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Introduction: Estimation of forest carbon (C) storage is essential for 
understanding the global C cycle, mitigating climate change, and developing 
carbon markets. However, systematic research on forest C storage estimation 
needs improving.
Methods: Herein, a bibliometric and content review of literature published 
between 2008 and 2025 was conducted to synthesize temporal and spatial 
trends and to identify methodological advances and gaps in forest C-storage 
estimation.
Results: The results revealed that environmental sciences accounted for the 
largest share of publications (n = 718). The most productive institution and 
country were the Chinese Academy of Sciences (n = 208) and the United States 
(n = 691), respectively. Research progress in the field was categorized into three 
distinct stages since 2008. The early stage (2008–2012) was dominated by 
eddy covariance, satellite remote sensing, and airborne radar. The middle stage 
(2013–2017) was characterized by greater use of process-based and statistical 
simulation models. In the later stage (2018–2025), techniques such as random 
forest (RF), machine learning and biomass mapping became more widely used. 
Over this period, model performance improved substantially, especially the 
coefficient of determination (R2) increased from 0.62 to 0.97 for the TRIPLEX-
Flux C-exchange model and from 0.63 to 0.97 for RF models.
Discussion: Spatially, most studies addressed local-to-regional scales, whereas 
large-scale or global assessments remain limited. This synthesis clarifies 
methodological trajectories and persistent gaps that can guide the development 
and wider deployment of forest C-storage estimation approaches and support 
evidence-based climate policy and C-market design.
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1 Introduction

Forests cover a substantial portion of the Earth’s surface (Berner 
and Goetz, 2022; Köhl et al., 2015). The changes in their carbon (C) 
storage directly affect atmospheric carbon dioxide concentrations 
(Hao et  al., 2025), and, in turn, the stability of the global climate 
system (Stancliffe et al., 2024). Accordingly, robust estimation of forest 
C storage is crucial for understanding and regulating the climate 
system (Lázaro-Lobo et  al., 2023; Xu K. et  al., 2025). Accurate 
estimates not only inform assessments of the global C balance but also 
underpin effective forest management and conservation policies (Liu 
et al., 2023; Green and Keenan, 2022) and provide reliable data to 
support C trading and climate policymaking (Intergovernmental 
Panel on Climate Change (IPCC), 2019; Fahey et al., 2010). As global 
forest area continues to decline due to deforestation and land 
degradation, the need for effective and scalable approaches to 
estimating forest C storage has become increasingly urgent (Bossy 
et al., 2025; Yang H. et al., 2023).

Common approaches include ground measurements, allometric/
biomass equations, and remote sensing (RS) techniques (Rodríguez-
Veiga et al., 2017). Ground measurements, based on plot-level surveys 
of tree height, diameter at breast height (DBH), and species 
composition, yield high accuracy but are time- and labor-intensive, 
limiting their feasibility over large or complex terrains (Xu et  al., 
2010). Biomass-equation methods use statistical relationships between 
measurable tree attributes and biomass/C stock (Yang M. et al., 2023). 
These techniques are cost-effective and operationally simple, whereas 
their accuracy depends on model transferability and region-specific 
parameters. By contrast, advances in RS (particularly satellite-based 
observations) have catalyzed rapid growth in large-area forest 
C-storage estimation (Mo et al., 2023; Ye et al., 2022).

The RS landscape has evolved from single-source imagery and 
qualitative analyses to multi-source data integration and quantitative 
inversion (Zhang, 2010). Early efforts relied on medium- to 
low-resolution sensors (e.g., Landsat TM, 30 m) and vegetation 
indices such as Normalized Differnce Vegetation Index (NDVI) to 
approximate productivity (Zhao, 2007). However, spatial resolution 
limited the precise mapping of C-pool distributions (Goetz et al., 
2009). In the early 21st century, progress in hyperspectral RS (e.g., 
Hyperion) and sub-meter resolution satellites (e.g., Gaofen series) 
enabled the coupling of chlorophyll-fluorescence proxies with 
multispectral band combinations, significantly improving biomass 
inversion for ecosystems such as mangroves More recently, satellite 
constellations (e.g., Jilin-1) have approached daily global coverage. 
Coupled with AI-enabled image interpretation, update cycles for 
C-flux monitoring have accelerated from interannual to quarterly.

These advances have shifted C mapping from static inventories to 
spatiotemporal, multi-dimensional analyses. Cloud platforms such as 
Google Earth Engine (GEE) facilitate fusion of heterogeneous data 
streams and scalable computation (Zhang and Fan, 2025), thereby 
supporting high spatiotemporal resolution assessments at regional to 
global scales (Xu W. et al., 2025). In constructing C maps, the joint 
selection of spatial resolution and vegetation/spectral indices is pivotal 
for estimation accuracy (Wicaksono, 2017).

