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Pile burning is increasingly used in many forest and woodland ecosystems to

reduce hazardous fuel loads following fuel hazard reduction or forest restoration

efforts. Pile burning is often linked to thinning practices where residual fuel is

piled and subsequently burned; the burning is typically done in winter months

when conditions reduce the risk of unwanted fire behavior such as escapes.

A key aspect of pile burning is estimating the amount of pile biomass and the

amount of fuel consumed during burning as these two variables are critical for

estimating treatment efficacy and smoke emissions. Methods to estimate pile

masses have been studied and developed previously, however, they are time

consuming and require extensive user training. Terrestrial laser scanning (TLS) is

a remote sensing tool that has been successfully used on broadcast burning for

fuel characterization and has the potential to estimate pile masses at prescribed

burning sites. TLS reduces measurement error, requires less extensive user

training, and eliminates observer bias in measurements. A total of 16 pile masses

were measured across Colorado, United States, using a previously developed

pile measurement methodology, using TLS, and by taking apart the pile and

weighing the contents of the pile, to determine if TLS would be an adequate

method for predicting pile masses. Individually, TLS did not do a good job

predicting pile masses, however, when comparing across all 15 piles, using three

TLS scans of a pile to estimate pile mass had the lowest median percent error

across all piles.

KEYWORDS

terrestrial laser scanning, prescribed fire, slash piles, remote sensing, hazardous fuels
management

1 Introduction

The western United States (US) has experienced an increase in wildfire activity in
recent decades, contributing to increased periods of poor air quality both outdoors and
indoors (Wibbenmeyer and Tastet, 2021). Drier and hotter conditions that result from
climate change along with changes in the fuels complex associated with a century of fire
suppression policies are increasing the severity and area burned during wildfires (National
Academies of Sciences, Engineering, and Medicine, 2022). Additionally, the length of
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the wildfire season has increased because of a temporal shift in 
seasonal precipitation patterns and increased frequency of drought 
conditions (National Academies of Sciences, Engineering, and 
Medicine, 2022). Throughout the last century, fire suppression 
policies have led to increased wildfire intensity (Roos et al., 2020). 
Several strategies are deployed to mitigate the risk of wildfire, 
including hand thinning, mechanical treatment, managed wildfire, 
prescribed fire or combinations of approaches (González-Cabán, 
2008). Increased implementation of prescribed fire is recognized 
as a critical component for eectively reducing wildfire risk 
(Kolden, 2019). 

There are two main types of prescribed fire used to reduce 
surface fuel load, broadcast and pile burning. Broadcast burning 
is the application of fire to fuels in a predetermined area and can 
range from less than a few hectares to thousands of hectares (USFS) 
(Arapaho and Roosevelt National Forests and Pawnee National 
Grassland, 2024). In the western U.S., broadcast burning typically 
takes place late April to May and September to October when 
environmental conditions are conducive to supporting fire while 
minimizing potential for escape or negative eects on resources. 
Pile burning is a result of mechanical thinning of forest understory, 
midstory and overstory in addition to the removal of biomass in 
wildfire prone areas (Wright et al., 2009). The fuel removed is 
placed into piles, which can be classified as either hand piles or 
machine piles. Hand piles are smaller and represent piles that were 
built by hand, whereas machine piles indicate piles built using 
machinery (Miller et al., 2015). Hand piles can range from about 
1.5 m in diameter to 0.9–1.5 m in height, and machine piles are 
typically from 3.6 m in diameter to 3.6 m in height. Pile burning is 
an eective way to mitigate wildfire risk. Although pile burning can 
occur under a wide range of conditions (Hardy, 1996), most often it 
takes place between November and March with optimal dispersion 
to reduce negative impacts of emissions. Pile burning is typically 
favored compared to broadcast burning since fuel consumption 
is more eÿcient as broadcast burns may smolder for longer, and 
winter months are more favorable for reducing smoke and reducing 
the risk of escape (Mott et al., 2021). 

