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Karabük Üniversitesi, Türkiye

*CORRESPONDENCE

Zhan Shu
shuzhan@nefu.edu.cn

RECEIVED 25 May 2025
ACCEPTED 29 September 2025
PUBLISHED 16 October 2025

CITATION

Ahmad H, Wu Z, Huang H, Muhammad S,
Hayat M, Abbas K, Yang X and Shu Z (2025) A
comparative evaluation of forest fire hazard
vulnerability through geographic
information system-based techniques.
Front. For. Glob. Change 8:1635041.
doi: 10.3389/ffgc.2025.1635041

COPYRIGHT

© 2025 Ahmad, Wu, Huang, Muhammad,
Hayat, Abbas, Yang and Shu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

A comparative evaluation of
forest fire hazard vulnerability
through geographic information
system-based techniques
Hasham Ahmad1, Zhiyuan Wu1, Hui Huang2,
Sultan Muhammad3, Mansoor Hayat1, Khurram Abbas1,
Xiguang Yang1 and Zhan Shu1*
1School of Forestry, Northeast Forestry University, Harbin, China, 2School of Water Conservancy
and Civil Engineering, Heilongjiang Agricultural Engineering Vocational College, Harbin, China,
3Institute of Forest Sciences, University of Swat, Saidu Sharif, Pakistan

Introduction: Mapping forest fire risk is essential for effective prevention and

efficient resource allocation, as it accurately assesses fire hazards across regions.

This study conducts a comparative evaluation of the Analytical Hierarchy

Process (AHP), the Fuzzy Analytical Hierarchy Process (F-AHP), and the Dong

model for forest fire risk mapping in Liangshui National Nature Reserve by

analyzing the weights of the factors contributing to fire risk.

Methodology: The forest fire risk maps were developed based on several

contributing factors: aspect, elevation, slope, topographic wetness index,

proximity to roads, distance to settlements, population density, Land Use Land

Cover, temperature, precipitation, wind speed, normalized difference vegetation

index (NDVI), and normalized difference moisture index (NDMI).

Results: Receiver Operating Characteristic (ROC) curve analysis was employed

to validate and assess the predictive performance of the models. The evaluation

of the Area Under the Curve (AUC) values revealed that the Analytical Hierarchy

Process (AHP) model achieved high prediction accuracy with an AUC of 0.92,

while the Dong model slightly lowered with an AUC of 0.91. In contrast, the

Fuzzy Analytical Hierarchy Process (F-AHP) yielded an AUC of 0.90. These results

indicate that the fire risk map generated by the AHP provides the most accurate

and reliable prediction.

Conclusion: Overall, the findings underscore the effectiveness of the proposed

modeling approaches and demonstrate their potential to enhance decision-

making processes in forest fire risk management and the strategic allocation

of prevention resources.

KEYWORDS

fuzzy logic, Dong model, wildfire vulnerability, spatial risk analysis, forest fire
susceptibility
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1 Introduction 

Forest fires pose a significant threat to both human safety and 
the ecosystem globally (Mehmood et al., 2024). This enduring 
problem presents substantial environmental, economic, and social 
hazards on a global scale (Xiong et al., 2020). Understanding burn 
severity is crucial for assessing the impact of fire on vegetation and 
ecosystems, which helps forest managers and decision-makers to 
develop eective restoration strategies (Muhammad et al., 2024). 
The occurrence of forest fires is influenced by several factors: 
Climate, flammable materials in forests, and geographical features 
(Shao et al., 2022; Zhu et al., 2022). Fire activities for a given region 
are driven mainly by fire-weather variability (Gao et al., 2023). 

Integrating geospatial technologies, particularly Geographic 
Information Systems (GIS), is crucial in providing both spatial 
and temporal data, allowing for eective fire risk assessments 
(Lamat et al., 2021; Modugno et al., 2016). Various methods, 
from fundamental to complex models, have been suggested for 
evaluating forest fires (Sivrikaya and Küçük, 2022). The models 
used for creating a fire risk model are neural networks (Jafari 
Goldarag et al., 2016), Random Forest (Breiman, 2001), and fuzzy 
analysis (Abedi Gheshlaghi et al., 2020; Li et al., 2018). Some models 
often require previous fire data to validate their eÿciency. However, 
the methodologies mentioned above rely on partial historical fire 
data, which may lead to inaccurate fire risk maps in certain 
locations where complete fire records are unavailable (Zhao et al., 
2021; Matin et al., 2017). 

The Geographic Information System (GIS)-based Analytical 
Hierarchy Process (AHP) (Jia et al., 2019; Hong et al., 2019; 
Chuvieco and Congalton, 1989). Fuzzy AHP and the Dong model 
(Nikoli´ c et al., 2023; Eskandari and Miesel, 2017; Kumi-Boateng 
et al., 2021) have proven to be eective tools for generating 
forest fire risk (FFR) maps. When used in combination, these 
methodologies oer valuable support for fire authorities in both 
preventing wildfires and promoting sustainable post-fire land 
management (Nuthammachot and Stratoulias, 2021b). One of 
the most popular techniques in Multi-Criteria Decision Analysis 
(MCDA), the AHP, combined with GIS approaches, has been 
widely eective in identifying fire danger zones globally (Rahmati 
et al., 2015; Pourghasemi et al., 2016). AHP is a structured 
decision-making tool that is particularly eective in environments 
where expert opinion plays a crucial role. At the same time, 
F-AHP addresses the uncertainty inherent in fire risk modeling 
using fuzzy logic. Though less explored, the Dong Model oers a 
parameter-based approach with spatial adaptability (Kayet et al., 
2018; Eskandari and Miesel, 2017). For example (Fekir et al., 
2022) employed and compared two models i.e., (AHP) and Dong 
considering three eective factors including topography, vegetation 
cover and anthropogenic integrated by these two methods in 
Algeria. Forest fire risk zonation prepared by AHP and Dong 
Model was compared with burn severity map. The result after 
statistical calculation demonstrated that a significant portion of 
the burned area is classified within the moderate, high, and very 
high-risk zones, with rates of 64.27% for the Dong model and 
69.41% for the AHP model. Sinha et al. (2023) also employed 
geospatial tools, specifically the AHP and fuzzy AHP models, 
for analysis. The purpose of this dierent zone selection was 
to assess the eectiveness of the models by taking the forest 

fire responsible factors. The selected sites for this research and 
application of modeling were severely hit by almost 100 forest fire 
events in history. 

Topographical, human, and meteorological factors collectively 
influence fire intensity, spread, and ignition, making it essential to 
understand and integrate them into forest fire risk modeling and 
decision-making processes (Gupta et al., 2023). A key advantage 
of comparing these models lies in their capacity to incorporate 
multiple factors influencing forest fire risk, including topography, 
forest structure, climate, and human-related criteria (Zacharakis 
and Tsihrintzis, 2023). Each model diers in its methodological 
framework, accuracy, and ability to integrate multiple factors 
influencing fire susceptibility (Pourtaghi et al., 2016). AHP and 
F-AHP are widely used multi-criteria decision-making (MCDA) 
methods that incorporate expert knowledge and spatial data, 
whereas the Dong Model follows a distinct parameter-based 
approach (Nikolić et al., 2023). While AHP is eective in structured 
decision-making, it struggles with handling uncertainty, which 
F-AHP addresses using fuzzy logic (Tesfamariam and Sadiq, 2006). 
Key criteria for comparison include spatial correlation, model 
correctness, and adaptability to varied geographical situations. 
Studies demonstrate that AHP works well in fire risk assessment 
(Sivrikaya and Küçük, 2022; Ersoy et al., 2025), yet F-AHP, 
due to its ability to manage uncertainty, often provides more 
refined risk maps (Kayet et al., 2018; Cardone et al., 2024). The 
Dong Model’s eectiveness, however, remains relatively unexplored 
in comparison, but a study by Eskandari and Miesel (2017) 
demonstrated that the F-AHP and spatial correlation methods 
outperformed the Dong model in predicting high-risk areas. GIS 
integration enhances the applicability of these models by enabling 
spatial analysis of forest fire risk factors such as topography, climate, 
and human influences (Parvar et al., 2024). 

According to the China Forestry Administration, forest fires 
in China have exceeded 10,000 annually over the past decade, 
with general fires (less than 1 hectare) and larger fires (1–100 
hectares) causing notable social and environmental consequences 
(Yang et al., 2015). Northern regions, especially the Northeast, 
experience particularly severe wildfires due to the vast natural 
forest cover and distinctive climatic conditions (Wang et al., 2023). 
Conventional fire vulnerability methods, such as logistic regression, 
fuzzy analysis, and neural networks, typically rely on historical fire 
data for validation. However, in regions like the Liangshui National 
Nature Reserve, where historical fire data is sparse or incomplete, 
these approaches may result in limited model generalizability 
and reduced predictive performance due to insuÿcient validation 
inputs. To address this, we will develop a Fire Risk Index (FRI)-
based model that enables the creation of reliable fire risk maps 
without depending on historical fire records. Fire points were 
extracted for validation using the MODIS temperature anomaly 
and fire. This method has shown over 90% accuracy in identifying 
fire locations (Zhao et al., 2008). In our study, fire points were 
identified between 2013 and 2023 and used to evaluate the model’s 
performance. 

