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Pile burning is increasingly used in many forest and woodland ecosystems to
reduce hazardous fuel loads following fuel hazard reduction or forest restoration
efforts. Pile burning is often linked to thinning practices where residual fuel is
piled and subsequently burned; the burning is typically done in winter months
when conditions reduce the risk of unwanted fire behavior such as escapes.
A key aspect of pile burning is estimating the amount of pile biomass and the
amount of fuel consumed during burning as these two variables are critical for
estimating treatment efficacy and smoke emissions. Methods to estimate pile
masses have been studied and developed previously, however, they are time
consuming and require extensive user training. Terrestrial laser scanning (TLS) is
a remote sensing tool that has been successfully used on broadcast burning for
fuel characterization and has the potential to estimate pile masses at prescribed
burning sites. TLS reduces measurement error, requires less extensive user
training, and eliminates observer bias in measurements. A total of 16 pile masses
were measured across Colorado, United States, using a previously developed
pile measurement methodology, using TLS, and by taking apart the pile and
weighing the contents of the pile, to determine if TLS would be an adequate
method for predicting pile masses. Individually, TLS did not do a good job
predicting pile masses, however, when comparing across all 15 piles, using three
TLS scans of a pile to estimate pile mass had the lowest median percent error
across all piles.

KEYWORDS

terrestrial laser scanning, prescribed fire, slash piles, remote sensing, hazardous fuels
management

1 Introduction

The western United States (US) has experienced an increase in wildfire activity in
recent decades, contributing to increased periods of poor air quality both outdoors and
indoors (Wibbenmeyer and Tastet, 2021). Drier and hotter conditions that result from
climate change along with changes in the fuels complex associated with a century of fire
suppression policies are increasing the severity and area burned during wildfires (National
Academies of Sciences, Engineering, and Medicine, 2022). Additionally, the length of
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the wildfire season has increased because of a temporal shift in
seasonal precipitation patterns and increased frequency of drought
conditions (National Academies of Sciences, Engineering, and
Medicine, 2022). Throughout the last century, fire suppression
policies have led to increased wildfire intensity (Roos et al., 2020).
Several strategies are deployed to mitigate the risk of wildfire,
including hand thinning, mechanical treatment, managed wildfire,
prescribed fire or combinations of approaches (Gonzdlez-Cabdn,
2008). Increased implementation of prescribed fire is recognized
as a critical component for effectively reducing wildfire risk
(Kolden, 2019).

There are two main types of prescribed fire used to reduce
surface fuel load, broadcast and pile burning. Broadcast burning
is the application of fire to fuels in a predetermined area and can
range from less than a few hectares to thousands of hectares (USES)
(Arapaho and Roosevelt National Forests and Pawnee National
Grassland, 2024). In the western U.S., broadcast burning typically
takes place late April to May and September to October when
environmental conditions are conducive to supporting fire while
minimizing potential for escape or negative effects on resources.
Pile burning is a result of mechanical thinning of forest understory,
midstory and overstory in addition to the removal of biomass in
wildfire prone areas (Wright et al., 2009). The fuel removed is
placed into piles, which can be classified as either hand piles or
machine piles. Hand piles are smaller and represent piles that were
built by hand, whereas machine piles indicate piles built using
machinery (Miller et al., 2015). Hand piles can range from about
1.5 m in diameter to 0.9-1.5 m in height, and machine piles are
typically from 3.6 m in diameter to 3.6 m in height. Pile burning is
an effective way to mitigate wildfire risk. Although pile burning can
occur under a wide range of conditions (Hardy, 1996), most often it
takes place between November and March with optimal dispersion
to reduce negative impacts of emissions. Pile burning is typically
favored compared to broadcast burning since fuel consumption
is more efficient as broadcast burns may smolder for longer, and
winter months are more favorable for reducing smoke and reducing
the risk of escape (Mott et al., 2021).