For large-scale C-budget assessments, combinations of 30-m 
Landsat time series (e.g., NDVI and EVI) with the CASA model remain 
mainstream because of their multi-decadal continuity and mature NPP 
inversion algorithms (FAO, 2010; Kang et al., 2016). Notably, recent 
domestic datasets (e.g., GF-5 with ~5-nm spectral bandwidth) have 

strengthened end-to-end autonomy from data acquisition to AI-assisted 
interpretation and are increasingly adopted in regional C-neutrality 
evaluations (Zhang et al., 2024). While high-resolution multispectral RS 
supports efficient, large-area, and cost-effective monitoring of forest C 
storage (Chen Q. et al., 2023), estimation accuracy remains sensitive to 
sensor characteristics, atmospheric effects, and downstream processing 
choices (Zhang et al., 2022). Thus, continued development and validation 
of RS algorithms are a priority to enhance both accuracy and efficiency 
(Zhao et al., 2022a).

To date, several studies on C-sequestration estimation have 
emphasized aboveground biomass (AGB) in tropical forests (Khan 
et al., 2025; Rodda et al., 2024). They provided comparative evaluations 
of extant methods and summarizing advantages and limitations across 
practical applications (Abbas et al., 2020; Peng et al., 2016). However, 
most prior work has been confined to a single spatial scale, limiting 
generality and potentially biasing insights into forest C-sequestration 
estimation (Wang et al., 2012; Zhao et al., 2022b). There remains a 
need for systematic, multi-scale syntheses.

In response, we systematically analyze literature indexed in Web 
of Science from 2008 to 2025, employing bibliometric indicators (e.g., 
annual output, prolific authors, institutions) to evaluate the 
development of forest C-storage estimation (Huang et  al., 2020). 
Temporal stage transitions and spatial-scale applications to identify 
emerging themes and research gaps were further explored. The 
objectives were to: (1) compile and analyze publications, disciplines, 
journals, countries, institutions, and keywords related to forest 
C-storage estimation; (2) characterize methodological evolution 
across distinct temporal stages; and (3) assess applications and 
progress across spatial scales from local to global. Our findings will 
provide a synoptic view of the dynamic evolution of forest C-storage 
estimation, with implications for methodological innovation, large-
scale implementation, and sustainability-oriented policy design.

2 Data sources and research methods

2.1 Data collection and processing

Publications for this study were retrieved from the Web of Science 
(WOS) Core Collection and China National Knowledge Infrastructure 
(CNKI) databases, spanning the years 2008 to 2025. The keywords 
searched for were “Forest” and (“C storage” or “C sequestration” or “C 
sink”) and (“Measurement method” or “Technique” or “Technology”). 
The search period was from January 2008 to April 2025. Details of the 
Boolean search query are provided in Appendix A. During screening, 
iterative refinements were applied to exclude irrelevant records. In 
total, 2,427 publications related to forest C-storage estimation 
techniques were retained (Figure 1), including research articles and 
review papers. All records were saved and subjected to visual analyses 
to summarize journals, temporal trends, countries, institutions, 
authors, and keywords.

2.2 Research stage development and 
dynamics

In the visual analysis, each network node represented a 
distinct entity, and the temporal dimension was indexed by 
publication year (Huang et al., 2023). Foundational literature on 
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forest C-storage estimation in our knowledge network can 
be  traced to 2008, when Professor George Burba introduced 
eddy-covariance (EC) corrections to reduce cold-season bias in 
ecosystem CO2 uptake (Burba et al., 2008). Accordingly, 2008 was 
selected as the starting year.

International policy milestones align with subsequent 
methodological development. Under the Kyoto Protocol, Parties were 
required to meet quantified emission-reduction targets during 2008–
2012 (Protocol, 1997; Rosenqvist et  al., 2003). This period was 
designated as Stage 1 (Figure 2). Following the entry into force of the 
Paris Agreement on 4 November 2016, global climate governance 
entered a new phase (Paris Agreement, 2015; Grassi et  al., 2017). 
Consequently, the years from 2013 to 2017 were defined as Stage 2. In 
2018, the “REddyProc” package addressed key challenges in 
processing raw EC flux data (Wutzler et al., 2018), and network-level 
advances helped resolve several long-standing issues (Baldocchi et al., 
2018), motivating Stage 3 (2018–2025).

Overall, the period 2008–2025 is divided into three stages: 2008–
2012 (Stage 1), 2013–2017 (Stage 2), and 2018–2025 (Stage 3). This 
study systematically reviews publications within each stage to 
characterize distributional patterns and temporal evolution in forest 
C-storage estimation techniques.

2.3 Research regional scale division

The accuracy of forest C stock studies primarily relies on multi-source 
data fusion and model optimisation (Nguyen and Saha, 2024). By 
integrating ground plot measurements with RS technologies (such as 
Sentinel-2 and LiDAR), alongside ML models (e.g., RF, fully convolutional 
neural networks) and traditional regression methods (e.g., polynomial 
regression), researchers have made significant advancements in estimating 
forest C storage (Nasiri et al., 2022). Among these, regression models, 
especially those focusing on C storage estimation, have been refined over 
the years to increase their accuracy and applicability (Sun and Liu, 2019). 
In addition, C mapping techniques, including RS-based spatial analysis 
and visualization tools, have been developed to provide more detailed and 
geographically accurate assessments of forest C stocks (Lamichhane 
et al., 2019).

