1.111 0.910 0.886 0.942 0.963 1.000 1.286 1.044
Slope (C12) 0.821 1.014 0.737 0.694 0.882 0.915 0.763 0.733 0.762 0.775 0.778 1.000 0.879
TWI (C13) 0.952 1111 0.840 0.800 1.062 1111 0.910 0.886 0.942 0.963 0.958 1.136 1.000
TABLE 6 Normalized matrix of each factor.

Factors (C1) | (C2) | (C3) | (C4) | (C5) | (C6) | (C7) | (C8) | (C9) | (CL0) | (C1Y) | (C12) | (C13)
Temperature (C1) 0.077 0.086 0.077 0.074 0.097 0.103 0.083 0.079 0.085 0.086 0.087 0.097 0.084
NDVI (C2) 0.064 0.073 0.066 0.063 0.088 0.094 0.071 0.069 0.075 0.076 0.078 0.092 0.079
Distance From roads (C3) 0.083 0.097 0.083 0.080 0.106 0.114 0.090 0.088 0.095 0.097 0.100 0.113 0.095
LULC (C4) 0.089 0.105 0.090 0.088 0.114 0.123 0.095 0.093 0.101 0.104 0.107 0.123 0.101
NDMI (C5) 0.067 0.081 0.068 0.066 0.090 0.095 0.077 0.075 0.082 0.084 0.086 0.105 0.084
Wind speed (C6) 0.065 0.078 0.066 0.064 0.086 0.091 0.074 0.072 0.079 0.081 0.083 0.101 0.082
Precipitation (C7) 0.077 0.091 0.073 0.070 0.093 0.098 0.081 0.079 0.085 0.087 0.089 0.109 0.085
Distance from settlements (C8) 0.076 0.093 0.075 0.072 0.097 0.102 0.082 0.080 0.086 0.088 0.090 0.113 0.088
Population density (C9) 0.075 0.092 0.074 0.071 0.091 0.096 0.080 0.078 0.084 0.086 0.088 0.111 0.084
Aspect (C10) 0.074 0.091 0.072 0.069 0.089 0.094 0.079 0.077 0.083 0.085 0.087 0.109 0.084
Elevation (C11) 0.073 0.090 0.071 0.068 0.088 0.093 0.079 0.077 0.083 0.085 0.087 0.108 0.084
Slope (C12) 0.066 0.081 0.064 0.062 0.082 0.086 0.073 0.071 0.077 0.079 0.081 0.100 0.082
TWI (C13) 0.076 0.091 0.075 0.072 0.097 0.102 0.082 0.080 0.086 0.088 0.090 0.113 0.088
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TABLE 7 Classification of thematic layers.

10.3389/ffgc.2025.1635041

ctors Class Risk level References
1 Temperature (C1) 9.87 to 14.89 Extremely high risk Manzo-Delgado et al., 2004
4.83 t0 9.86 High risk
—0.21 to 4.82 Moderate risk
—5.25t0 —0.22 Low risk
—10.30to —5.26 Extremely low risk
2 NDVI (C2) —0.2277210 Extremely high risk Jodo et al., 2018
0.041884-0.11167 High risk
0.11167-0.141053 Moderate risk
0.141053-0.174109 Low risk
0.174109-0.284297 Extremely low risk
3 Distance from road (C3) 0-375.145 Extremely high risk Yeetal, 2017
375.145-795.76 High risk
795.96-1273.22 Moderate risk
1273.22-1864.36 Low risk
1864.36-2898.85 Extremely low risk
4 LULC (C4) Vegetation Extremely high risk Salma et al., 2023
Barren land Moderate risk
Water bodies Extremely low risk
5 NDMI (C5) —0.140068 to —0.05 Extremely high risk Rabiei et al., 2022
—0.05t0 0.0 High risk
0.0t0 0.1 Moderate risk
0.1t00.2 Low risk
0.2 t0 0.416856 Extremely low risk
6 Wind (C6) 2.95-4.20 Extremely high risk Guo et al,, 2020
2.8-2.95 High risk
1.81-2.28 Moderate risk
1.38-1.81 Low risk
0.71-1.38 Extremely low risk
7 Precipitation (C7) 48.170-48.503 Extremely high risk Nuthammachot and Stratoulias, 2019
48.503-48.804 High risk
48.804-48.974 Moderate risk
48.974-49.8098 Low risk
49.089-49.196 Extremely low risk
8 Distance From Settlements (C8) 1043.5-1705.7 Extremely high risk Parvar et al., 2024
689-1,043.5 High risk
401.3-689 Moderate risk
133.7-401.3 Low risk
0-133.7 Extremely low risk
9 Population density (C9) 1 Extremely high risk Zhang et al., 2024
0.5 Moderate risk
0 Extremely low risk
10 Aspect (C10) South, northeast Extremely high risk Nuthammachot and Stratoulias, 2021a
West High risk
Flat and northwest Moderate risk
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TABLE 7 (Continued)