This study introduces a novel comparative assessment of three 
spatially integrated forest fire risk models i.e., AHP, F-AHP, and 
the Dong model in the context of the Liangshui National Nature 
Reserve, where historical fire data are limited. Unlike previous 
studies that largely depend on past fire occurrences for model 
validation, this research develops a Fire Risk Index (FRI)-based 
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FIGURE 1 

Geographical location and elevation classes of the study area. 

approach validated through MODIS-derived fire points, oering a 
more accurate and adaptable methodology for fire risk mapping in 
data-scarce regions. 

2 Materials and methods 

2.1 Study area 

The study was conducted in the Liangshui National Nature 
Reserve, located in the southern part of the Xiaoxing’anling 
Mountains, spanning an area of 12,133 hectares in the eastern 
mountainous region of Northeast China. The reserve is positioned 
between 47◦649–47◦1610 N latitude and 128◦478– 
128◦5719 longitude, boasting a remarkable forest coverage 
of 97% (Zhao et al., 2023; Wu et al., 2024). The area exhibits a 
unique fire regime due to its ecological, climatic, and historical 
characteristics. The temperate mixed conifer-broadleaf forest 
ecosystem in this region is particularly susceptible to fires due to 
the combustible nature of its vegetation type (Zhen et al., 2013; 
Gul et al., 2022). The study area is situated on the eastern edge 
of the Eurasian continent and is significantly influenced by the 
oceanic climate. It exhibits the typical characteristics of a temperate 
continental monsoon climate. Winters are dominated by cold, 
dry continental air masses, resulting in low temperatures and 
occasional snowfall. Summers are influenced by warm, humid 
subtropical oceanic air masses, bringing high temperatures. Spring 
and autumn are transitional and highly variable, with spring 
characterized by strong winds, low humidity, and limited rainfall, 
creating conditions that are conducive to forest fire ignition and 
spread. These seasonal and climatic variations play a critical role 
in influencing forest fire risk patterns in the region. The reserve 
has a significant altitude range from 291 to 719 m above sea level 

at its lowest and highest points, respectively (Figure 1). This area 
holds considerable potential for understanding the dynamics of 
fire risk and developing eective management strategies due to its 
unique ecological characteristics and susceptibility to fire-prone 
conditions. 

The region climate and the prevalence of Pinus koraiensis 
forests increase susceptibility to fires, particularly during spring and 
fall. The dominant forest type is mixed, featuring extensive tracts 
of original Pinus koraiensis forest alongside secondary birch and 
broad-leaved forests. According to Nefu (n.d.) Liangshui National 
Nature Reserve is home to a diverse range of species, including 90 
leafy lichens, 95 mosses, 445 angiosperms, 252 birds, 44 mammals, 
and thousands of fungi and insects. 

2.2 Methodology of the study 

Our approach integrated diverse expert opinions and extensive 
literature to determine the weights of the rules and conditioning 
criteria for all three models. We employ thirteen criteria to 
comprehensively assess the potential impacts of various forest 
fire activities and preconditions, incorporating aspect, elevation, 
slope, topographic wetness index, proximity to roads, distance to 
settlements, population density, LULC, temperature, precipitation, 
wind speed, NDVI, and NDMI (Table 1). 

The Shuttle Radar Topography Mission (SRTM) was used 
to download 30 m resolution Digital Elevation Model (DEM) 
data from Earth Explorer. Elevation, TWI, aspect, and slope were 
extracted from the DEM. Euclidean distance analysis assessed 
the proximity to highways, resulting in raster files with buer 
zones of dierent ranges. Satellite imagery was used to classify 
vegetation indices, including NDVI and NDMI, which matched 
pre-existing classification methods. Terrain analysis techniques on 
GIS platforms identified topographic features, such as TWI. 
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TABLE 1 Data sources. 

Data (shapefile or raster) Website/google earth engine platform Classification 

Boundary https://data.humdata.org/dataset/cod-ab-chn? Shapefile 

NDVI, NDMI https://glovis.usgs.gov/app Vegetation indices (30 m) 

Temperature, precipitation, and wind speed https://crudata.uea.ac.uk/cru/data/hrg/ Climate data 

Elevation, slope, aspect, and TWI https://earthexplorer.usgs.gov/srtm Topographic data (30 m) 

Distance from road, Distance from settlements 
population density and LULC 

OSM + Euclidean distance and GPWv4 (NASA SEDAC) Anthropogenic factors 

Fire data (2013–2023) https://firms.modaps.eosdis.nasa.gov/ Forest fire data (accessed on 5 January 2025) 

2.3 Preparation of thematic layers 

During data collection, preprocessing techniques were used to 
standardize all inputs and guarantee consistency across layers. The 
mapping of forest topography utilizing a variety of quantitative 
terrain descriptors is made possible by the SRTM, which provides 
30 m DEM images. The elevation map was created using SRTM 
data, which provides high-resolution elevation information. First, 
masking was applied to the SRTM dataset to focus on the study 
area, removing regions outside the boundaries of interest. Next, 
multiple SRTM tiles were mosaicked to create a seamless elevation 
map. Slope maps were generated from the DEM using the Spatial 
Analyst and classified into five distinct slope zones. An aspect 
map illustrating terrain steepness and orientation was generated 
and classified into ten categories: Flat, North, Northeast, East, 
Southeast, South, Southwest, West, and Northwest. Equation 1 was 
used to calculate the Topographic Wetness Index (TWI), a key 
indicator of hydrological processes (Beven and Kirkby, 1979). The 
entire process was carried out in ArcGIS 10.8. 

TWI = ln 

 
a 

tanβ 

 

(1) 

Where a is the upslope contributing area per unit width (measured 
in square meters per meter), β is the slope angle in radians. 

Landsat-8 imagery was first stacked and masked using the 
study area’s shapefile, and then NDVI and NDMI were applied to 
assess vegetation cover and moisture content by analyzing specific 
spectral band combinations using Equation 2 (Tien Bui et al., 2016): 

NDVI = 
NIR + RED 

NIR − RED 
(2) 

Normalized dierence moisture index, reflecting vegetation health 
and biomass linked to fire fuel load, and NDVI, used to classify 
imagery and generate vegetation maps, were applied using red and 
near-infrared reflectance to estimate moisture content in soil and 
vegetation using Equation 3 (Ding et al., 2014): 

NDMI = 
NIR + SWIR 

NIR − SWIR 
(3) 

The shortwave infrared band (SWIR) and the near-infrared band 
(NIR) represent the resultant frequencies. 

Distance-to-road maps were generated using the Euclidean 
distance function, while rainfall, temperature, and wind speed 
data were collected from weather stations and LULC data from 
Landsat 8; all datasets were reprojected to WGS 1984 for spatial 
alignment, visually and statistically validated, clipped to the study 

area, and resampled for consistent resolution. Population density 
data was obtained from the Gridded Population of the World 
version 4 (GPWv4) provided by NASA SEDAC, which oers global 
population estimates in raster format. The dataset was clipped to 
the study area and resampled as needed, then normalized to a 0– 
1 scale using raster calculation techniques to ensure compatibility 
within the Analytical Hierarchy Process (AHP) framework for 
fire risk assessment. In parallel, settlement data were extracted 
from OpenStreetMap (OSM) in the form of building and urban 
area polygons. These vector features were converted into a 
continuous raster surface using the Euclidean Distance tool in 
ArcGIS, representing proximity to human habitation. The resulting 
distance layer was reclassified and standardized to align with other 
input criteria in the fire risk model, enabling spatial analysis of 
anthropogenic fire risk. 

In the preprocessing of forest fire risk mapping all factors 
are standardized and normalized in all three models to ensure 
consistency and comparability of data. The Analytic Hierarchy 
Process (AHP), Fuzzy AHP (F-AHP), and the Dong model each 
utilize these processes dierently. 

In AHP, standardization and normalization are crucial for 
converting diverse factors into a consistent scale so that they can 
be compared and weighted accordingly. The AHP model typically 
involves using expert judgment to assign weights to various factors 
based on their relative importance in contributing to forest fire 
risks. While F-AHP introduces fuzziness to handle uncertainty 
and vagueness in expert assessments. The factors are standardized 
into fuzzy sets, which are then used to calculate fuzzy weights 
through extent analysis. This allows for a more nuanced handling 
of data variances and expert opinion variations. The Dong model 
on the other hand also standardizes and normalizes factors for 
better integration into the risk mapping process. Although specific 
details about the normalization techniques used within the Dong 
Model were not provided in the context, a general approach often 
involves scaling raw data to a 0–1 range or transforming them 
for comparability. 