Over the past decade, these methods have been applied across a range 
of forest ecosystems, from tropical to temperate forests, and have shown 
a marked improvement in C stock predictions. The integration of these 
approaches, coupled with newer algorithms such as BO-RF (Bayesian 
Optimized RF), has significantly enhanced the reliability of C stock 
estimates by improving model precision (R2). While precision metrics like 
R2 have been widely applied in previous studies, recent advancements in 

FIGURE 1

Schematic diagram of database retrieval and screening process.
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algorithms and optimisation of feature variables have further bolstered 
the accuracy and reliability of C stock estimates. Hence, in this study, a 
meticulous selection was made from 2,427 publications, ultimately 
identifying 487 papers as the most relevant to the present study. From 
these publications, key data such as study locations, latitude and longitude, 
research methods, and precision (R2) were extracted and recorded. 
Moreover, all study location coordinates were converted into decimal 
format and visually displayed in Figure 2a.

Furthermore, the research areas were categorized into three scales: 
large, medium, and small (Huang et al., 2022). Large-scale regions 
generally refer to global or continental areas, medium-scale regions 
typically refer to national or state levels, and small-scale regions 
usually refer to local or regional areas. It is important to note that 
ownership of large-scale studies often depends on the primary 
research institution producing the research article. The present study 
systematically reviewed the literature related to these three area scales 
and detailed the level of research into forest C storage estimation 
techniques across different spatial dimensions.

2.4 Scientometrics analysis methods

Bibliometric analysis was conducted using Cite Space (V6.2.R6) 
software package. This package is a metric instrument that displays 

knowledge flow and distribution of data, within a field from 
perspective parametres such as scientometrics, data analysis, and 
information visualization, and then generates knowledge graphs for 
different themes (Chen, 2006). The results can intuitively show the 
research trends and research hotspots in certain fields, and the size of 
each node in the graph represents the frequency of a particular item 
like keywords or authors (Wang G. et al., 2023).

Furthermore, in this paper, the “ggplot2” package in R 4.5.0 
software was used to draw the bar chart, the” metafor” package was 
used to draw the global distribution map, and it was drawn in 
combination with ArcGis10.8.1. Data analysis was conducted using 
IBM SPSS 27 (Feng et al., 2024).

3 Results

3.1 Literature output and publication 
analysis

The literature discussing forest C storage estimation 
techniques came from 121 countries located around the world. 
These countries were primarily distributed across the Americas, 
Europe, Asia, and Oceania (Figures  2a,b). The number of 
publications relating to forest C storage estimation techniques 

FIGURE 2

Analysis of publications related to forest carbon stock estimation techniques. (a) Global distribution of study regions. Deeper blue indicates areas with a 
relatively higher number of published papers. (b) The geographical distribution of research sites extracted from the related literature. The green areas 
represent global forest coverage, sourced from ArcGIS online maps. The red points represent the distribution of latitude and longitude coordinates for 
research sites extracted from the related literature. (c) Annual number of publications. (d) Cumulative number of publications. The differently colored 
boxes represent the three phases of development in forest carbon stock estimation techniques (2008–2012, 2013–2017, and 2018–2025).
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and the cumulative number of publications over the period 
ranging from 2008 to 2025 showed a steady increase in growth 
trend, as seen Figures 2c,d. Stage 1 in the development of forest 
C storage estimation techniques ranged from 2008 to 2012. 
During this period the average annual global number of 
publications was 78, with an average annual growth rate of 6%. 
In China, the average annual number of publications was 23, with 
an average annual growth rate of 39%. During Stage 2 (i.e., 2013–
2017) and Stage 3 (i.e., 2018 to 2025), the average annual global 
publication growth rates were 1 and 3%, respectively (Figure 2c). 
The cumulative number of publications globally showed a 
continuous linear upward trend, reaching a total of 2,427 
publications, with China contributing 25.5% to the publication 
total (Figure 2d).

3.2 Subject categories and journal 
distribution

The literature containing forest C storage estimation techniques 
covered 78 disciplinary categories and involved 823 published 
journals. Among the top ten disciplines was Environmental Science, 
which had the highest number of publications (718) (Figure 3a) and 
accounted for 18% of the total number of publications 
(Supplementary Table S1). This was followed by Forestry and Ecology, 
with 456 and 383 publications respectively, representing 12 and 10% 
of the total number of publications. The journal “Global Change 
Biology,” a journal closely allied to the Environmental Science 
discipline, published 1,306 articles, which equated to 3% of the global 
total. The total number of publications in “Forest Ecology and 

FIGURE 3

Analysis of disciplinary categories and journals related to publications on forest carbon stock estimation techniques. (a) Top 10 disciplinary categories 
by proportion of publications. (b) Top 25 journals by proportion of publications. (c) Burst analysis of publications related to forest carbon stock 
estimation techniques. The dark gray columns represent the time range in which the journal appeared, and the blue columns represent the hot range 
of the journal at a certain year.
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Management,” “Science,” and “Nature” was 3,072, and accounted for 
7% of the total number of publications (Figure 3b; Supplementary  
Table S2).

Since 2008, the citation frequency of “Global Change Biology,” 
“Tree Physiology,” and “Journal of Geophysical Research—
Atmospheres” significantly increased during Stage 1, with sustained 
popularity lasting 4 to 5 years (Figure 3c). The journals “RF” and 
“Science of the Total Environment” maintained their popularity from 
2022 to 2025, with citation levels of 21 and 18, respectively 
(Supplementary Table S3).