Estimating the amount of biomass in the field and consumption 
of that biomass during a prescribed fire is critical for planning 
both broadcast and pile burns. That information is used to predict 
emissions and staÿng needs to eectively and eÿciently conduct a 
burn to meet resources objectives. Traditional methods for surface 
fuel estimation rely on distance measurements, line intercepts or 
quadrate methods, all of which are time consuming as they require 
significant initial setup and highly trained expertise (Pokswinski 
et al., 2021). The mass of piled residue fuel is commonly estimated 
in the US using a two-step process where the volume of the pile 
is estimated based on measures of the length, width and height 
and a geometric equation based on the determined pile shape. 
Then the mass is estimated by multiplying the volume by a bulk 
density value (Wright et al., 2009; Hardy, 1996; Cross et al., 
2013). Within this framework there are several key assumptions 
which introduce uncertainty and error into the biomass estimates. 
More specifically, uncertainty and error may be introduced due 
to inaccurate estimates of the pile volume or the application 
of inaccurate bulk density estimates. For stand level estimates 
a third source of uncertainty is related to the total count of 
piles. Weaknesses for ground-based measurements include the 
selection of the correct geometric equation, ensuring suÿcient 
measurements of a sample, uncertainty in selecting the packing 

ratios of the piles, and estimation of woody biomass where drywood 
densities need to be measured (Trofymow et al., 2014). Light 
Detection and Ranging (LiDAR) is a remote sensing tool that 
uses pulsed laser to measure distances to create 3D point clouds. 
LiDAR reduces uncertainties in determining pile volume, although, 
in some cases ground based measurements such as packing ratios, 
wood fraction, decay class and packing densities are still needed 
in combination with LiDAR estimates (Trofymow et al., 2014). 
An additional study by Long and Boston (2014) compared the 
mass estimates of 33 piles in Oregon, among three measurement 
techniques; the geometric method developed by Wright et al. 
(2009), a laser rangefinder, and a terrestrial laser scanner (TLS). 
Despite their study indicating that the TLS was more accurate 
in measuring piles with more complex shapes, they ultimately 
suggested that other methods such as the laser rangefinder were 
more eÿcient and less costly than the TLS. 

However, newer TLS equipment are much cheaper, easier 
to operate, and more portable, making newer applications of 
TLS a promising measurement technique to estimate pile masses. 
TLS uses laser pulses to collect detailed information such as 
topographical data and vegetation structure, both of which are 
useful for understanding fuel characteristics (Loudermilk et al., 
2023; Tenny et al., 2025). TLS is a remote sensing tool that 
can eliminate challenges associated with previous measurement 
techniques. TLS reduces error, improves measurement eÿciency, 
and requires less training and expertise to operate, and eliminates 
observer bias with measurements (Pokswinski et al., 2021). TLS 
has been used successfully for broadcast burns to successfully 
characterize fuels (Gallagher et al., 2024). TLS has also been 
used to successfully estimate cross-sectional areas of slash 
walls, a forest management practice used to promote forest 
regeneration, in New York state compared to traditional ground-
based measurements. Although slash walls are not the same as piles, 
this application of TLS is promising (Cranmer et al., 2024). 

Recently, the USDA Forest Service has launched a Wildfire 
Crisis Strategy (WCS) in order to increase the rate and extent of 
fuel treatments (U.S. Department of Agriculture Forest Service, 
2022). The WCS has selected 21 dierent priority locations 
with the Colorado Front Range as one (Woolsey et al., 2024). 
Therefore, this may result in more hazardous fuels treatment 
across the Colorado Front Range (i.e., more piles constructed and 
planned to be burned). Currently, there are tens of thousands 
of piles across Colorado and knowing the total masses of the 
piles is crucial to land managers to both estimate the treatment 
eects and emissions released from pile burns. However, with 
current pile mass estimation techniques require significant time 
and eort to complete across larger areas. Pile burning releases 
harmful emissions into the atmosphere such as particulate matter, 
carbon monoxide, volatile organic compounds, and nitrous oxides 
(Andreae and Merlet, 2001). Although burning days are chosen 
when dispersion is optimal, exposure to emissions from pile 
burning are often likely in nearby residences (Pierobon et al., 2022; 
Rosenberg et al., 2024). Therefore, being able to estimate the impact 
of emissions on nearby residents is important as the number of 
piles constructed and planned to be burned in the upcoming decade 
is likely increasing. A more accurate and cost-eective method to 
quantify pile mass is needed. 