10.3389/ffgc.2025.1635041

Southwest 2 Low risk
East and north 1 Extremely low risk
11 Elevation (C11) 291-366 5 Extremely high risk Gaietal., 2011
366-420 4 High risk
420-483 3 Moderate risk
483-566 2 Low risk
566-719 1 Extremely low risk
12 Slope (C12) 60.8276 5 Extremely high risk Gholamizadeh et al., 2023
45-60 4 High risk
30-45 3 Moderate risk
15-30 2 Low risk
0-15 1 Extremely low risk
13 TWI (C13) 3.773-5911 5 Extremely high risk Tiwari et al., 2021
5.911-7.084 4 High risk
7.084-8.412 3 Moderate risk
8.412-10.116 2 Low risk
10.116-14.978 1 Extremely low risk

indicated an acceptable level of consistency. The weighted overlay
method applied the computed weights to raster layers in ArcGIS.
The resulting fire risk map represented the final output of the
Fuzzy AHP. The final FFR map was generated from the normalized
weights through a linear weighted combination, split into five
classes using the natural break method (Figure 5).

3.2.2 Fire risk map for Dong model

The Dong Model was used to spatially analyze and quantify fire
risk by assigning appropriate weights to each factor based on their
contribution to fire susceptibility. This analysis led to the creation
of a synthetic fire risk map, which visualizes areas that are most
vulnerable to fire outbreaks. This allows stakeholders to prioritize
mitigation efforts and allocate resources effectively. This was done
after all the necessary factor maps (such as vegetation type, slope,
elevation, distance from roads, precipitation, and temperature)
were prepared and overlaid in a GIS environment (Figure 6).

Our study effectively applies an understanding of the
interaction between topography, climate, Vegetation, and human-
induced factors to inform forest fire risk maps and forest fire
hazards. However, inherent uncertainty in these criteria’s weighting
and relative importance still exists, and improving accuracy
and dependability requires combining advanced statistical,
probabilistic, and machine learning methods. Although we have
used AHP, Fuzzy AHP, and the Dong Model, a critical research
gap exists in methodically comparing these approaches using
correlation analysis (e.g., Pearson correlation) to evaluate their
consistency, identify discrepancies, and harmonize their results,
so offering more profound insights on the choice of conditioning
criteria, modeling of forest fire events, and the dependability of
these techniques under different scenarios.

Frontiers in Forests and Global Change

3.3 Weights comparison and model
performance

A heatmap comparison of weight values assigned to 13
decision-making criteria using three multi-criteria decision-
making models: AHP, Fuzzy AHP, and the Dong Model. Each factor
denotes the weight assigned to a criterion by a specific model,
with both the numerical value and color intensity indicating the
level of importance. For instance, LULC consistently receives the
highest weight across all models (AHP: 0.09, Fuzzy AHP: 0.087,
Dong Model: 0.083), as indicated the underscoring its dominant
role in forest fire risk assessment. In contrast, NDMI and Wind
Speed exhibit comparatively lower weights across all models. This
suggests that while they may influence fire risk, they are considered
less critical relative to other factors such as Distance from Roads,
Distance to Settlements, and Precipitation, which display moderate
to high weights (ranging from 0.077 to 0.085). Overall, the Figure
7 reveals a high degree of consistency among the three methods,
particularly in the ranking of top contributing factors such as
LULC, Distance from Roads, and Settlements. However, slight
variations in weights (e.g., Temperature and NDVI) reflect each
method’s underlying computational approach and sensitivity to
pairwise judgments or data fuzziness.