Estimating the amount of biomass in the field and consumption
of that biomass during a prescribed fire is critical for planning
both broadcast and pile burns. That information is used to predict
emissions and staffing needs to effectively and efficiently conduct a
burn to meet resources objectives. Traditional methods for surface
fuel estimation rely on distance measurements, line intercepts or
quadrate methods, all of which are time consuming as they require
significant initial setup and highly trained expertise (Pokswinski
et al, 2021). The mass of piled residue fuel is commonly estimated
in the US using a two-step process where the volume of the pile
is estimated based on measures of the length, width and height
and a geometric equation based on the determined pile shape.
Then the mass is estimated by multiplying the volume by a bulk
density value (Wright et al, 2009; Hardy, 1996; Cross et al,
2013). Within this framework there are several key assumptions
which introduce uncertainty and error into the biomass estimates.
More specifically, uncertainty and error may be introduced due
to inaccurate estimates of the pile volume or the application
of inaccurate bulk density estimates. For stand level estimates
a third source of uncertainty is related to the total count of
piles. Weaknesses for ground-based measurements include the
selection of the correct geometric equation, ensuring sufficient
measurements of a sample, uncertainty in selecting the packing
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ratios of the piles, and estimation of woody biomass where drywood
densities need to be measured (Trofymow et al, 2014). Light
Detection and Ranging (LiDAR) is a remote sensing tool that
uses pulsed laser to measure distances to create 3D point clouds.
LiDAR reduces uncertainties in determining pile volume, although,
in some cases ground based measurements such as packing ratios,
wood fraction, decay class and packing densities are still needed
in combination with LiDAR estimates (Trofymow et al.,, 2014).
An additional study by Long and Boston (2014) compared the
mass estimates of 33 piles in Oregon, among three measurement
techniques; the geometric method developed by Wright et al.
(2009), a laser rangefinder, and a terrestrial laser scanner (TLS).
Despite their study indicating that the TLS was more accurate
in measuring piles with more complex shapes, they ultimately
suggested that other methods such as the laser rangefinder were
more efficient and less costly than the TLS.

However, newer TLS equipment are much cheaper, easier
to operate, and more portable, making newer applications of
TLS a promising measurement technique to estimate pile masses.
TLS uses laser pulses to collect detailed information such as
topographical data and vegetation structure, both of which are
useful for understanding fuel characteristics (Loudermilk et al,
2023; Tenny et al, 2025). TLS is a remote sensing tool that
can eliminate challenges associated with previous measurement
techniques. TLS reduces error, improves measurement efficiency,
and requires less training and expertise to operate, and eliminates
observer bias with measurements (Pokswinski et al., 2021). TLS
has been used successfully for broadcast burns to successfully
characterize fuels (Gallagher et al, 2024). TLS has also been
used to successfully estimate cross-sectional areas of slash
walls, a forest management practice used to promote forest
regeneration, in New York state compared to traditional ground-
based measurements. Although slash walls are not the same as piles,
this application of TLS is promising (Cranmer et al., 2024).

Recently, the USDA Forest Service has launched a Wildfire
Crisis Strategy (WCS) in order to increase the rate and extent of
fuel treatments (U.S. Department of Agriculture Forest Service,
2022). The WCS has selected 21 different priority locations
with the Colorado Front Range as one (Woolsey et al., 2024).
Therefore, this may result in more hazardous fuels treatment
across the Colorado Front Range (i.e., more piles constructed and
planned to be burned). Currently, there are tens of thousands
of piles across Colorado and knowing the total masses of the
piles is crucial to land managers to both estimate the treatment
effects and emissions released from pile burns. However, with
current pile mass estimation techniques require significant time
and effort to complete across larger areas. Pile burning releases
harmful emissions into the atmosphere such as particulate matter,
carbon monoxide, volatile organic compounds, and nitrous oxides
(Andreae and Merlet, 2001). Although burning days are chosen
when dispersion is optimal, exposure to emissions from pile
burning are often likely in nearby residences (Pierobon et al., 2022;
Rosenberg et al., 2024). Therefore, being able to estimate the impact
of emissions on nearby residents is important as the number of
piles constructed and planned to be burned in the upcoming decade
is likely increasing. A more accurate and cost-effective method to
quantify pile mass is needed.