3.3 Analysis of countries and institutions

The present study found the United States had the highest number 
of publications, with 691 papers, and accounting for 29% of the total 
number of publications (Figure  4a). China followed with 468 
publications, making up 20% of the total number of publications. 
Other countries with high publication numbers included Germany 
(240 papers, 10%), Australia (163 papers, 7%), and France (142 papers, 
6%) (Supplementary Table S4, Figure 4a). The collaboration network 
existing between the United  States and China produced the most 
publications, indicating that they hold a leading global position in 
forest C storage estimation techniques research (Figure 4b). Among 
the 234 publishing institutions worldwide, the Chinese Academy of 
Sciences ranked first with 208 publications, accounting for 22% of the 
total number of publications (Supplementary Table S5). This was 
followed by the United States Department of Agriculture (121 papers, 

13%), the United  States Forest Service (98 papers, 11%), and the 
University of California (87 papers, 9%) (Figure 4c). The University of 
the Chinese Academy of Sciences ranked seventh, and the remaining 
institutions were located in Europe (Supplementary Table S5). These 
findings demonstrate that the United States is the most research active 
country in the field of forest C storage estimation technology, followed 
by China (Figure 4d).

3.4 Analysis of authors

The study identified 613 authors contributing to forest C storage 
estimation (2008–2025). Among the most cited, M. Reichstein (231 
citations, H-index 114) introduced the model–data fusion framework, 
integrating soil respiration and environmental drivers to construct 
cross-scale models. This approach significantly improved the accuracy 
of dynamic simulations of forest C fluxes and advanced the use of deep 
learning in Earth system science (Reichstein and Beer, 2008). Eric 
A. Davidson (220 citations, H-index 102) combined experiments and 
modeling to reveal the temperature sensitivity of soil C decomposition 
(Davidson and Janssens, 2006). He further developed the DAMM 
model, linking enzyme kinetics with temperature response to simulate 
soil organic matter decomposition, representing a process-based 
modeling approach (Davidson et al., 2012).

Dennis D. Baldocchi (215 citations, H-index 133) promoted EC 
as a core method for ecosystem-scale CO2 fluxes, establishing its role 
in long-term monitoring networks such as FLUXNET (Baldocchi, 
2003). Richard A. Houghton (204 citations, H-index 100) revised C 

FIGURE 4

Analysis of contributions by different countries and institutions to forest carbon storage estimation techniques. (a) Top 10 countries by proportion of 
publications. (b) International collaboration network. (c) Top 10 institutions by proportion of publications. (d) Co-occurrence of institutional 
collaboration networks. Nodes represent countries, and the size of each node is related to the number of papers published by that country. Purple 
rings indicate high centrality.
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flux estimates from land-use change since 1850, providing one of the 
most widely used approaches for global C budgets (Houghton, 2003; 
Houghton et  al., 1999). Rattan Lal (200 citations, H-index 136) 
highlighted the role of soil C sequestration in climate mitigation and 
developed frameworks to assess soil organic C, particularly valuable 
in the context of C neutrality (Lal, 2004, 2013).

In addition, Jerome Chave (191 citations, H-index 91) advanced 
allometric equations for AGB estimation based on tree diameter, 
height, and wood density. These models, validated with large datasets, 
have become the most widely applied tools for tropical forest C 
estimation (Chave et al., 2005; Chave et al., 2014). Marc Aubinet (177 
citations, H-index 54) standardized EC data acquisition, processing, 
and error control through EUROFLUX, making it the international 
reference for ecosystem-scale C exchange (Aubinet et al., 2012).

These contributions established a multi-scale C estimation 
framework, spanning tree-level (allometric models), ecosystem-level 
(EC and soil respiration), and global-level (land-use and C cycle 
models). They remain highly applicable today and, when integrated with 
RS and AI, are expected to further enhance the accuracy and timeliness 
of forest C storage assessments (Supplementary Figure S1; Table 1).

3.5 Keywords and keyword cluster analysis

From 2008 to 2012 (Stage 1), EC method, modeling, and RS 
technologies were widely applied to estimate forest C storage. 
Airborne LiDAR and allometric equations became the most 
applied technologies in Stage 2 (2013–2017). In Stage 3 (2018–
2025), RF became the most frequently mentioned technology, 
followed by ML (Figure  5a). Notably, during this stage, forest 
inventory techniques, allometric equations, airborne LiDAR, 
digital soil mapping, and ML methods became active (Figure 5b). 

Among the group, both “ML” and “RF” methods registered the 
highest interest levels in recent years, with intensities of 13 and 9, 
respectively. Digital soil mapping and deep learning (DL) 
technologies first appeared in 2021 and 2022, respectively, and 
their popularity continues to the present day (Supplementary  
Table S6).