This Figure 8 illustrates a similarity matrix derived from AUC
scores to evaluate the performance of three fire risk assessment
models: AHP, Fuzzy AHP, and the Dong model. The matrix
reveals a high degree of similarity among the models, with
AUC-based similarity scores. Notably, AHP and Fuzzy AHP
demonstrate the highest similarity, indicating a strong concordance
in their fire risk prediction outcomes. Although Dong AHP
exhibits slightly lower similarity with the other two models, the
overall consistency across all methods suggests that the fire risk
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FIGURE 4
Forest fire risk map of Analytical Hierarchy Process (AHP).

zones identified by each approach are largely congruent. This
finding confirms the robustness and reliability of the AHP model
when compared to established multi-criteria decision-making
approaches in fire risk mapping.

These figures show that the AHP, Fuzzy AHP, and the Dong
models provide varied perspectives on fire risk, each offering
a distinct view based on its methodology. This highlights the
importance of model choice and suggests that integrating multiple

models can lead to a more comprehensive fire risk assessment.
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3.4 Data partitioning and validation
procedures

Validation examined the accuracy of the predictions of the AHP,
F-AHP, and Dong model approaches. Figure 9 displays the ROC
curves for a forest fire risk map created using the AHP, F-AHP,
and Dong models. According to the AUC plot evaluation, the
Dong model has a maximum prediction accuracy, followed by AHP
and then F-AHP. Consequently, it has been demonstrated that the
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TABLE 8 Pairwise matrix of Fuzzy Analytic Hierarchy Process (F-AHP).