Terrestrial laser scanning has the potential to be used to
estimate pile masses more accurately than previous methodologies
and could provide a framework for estimating pile masses to be
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applied to larger areas. The overall objective of this study is to
explore the use and limitations of TLS to estimate pile masses at
prescribed fire sites. Specifically, we addressed three interrelated
questions. First, how does the accuracy of the volume prediction
change with varying amounts of empty space in piles. Second, how
accurate is TLS in predicting the mass of piles. Third, how does the
predicted mass of piles from the TLS compare to previous methods.

This study used TLS on hand piles at Hall Ranch Open
Space (HROS) in Lyons, CO (40.224403, —105.316249) to estimate
masses of 15 piles and compare to previous pile mass estimation
methodology, and the destructively sampled pile masses. In
addition to in-field TLS measurements, this study also used TLS
on synthetic piles built in the laboratory using identical pieces of
wood to assess the ability of TLS to predict masses of varying shapes
with known volumes. Additionally, synthetic piles were used to
assess the importance of stitching order and any inherent variability
associated with the TLS scans.

2.1 Synthetic piles

2.1.1 Synthetic pile construction

Six synthetic piles were constructed using identical wood pieces
(45.4 x 8.9 x 3.8 cm) with the goal of improving our understanding
of (1) how TLS handles empty spaces in different fuel arrangements,
(2) how the order in which scans are stitched together influence
the mass estimation, and (3) how mass estimations vary based
on the person completing the stitching. The synthetic piles were
constructed out of identical pieces of wood and therefore had
known values of volume. The shapes of each synthetic pile are below
in . Pile 1 is a rectangle with one empty space on the top
row, Pile 2 is a rectangle, Pile 3 is a pyramid shape. Piles 1-3 were
designed to have as little empty space as possible. Pile 4 is a random
shape, meant to have open space in the middle, pile 5 is log cabin
style shape, with visible open space between the wood pieces, and
Pile 6 was constructed to be representative of the shape of an actual
pile found in the field.

2.2 Field piles

2.2.1 Site description

This study took place at HROS, which is maintained by the
Boulder County Parks and Open Space, west of Lyons, Colorado
and is part of the Colorado Front Range Wildfire Crisis Strategy
landscape. The piles are located on 44.11 ha in a forested area that
is dominated by ponderosa pine (Pinus ponderosa var. scopulorum).
The piles were constructed in 2023, with no prior prescribed fire.
Trees in this area were cut as part of a first entry for restoration
prescription, with no material removed from the area, only formed
into piles to burn. The last reported wildfire in this location was in
1867. Soil in this area is predominantly gravelly sandy loam about
0.5 m in depth (N. Stremel, personal communication, 29 Jan. 2025).
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2.2.2 Field Pile data collection

In total, 15 piles were selected at HROS. Each pile was
weighed and scanned using TLS; see for locations.
HROS has 1881 piles that are planned to be burned in the
winters of 2024-2026. Piles selected to be scanned and weighed
were chosen with different shapes and sizes, in order to ensure
variety in the sample. However, machine piles (greater than
178 cm x 381 cm) were excluded from sampling to make sure
there was enough time to scan and weigh multiple piles as scanning
and weighing large piles can take many hours. Each pile was
scanned four times, once from each side. Our sampling protocol
was chosen to allow flexibility in determining scan locations to
minimize occlusion from vegetation. The scans were completed
using a Leica BLK360 (Leica Geosystems, Heerbrugg, Switzerland),
as described by . The scanner has an
830 nm laser wavelength, a maximum range of 60 m, covers
360° horizontally and 300° vertically, and weighs 1 kg. I used
the standard sampling density with non-HDR imaging, which has
a resolution of 10 mm at 10 m and a scan time of less than
4 min ( ; Leica Geosystems, BLK360 Spec
Sheet, 2019/2022). For each pile, four spikes with pink flagging
were placed around the perimeter of the pile forming a square
(see
easier. Each pile was then taken apart (

) to make combining each pile scan
)and
weighed using a luggage scale (Travelon, Franklin Park, IL) and the
geometric volume and mass of those piles were calculated using the
methodology described in . This methodology
was developed by measuring the geometric and surface shape
volume of 121 piles in the western US. The geometric volumes
were calculated using equations adapted from . Of
note, this method typically underestimates the true pile volume for
very small piles and overestimates the true volume for larger piles

( ).