2.4 Analytical hierarchy process 

The Analytical Hierarchy Process is a widely used multi-
criteria decision-making method that integrates expert judgment 
with quantitative analysis, utilizing a pairwise comparison matrix 
to assess the relative importance of various factors. AHP uses a 
1–9 scale (1 = Equal, 3 = Moderately, 5 = Strongly, 7 = Very, 
9 = Extremely) to compare elements within a hierarchical structure, 
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converting subjective assessments into numerical values (Table 2). 
The process involves determining the Eigenvector, weighting 
coeÿcients (Wi, where i = 1, 2, 3 · · · , n), and a consistency 
ratio (CR) to ensure reliability. The consistency index (CI) is 
calculated and divided by a random index (RI), with a CR of 
less than 0.1 indicating acceptable consistency. This approach 
allows for systematic evaluation and prioritization of criteria while 
incorporating a mechanism to assess the reliability of the results 
(Lamat et al., 2021). 

The principal eigenvalue (λmax) was calculated with the 
eigenvector using Equation 4. 

λmax = 
1 

n 

Xn 

Wti 

(CV)i 
Wti 

(4) 

Where Wt represents the corresponding eigenvector of λmax, Wti 
defines the weight for ranking, CV represents the consistency 
vector, and n symbolizes the total number of classes. CV is 
computed by multiplying the pair-wise comparison matrix with 
the weight matrix as presented in Equation 5. λ was computed by 
dividing the elements of CV by the corresponding weights. The 
average of these values is represented by λmax. 

CV = aij × Wti (5) 

CV = 

2 6664 

a11 a12 . . . a1n 

a21 a22 . . . a2n 

. . . . . . . . . . . . 

an1 an2 . . . ann 

3 7775 × 

2 6664 

Wt1 

Wt2 

. . . 

Wtn 

3 7775 

Where aij defines a pair-wise comparison matrix in which 
aii = 1 and aij = 1/aji. Wti defines the weight value for ranking. 
Values of i and j range from 1 to n (number of criteria). 

The Consistency Index (CI) represents the degree of 
consistency and is calculated using Equation 6. The Consistency 
Ratio (CR) defines the final consistency of the weights assigned to 
the causative criteria (Equation 7). 

CI = 
λmax − n 

n − 1 
(6) 

CR = 
CI 
RI 

(7) 

where n is the number of classes. CR should be less than 0.10 for 
consistent weights. The Random Index (RI) value is referred to in 
Table 3. 

The FFR index is calculated by integrating all the causative 
criteria of forest fires using a weighted linear combination equation, 
as shown in Equation 8. 

The rank value (Cf ) represents the relative contribution of each 
factor class to fire risk and is assigned based on expert judgment. 
These values are then integrated with the normalized weights 
(NWt) in the weighted linear combination model to compute the 
Forest Fire Risk (FFR) index. 

FFR = 
Xm 

t = 1 

Xn 

f = 1 
(NWt 

∗ Cf ) (8) 

Where NWt symbolizes the normalized weight, Cf represents the 
rank value, m defines the number of criteria, and n defines the 
number of classes. 

2.5 Fuzzy-analytical hierarchy process 

The F-AHP is an advanced decision-making tool that extends 
the traditional AHP method by incorporating fuzzy logic theory 
to handle uncertainty, imprecision, and vagueness in expert 
judgments using Triangular Fuzzy Numbers (TFNs) (Shapiro and 
Koissi, 2017, Tesfamariam and Sadiq, 2006). F-AHP addresses 
issues such as null weights for factors and scores for alternatives 
using TFNs, thereby preserving consistency in the results. Fuzzy 
AHP simplifies computation and enhances decision-making by 
handling uncertainty in expert judgments, making it well-suited 
for complex tasks like fire risk assessment (Yuen, 2014). F-AHP 
enhances traditional AHP by employing fuzzy set theory to manage 
imprecise data, thereby providing a more robust framework 
for assessing risk factors and expert opinions in uncertain 
environments. The fundamental scale for F-AHP is explained 
in Table 4. The following were the crucial steps in the F-AHP 
modeling process: 

TABLE 2 The fundamental scale of Saaty (1990). 

AHP scale of 
importance 

Relative importance Explanation 

1 Equal importance Two elements contribute equally to the objective 

3 Moderate importance Decision slightly supports one element over another 

5 Strong importance Decision strongly supports one element over another 

7 Very strong importance One element is supported very strongly over another 

9 Extremely strong importance Highest possible order for supporting one element over another 

2, 4, 6, 8 Intermediate values When compromise is required 

Reciprocal Opposites Used for inverse comparison 

TABLE 3 Random index (RI) for different numbers of criteria (n). 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 
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The fuzzy triangle scale for the comparison matrix was (1/4, 1/3, 
1/2). The mean fuzzy comparison matrix (matrix Ã) is produced as 
follows when the expert assessments are represented as triangular 
fuzzy numbers (Chang, 1996). Equation 9 depicts the matrix: 

Ãk ak 
ij = 

2 6664 

ak 
11 a

k 
12 . . . ak 

1n 

ak 
21 . . . . . . ak 

2n 

. . . . . . . . . . . . 

a k 
n1 a k 

n2 . . . a k 
mn 

3 7775 
(9) 

Where Ã defines the pair-wise comparison matrix and akij 
symbolizes the expert’s opinion on the ith attribute relative to 
the jth attribute. A TFN is denoted as aij = (lij, mij, uij) and 
a−1ij = 1 

lij , 
1 
mij , 

1 
uij and for I, j = 1,. . ., n and I = j 

The geometric mean of the fuzzy comparison values for 
each criterion is calculated and used to obtain the fuzzy weights 
(Equation 10). 

řl = 

 Yn 

j = 1 
aij 
1/n 

(10) 

while i = 1, 2, 3 . . . n 
Wi = rl 

N 
ˇ(r1 

N
ˇ r2. . . rn) −1 = (li, mi, ui) 

where rl represents TFN, Wi represents the fuzzy weights, and 
N 

ˇ 
denotes the extended multiplication of two fuzzy numbers. 

Since (li, mi, ui) are still TFNs, they must be defuzzified 
(Chou and Chang, 2008) and then normalized using the following 
Equations 11, 12. 

Mi = 
li + mi + ui 

3 
(11) 

NWi = 
Mi P n 

i = 1 Mi 
(12) 

Where Mi is a crisp and non-fuzzy number, and NWi represents 
normalized weights. 

The forest risk map was generated through the linear 
combination of the 13 previously stated criteria, as outlined in 
Equation 13. The estimation from the F-AHP is used to allocate 
weights to each criterion. 

FFR = 
Xm 

t = 1 

Xn 

f = 1 
(NFW∗ 

t FCf ) (13) 

TABLE 4 The fundamental scale of Fuzzy Analytical 
Hierarchy Process (AHP). 

Relative 
importance 

Definition Fuzzy 
scale 

Fuzzy 
reciprocal 
scale 

1 Equal importance (1,1,1) (1,1,1) 

3 Moderate 

importance 

(1,3,5) (1/5,1/3,1) 

5 Strong importance (3,5,7) (1/7,1/5,1/3) 

7 Very Strong 

importance 

(5,7,9) (1/9,1/7,1/5) 

9 Extremely strong 

importance 

(7,9,9) (1/9,1/9,1/7) 

2.6 Dong model 

The Dong model is a GIS-based approach that creates a fire 
risk map by combining several anthropogenic and environmental 
factors, as outlined in the Dong et al. (2005) model. Numerous 
published research (Dong et al., 2005; Eskandari and Miesel, 2017; 
Baqer Rasooli and Bonyad, 2019; Fekir et al., 2022) have shown its 
widespread application in various fields. The methodology involves 
preparing thematic layers that encompass topographic factors 
(slope, aspect, elevation, and TWI), vegetation indices (NDVI, 
NDMI), climatic variables (temperature, precipitation, and wind 
speed), and anthropogenic influence factors (proximity to roads, 
Settlements and population density and LULC). The goal of forest 
fire risk assessment is established, and the criteria are identified and 
organized in a hierarchical structure. 

The fuzzy synthetic extent for each factor is computed, and 
the results are defuzzified using the centroid method to obtain 
crisp weights. For a triangular fuzzy number (l,m,u), the defuzzified 
weight is calculated using Equation 14. 

ωi = 
l+m+u 

3 
(14) 

The crisp weights are normalized to ensure they sum to 1, using the 
Equation 15. 

ωi = 
Crisp Weight of Factor i P n 

j = 1 Crisp Weight of Factor j 
(15) 

The normalized weights are applied in the Dong model formula 
to calculate the Fire Risk Index (FRI) as a weighted sum of the 
normalized factor values, as shown in Equation 16. 

FRI = ω1.x1+ω2.x2+ω3.x3+ . . . +ω10.x10 (16) 

Where x1, x2, x3...x10 represent the normalized values of the 
factors and ω1, ω2, ω3 . . . ω10 are their respective weights. The 
Dong model’s fire risk classification categorizes FRI values into five 
risk levels, ranging from extremely low to extremely high. The fire 
risk map is generated using the ArcGIS Raster Calculator, and risk 
zones are visually represented with distinct colors. The fire risk 
map is compared with Terra’s Thermal Anomalies and Fire data 
to validate the model. The Dong model is widely applied due to its 
eective integration of multiple risk factors into a simple yet reliable 
fire risk assessment framework. 