10.3389/ffgc.2025.1635041

Temperature (C1) (1,1,1) (1.18, (0.93, (0.92, (1.28, (1.30, (1.04, (1.12, (1.13, (1.27, (1.02,
1.19, 0.95, 0.95, 1.29, 1.31, 1.04, 1.13, 1.14, 1.28, 1.03,
1.20) 0.97) 0.98) 1.30) 1.32) 1.05) 1.14) 1.15) 1.29) 1.04)
NDVI (C2) (0.85, (1,1,1) (0.79, (0.77, (0.91, (0.92, (0.90, (0.97, (0.98, (1.07, (0.90,
0.84, 0.81, 0.81, 0.94, 0.95, 0.92, 0.99, 1.00, 1.09, 0.93,
0.83) 083) | 085 | 097) | 098) 0.94) 1.01) 1.02) L11) | 0.96)
Distance from roads (C3) (1.07, (126, | (1, 1,1) (0.98, (1.31, (1.34, (1.16, (1.22, (1.24, (141, (1.15,
1.05, 1.23, 1.00, 1.33, 1.36, 1.18, 1.25, 1.27, 1.45, 1.18,
1.03) 1.20) 1.02) 1.35) 1.38) 1.20) 1.28) 1.30) 1.49) 1.21)
LULC (C4) (1.09, (1.29, (1.02, (1,1,1) (1.36, (1.39, (1.20, (1.26, (1.28, (1.47, (1.22,
1.06, 1.25, 1.00, 1.39, 1.42, 1.23, 1.29, 1.31, 1.52, 1.25,
1.03) 1.21) 0.98) 1.42) 1.45) 1.26) 1.32) 1.34) 1.57) 1.28)
NDMI (C5) (0.78, (0.88, (0.76, (0.74, (1,1,1) (1.03, (0.91, (0.96, (0.97, (1.07, (0.91,
0.77, 0.86, 0.75, 0.73, 1.04, 0.93, 0.98, 0.99, 1.09, 0.94,
0.76) 0.84) 0.74) 0.72) 1.05) 0.95) 1.00) 1.01) 1.11) 0.97)
Wind speed (C6) 077, | (087, | (075 | (073, | (097, | (1,1, 1) 089, | (094, | (095 | (103, | (0.88,
0.76, 0.85, 0.73, 0.71, 0.96, 0.91, 0.96, 0.97, 1.05, 0.91,
075 | 083) | 071) | 069 | 095) 093) | 098) | 0.99) 1.07) | 0.94)
Precipitation (C7) (0.99, (1.14, (0.91, (0.88, (1.16, (1.19, (1.03, (1.08, (1.09, (1.31, (1.02,
0.98, 1.11, 0.90, 0.87, 1.18, 1.20, 1.05, 1.10, 1.11, 1.35, 1.04,
0.97) 1.08) 0.89) 0.86) 1.20) 1.22) 1.07) 1.12) 1.13) 1.39) 1.06)
Distance from settlements (C8) (1.00, (1.17, (0.92, (0.89, (1.14, (1.16, (0.99, (1,1,1) (1.01, (1.06, (1.07, (1.28, (1.01,
1.00, 1.15, 0.90, 0.87, 1.16, 1.18, 1.00, 1.02, 1.08, 1.09, 1.32, 1.03,
1.00) 1.13) 0.88) 0.85) 1.18) 1.20) 1.01) 1.03) 1.10) 1.11) 1.36) 1.05)
Population density (C9) 095, | (127, | (089, | (0.87, | (109, | (111, | (097, | (099, | (1,L,1) | (1.04, | (105, | (124, | (0.98,
0.94, 1.25, 0.87, 0.85, 1.11, 1.13, 0.98, 1.00, 1.06, 1.07, 1.28, 1.00,
0.93) 123) | 085 | 083) 1.13) 115) | 0.99) 1.01) 1.08) 1.09) 1.32) 1.02)
Aspect (C10) 090, | (135, | (0.85 | (0.83, | (106, | (108, | (0.93, | (094, | (0.96, | (1,1,1) | (1.01, | (117, | (0.95,
0.89, 1.32, 0.83, 0.81, 1.08, 1.10, 0.95, 0.96, 0.98, 1.03, 1.21, 0.97,
0.88) 129) | 081) | 0.79) 1.10) 112) | 097) | 098) 1.00) 1.05) 125 | 0.99)
Elevation (C11) (0.89, (1.37, (0.86, (0.83, (1.03, (1.06, (0.91, (0.93, (0.95, (0.99, (1,1,1) (1.16, (0.94,
0.88, 1.33, 0.84, 0.81, 1.05, 1.08, 0.93, 0.95, 0.97, 1.01, 1.20, 0.96,
0.87) 1.29) 0.82) 0.79) 1.07) 1.10) 0.95) 0.97) 0.99) 1.03) 1.24) 0.98)
Slope (C12) (0.82, (1.54, (0.80, (0.76, (1.01, (1.03, (0.85, (0.87, (0.89, (0.92, (0.94, (1,1,1) (0.91,
0.80, 1.49, 0.78, 0.74, 1.03, 1.05, 0.87, 0.89, 0.91, 0.94, 0.96, 0.93,
0.78) 1.44) 0.76) 0.72) 1.05) 1.07) 0.89) 0.91) 0.93) 0.96) 0.98) 0.95)
TWI (C13) 098, | (118, | (094, | (0.91, | (112, | (114, | (0.99, | (099, | (1.02, | (1.05 | (106, | (119, | (1,1,1)
0.97, 1.15, 0.92, 0.89, 1.14, 1.16, 1.01, 1.01, 1.04, 1.07, 1.08, 1.23,
0.96) 112) | 090) | 087) 1.16) 1.18) 1.03) 1.03) 1.06) 1.09) 1.10) 1.27)

developed FFR mapping is precise and efficient for preparing forest
fire hazards in the chosen research area.