2.3 TLS scan processing

Terrestrial laser scanning of the piles from both the field and the
synthetic piles were uploaded using Cyclone REGISTER 360 Plus to
convert the files on the BLK from. blk to .ptx files. The .ptx files are
stitched together into a single point cloud and segmented to isolate
only the pile using CloudCompare. The method used to stitch the
scans for both handmade and field piles is described in detail in

Once the scans have been stitched, the pile needed segmented,
from the larger point cloud. The segmenting process is
outlined in and he often takes more
than two iterations.

Following the segmentation of the pile from the larger point
cloud, the volume for each pile point cloud was estimated using
Poisson Recon Plugin in CloudCompare. To use the Plugin, normal
must be computed for the point cloud, this accessed via “Edit>
Normals> Compute.” This plug-in then creates a solid surface over
the point cloud and allows you to turn it into a solid mesh. The
solid mesh produces a scalar field where the color indicates the
number of points in the point cloud (red representing the highest
point density and blue representing the lowest point density) and
allows the user to get rid of spaces on the solid mesh where there
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FIGURE 1
Synthetic piles.
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FIGURE 2

Pile Locations at Hall Ranch Open Space (HROS). Yellow stars are locations in which piles were measured.

are not as many points registered by the TLS. This step ensures
that the user is only calculating the volume of the actual pile.
For each field pile, space colored in blue or green (green has the
next fewest point density following blue) were removed from the
pile. To remove the space colored in blue and green, when using
the Plugin, ensure that “output density as SF” is selected. Then
the user can remove the blue and green colored spaces under
“Properties > SF display params.” CloudCompare has a function
that will then estimate the volume of the solid mesh. This function is
accessed via “Edit > Mesh > Measure volume.” There is no further
point cloud reconstruction required.

2.3.1 Synthetic piles TLS scan processing

Each of the synthetic piles were scanned four times, once on
each side, and this process was repeated twice. TLS scans for each

Frontiers in Forests and Global Change

pile were positioned approximately 2-3 m away from the pile.
Scanning each synthetic pile twice in total allowed us to estimate
any error associated with the TLS scans on the same shapes of the
synthetic piles.

To explore the impact of stitching order on volume estimation,
we explored all possible orders given the four scanned sides. Table 2
summarizes those stitching orders. The dash indicates the scans
being stitched. So, 1-2 means that scans 1 and 2 are stitched together
first, and 12-3 means that scans 1 and 2 which are already aligned,
are stitched to scan 3.

2.3.2 Field piles TLS scan processing

Each field pile was also scanned four times, once on each side.
TLS scans for each pile were positioned approximately 2-3 m away
from the pile. Each field pile was stitched together 15 times. The
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TABLE 1 Stitching description.

Soescipton

1 Upload the scans of the pile into CloudCompare

2 Select two of the scans in the DB tree

3 Click the tool “Aligns two clouds by picking (at least four)
equivalent point pairs”

4 Select one of the scans as the pre-aligned scan, the scan chosen
will vary depending on which order you are stitching the scans
together

5 Uncheck the check box for “show “to align” entities.” (Now,

only the reference scan will be visible on the screen)

6 Select a point on the reference scan, this could be one of the
pink flags placed around the pile perimeter, or something else in
the scan that is easily identifiable

7 Unclick the “reference” entities box, re-click the “to align
entities;” and find and select the same point to the best of your
ability

8 Repeat steps 5-7 until you have three matching entities and the

align button is available

9 Click align so that your point clouds will be easier to work with
and closer to aligned

10 Add one more so that there are at least four matching entities,
and click align again

11 Continue to add and delete entities as necessary until the error
for all four matches is 0.05 or under, and there appears to be

minimal or no “double vision” around plot center

12 Once the two scans are now aligned, click the green check mark
to close the tool

13 To stitch together additional scans to the two aligned scans,
select each of the scans in the DB tree

14 Select the already aligned scans as the pre-aligned scans

15 Repeat the steps listed above as many additional scans are
needed for each pile

TABLE 2 Stitching combinations used on each of the synthetic piles.