The keyword category was divided into four main clustering 
groups, with each cluster containing 103–140 keywords (Figure 5c). 
These clusters were ranked by their co-citation frequency, which 
included: (1). A cluster related to EC, covering 140 keyword nodes 
such as ML, spatial heterogeneity, and C budget, and with an S value 
of 0.8; (2). The soil organic C cluster, including digital soil mapping, 
RF, and other key technologies; (3). A cluster centered on radar 
technology, encompassing RS and airborne LiDAR, etc.; (4). A group 
representing ecosystem services, including forest logging and forest 
management (Figure  5c; Supplementary Table S7). Overall, “C 
sequestration” appeared as the most frequently mentioned keyword, 
occurring 299 times. “Forest” and “Climate change” appeared 276 
and 264 times, respectively. In addition, “Storage” (210 times), 
“biomass” (176 times), and “EC” (162 times) also appeared as 
significant keywords (Figure 5d; Supplementary Table S8).

3.6 The accuracy of the forest C storage 
estimation model

Modeling systematically extracted and analyzed data from 
selected articles. The trend in modeling accuracy over the three 
stages is presented in Figure 6a. In Stage 1 of the development of 
forest C storage estimation techniques (2008–2012), the average 
accuracy (R2) of the models was calculated to be 0.7. And by Stage 
3 (2018–2025), the modeling accuracy had significantly improved, 

TABLE 1  Representative biomass or carbon estimation methods and their characteristics.

Method Author(s) Scope Advantages Limitations

Soil respiration model–data 

fusion

Reichstein, M. Forest ecosystems/plot Combines observations with 

environmental factors; applicable 

from lab to regional scale

Complex structure; requires 

high-quality multi-scale data

DAMM model
Davidson, E.A. SOM decomposition; soil 

respiration

Explains carbon temperature 

sensitivity

Many parameters; high field data 

demand

AGB equations

Chave, J. Tropical & subtropical forests Simple formulas using DBH, 

height, density; suitable for large 

samples & remote sensing

Tree height difficult; density 

varies regionally; less accurate in 

sparse/high-latitude forests

Eddy covariance, EC

Baldocchi, D.D. and Aubinet, 

M.

Forests, croplands, grasslands Non-destructive, continuous, 

captures interannual GPP

Errors in low night turbulence; 

limited by tower site & surface 

uniformity

Bookkeeping model
Houghton, R.A. Global/regional land-use 

change

Long-term series; tracks 

deforestation & afforestation

Relies on historical data; subject 

to uncertainties & assumptions

Soil carbon sequestration 

framework

Lal, R. Global soil carbon pool Emphasizes climate mitigation 

role; provides accounting 

principles

Slow changes; long monitoring; 

management variability

Atmospheric inversion

Ciais, P. Regional to global Constrains fluxes with CO₂ 

concentration

Sensitive to network density; 

relies on transport models, error 

propagation
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with an average R2 reaching a value of 0.77. In particular, the 
accuracy of the TRIPLEX-Flux C exchange model significantly 
increasing over time, with R2 initially being estimated to be 0.62 
(Wang et al., 2012) and increasing to 0.97 (Chen et al., 2018) by the 
end of the final stage. Similarly, the R2 of the RF model increased 
from 0.63 (Wu et al., 2016) to 0.97 (Zhu et al., 2023), while the R2 
of the 3-PG model was capable of reaching a value of 0.99. From a 
regional perspective, methods like Unmanned Aerial Vehicles 
(Zhang and Liang, 2020) and Global Forest AGB maps (Cunliffe 
et al., 2022) can be used for estimating large-scale C storage, with 
R2 of 0.61 and 0.82, respectively (Figure 6b).

3.7 Regional scales corresponding to forest 
C storage estimation techniques

Between 2008 and 2025, 8, 16, and 67 countries conducted 
research closely related to C storage estimation at large, medium, and 
small scales, respectively (Figures 7a,c,e). During this period, China 
had an excellent performance in research publication volume at all 
scales, accounting for 30, 34, and 22% of the total publications in large, 
medium, and small scales, respectively. In comparison, the 
United States also showed high levels of activity in this research field 
and was ranked second overall. It contributed 10, 14, and 12% to 

FIGURE 5

Keyword analysis of forest carbon stock estimation techniques from 2008 to 2025. (a) Analysis of keyword cloud evolution. (b) Trend analysis of 
keyword bursts. The dark gray columns represent the time range in which the journal appeared, and the blue columns represent the hot range of the 
journal at a certain year. (c) Clustering analysis of keyword citation frequency. Each node represents a keyword in the clustering diagram. The modular 
value Q > 0.3 and the average silhouette value S > 0.5 indicate that the cluster structure is clear and the cluster categories are reasonable. (d) Keyword 
co-occurrence network analysis. Lines between nodes represent connections between keywords, and the size of a node reflects the frequency of 
appearance or citation of the keyword.

FIGURE 6

Trends in accuracy of models for forest carbon stock estimation techniques. (a) Accuracy of the models at different stages (Stage 1, 2008–2012; Stage 
2, 2013–2017; Stage 3, 2018–2025). (b) Accuracy of different models. R2 is used as the unified standard for measuring accuracy.
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publication volumes at the large, medium, and small scales, 
respectively (Figures 7b,d,f).