The dataset was properly separated according to spatial
and temporal boundaries to remove data leakage risks while
maintaining scientific integrity. The training data originated from
locations and periods that differed significantly from those used in
validation testing. For validation, both MODIS fire data and data
collection areas remained independent during non-overlapping
time intervals. The strict separation method guarantees that
training set fire events, together with their spatial characteristics,
cannot affect validation set results (Ramo and Chuvieco, 2017).

The validation framework received additional strengthening
by applying excessive cross-validation alongside sensitivity testing
procedures. The training data segmentation through cross-
validation created different folds for studying model accuracy
across all subsets to validate its widespread applicability. The
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model predictions underwent sensitivity tests to confirm their
robustness while accounting for any remaining error causes. These
combinations of testing measures verify that ROC AUC scores
correctly represent model predictive power, free from training data
contamination, according to best practices in species distribution
and wildfire risk modeling standards (Figure 9).

4 Discussion

The entire ecosystem and biodiversity of the forest, as well
as the forest's wealth, human life, and local climate, are all
seriously threatened by uncontrolled forest fires. Identifying forest
fire susceptible zones using GIS models is crucial for effective
forest management and fire prevention strategies. This study
integrates topography, climate, vegetation, and human activities

frontiersin.org


https://doi.org/10.3389/ffgc.2025.1635041
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/

Ahmad et al.

TABLE 9 Relative weights Fuzzy Analytic Hierarchy Process (F-AHP).

Temperature (C1) 0.0385 0.0429 0.0467
NDVI (C2) 0.0462 0.05 0.0533
Distance from roads (C3) 0.0538 0.0571 0.06
LULC (C4) 0.0615 0.0643 0.0667
NDMI (C5) 0.0692 0.0714 0.0733
Wind speed (C6) 0.0769 0.0786 0.08
Precipitation (C7) 0.0846 0.0857 0.0867
Distance from settlements (C8) 0.0923 0.0929 0.0933
Population density (C9) 0.1 0.1 0.1
Aspect (C10) 0.1077 0.1071 0.1067
Elevation (C11) 0.1154 0.1143 0.1133
Slope (C12) 0.1231 0.1214 0.12
TWI (C13) 0.1308 0.1286 0.1267

TABLE 10 Normalized weights.

Normalized weig ‘

Temperature (C1) 0.083
NDVI (C2) 0.07

Distance from roads (C3) 0.085
LULC (C4) 0.087
NDMI (C5) 0.066
Wind speed (C6) 0.065
Precipitation (C7) 0.082
Distance from settlements (C8) 0.083
Population density (C9) 0.08

Aspect (C10) 0.076
Elevation (C11) 0.075
Slope (C12) 0.067
TWI (C13) 0.081

to create comprehensive risk maps. The causes and effects of the
area’s rapidly increasing number of forest fire occurrences can be
better understood by analyzing the underlying criteria and the
forest fire risk map created utilizing AHP, F-AHP, and the Dong
model technique.

4.1 Fire-inducing factors

Our study utilizes three multicriteria decision models for fire
risk across the three models AHP, Fuzzy AHP, and the Dong
Model which highlights several key factors that are critical to
understanding wildfire risk. The models utilize various parameters,
including Land Use Land Cover (LULC), NDMI, Wind Speed,
Distance from Roads, Distance to Settlements, Precipitation,
Temperature, and NDVI, assigning weights to signify their
importance. Among the criteria, LULC consistently receives the
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highest weight across all models, suggesting its crucial role in
fire risk assessment. For instance, in the Fuzzy AHP, LULC is
factored significantly in determining risk zones, aligning with past
occurrences of fires (KKant Sharma et al., 2012). Similarly, LULC
features prominently in both AHP-based models (Nuthammachot
and Stratoulias, 2021) and GIS-based assessments (Giingoroglu,
2017). NDMI and Wind Speed are generally weighted lower
compared to other factors. While they are essential, their impact
is less pronounced than criteria like proximity to roads and
settlements or precipitation levels. The focus on infrastructural
and environmental metrics underpins most fire assessment models,
where temperature, NDVI, and precipitation are critical in
predicting potential fire spread (Xie et al., 2022). The importance
of proximity to roads and settlements is emphasized with moderate
to high weights, suggesting these factors significantly influence
fire risk. These criteria are vital given their correlation with
human activities, which often ignite fires. The integration of such
parameters in risk assessment allows for targeted fire prevention
measures (Zhao et al., 2021).