Stitching Stitching combinations
order

o1 1-2,12-3,123-4

02 4-3,43-2,432-1

03 1-3,13-2, 132-4

04 2-4,24-1,241-3

TABLE 3 Stitching combinations used on each of the field piles.

stitched

1 1,2,3,4

2 12,13, 14, 23,24, 34
3 123,124, 134,234

4 1234

different stitching orders are shown below in Table 3, the stitching
combinations represent the scans that were stitched together to
estimate the pile mass. Scan 1 represents the 1% scan done of
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the pile, while the 4™ scan is the last scan done of the pile. The
scans are completed sequentially in a circle around the perimeter
of the pile. The location of the first scan was chosen at random,
and the second scan was done adjacent to the location of the
first scan.

For each of the piles, the mass was estimated using a varying
number of sides; 1, 2, 3, and all 4 sides of each pile. To
estimate the mass of a pile using only one scan, there are
four different mass estimates, using each side of the pile scans.
To estimate the mass of a pile using two scans, there are six
different stitching combinations that can be used. To estimate
the mass of a pile using three scans, there are four different
stitching combinations that can be used. Finally, to estimate
the mass of a pile using all four scans, there is only one
stitching combination. Each of the combinations was completed
for each pile in order to see how the selection of different
numbers and orientations of scans would influence the mass
estimate of the pile.

The resulting volume estimation for each field pile was
multiplied by a bulk density value of 76.79 kg/m> (Wright et al,
2009), for hand piles in coniferous forests of Washington and
Oregon. Due to the similarity of the species composition and the
construction of the piles we have in Colorado and the lack of
geographically explicit bulk density estimates, we chose to use the
bulk density calculated by Wright et al. (2009) in our analysis. Bulk
density is the mass of the material in the pile divided by the total
space that the pile occupies, which includes empty space between
the fuel in the pile.

The bulk density of the synthetic piles without any empty
space is 415 and 116 kg/m® for Pile 6 which was our attempt
to mimic real-life conditions. Our bulk density values are much
larger compared to the bulk density of conifer piles, indicating
that there is much more empty space in the field piles. This mass
estimation process was repeated for each of the 15 stitching orders
across 16 field piles.

2.4 Statistical analyses

For the analysis of both the synthetic and field piles, we use the
following metrics to compare the accuracy of TLS in predicting
pile volume and mass to the actual known volume and mass.
Additionally, these metrics are used to understand the impact of the
user, stitching order, and scanning trial on the predicted volume of
the synthetic piles.

The root mean squared error (RMSE) (Equation 1), mean bias
error (MBE) (Equation 2), correlation coefficients (calculated in
MATLAB using a built in function), mean absolute percent error
(MAPE) (Equation 3), percent errors (Equation 4), relative errors
(Equation 5), and relative differences (Equation 6) were calculated
for each group of pile mass estimates. All analyses were completed
in MATLAB. N is the number of samples in the sample size, x;
is the actual measurement and X; is the predicted measurement.

RasE = 3 - RN M

1
MBE = — Z,Nz |G —x) @)
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MAPE = 100 % « > R/ 3)
% Error = (x; — X;)/%; * 100 (4)

Relative Error = (x; — X;)/%; (5)

Relative Difference = (x1 — x3)/((x1 — x2)/2) (6)

3 Results

The following section includes comparisons between the
estimated mass values for the field piles and estimated volumes
for the synthetic piles. Additionally, the field pile mass estimates
were compared to both the mass estimates using the methodology
developed by Wright et al. (2009) and the actual pile masses.