2.7 Model validation 

Model validation was conducted to assess the predictive 
performance and spatial accuracy of fire susceptibility models 
developed using the Analytic Hierarchy Process (AHP), Fuzzy 
AHP, and the Dong fuzzy method. The validation employed 
MODIS active fire data (MOD14A1.061) from the Terra and Aqua 
satellites, which provide daily global fire detection at 1 km spatial 
resolution based on mid-infrared and thermal-infrared analysis. 
These datasets oer timely and reliable information on the study 
area’s thermal anomalies and fire occurrences. To ensure data 
quality, spatial filtering techniques were applied to remove cloud-
contaminated pixels, irrelevant records, and outliers beyond the 
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FIGURE 2 

Modis fire map. 

study boundaries. The cleaned fire occurrence points were then 
overlaid on the continuous susceptibility maps generated by each 
model. An overlay analysis was employed to quantify model 
accuracy by determining the number of fire points in high- and very 
high-risk fire zones. 

A Receiver Operating Characteristic (ROC) curve analysis 
was employed as a threshold-independent method to assess 
classification accuracy for statistical evaluation. Susceptibility maps 
were transformed into ascending value classes, and pixels were 
categorized as fire-prone (positive) or non-fire-prone (negative) 
at varying thresholds. Fire occurrence data were then used to 
calculate true positives (TP), false positives (FP), true negatives 
(TN), and false negatives (FN). ROC curves were plotted by 
comparing sensitivity (TP rate) against 1-specificity (FP rate) 
across all thresholds. The Area Under the Curve (AUC) values 
were computed using GIS software’s “ROC” module, supported by 
additional statistical analysis in Python and R. AUC values closer 
to 1.0 indicated excellent predictive performance, values between 
0.7 and 0.9 reflected acceptable to good accuracy, while values near 
0.5 suggested random prediction. This comprehensive validation 
approach objectively compared the three modeling techniques and 
demonstrated their eectiveness in generating spatially accurate fire 
susceptibility maps (Figure 2). 

3 Results 

3.1 Thematic layers for AHP, F-AHP and 
the dong model 

Figure 3 shows the details of all factors (aspect, elevation, 
slope, topographic wetness index, proximity to roads, distance to 

settlements, population density, temperature, LULC, precipitation, 
wind speed, NDVI, and NDMI) are standardized and normalized 

in dierent models to ensure consistency and comparability of data 

for forest fire risk mapping in our study area. The maps are then 

classified using natural breaks, manual, and equal intervals. The 

details for each factor are presented below. 
Elevation is a crucial physiographic factor that influences the 

volume and duration of rainfall, exposure to the dominant wind, 
and fire behavior (Gaither et al., 2011). The diverse microclimates of 
Liangshui, shaped by variations in elevation, contribute to varying 

levels of fire susceptibility across the landscape. The reserve’s 
elevation ranges from 291 to 719 m, with an average of almost 
400 m. The topography typically drops from north to south, and the 

region has a moderate continental monsoon climate, which makes 
it vulnerable to spring and fall droughts. The corresponding weight 
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FIGURE 3 

Spatial distribution of forest fire-governing factors Slope (a), Aspect (b), TWI (c), Distance from road (d), temperature (e), precipitation (f), wind speed 
(g), NDVI (h), NDMI (i), LULC (j), and Population Density (k). 
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is allocated to the five classes. Figure 1 includes the map of the study 
area’s elevation classes. 

The slope is the other most crucial factor contributing to the 
spread of fire. Fires typically spread uphill faster than downhill. 
Slope was used as a key criterion in fire susceptibility modeling 
through the AHP, Fuzzy AHP, and the Dong model methods. 
The slope values were classified into five risk categories: 0–15◦ as 
extremely low risk, 15–30◦ as low risk, 30–45◦ as moderate risk, 
45–60◦ as high risk, and > 60.82◦ as extremely high risk (Figure 3a). 

Aspect was included as a critical input. The aspect values were 
classified based on slope orientation and their potential influence 
on fire susceptibility. South and northeast-facing slopes were 
assigned as extremely high risk, followed by west-facing slopes high 
risk, flat and northwest-facing slopes moderate risk, southwest-
facing slopes low risk, and east and north-facing slopes extremely 
low risk. The classification was grouped into ten categories: Flat, 
North, Northeast, East, Southeast, South, Southwest, West, and 
Northwest. This categorization integrates regional characteristics to 
support accurate fire susceptibility mapping (Figure 3b). 

Topographic Wetness Index is an exploration of DEM 
data, revealing the intricate relationship of the hydrological 
landscape. TWI assists in locating areas in Liangshui where 
water accumulation is more likely to occur, resulting in increased 
soil moisture levels. TWI has a direct influence on how forest 
fire scenarios are developed and specifies the geographical 
distribution of soil moisture (Pallikarakis and Konstantopoulou, 
2024; Figure 3c), such as (1) < 5.8, (2) 5.8–7.11, (3) 7.11–8.56, (4) 
8.58–10.6, and (5) 10.67 >. 

Distance from roads is a critical factor in assessing fire risk, 
as areas closer to roads are more accessible and hence more 
vulnerable to human-induced ignition. In this study, the region 
was divided into five risk classes based on proximity to roads: areas 
within 0–375.145 m were classified as extremely high risk; 375.145– 
795.76 m as high risk; 795.76–1273.22 m as moderate risk; 1273.22– 
1864.36 m as low risk; and distances beyond 1864.36–2898.85 m 
as extremely low risk. The Liangshui National Nature Reserve, 
situated on the eastern slope of the Dali Range in the southern 
Lesser Xing’an Range, contains an extensive network of forest 
roads that serve as vital infrastructure for forest management and 
fire emergency access. This spatial classification was integrated to 
reflect how road proximity influences fire susceptibility (Figure 3d). 

The distance from settlements plays a significant role in 
assessing forest fire risk due to the anthropogenic influences that 
settlements often bring. Proximity to human settlements has been 
identified as a critical factor influencing the likelihood of forest fires, 
as human activities can increase fire hazards through both direct 
and indirect actions. This includes agricultural practices, disposal of 
flammable materials, and increased traÿc from roads and pathways 
leading to potential ignition sources (Özcan et al., 2024). 

Population density plays a significant role in forest fire risk 
assessment due to its impact on the vulnerability and exposure of 
areas to fire hazards. Higher population densities tend to increase 
the likelihood of fires, primarily because populated areas often 
contain infrastructural elements, human activity, and economic 
assets that can both cause and be aected by wildfires. In forest 
fire risk assessments, population density is considered a key factor 
in understanding and managing the potential impact on human 
life, property, and economic activities. Forest fire risk assessments 
often integrate population density with other factors such as land 

use, topography, and meteorology to create comprehensive risk 
models. For instance, the combination of population density with 
variables like distance from roads and settlements has shown strong 
relationships with wildfire occurrence (Jafarzadeh et al., 2017). 

Temperature is directly proportional to forest fires. High 
temperatures increase the risk of forest fires because they make 
fuels more flammable (Flannigan et al., 2016). The base map for 
temperature is divided into five classes: low temperature, low risk; 
high temperature, high risk; and so on (Figure 3e). 

Precipitation is an important meteorological factor that plays 
an important role in FFR assessment. The small dierence in 
precipitation between the “Extremely High Risk” and “Extremely 
Low Risk” categories may seem minor. Still, in the context of fire 
risk assessment, even small variations in precipitation can have 
a significant impact. The classification system of MCDA aims to 
capture the nuances of how slight changes in environmental factors 
can aect fire risk. In regions like the Liangshui National Nature 
Reserve, small changes in precipitation can significantly aect fuel 
moisture and, in turn, fire risk. The precipitation map was also 
categorized into five classes: high precipitation leads to low risk, 
while less precipitation leads to high fire risk (Figure 3f). 

One of the meteorological factors that significantly aects an 
area’s fire intensity and spread is wind speed. Wind speed increases 
the quantity of new oxygen in the fire, causing the flames to ignite 
more quickly and instantly (Bessie and Johnson, 1995; Eskandari, 
2017). The base map for wind speed is also divided into five classes: 
slow wind speed for lower risk, more wind for high fire risk, and so 
on (Figure 3g). 

The vegetation cover was almost 96% in Liangshui National 
Nature Reserve (Wanli, 1999). However, according to our land 
use land cover (LULC) analysis, which is now 97% (Figure 3j). 
The area is rich in flammable wood, significantly influencing the 
likelihood of fire ignition. Since dierent vegetation types have 
varying moisture contents, their chances of igniting also dier. The 
NDMI is especially important because it shows the trees’ moisture 
content, which directly aects their ignition susceptibility. Based on 
the classification criteria and weight. NDMI can be divided into five 
levels (Figure 3i). 