Precipitation and vegetation indexes like NDVI are weighted
to reflect climatic influences on fire occurrence. High precipitation
levels can lower fire risk by maintaining moisture levels in
vegetation, whereas high NDVI values may indicate dense
vegetation, influencing fire fuel load. Although different models
show consistency in the inclusion and weighting of fundamental
criteria like LULC, there are slight variations in weights assigned
to temperature and NDVI. These variations can be attributed to
methodological differences and geographical contexts specific to
each model’s application (Nuthammachot and Stratoulias, 2021).
These criterias combined application in multi-criteria decision
analysis frameworks forms a robust methodology for assessing
fire risk. The accuracy and efficacy of these models are supported
by alignment with fire data and validation against actual fire
occurrences, making them invaluable in strategic fire management
and risk mitigation efforts. The relative importance of these factors
may vary depending on the specific geographical context and
methodology used in each study (Abdo et al., 2022; Pourtaghi et al.,
2014; Abbas et al., 2025).

4.2 Model accuracy and practical
application

This article employs the AHP, F-AHP, and the Dong model
technique to identify the location at high risk in the Liangshui
National Nature Reserve. To assess the accuracy of these methods,
the established model must be tested using fire data. The AHP
has been employed in numerous studies to evaluate fire risk, its
specific climate conditions. This showing that each area has a
unique accuracy percentage affected by underscores the necessity
of tailored approaches in fire risk assessment. A noteworthy
investigation in Laoshan National Park, China, demonstrated a
remarkable accuracy level of 77% (Zhao et al., 2021). In contrast,
another research effort in Kedarnath Wildlife Sanctuary, India,
achieved even higher accuracy at 83% (Sinha et al, 2023).
Several variables can explain the variance in results between the
three fire risk models AHP, Fuzzy AHP, and the Dong Model,
despite their high classification accuracy. Each model employs a
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FIGURE 5
Fire risk map of Fuzzy-Analytical Hierarchy Process (AHP).

unique methodology: AHP relies on expert judgment, Fuzzy AHP
uses fuzzy logic to manage uncertainty, and the Dong Model
uses a distinct analytical approach and a set of criteria for fire
risk assessment. Variations in data inputs, parameter sensitivity,
classification thresholds, and model assumptions contribute to the
discrepancy. Furthermore, variations in spatial scale, resolution,
and the validation process employed by each model can lead to
different conclusions. The models may also demonstrate varying

Frontiers in Forests and Global Change

levels of local versus global accuracy, and the interpretation of
results can differ based on the model’s framework. Lastly, the
complexity of each model and its sensitivity to the specific data
used can influence the results. While each model is accurate
within its context, the inherent differences in their construction
and application make direct comparison challenging, highlighting
the need for a nuanced understanding of their strengths and
limitations (Chuvieco et al., 2012). The results show the important
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Fire risk map of the Dong model.

role of accuracy evaluations in validating and confirming model
effectiveness. They are consistent with earlier studies and highlight
the significance of multi-criteria decision analysis in forest fire
prediction.