3.1 Synthetic piles

3.1.1 Synthetic pile measurements

Figure 3 shows the actual and estimated volumes for each of
the synthetic piles as well as the volume of empty space in each pile.
Table 4 summarizes the comparison between actual and estimated
volume for each pile. The green circle is the actual measured volume
of the pile, whereas the red points are volume estimates from the
TLS scans. The different shapes of the red points indicate the trial
and stitching order. So, Volume_T1_O1 is the volume estimated
from trial 1 of the pile scans, and the 1% stitching order. Whereas
Volume _T2_04 is the volume estimated from trial 2 of scans, and
the 4" stitching order. Each stitching order is described in Table 1.
The different shades of red represent the same stitching order and
trial done by an additional person. For all synthetic piles except
synthetic pile 5, the volume estimates were consistent for both
people. However, for Pile 5, one person was able to more accurately
estimate the pile volumes while the other was not.

Piles 1-3 had the most accurate volume predictions; they had
the lowest RMSEs, MBEs, and MAPES compared to piles 4-6.
However, the RMSE and MBE for pile 2 were higher than expected
since for trial 2 and 2"? stitching order, the volume estimate was
much lower than the actual volume. The reason behind this error is
unknown, and that stitching order was repeated several more times
for that pile and still had the same results. Volume estimates for
piles consistently overestimated the actual volumes of the piles. The
inconsistent estimates for the masses for each pile based on both
the stitching order as well as the trial does indicate that there is
some error associated both with the stitching process as well as in
the TLS scans. However, since the differences in the estimates are
not consistent in either under or overestimating the synthetic pile
mass, this means that there is no bias associated with the stitching
process. Based on the results above, when there is any empty
space in the synthetic pile, the TLS underestimated the volume of
fuel compared to synthetic piles with minimal empty space, and
the pile with the largest volume of empty space, had the largest
errors. Additionally, synthetic piles with empty space had higher
associated RMSEs and MAPEs.
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3.1.2 Synthetic pile error

For the synthetic piles, we calculated the relative error when
comparing each of the stitching orders to the actual pile volume, the
relative difference between users for the volume estimates, as well as
the relative error between trials across both users. These results are
shown in Supplementary Figures 3-5, respectively.

For the stitching orders with adjacent stitching being done
first, orders 1 and 2, the median relative errors when comparing
each of the stitching orders to the actual pile volume, were 0.08
and 0.14, respectively (Supplementary Figure 3). For the stitching
orders with opposite sides being stitched first, orders 3 and 4, the
median relative errors were 0.17 and 0.24, respectively. Stitching
orders with opposite sides stitched together first had higher median
relative errors.

For all piles, except pile 5, the median relative error between
users was less than 0.01 (Supplementary Figure 4). This result
means that there was not a bias associated with one user versus
another (except for Pile 5). Additionally, when looking at the
spread of relative errors between users for each pile there was
less user difference for the solid piles (Piles 1-3) than the piles
with significant empty space. Using Piles 4 and 6 as reasonable
real-world mimics, we can assess the random relative error, or
uncertainty, associated with employing different users to determine
pile volumes to be the standard deviation of the relative error. For
our case study, that random relative error for each pile is as follows,
0.05, 0.46, 0.06, 0.11, 0.43, 0.09; therefore, the random relative error
associated with using different users to stitch scan is ~0.10 or 10%.

Each of the
(Supplementary Figure 5) were all less than 0.07, the standard

median relative errors between trials
deviation of these relative errors can be considered the uncertainty
associated with a measurement repeat (but the process and user
stay the same); that uncertainty for each pile is as follows, 0.05,
0.47,0.08, 0.11, 0.13, 0.09. The one anomaly for Pile 2 is increasing
the random relative error estimate for that pile; however, there
appears to be no difference between solid piles (Piles 1-3) and
piles with empty space (Piles 4-6). In general, the random relative
error associated with repeat trials is ~0.10 or 10%, similar to the

uncertainty associated with having different users stitch piles.