Normalized dierence vegetation index is a widely used 
vegetation indicator that correlates with vegetation density and 
health, two key factors in determining the potential severity and 
spread of wildfires. Therefore, it is crucial to incorporate it into 
fire risk assessment. NDVI is a crucial tool for evaluating the 
condition of plant cover. Positive values on the NDVI scale signify 
the presence of green vegetation, while lower values indicate other 
surface features. NDVI classes have also been made (Figure 3h). 

Normalized dierence moisture index indicates vegetation 
health and biomass, which are directly related to the fuel load 
available for fires. RED signifies red band reflectance, and NIR 
denotes near-infrared reflectance. The images were categorized 
using NDVI, creating NDVI maps for the study area. The 
NDMI was used to estimate the moisture content in both 
soil and vegetation. 

3.2 Forest fire risk mapping using AHP 

This study employs the AHP to evaluate wildfire risk factors 
in the Liangshui National Nature Reserve. Using a pairwise 
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comparison approach, the AHP methodology allowed us to 
systematically assess factors, including aspect, elevation, slope, 
topographic wetness index, proximity to roads, distance to 
settlements, population density, temperature, precipitation, wind 
speed, NDVI, and NDMI (Table 5). After pairwise comparison, 
each factor was then normalized (Table 6). 

By classifying and processing the data utilized in this model, 
we produced a hierarchical analysis of the factors influencing the 
risk of forest fires. Each factor was categorized into five risk levels 
from extremely low to extremely high (Table 7). Finally, a forest 
fire risk map was created that reflected the risk levels in Liangshui 
National Nature Reserve locations. Each location is categorized 
based on the overall influence of the weighted elements (Figure 4). 
The importance of the weights was confirmed by calculating the 
consistency index (CI) and the consistency ratio (CR). The CR 
is 0.0107, which is less than 0.1 and falls within the acceptable 
range, suggesting that the pairwise comparisons are consistent and 
the model is reliable. The results indicate that areas classified as 

extremely low, low, moderate, high, and extremely high fire risk are 
represented accordingly, with their spatial distribution illustrated 
in Figure 4. 

Value of lambda max (λ) = 13.2, Consistency index 
(CI) = 0.016, Consistency ratio (CR) = 0.0107 

3.2.1 Fuzzy-AHP based fire risk map 
Thirteen key criteria were selected for FFR assessment: aspect, 

elevation, slope, topographic wetness index, proximity to roads, 
distance to settlements, population density, temperature, LULC, 
precipitation, wind speed, NDVI, and NDMI. Based on Saaty’s 
Scale, expert judgment was used to produce a pairwise comparison 
matrix that ranked the relevance of each criterion compared to the 
others (Table 8). Each column of the matrix was normalized, and 
the average value of each row was computed to derive the final 
weights of each criterion, as explained in Tables 9, 10. The principal 
eigenvalue (λmax) was computed, followed by the Consistency 
Index (CI) and the Consistency Ratio (CR). A CR value below 0.1 

TABLE 5 Pairwise comparison matrix of Analytical Hierarchy Process (AHP) factors. 

Factors (C1) (C2) (C3) (C4) (C5) (C6) (C7) (C8) (C9) (C10) (C11) (C12) (C13) 

Temperature (C1) 1.000 1.167 0.966 0.933 1.292 1.333 1.037 0.988 1.063 1.077 1.091 1.217 1.050 

NDVI (C2) 0.857 1.000 0.828 0.792 1.097 1.143 0.889 0.863 0.941 0.957 0.976 1.111 0.957 

Distance from roads (C3) 1.036 1.208 1.000 0.967 1.323 1.386 1.099 1.063 1.152 1.171 1.195 1.364 1.152 

LULC (C4) 1.072 1.263 1.034 1.000 1.375 1.449 1.151 1.118 1.203 1.227 1.250 1.449 1.203 

NDMI (C5) 0.774 0.912 0.756 0.727 1.000 1.062 0.857 0.824 0.899 0.923 0.942 1.136 0.923 

Wind speed (C6) 0.750 0.875 0.722 0.691 0.942 1.000 0.817 0.786 0.861 0.882 0.901 1.099 0.882 

Precipitation (C7) 0.963 1.135 0.911 0.869 1.167 1.223 1.000 0.976 1.050 1.075 1.099 1.311 1.050 

Distance from settlements (C8) 1.012 1.159 0.941 0.902 1.214 1.273 1.025 1.000 1.077 1.102 1.129 1.364 1.102 

Population density (C9) 0.941 1.139 0.908 0.875 1.113 1.163 0.952 0.929 1.000 1.038 1.063 1.313 1.038 

Aspect (C10) 0.929 1.128 0.854 0.820 1.084 1.136 0.930 0.908 0.964 1.000 1.039 1.296 1.039 

Elevation (C11) 0.910 1.111 0.840 0.800 1.062 1.111 0.910 0.886 0.942 0.963 1.000 1.286 1.044 

Slope (C12) 0.821 1.014 0.737 0.694 0.882 0.915 0.763 0.733 0.762 0.775 0.778 1.000 0.879 

TWI (C13) 0.952 1.111 0.840 0.800 1.062 1.111 0.910 0.886 0.942 0.963 0.958 1.136 1.000 

TABLE 6 Normalized matrix of each factor. 

Factors (C1) (C2) (C3) (C4) (C5) (C6) (C7) (C8) (C9) (C10) (C11) (C12) (C13) 

Temperature (C1) 0.077 0.086 0.077 0.074 0.097 0.103 0.083 0.079 0.085 0.086 0.087 0.097 0.084 

NDVI (C2) 0.064 0.073 0.066 0.063 0.088 0.094 0.071 0.069 0.075 0.076 0.078 0.092 0.079 

Distance From roads (C3) 0.083 0.097 0.083 0.080 0.106 0.114 0.090 0.088 0.095 0.097 0.100 0.113 0.095 

LULC (C4) 0.089 0.105 0.090 0.088 0.114 0.123 0.095 0.093 0.101 0.104 0.107 0.123 0.101 

NDMI (C5) 0.067 0.081 0.068 0.066 0.090 0.095 0.077 0.075 0.082 0.084 0.086 0.105 0.084 

Wind speed (C6) 0.065 0.078 0.066 0.064 0.086 0.091 0.074 0.072 0.079 0.081 0.083 0.101 0.082 

Precipitation (C7) 0.077 0.091 0.073 0.070 0.093 0.098 0.081 0.079 0.085 0.087 0.089 0.109 0.085 

Distance from settlements (C8) 0.076 0.093 0.075 0.072 0.097 0.102 0.082 0.080 0.086 0.088 0.090 0.113 0.088 

Population density (C9) 0.075 0.092 0.074 0.071 0.091 0.096 0.080 0.078 0.084 0.086 0.088 0.111 0.084 

Aspect (C10) 0.074 0.091 0.072 0.069 0.089 0.094 0.079 0.077 0.083 0.085 0.087 0.109 0.084 

Elevation (C11) 0.073 0.090 0.071 0.068 0.088 0.093 0.079 0.077 0.083 0.085 0.087 0.108 0.084 

Slope (C12) 0.066 0.081 0.064 0.062 0.082 0.086 0.073 0.071 0.077 0.079 0.081 0.100 0.082 

TWI (C13) 0.076 0.091 0.075 0.072 0.097 0.102 0.082 0.080 0.086 0.088 0.090 0.113 0.088 
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TABLE 7 Classification of thematic layers. 

No. Factors Class Rank Risk level References 

1 Temperature (C1) 9.87 to 14.89 5 Extremely high risk Manzo-Delgado et al., 2004 

4.83 to 9.86 4 High risk 

−0.21 to 4.82 3 Moderate risk 

−5.25 to −0.22 2 Low risk 

−10.30 to −5.26 1 Extremely low risk 

2 NDVI (C2) −0.2277210 5 Extremely high risk João et al., 2018 

0.041884–0.11167 4 High risk 

0.11167–0.141053 3 Moderate risk 

0.141053–0.174109 2 Low risk 

0.174109–0.284297 1 Extremely low risk 

3 Distance from road (C3) 0–375.145 5 Extremely high risk Ye et al., 2017 

375.145–795.76 4 High risk 

795.96–1273.22 3 Moderate risk 

1273.22–1864.36 2 Low risk 

1864.36–2898.85 1 Extremely low risk 

4 LULC (C4) Vegetation 5 Extremely high risk Salma et al., 2023 

Barren land 3 Moderate risk 

Water bodies 1 Extremely low risk 

5 NDMI (C5) −0.140068 to −0.05 5 Extremely high risk Rabiei et al., 2022 

−0.05 to 0.0 4 High risk 

0.0 to 0.1 3 Moderate risk 

0.1 to 0.2 2 Low risk 

0.2 to 0.416856 1 Extremely low risk 

6 Wind (C6) 2.95–4.20 5 Extremely high risk Guo et al., 2020 

2.8–2.95 4 High risk 

1.81–2.28 3 Moderate risk 

1.38–1.81 2 Low risk 

0.71–1.38 1 Extremely low risk 

7 Precipitation (C7) 48.170–48.503 5 Extremely high risk Nuthammachot and Stratoulias, 2019 

48.503–48.804 4 High risk 

48.804–48.974 3 Moderate risk 

48.974–49.8098 2 Low risk 

49.089–49.196 1 Extremely low risk 

8 Distance From Settlements (C8) 1043.5–1705.7 5 Extremely high risk Parvar et al., 2024 

689–1,043.5 4 High risk 

401.3–689 3 Moderate risk 

133.7–401.3 2 Low risk 

0–133.7 1 Extremely low risk 

9 Population density (C9) 1 5 Extremely high risk Zhang et al., 2024 

0.5 3 Moderate risk 

0 1 Extremely low risk 

10 Aspect (C10) South, northeast 5 Extremely high risk Nuthammachot and Stratoulias, 2021a 

West 4 High risk 

Flat and northwest 3 Moderate risk 

(Continued) 
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TABLE 7 (Continued) 