The classification in Table 11 shows that the Moderate and
high fire susceptibility classes dominate across all three models,
together covering over 50% of the study area. The Dong Model
and Fuzzy AHP assign slightly more area to the Moderate class,
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while AHP indicates a higher proportion under the Extremely
High class (10.7%) compared to the other two models 3.7%.
This variation reflects AHP’s sensitivity to sharply weighted
criteria, whereas Fuzzy AHP and the Dong Model offer smoother
risk transitions. Overall, all models exhibit consistent spatial
patterns with minor variations in extreme classes. The AHP
provides a more comprehensive approach and has identified a
larger portion of the area classified as low or extremely low
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susceptibility (Nikoli¢ et al., 2023). Its vital to note that the
choice of model can substantially affect the resultant susceptibility
map and subsequent decision-making processes. The AHP model
has been found to perform better in some studies, showing
improved accuracy compared to conventional F-AHP (Yang et al,
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2023). However, the effectiveness of each model can be different
depending on the specific context and available data. Each
model offers insights into susceptibility classification. The AHP
model appears to identify more high-risk areas, which could be
crucial for proactive risk management. However, validation using
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TABLE 11 Fire risk zones classification.

Fire susceptibility AHP classes ’

F-AHP classes ’ Dong model

classes
Area in ’ Area (km?) ’ Area in ’ INCER (1) ’ Area in Area (km?2)
percentages percentages percentages

Extremely low 16.08% 10.3 17.97% 11.5 18.25% 11.68
Low 27.8% 17.8 23.59% 15.1 23.56% 15.08
Moderate 30.9% 19.8 38.44% 246 39.41% 2522
High 28.4% 182 3031% 194 29.41% 18.82
Extremely high 10.7% 6.9 3.75% 2.4 3.69% 2.36

historical data or field observations is essential to determine which
model best represents the actual conditions in the study area
(Shekar and Mathew, 2023).

4.3 Validation of fire risk assessment

Procedures for validation used two essential data sets
comprised of (1) results from AHP, Fuzzy AHP, and Dong models,
which assigned the study area to five risk levels ranging from
1 = Extremely Low Risk to 5 = Extremely High Risk and (2) MODIS
fire occurrence data from 2013 to 2023 showing binary fire presence
measurements (1 = fire, 0 = no fire). After processing the established
dataset for global fire detection functions, the Google Earth Engine

Frontiers in Forests and Global Change

extracted verified MODIS fire events from the study region. The
risk maps received MODIS fire points to classify observed fire
prevalence and their corresponding predicted fire danger ratings,
thereby creating a two-variable validation dataset.

All three models, namely AHP, F-AHP, and the Dong model,
have exhibited robust predictive capabilities, as evidenced by
their AUC scores of 0.92, 0.91, and 0.90, respectively, which
indicate a high level of accuracy in their predictions. These results
were obtained through a rigorous MODIS fire data validation
process that excluded data used in model development from the
testing phase to ensure the models’ validity and generalization
abilities. The use of external datasets for validation is crucial, as it
provides reliable predictive results and supports the effectiveness
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of GIS-based multi-criteria models for wildfire risk mapping,
especially in sensitive and complex environments such as the
Liangshui Nature Reserve.

5 Conclusion

This study evaluated the effectiveness of AHP, F-AHP, and
the Dong model techniques in mapping forest fire risk using
geospatial data from the Liangshui National Natural Reserve.
Risk maps were generated based on thirteen key criteria and
classified into five vulnerability levels ranging from Extremely
Low to Extremely High. Our findings indicate that among
them, AHP has achieved the highest AUC (0.92), followed
by F-AHP (0.91), which also indicates a strong predictive
accuracy. While the Dong model has achieved an AUC of
0.90. All three models have shown high predictive accuracy,
but AHP stands out for its sharper identification of high-
risk zones, making it a strong candidate for operational
fire risk mapping in the region. Its ability to effectively
capture the spatial dynamics of fire susceptibility within
this landscape sets it apart, offering valuable insights for
better understanding and managing fire risks. Based on
the fire susceptibility classification results, the AHP model
identifies the largest area under Extremely High risk 10.7%
and a substantial High-risk area 28.4%, making it the most
conservative model in flagging critical zones. Although AUC
the
the results confirm the models’ practical utility in guiding
fire prevention and
should
factors, employ ground-truth data for validation, and explore

was sole validation metric due to data limitations,

resource allocation. Future research

incorporate additional human and environmental
advanced or hybrid modeling approaches to further improve

prediction accuracy.
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