3.2 Field piles

Figure 4 shows the mass estimates for each pile using TLS as
well as the method developed by Wright et al. (2009) compared to
the actual mass of the pile weighed by hand. As mentioned in the
methods section, each of the piles had 15 different mass estimates
based on the varying stitching order. However, Figure 4 only shows
the mass estimates of one stitching order for each number of scans.
In other words, only one stitching order is being shown here for
the mass estimated using three scans. Supplementary Figure 6 in
the supplemental shows the 15 different mass estimates for only
Field Pile 1, to show the variability between the different TLS
mass estimations. There is variability associated with the chosen
stitching order and the number of sides selected to estimate the
pile mass. This same analysis was done with each of the different
stitching orders and similar results were obtained for each. Looking
at all piles, for estimating the mass using three scans, when the
first stitching done is opposite, the mass estimate was less accurate
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FIGURE 3

Actual vs. estimated volume for each synthetic pile and empty space volume.

TABLE 4 Root mean squared error (RMSE), mean bias error (MBE), and
mean absolute percent error (MAPE) of estimated mass values for
synthetic piles.

m RMSE (m3) MBE (m3) | MAPE (%)
1 0.88

—0.23 —0.18
2 1.10 —0.65 —0.19
3 0.79 —0.11 —0.15
4 4.87 —3.36 2.38
5 0.82 0.47 422
6 8.87 —6.28 3.09

compared to the mass estimate where the first stitching done is
adjacent to one another. For estimating the mass using two scans,
when the first stitching done is opposite, the mass estimate was
more accurate compared to the mass estimate where the first
stitching done is adjacent to one another. For example, the percent
errors when stitching together opposite sides first using three sides,
the median percent error was 44% compared to a percent error of
15% when stitching together adjacent sides first. When using two
sides, the percent error when stitching opposite sides first was 9%
while stitching adjacent sides first had a percent error of 25%.

In Figure 4, the actual weighed mass is represented with a
green circle, whereas the estimated mass values are all shown in
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red. For Mass_Estimated_X, the number represents the amount
of sides that were stitched. Mass_Estimated_4 means that all four
sides of the pile were stitched and used to estimate the pile mass,
whereas Mass_Estimated_1 means only one side of the pile was
used to estimate the pile mass. Note that the measurements needed
to be collected in order to estimate the mass using the methodology
developed by Wright et al. (2009); however, for this study, for
piles 1, 2, and 10, we did not follow that approach, so we do
not include that estimate for those three piles. The Wright mass
estimates consistently underestimated the actual masses of the piles,
meaning this is a biased estimate. From this plot it is evident
that neither the TLS or the previous methodology from Wright
are consistently accurate in predicting the individual pile masses.
There is no consistent pattern between the masses estimated using
the TLS and the actual masses of the piles. Additionally, there
is no consistent pattern associated with the number of sides
scanned and stitched.

Figure 5 shows the estimated vs. actual pile masses when
using the different number of sides to estimate the pile masses.
Table 5 shows the ranges of RMSE, MBE, correlation coeflicients,
and MAPE for the in-field pile data shown in Figure 5. There
is little correlation between the actual and estimated masses
regardless of the number of sides stitched. Stitching all four
sides was the most correlated with the individual pile masses,
however, the R? value is still low. The RMSEs and MBEs
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FIGURE 4

Actual vs. estimated mass values for each pile. Actual pile masses compared to estimated pile masses using methods developed by Wright et al.
(2009) and the terrestrial laser scanning (TLS). For three sides the stitching order is 123 and for two sides the stitching orders, refer to Supplementary

Figures 6, 7.
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sides, 13, estimating the mass using one side, scan one was used.
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TABLE 5 Root mean squared error (RMSE), mean bias error (MBE), and correlation coefficients of estimated mass values for in-field piles.

Sides stitched

No. of stitching orders | RMSE (kg) ‘ MBE (kg) Correlation coefficient
1 96.5 36.8 0.59

SAvE )

4 —-17.5
3 4 83.7-116.3 37.0-71.7 0.22-0.56 —35.8t0 —22.4
2 6 51.1-141.5 —45.8t021.7 0.11-0.45 —2.8to 154
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FIGURE 6
Percent error between actual and estimated pile masses. The stitching order is the same as in Figure 4.

were all fairly high regardless of the number of sides stitched,
ranging from 51 to 159 kg, which in some cases was more
than half of the weight of the actual pile mass. Figure 5 and
Table 5 highlight the inability of TLS to accurately predict a
single pile mass.