No. Factors Class Rank Risk level References 

Southwest 2 Low risk 

East and north 1 Extremely low risk 

11 Elevation (C11) 291–366 5 Extremely high risk Gai et al., 2011 

366–420 4 High risk 

420–483 3 Moderate risk 

483–566 2 Low risk 

566–719 1 Extremely low risk 

12 Slope (C12) 60.8276 5 Extremely high risk Gholamizadeh et al., 2023 

45–60 4 High risk 

30–45 3 Moderate risk 

15–30 2 Low risk 

0–15 1 Extremely low risk 

13 TWI (C13) 3.773–5.911 5 Extremely high risk Tiwari et al., 2021 

5.911–7.084 4 High risk 

7.084–8.412 3 Moderate risk 

8.412–10.116 2 Low risk 

10.116–14.978 1 Extremely low risk 

indicated an acceptable level of consistency. The weighted overlay 
method applied the computed weights to raster layers in ArcGIS. 
The resulting fire risk map represented the final output of the 
Fuzzy AHP. The final FFR map was generated from the normalized 
weights through a linear weighted combination, split into five 
classes using the natural break method (Figure 5). 

3.2.2 Fire risk map for Dong model 
The Dong Model was used to spatially analyze and quantify fire 

risk by assigning appropriate weights to each factor based on their 
contribution to fire susceptibility. This analysis led to the creation 
of a synthetic fire risk map, which visualizes areas that are most 
vulnerable to fire outbreaks. This allows stakeholders to prioritize 
mitigation eorts and allocate resources eectively. This was done 
after all the necessary factor maps (such as vegetation type, slope, 
elevation, distance from roads, precipitation, and temperature) 
were prepared and overlaid in a GIS environment (Figure 6). 

Our study eectively applies an understanding of the 
interaction between topography, climate, Vegetation, and human-
induced factors to inform forest fire risk maps and forest fire 
hazards. However, inherent uncertainty in these criteria’s weighting 
and relative importance still exists, and improving accuracy 
and dependability requires combining advanced statistical, 
probabilistic, and machine learning methods. Although we have 
used AHP, Fuzzy AHP, and the Dong Model, a critical research 
gap exists in methodically comparing these approaches using 
correlation analysis (e.g., Pearson correlation) to evaluate their 
consistency, identify discrepancies, and harmonize their results, 
so oering more profound insights on the choice of conditioning 
criteria, modeling of forest fire events, and the dependability of 
these techniques under dierent scenarios. 

3.3 Weights comparison and model 
performance 

A heatmap comparison of weight values assigned to 13 
decision-making criteria using three multi-criteria decision-
making models: AHP, Fuzzy AHP, and the Dong Model. Each factor 
denotes the weight assigned to a criterion by a specific model, 
with both the numerical value and color intensity indicating the 
level of importance. For instance, LULC consistently receives the 
highest weight across all models (AHP: 0.09, Fuzzy AHP: 0.087, 
Dong Model: 0.083), as indicated the underscoring its dominant 
role in forest fire risk assessment. In contrast, NDMI and Wind 
Speed exhibit comparatively lower weights across all models. This 
suggests that while they may influence fire risk, they are considered 
less critical relative to other factors such as Distance from Roads, 
Distance to Settlements, and Precipitation, which display moderate 
to high weights (ranging from 0.077 to 0.085). Overall, the Figure 
7 reveals a high degree of consistency among the three methods, 
particularly in the ranking of top contributing factors such as 
LULC, Distance from Roads, and Settlements. However, slight 
variations in weights (e.g., Temperature and NDVI) reflect each 
method’s underlying computational approach and sensitivity to 
pairwise judgments or data fuzziness. 

This Figure 8 illustrates a similarity matrix derived from AUC 
scores to evaluate the performance of three fire risk assessment 
models: AHP, Fuzzy AHP, and the Dong model. The matrix 
reveals a high degree of similarity among the models, with 
AUC-based similarity scores. Notably, AHP and Fuzzy AHP 
demonstrate the highest similarity, indicating a strong concordance 
in their fire risk prediction outcomes. Although Dong AHP 
exhibits slightly lower similarity with the other two models, the 
overall consistency across all methods suggests that the fire risk 
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FIGURE 4 

Forest fire risk map of Analytical Hierarchy Process (AHP). 

zones identified by each approach are largely congruent. This 
finding confirms the robustness and reliability of the AHP model 
when compared to established multi-criteria decision-making 

approaches in fire risk mapping. 
These figures show that the AHP, Fuzzy AHP, and the Dong 

models provide varied perspectives on fire risk, each oering 

a distinct view based on its methodology. This highlights the 

importance of model choice and suggests that integrating multiple 

models can lead to a more comprehensive fire risk assessment. 

3.4 Data partitioning and validation 
procedures 

Validation examined the accuracy of the predictions of the AHP, 
F-AHP, and Dong model approaches. Figure 9 displays the ROC 

curves for a forest fire risk map created using the AHP, F-AHP, 
and Dong models. According to the AUC plot evaluation, the 

Dong model has a maximum prediction accuracy, followed by AHP 

and then F-AHP. Consequently, it has been demonstrated that the 
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TABLE 8 Pairwise matrix of Fuzzy Analytic Hierarchy Process (F-AHP). 

Factors (C1) (C2) (C3) (C4) (C5) (C6) (C7) (C8) (C9) (C10) (C11) (C12) (C13) 

Temperature (C1) (1, 1, 1) (1.18, 
1.19, 
1.20) 

(0.93, 
0.95, 
0.97) 

(0.92, 
0.95, 
0.98) 

(1.28, 
1.29, 
1.30) 

(1.30, 
1.31, 
1.32) 

(1.01, 
1.01, 
1.02) 

(1.00, 
1.00, 
1.01) 

(1.04, 
1.04, 
1.05) 

(1.12, 
1.13, 
1.14) 

(1.13, 
1.14, 
1.15) 

(1.27, 
1.28, 
1.29) 

(1.02, 
1.03, 
1.04) 

NDVI (C2) (0.85, 
0.84, 
0.83) 

(1, 1, 1) (0.79, 
0.81, 
0.83) 

(0.77, 
0.81, 
0.85) 

(0.91, 
0.94, 
0.97) 

(0.92, 
0.95, 
0.98) 

(0.87, 
0.89, 
0.91) 

(0.88, 
0.90, 
0.92) 

(0.90, 
0.92, 
0.94) 

(0.97, 
0.99, 
1.01) 

(0.98, 
1.00, 
1.02) 

(1.07, 
1.09, 
1.11) 

(0.90, 
0.93, 
0.96) 

Distance from roads (C3) (1.07, 
1.05, 
1.03) 

(1.26, 
1.23, 
1.20) 

(1, 1, 1) (0.98, 
1.00, 
1.02) 

(1.31, 
1.33, 
1.35) 

(1.34, 
1.36, 
1.38) 

(1.10, 
1.13, 
1.16) 

(1.12, 
1.15, 
1.18) 

(1.16, 
1.18, 
1.20) 

(1.22, 
1.25, 
1.28) 

(1.24, 
1.27, 
1.30) 

(1.41, 
1.45, 
1.49) 

(1.15, 
1.18, 
1.21) 

LULC (C4) (1.09, 
1.06, 
1.03) 

(1.29, 
1.25, 
1.21) 

(1.02, 
1.00, 
0.98) 

(1, 1, 1) (1.36, 
1.39, 
1.42) 

(1.39, 
1.42, 
1.45) 

(1.14, 
1.17, 
1.20) 

(1.16, 
1.19, 
1.22) 

(1.20, 
1.23, 
1.26) 

(1.26, 
1.29, 
1.32) 

(1.28, 
1.31, 
1.34) 

(1.47, 
1.52, 
1.57) 

(1.22, 
1.25, 
1.28) 

NDMI (C5) (0.78, 
0.77, 
0.76) 

(0.88, 
0.86, 
0.84) 

(0.76, 
0.75, 
0.74) 

(0.74, 
0.73, 
0.72) 

(1, 1, 1) (1.03, 
1.04, 
1.05) 

(0.86, 
0.88, 
0.90) 

(0.88, 
0.90, 
0.92) 