4 Discussion

4.1 Development of forest C sequestration 
technology on time scale

Before 2008, C estimation techniques primarily relied on ground 
plot surveys and biomass methods, which involved directly measuring 
plant dry weight or estimating C stocks using EC (e.g., NPP and 
respiration). The establishment of frameworks such as the ISO 
14040/14044 and PAS 2050 further promoted the standardization of 
C accounting. In terms of biomass estimation models, the Brown 
model predicts forest biomass based on climatic parameters (e.g., 

temperature and precipitation), making it suitable for large-scale 
studies. The IPCC default model and biomass expansion factor (BEF) 
model provide general estimation methods based on vegetation type 
and parameters like tree height and diameter, offering essential tools 
for early C stock research.

Since 2008, driven by international agreements such as the Kyoto 
Protocol and the Paris Agreement, RS and process-based models have 
rapidly advanced (Falkner, 2016; Grassi et al., 2017) (Figure 5). EC 
systems (Longdoz et al., 2008) and C cycle models (Metsaranta and 
Kurz, 2012) have enhanced understanding at the process level, while 
RS has expanded coverage to larger areas (Wicaksono et al., 2011) 
(Figure  6a). However, the application of this technology is not 
balanced: developed countries have integrated these technologies into 
national monitoring systems, while many developing countries face 
challenges such as weak infrastructure, limited funding, and land 
tenure disputes (Gizachew and Duguma, 2016) (Figures 4a,b). These 

FIGURE 7

Trends in research on global forest carbon stock estimation at different scales (small, medium and large scales). (a) Number of publications on small-
scale research. (b) Number of publications in individual countries corresponding to small-scale research. (c) Number of publications on medium-scale 
research. (d) Number of publications in individual countries corresponding to medium-scale research. (e) Number of publications on large-scale 
research. (f) Number of publications in individual countries corresponding to large-scale research. Deeper color indicates countries with a relatively 
higher number of published papers. The pie chart shows the proportion of studies on small, medium and large scales among the total literature.
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disparities are not only significant at the scientific level but also 
directly limit countries’ ability to fulfill reporting obligations under 
the United Nations Framework Convention on Climate Change 
(UNFCCC) (Köhl et al., 2015; Lewis et al., 2019) (Figures 2a,b, 3). 
Hence, the development of forest C sequestration estimation 
technologies reflects both changes in scientific capacity and policy 
frameworks. Early reliance on EC and simple C cycle models reflected 
technical feasibility as well as the urgency of reporting requirements 
under the Kyoto Protocol. While scientifically reliable, these methods 
were limited to site-level observations, thus unable to provide the scale 
required for national or global reports.

In the next stage, LiDAR (Antonarakis et al., 2017; Assefa et al., 
2017), RS (Galidaki et al., 2017), and allometric equations (Neigh 
et  al., 2016) (Figures  3b, 5a) became the main tools. The main 
reasons were economic and operational: LiDAR could provide 
detailed canopy structure information at increasingly lower costs 
(Simonson et  al., 2016), while allometric equations offered a 
practical choose between accuracy and simplicity (Huy et al., 2022; 
Leite et  al., 2020), making them suitable for national forest 
inventories (Johnson et al., 2022). However, these methods still have 
inherent limitations. The high cost of LiDAR restricts its application 
in developing countries, while allometric equations face regional 
applicability issues (Bossy et al., 2025; Nandal et al., 2023), often 
underestimating biomass in diverse tropical systems. From an 
applied perspective, allometric equations (Johnson et al., 2024) and 
EC techniques are more suitable for small-scale and detailed 
studies, while RS technology is indispensable for medium- and 
large-scale regional studies (Fu et al., 2015; Wang J. et al., 2023). 
This discrepancy highlights the ongoing tension between technical 
complexity and practical feasibility. The continued reliance on 
simpler methods is not due to inertia but reflects the socio-
economic realities of national forest inventories and C 
offset markets.

In recent years (2018–2025), the shift towards ML, RF, and 
dynamic ecosystem models (Sun et al., 2025) (Figure 5d) has been 
driven by improvements in computational power, the rise of open-
access satellite data (e.g., Landsat, Sentinel), and the growing demand 
for higher accuracy under the monitoring and reporting frameworks 
of the Paris Agreement and UNFCCC. These methods have overcome 
previous limitations, enabling the capture of temporal dynamics and 
handling increasingly complex RS datasets (Chen Z. et  al., 2023). 
Unlike earlier static methods, dynamic models and ML integrate 
heterogeneous datasets, enhancing scalability (Rodríguez-Veiga et al., 
2017) (Figure 7). The advent of ML further enhances the modeling 
techniques’ ability to handle complex data, challenging transparency 
and reproducibility, which are critical for international C reporting 
(Bharadiya, 2023; Yu and Wang, 2025).

Additionally, soil, as an integral component of forest ecosystems 
(Chen et  al., 2024), also requires precise C stock estimation for 
comprehensive forest C assessments (Coops et al., 2025). Similarly, 
advances in digital soil mapping have improved the estimation 
accuracy of underground C stocks, but fragmented soil datasets still 
introduce uncertainty (Assefa et  al., 2017; Avitabile et  al., 2016) 
(Figure 6b). The challenges are not only technical but also institutional: 
balancing method innovation with the transparency and comparability 
required by measurement, reporting, and verification MRV 
(Measurement, Reporting, and Verification) systems. However, their 
effectiveness depends on data availability and transparency, and the 

lack of open-access high-resolution RS data (particularly in tropical 
regions) limits their applicability, exacerbating global inequalities in 
C monitoring capacity.