Figure 6 shows the percent error between the actual and
estimated masses for the field piles as well as the estimated masses
using the methodology developed by Wright et al. (2009). For each
mass prediction method, only one stitching combination is being
used in this analysis, however, this analysis was completed for each
of the additional stitching combinations. When using three sides
of the pile to predict pile mass, the percent error was the lowest
across all piles when the scans were in sequential order, for example,
scans 123 and scans 234. When using two sides of the pile to
estimate the mass, the percent difference was the lowest for stitching
combinations that were opposite of each other, for example, 13
and 24. In each case, regardless of the number of sides stitched to
predict the pile mass, they were not consistent in either over or
underestimating the pile masses, meaning that this measurement
is not biased. As shown in Figure 5, the TLS is not accurate in
estimating the mass of a single pile, but over the entire sample size
(Figure 6), the median percent error across all piles is near 0.

Frontiers in Forests and Global Change

4 Discussion

Using TLS to estimate pile mass reduces the bias in the
estimated mass compared to previous pile estimation techniques
used by Wright et al. (2009). Using each of the different stitching
methods from the TLS scans is not accurate for predicting a single
pile mass, but for the entire sample size, the median percent error
was lower compared to previous pile mass estimation techniques.
Across multiple piles, TLS performed well in estimating pile masses.
Similar to the results of both Long and Boston (2014), Casey
et al. (2015), the TLS did a better job at estimating the volumes
of piles compared to traditional volume estimation methods for
“smaller” piles.

For synthetic piles, the difference between the users completing
stitching did not influence the results much, ~10% for piles that
mimic real world. There was also not a big difference for repeats
of the TLS scans, ~10%. However, the stitching order did make
a difference. Based on the comparison between stitching orders,
orders that included stitching adjacent scans first (orders three and
four) had higher relative errors. This is inconsistent with what
was found for the field piles, where the estimates of pile masses
using both three and two sides had lower relative errors when the
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scans were adjacent. Based on the stitching order results, we do not
have any recommendations of which stitching order to use while
stitching pile scans.

Being able to estimate the masses of large quantities of piles
is crucial for land managers in understanding the treatment effect
of prescribed fire. Land managers prioritize being able to estimate
large numbers of piles and will rarely need to estimate the mass of
only a single pile. Stitching three sides of a pile was overall the most
accurate method to estimating the mass of all of the piles in total.
However, all of the other stitching methods had a median percent
error of less than 20%. Therefore, if there is not enough time to do
three scans per pile, scanning either one or two sides of the pile will
not result in a significant increase in error. Although using three
sides had the lowest error when looking at all of the piles, using four
sides had the highest correlation when predicting individual mass.

Although TLS had an overall lower mean percent error relative
to previous methods, there are still constraints associated with
operationalizing TLS for pile estimation. There is a time cost
associated with the processing of the TLS scans. Future work could
involve looking into ways to make the process of processing these
TLS scans more efficient. Scanning a large sample of piles all at
once could reduce the scanning time and time spent processing the
scans. Additionally, this study had a relatively small sample size, 15
piles, on only one ecosystem. Future work that measures more piles
across several ecosystems would be helpful to assess if the results
are the same across a larger sample size and different locations.

For future work, there is a need for methods to actually
predict pile masses. In future studies, the development of a quick
(< 5 min) in-field measurement that could be used in combination
with the TLS scans to predict pile masses may prove to be
useful to prescribed fire implementers. TLS scans take less time
than traditional field measurements, so any additional non time
intensive field metrics that could help predict total pile masses
could be helpful. Additionally, methods to calculate bulk density
of piles could eliminate the need for a two-step process in mass
prediction, as shown in this analysis. There are metrics that can
be derived from point clouds such as height distributions, crown
volume, vertical density profiles, as well as point return counts that
have been used in previous studies to predict fuel types and fuel
loading (Gallagher et al., 2024; Loudermilk et al., 2023). It would
be interesting to assess the ability of those variables to help further
predict the total mass of the piles.
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