(0.91, 
0.93, 
0.95) 

(0.96, 
0.98, 
1.00) 

(0.97, 
0.99, 
1.01) 

(1.07, 
1.09, 
1.11) 

(0.91, 
0.94, 
0.97) 

Wind speed (C6) (0.77, 
0.76, 
0.75) 

(0.87, 
0.85, 
0.83) 

(0.75, 
0.73, 
0.71) 

(0.73, 
0.71, 
0.69) 

(0.97, 
0.96, 
0.95) 

(1, 1, 1) (0.84, 
0.86, 
0.88) 

(0.86, 
0.88, 
0.90) 

(0.89, 
0.91, 
0.93) 

(0.94, 
0.96, 
0.98) 

(0.95, 
0.97, 
0.99) 

(1.03, 
1.05, 
1.07) 

(0.88, 
0.91, 
0.94) 

Precipitation (C7) (0.99, 
0.98, 
0.97) 

(1.14, 
1.11, 
1.08) 

(0.91, 
0.90, 
0.89) 

(0.88, 
0.87, 
0.86) 

(1.16, 
1.18, 
1.20) 

(1.19, 
1.20, 
1.22) 

(1, 1, 1) (1.01, 
1.02, 
1.03) 

(1.03, 
1.05, 
1.07) 

(1.08, 
1.10, 
1.12) 

(1.09, 
1.11, 
1.13) 

(1.31, 
1.35, 
1.39) 

(1.02, 
1.04, 
1.06) 

Distance from settlements (C8) (1.00, 
1.00, 
1.00) 

(1.17, 
1.15, 
1.13) 

(0.92, 
0.90, 
0.88) 

(0.89, 
0.87, 
0.85) 

(1.14, 
1.16, 
1.18) 

(1.16, 
1.18, 
1.20) 

(0.99, 
1.00, 
1.01) 

(1, 1, 1) (1.01, 
1.02, 
1.03) 

(1.06, 
1.08, 
1.10) 

(1.07, 
1.09, 
1.11) 

(1.28, 
1.32, 
1.36) 

(1.01, 
1.03, 
1.05) 

Population density (C9) (0.95, 
0.94, 
0.93) 

(1.27, 
1.25, 
1.23) 

(0.89, 
0.87, 
0.85) 

(0.87, 
0.85, 
0.83) 

(1.09, 
1.11, 
1.13) 

(1.11, 
1.13, 
1.15)

(0.97, 
0.98, 
0.99) 

(0.99, 
1.00, 
1.01) 

(1, 1, 1) (1.04, 
1.06, 
1.08) 

(1.05, 
1.07, 
1.09) 

(1.24, 
1.28, 
1.32) 

(0.98, 
1.00, 
1.02) 

Aspect (C10) (0.90, 
0.89, 
0.88) 

(1.35, 
1.32, 
1.29) 

(0.85, 
0.83, 
0.81) 

(0.83, 
0.81, 
0.79) 

(1.06, 
1.08, 
1.10) 

(1.08, 
1.10, 
1.12) 

(0.93, 
0.95, 
0.97) 

(0.94, 
0.96, 
0.98) 

(0.96, 
0.98, 
1.00) 

(1, 1, 1) (1.01, 
1.03, 
1.05) 

(1.17, 
1.21, 
1.25) 

(0.95, 
0.97, 
0.99) 

Elevation (C11) (0.89, 
0.88, 
0.87) 

(1.37, 
1.33, 
1.29) 

(0.86, 
0.84, 
0.82) 

(0.83, 
0.81, 
0.79) 

(1.03, 
1.05, 
1.07) 

(1.06, 
1.08, 
1.10) 

(0.91, 
0.93, 
0.95) 

(0.93, 
0.95, 
0.97) 

(0.95, 
0.97, 
0.99) 

(0.99, 
1.01, 
1.03) 

(1, 1, 1) (1.16, 
1.20, 
1.24) 

(0.94, 
0.96, 
0.98) 

Slope (C12) (0.82, 
0.80, 
0.78) 

(1.54, 
1.49, 
1.44) 

(0.80, 
0.78, 
0.76) 

(0.76, 
0.74, 
0.72) 

(1.01, 
1.03, 
1.05) 

(1.03, 
1.05, 
1.07) 

(0.85, 
0.87, 
0.89) 

(0.87, 
0.89, 
0.91) 

(0.89, 
0.91, 
0.93) 

(0.92, 
0.94, 
0.96) 

(0.94, 
0.96, 
0.98) 

(1, 1, 1) (0.91, 
0.93, 
0.95) 

TWI (C13) (0.98, 
0.97, 
0.96) 

(1.18, 
1.15, 
1.12) 

(0.94, 
0.92, 
0.90) 

(0.91, 
0.89, 
0.87) 

(1.12, 
1.14, 
1.16) 

(1.14, 
1.16, 
1.18) 

(0.99, 
1.01, 
1.03) 

(0.99, 
1.01, 
1.03) 

(1.02, 
1.04, 
1.06) 

(1.05, 
1.07, 
1.09) 

(1.06, 
1.08, 
1.10) 

(1.19, 
1.23, 
1.27) 

(1, 1, 1) 

developed FFR mapping is precise and eÿcient for preparing forest 
fire hazards in the chosen research area. 

The dataset was properly separated according to spatial 
and temporal boundaries to remove data leakage risks while 
maintaining scientific integrity. The training data originated from 
locations and periods that diered significantly from those used in 
validation testing. For validation, both MODIS fire data and data 
collection areas remained independent during non-overlapping 
time intervals. The strict separation method guarantees that 
training set fire events, together with their spatial characteristics, 
cannot aect validation set results (Ramo and Chuvieco, 2017). 

The validation framework received additional strengthening 
by applying excessive cross-validation alongside sensitivity testing 
procedures. The training data segmentation through cross-
validation created dierent folds for studying model accuracy 
across all subsets to validate its widespread applicability. The 

model predictions underwent sensitivity tests to confirm their 
robustness while accounting for any remaining error causes. These 
combinations of testing measures verify that ROC AUC scores 
correctly represent model predictive power, free from training data 
contamination, according to best practices in species distribution 
and wildfire risk modeling standards (Figure 9). 

4 Discussion 

The entire ecosystem and biodiversity of the forest, as well 
as the forest’s wealth, human life, and local climate, are all 
seriously threatened by uncontrolled forest fires. Identifying forest 
fire susceptible zones using GIS models is crucial for eective 
forest management and fire prevention strategies. This study 
integrates topography, climate, vegetation, and human activities 
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TABLE 9 Relative weights Fuzzy Analytic Hierarchy Process (F-AHP). 

Factor Relative fuzzy 
weight 

Temperature (C1) 0.0385 0.0429 0.0467 

NDVI (C2) 0.0462 0.05 0.0533 

Distance from roads (C3) 0.0538 0.0571 0.06 

LULC (C4) 0.0615 0.0643 0.0667 

NDMI (C5) 0.0692 0.0714 0.0733 

Wind speed (C6) 0.0769 0.0786 0.08 

Precipitation (C7) 0.0846 0.0857 0.0867 

Distance from settlements (C8) 0.0923 0.0929 0.0933 

Population density (C9) 0.1 0.1 0.1 

Aspect (C10) 0.1077 0.1071 0.1067 

Elevation (C11) 0.1154 0.1143 0.1133 

Slope (C12) 0.1231 0.1214 0.12 

TWI (C13) 0.1308 0.1286 0.1267 

TABLE 10 Normalized weights. 

Factor Normalized weights 

Temperature (C1) 0.083 

NDVI (C2) 0.07 

Distance from roads (C3) 0.085 

LULC (C4) 0.087 

NDMI (C5) 0.066 

Wind speed (C6) 0.065 

Precipitation (C7) 0.082 

Distance from settlements (C8) 0.083 

Population density (C9) 0.08 

Aspect (C10) 0.076 

Elevation (C11) 0.075 

Slope (C12) 0.067 

TWI (C13) 0.081 

to create comprehensive risk maps. The causes and eects of the 
area’s rapidly increasing number of forest fire occurrences can be 
better understood by analyzing the underlying criteria and the 
forest fire risk map created utilizing AHP, F-AHP, and the Dong 
model technique. 

4.1 Fire-inducing factors 

Our study utilizes three multicriteria decision models for fire 
risk across the three models AHP, Fuzzy AHP, and the Dong 
Model which highlights several key factors that are critical to 
understanding wildfire risk. The models utilize various parameters, 
including Land Use Land Cover (LULC), NDMI, Wind Speed, 
Distance from Roads, Distance to Settlements, Precipitation, 
Temperature, and NDVI, assigning weights to signify their 
importance. Among the criteria, LULC consistently receives the 

highest weight across all models, suggesting its crucial role in 
fire risk assessment. For instance, in the Fuzzy AHP, LULC is 
factored significantly in determining risk zones, aligning with past 
occurrences of fires (Kant Sharma et al., 2012). Similarly, LULC 
features prominently in both AHP-based models (Nuthammachot 
and Stratoulias, 2021) and GIS-based assessments (Güngöroğlu,
2017). NDMI and Wind Speed are generally weighted lower 
compared to other factors. While they are essential, their impact 
is less pronounced than criteria like proximity to roads and 
settlements or precipitation levels. The focus on infrastructural 
and environmental metrics underpins most fire assessment models, 
where temperature, NDVI, and precipitation are critical in 
predicting potential fire spread (Xie et al., 2022). The importance 
of proximity to roads and settlements is emphasized with moderate 
to high weights, suggesting these factors significantly influence 
fire risk. These criteria are vital given their correlation with 
human activities, which often ignite fires. The integration of such 
parameters in risk assessment allows for targeted fire prevention 
measures (Zhao et al., 2021). 