Overall, the temporal evolution of forest C sequestration 
technologies reflects a clear trajectory: from descriptive, labor-
intensive approaches to dynamic, data-intensive modeling. Yet each 
transition has left unresolved issues—unequal access for developing 
countries, trade-offs between precision and cost, and the slow policy 
uptake of advanced algorithms. Addressing these challenges will 
be critical for ensuring that technical progress translates into more 
effective global climate governance.

4.2 Development of forest C sequestration 
technology on space scale

At the spatial scale, the evolution of forest C stock estimation 
methods reflects a shift from localized plot studies to global 
monitoring networks (Figure 7). At the local scale, C stock estimates 
for forests mainly relied on manual data collection and simple models 
(Liang et al., 2022). Accurate ground measurements and ecological 
models allowed for highly precise estimates (Chave et  al., 2005) 
(Figure 6), but these lacked scalability. While still crucial for validating 
RS data, these methods were costly and time-consuming. The 
advantage of this type of research lies in its ability to provide detailed 
ecological insights, especially revealing the impacts of climate change 
on forest C stocks (Cusack et al., 2016). However, relying solely on 
local studies can lead to fragmented knowledge, making it insufficient 
for supporting national-level reports and limiting its broader 
application in policy.

At the national scale, forest inventory data, containing detailed 
information about tree diameter, height, species, crown cover, and other 
parameters, combined with RS technologies, has made C stock assessment 
more systematic. Countries with established forest inventory systems, 
such as the United States and China, have used this data to design C sink 
policies and fulfill international reporting obligations. However, 
significant differences in governance capacities among countries exist. In 
countries with weak institutions, forest inventory data is often incomplete 
or outdated, reducing the accuracy of C estimates and impacting their 
credibility in international C markets. This disparity raises an important 
policy issue: Should global climate financing mechanisms invest more in 
building MRV capacity in developing countries rather than solely funding 
technological upgrades?

At the global scale, satellite-based Earth observation systems (e.g., 
MODIS, Landsat) and collaborative initiatives like GFOI and the 
Global C Project (Avitabile et al., 2016) have expanded monitoring 
coverage (Liu W. et al., 2024; Zhang et al., 2025), with integrating data 
from different countries being key for C stock estimation (Abbas et al., 
2020; Tigabu and Gessesse, 2025). However, technical limitations still 
exist, such as the varying resolution of RS products, cloud interference 
affecting continuity, and data-sharing barriers hindering progress. 
Moreover, while global datasets are effective in monitoring long-term 
C dynamics, they often lack the socio-ecological details required for 
regional policymaking. Therefore, a key challenge is how to balance 
the broad scope of global monitoring with the depth of local social-
ecological contexts.

Overall, the development trajectory of forest C stock estimation 
technologies is clear: from ground-based surveys to dynamic, 
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data-intensive modeling, and from local studies to global monitoring 
systems. The expansion of forest monitoring at the spatial scale has 
brought both opportunities and constraints. Each technological 
evolution has improved accuracy and scalability but has also 
introduced new challenges: unequal access to data across regions, 
trade-offs between technical sophistication and economic feasibility, 
and the slow uptake of advanced algorithms in policy. Future 
progress should not rely solely on technological innovations but on 
addressing these systemic issues, including strengthening capacity-
building in developing countries, improving data-sharing 
mechanisms, and ensuring transparency and comparability in 
advanced models. Only with integration at the technical, institutional, 
and socio-economic levels can forest C monitoring truly support 
effective climate governance and promote fair participation in global 
C markets.

4.3 Policy, socio-economic, and ecological 
drivers

Technological adoption in forest C estimation cannot 
be understood in isolation from broader drivers. Policy incentives, 
such as REDD+ and national C markets, have been instrumental in 
promoting MRV-related methods (Redd and Ecuador, 2012). In 
developed economies, significant public investment has accelerated 
uptake of costly RS systems, while in many African and Southeast 
Asian countries, weak infrastructure and limited financial resources 
restrict the deployment of advanced technologies (Ali, 2022; George, 
2000). This imbalance raises concerns for the equity and credibility of 
global C accounting, as regions with the largest forest C stocks are 
often least equipped to measure them accurately (Gifford, 2020).

Socio-economic constraints also influence methodological 
choices. High-resolution RS and LiDAR demand substantial data 
storage, processing power, and technical expertise, which create 
barriers for under-resourced institutions (Di and Yu, 2023; von Essen 
et al., 2025). Data-sharing issues exacerbate this divide; proprietary 
restrictions on satellite datasets or national forest inventories impede 
collective progress (Gessler et  al., 2024). In contrast, community-
based ground measurements and low-cost allometric methods, while 
limited in scalability, continue to play a crucial role in local contexts 
where high-tech methods remain inaccessible (Brofeldt et al., 2014; 
Venter et al., 2015).

From an ecological perspective, methodological evolution reflects 
the need to capture increasing complexity. Static biomass equations 
overlook dynamic processes such as mortality, disturbance, and soil C 
fluxes. Recent digital soil mapping and deep learning approaches 
attempt to address these gaps, but they also introduce new 
uncertainties related to algorithm transparency and overfitting. This 
suggests that methodological progress has been less about linear 
“improvement” and more about navigating trade-offs between cost, 
complexity, and ecological realism (Ball et al., 2017).

4.4 The limitations of this study

Although this bibliometric synthesis offers a broad overview of 
advances in forest C storage estimation, several limitations warrant 
consideration (Huang et al., 2020).

	(1)	 Our approach relies on indexed journal literature and 
bibliometric tools, which may not fully capture operational 
practices, grey literature, proprietary workflows, or emerging 
techniques that have yet to appear in citable outlets. As a result, 
some methods currently used in practice could 
be underrepresented.

	(2)	 To maintain thematic coherence, screening focused on forestry 
and environmental-science venues. This necessarily constrains 
interdisciplinary coverage, and relevant insights from adjacent 
domains (e.g., agricultural sciences, climate modeling, geodesy/
remote-sensing engineering, and environmental economics) 
may lie outside our corpus. The omission of such work can 
limit methodological breadth and weaken links to policy and 
market implementation.

	(3)	 Non-living C pools are also comparatively underrepresented. 
Litter and coarse woody debris are inventoried less frequently than 
living biomass and soil organic C, even though litter-layer C in 
temperate forests can amount to ~5–15% of soil organic 
C. Excluding this component risks systematic bias in regional 
C-sink assessments and can propagate uncertainty into carbon-
cycle models.

	(4)	 The use of bibliometric analysis inevitably 
introduces inherent biases. One significant limitation is 
language bias, as non-English literature (such as articles in 
Chinese or Spanish) is often underrepresented. This could 
lead to an underestimation of the contributions from 
regional studies. Furthermore, the study’s reliance on Web 
of Science and CNKI for literature sources may have 
resulted in limited coverage of relevant articles, excluding 
valuable data from other regional or 
non-mainstream databases.

	(5)	 Bibliometric approaches exhibit a recency lag. Very recent 
innovations, in-progress applications, embargoed datasets, 
and projects without citable outputs are difficult to capture, 
so our synthesis may not reflect the most current operational 
performance. These caveats contextualize the findings and 
highlight priorities for future work, including broader 
database integration, multilingual screening and expert 
elicitation, and more systematic accounting of dead-organic-
matter pools.

4.5 Evaluation and future feasibility of 
forest C sequestration technologies

Despite significant advances, several unresolved challenges limit 
the operationalization of forest C estimation techniques in 
policy contexts.

	(1)	 Technical validation and comparability: Models such as RF 
and TRIPLEX-Flux have shown high accuracy (R2 > 0.9), yet 
their transferability across forest types remains uncertain 
(Liu Y. et  al., 2024). Comparative validation with 
standardized field data is essential to ensure credibility for 
UNFCCC reporting.

	(2)	 Scalability and equity: Without stronger international 
collaboration, including open-access RS platforms and shared 
protocols, large-scale monitoring will remain dominated by a 
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few well-funded regions. This threatens the inclusivity of 
mechanisms like REDD+.

	(3)	 Integration of ecological complexity: Soil C pools, disturbance 
regimes, and human management practices are still weakly 
integrated into most estimation frameworks. Future models 
should move beyond aboveground biomass to incorporate 
multi-pool C dynamics.

	(4)	 Uncertainty quantification: Advanced sensitivity and 
uncertainty analyses are required to provide transparent 
confidence intervals for policymakers.

	(5)	 Long-term monitoring under climate change: Dynamic models 
and long-term datasets need to explicitly incorporate climate 
variability and land-use change scenarios. This is crucial for 
aligning science with the Paris Agreement’s five-year global 
stocktake cycle.

In summary, the evolution of forest C estimation technologies has 
been shaped as much by socio-economic and policy forces as by 
scientific innovation. To ensure their future feasibility, research must 
embrace interdisciplinary integration, global equity in data access, 
and stronger alignment with international climate reporting  
requirements.

5 Conclusion

Based on the comprehensive analysis of publications ranging 
from 2008 to 2025, the present study has revealed a significant 
increase in global research aimed at estimating forest carbon (C) 
storage. The techniques for estimating forest C storage levels have 
evolved over time. From an early (2008–2012) reliance on eddy 
covariance and remote sensing (RS) to a mid-term (2013–2017) 
focus on model simulations. And in recent years (2018–2025), the 
widespread use of machine learning (ML) and biomass 
mapping techniques. These advancements have not only 
improved estimation accuracy, but they have also facilitated more 
in-depth studies at small and medium scales. However, very few 
large-scale studies have been undertaken. With increasing 
quantities of data collected by RS technologies and ground 
surveys, methods such as ML and random forests (RF) have 
gradually become the focus of recent research. These methods 
can effectively predict forest C storage levels and efficiently 
process massive amounts of RS data. However, future research is 
needed to integrate data from across the various scales and 
combine ecological modeling with RS technologies to develop 
effective global long-term dynamic monitoring. Furthermore, the 
utilisation of unmanned aerial vehicles and updated data sources 
can further enhance estimation accuracy. Thus, enabling accurate 
and efficient assessment and management of global forest 
C stocks.
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