Precipitation and vegetation indexes like NDVI are weighted 
to reflect climatic influences on fire occurrence. High precipitation 
levels can lower fire risk by maintaining moisture levels in 
vegetation, whereas high NDVI values may indicate dense 
vegetation, influencing fire fuel load. Although dierent models 
show consistency in the inclusion and weighting of fundamental 
criteria like LULC, there are slight variations in weights assigned 
to temperature and NDVI. These variations can be attributed to 
methodological dierences and geographical contexts specific to 
each model’s application (Nuthammachot and Stratoulias, 2021). 
These criteria’s combined application in multi-criteria decision 
analysis frameworks forms a robust methodology for assessing 
fire risk. The accuracy and eÿcacy of these models are supported 
by alignment with fire data and validation against actual fire 
occurrences, making them invaluable in strategic fire management 
and risk mitigation eorts. The relative importance of these factors 
may vary depending on the specific geographical context and 
methodology used in each study (Abdo et al., 2022; Pourtaghi et al., 
2014; Abbas et al., 2025). 

4.2 Model accuracy and practical 
application 

This article employs the AHP, F-AHP, and the Dong model 
technique to identify the location at high risk in the Liangshui 
National Nature Reserve. To assess the accuracy of these methods, 
the established model must be tested using fire data. The AHP 
has been employed in numerous studies to evaluate fire risk, its 
specific climate conditions. This showing that each area has a 
unique accuracy percentage aected by underscores the necessity 
of tailored approaches in fire risk assessment. A noteworthy 
investigation in Laoshan National Park, China, demonstrated a 
remarkable accuracy level of 77% (Zhao et al., 2021). In contrast, 
another research eort in Kedarnath Wildlife Sanctuary, India, 
achieved even higher accuracy at 83% (Sinha et al., 2023). 
Several variables can explain the variance in results between the 
three fire risk models AHP, Fuzzy AHP, and the Dong Model, 
despite their high classification accuracy. Each model employs a 
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FIGURE 5 

Fire risk map of Fuzzy-Analytical Hierarchy Process (AHP). 

unique methodology: AHP relies on expert judgment, Fuzzy AHP 
uses fuzzy logic to manage uncertainty, and the Dong Model 
uses a distinct analytical approach and a set of criteria for fire 
risk assessment. Variations in data inputs, parameter sensitivity, 
classification thresholds, and model assumptions contribute to the 
discrepancy. Furthermore, variations in spatial scale, resolution, 
and the validation process employed by each model can lead to 
dierent conclusions. The models may also demonstrate varying 

levels of local versus global accuracy, and the interpretation of 
results can dier based on the model’s framework. Lastly, the 
complexity of each model and its sensitivity to the specific data 
used can influence the results. While each model is accurate 
within its context, the inherent dierences in their construction 
and application make direct comparison challenging, highlighting 
the need for a nuanced understanding of their strengths and 
limitations (Chuvieco et al., 2012). The results show the important 
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FIGURE 6 

Fire risk map of the Dong model. 

role of accuracy evaluations in validating and confirming model 
eectiveness. They are consistent with earlier studies and highlight 
the significance of multi-criteria decision analysis in forest fire 
prediction. 

The classification in Table 11 shows that the Moderate and 
high fire susceptibility classes dominate across all three models, 
together covering over 50% of the study area. The Dong Model 
and Fuzzy AHP assign slightly more area to the Moderate class, 

while AHP indicates a higher proportion under the Extremely 
High class (10.7%) compared to the other two models 3.7%. 
This variation reflects AHP’s sensitivity to sharply weighted 
criteria, whereas Fuzzy AHP and the Dong Model oer smoother 
risk transitions. Overall, all models exhibit consistent spatial 
patterns with minor variations in extreme classes. The AHP 
provides a more comprehensive approach and has identified a 
larger portion of the area classified as low or extremely low 
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FIGURE 7 

Weights comparison of Analytical Hierarchy Process (AHP), Fuzzy-Analytical Hierarchy Process (F-AHP) and the Dong model. 

FIGURE 8 

Similarity index of of Analytical Hierarchy Process (AHP), Fuzzy-Analytical Hierarchy Process (F-AHP) and the Dong model. 

susceptibility (Nikoli´ c et al., 2023). It’s vital to note that the 
choice of model can substantially aect the resultant susceptibility 
map and subsequent decision-making processes. The AHP model 
has been found to perform better in some studies, showing 
improved accuracy compared to conventional F-AHP (Yang et al., 

2023). However, the eectiveness of each model can be dierent 
depending on the specific context and available data. Each 
model oers insights into susceptibility classification. The AHP 
model appears to identify more high-risk areas, which could be 
crucial for proactive risk management. However, validation using 
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FIGURE 9 

Receiver Operating Characteristic (ROC) curve for Analytical Hierarchy Process (AHP), Fuzzy-Analytical Hierarchy Process (F-AHP), and the Dong 
model. 

TABLE 11 Fire risk zones classification. 

Fire susceptibility 
classes 

AHP classes F-AHP classes Dong model 

Area in 
percentages 

Area (km2) Area in 
percentages 

Area (km2) Area in 
percentages 

Area (km2) 

Extremely low 16.08% 10.3 17.97% 11.5 18.25% 11.68 

Low 27.8% 17.8 23.59% 15.1 23.56% 15.08 

Moderate 30.9% 19.8 38.44% 24.6 39.41% 25.22 

High 28.4% 18.2 30.31% 19.4 29.41% 18.82 

Extremely high 10.7% 6.9 3.75% 2.4 3.69% 2.36 

historical data or field observations is essential to determine which 
model best represents the actual conditions in the study area 
(Shekar and Mathew, 2023). 

4.3 Validation of fire risk assessment 

Procedures for validation used two essential data sets 
comprised of (1) results from AHP, Fuzzy AHP, and Dong models, 
which assigned the study area to five risk levels ranging from 
1 = Extremely Low Risk to 5 = Extremely High Risk and (2) MODIS 
fire occurrence data from 2013 to 2023 showing binary fire presence 
measurements (1 = fire, 0 = no fire). After processing the established 
dataset for global fire detection functions, the Google Earth Engine 

extracted verified MODIS fire events from the study region. The 

risk maps received MODIS fire points to classify observed fire 

prevalence and their corresponding predicted fire danger ratings, 
thereby creating a two-variable validation dataset. 

All three models, namely AHP, F-AHP, and the Dong model, 
have exhibited robust predictive capabilities, as evidenced by 

their AUC scores of 0.92, 0.91, and 0.90, respectively, which 

indicate a high level of accuracy in their predictions. These results 
were obtained through a rigorous MODIS fire data validation 

process that excluded data used in model development from the 

testing phase to ensure the models’ validity and generalization 

abilities. The use of external datasets for validation is crucial, as it 
provides reliable predictive results and supports the eectiveness 
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of GIS-based multi-criteria models for wildfire risk mapping, 
especially in sensitive and complex environments such as the 
Liangshui Nature Reserve. 

5 Conclusion 

This study evaluated the eectiveness of AHP, F-AHP, and 
the Dong model techniques in mapping forest fire risk using 
geospatial data from the Liangshui National Natural Reserve. 
Risk maps were generated based on thirteen key criteria and 
classified into five vulnerability levels ranging from Extremely 
Low to Extremely High. Our findings indicate that among 
them, AHP has achieved the highest AUC (0.92), followed 
by F-AHP (0.91), which also indicates a strong predictive 
accuracy. While the Dong model has achieved an AUC of 
0.90. All three models have shown high predictive accuracy, 
but AHP stands out for its sharper identification of high-
risk zones, making it a strong candidate for operational 
fire risk mapping in the region. Its ability to eectively 
capture the spatial dynamics of fire susceptibility within 
this landscape sets it apart, oering valuable insights for 
better understanding and managing fire risks. Based on 
the fire susceptibility classification results, the AHP model 
identifies the largest area under Extremely High risk 10.7% 
and a substantial High-risk area 28.4%, making it the most 
conservative model in flagging critical zones. Although AUC 
was the sole validation metric due to data limitations, 
the results confirm the models’ practical utility in guiding 
fire prevention and resource allocation. Future research 
should incorporate additional human and environmental 
factors, employ ground-truth data for validation, and explore 
advanced or hybrid modeling approaches to further improve 
prediction accuracy. 
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