Terrestrial laser scanning has the potential to be used to 
estimate pile masses more accurately than previous methodologies 
and could provide a framework for estimating pile masses to be 
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applied to larger areas. The overall objective of this study is to 
explore the use and limitations of TLS to estimate pile masses at 
prescribed fire sites. Specifically, we addressed three interrelated 
questions. First, how does the accuracy of the volume prediction 
change with varying amounts of empty space in piles. Second, how 
accurate is TLS in predicting the mass of piles. Third, how does the 
predicted mass of piles from the TLS compare to previous methods. 

2 Materials and methods 

This study used TLS on hand piles at Hall Ranch Open 
Space (HROS) in Lyons, CO (40.224403, −105.316249) to estimate 
masses of 15 piles and compare to previous pile mass estimation 
methodology, and the destructively sampled pile masses. In 
addition to in-field TLS measurements, this study also used TLS 
on synthetic piles built in the laboratory using identical pieces of 
wood to assess the ability of TLS to predict masses of varying shapes 
with known volumes. Additionally, synthetic piles were used to 
assess the importance of stitching order and any inherent variability 
associated with the TLS scans. 

2.1 Synthetic piles 

2.1.1 Synthetic pile construction 
Six synthetic piles were constructed using identical wood pieces 

(45.4 × 8.9 × 3.8 cm) with the goal of improving our understanding 
of (1) how TLS handles empty spaces in dierent fuel arrangements, 
(2) how the order in which scans are stitched together influence 
the mass estimation, and (3) how mass estimations vary based 
on the person completing the stitching. The synthetic piles were 
constructed out of identical pieces of wood and therefore had 
known values of volume. The shapes of each synthetic pile are below 
in Figure 1. Pile 1 is a rectangle with one empty space on the top 
row, Pile 2 is a rectangle, Pile 3 is a pyramid shape. Piles 1–3 were 
designed to have as little empty space as possible. Pile 4 is a random 
shape, meant to have open space in the middle, pile 5 is log cabin 
style shape, with visible open space between the wood pieces, and 
Pile 6 was constructed to be representative of the shape of an actual 
pile found in the field. 

2.2 Field piles 

2.2.1 Site description 
This study took place at HROS, which is maintained by the 

Boulder County Parks and Open Space, west of Lyons, Colorado 
and is part of the Colorado Front Range Wildfire Crisis Strategy 
landscape. The piles are located on 44.11 ha in a forested area that 
is dominated by ponderosa pine (Pinus ponderosa var. scopulorum). 
The piles were constructed in 2023, with no prior prescribed fire. 
Trees in this area were cut as part of a first entry for restoration 
prescription, with no material removed from the area, only formed 
into piles to burn. The last reported wildfire in this location was in 
1867. Soil in this area is predominantly gravelly sandy loam about 
0.5 m in depth (N. Stremel, personal communication, 29 Jan. 2025). 

2.2.2 Field Pile data collection 
In total, 15 piles were selected at HROS. Each pile was 

weighed and scanned using TLS; see Figure 2 for locations. 
HROS has 1881 piles that are planned to be burned in the 
winters of 2024–2026. Piles selected to be scanned and weighed 
were chosen with dierent shapes and sizes, in order to ensure 
variety in the sample. However, machine piles (greater than 
178 cm × 381 cm) were excluded from sampling to make sure 
there was enough time to scan and weigh multiple piles as scanning 
and weighing large piles can take many hours. Each pile was 
scanned four times, once from each side. Our sampling protocol 
was chosen to allow flexibility in determining scan locations to 
minimize occlusion from vegetation. The scans were completed 
using a Leica BLK360 (Leica Geosystems, Heerbrugg, Switzerland), 
as described by Pokswinski et al. (2021). The scanner has an 
830 nm laser wavelength, a maximum range of 60 m, covers 
360◦ horizontally and 300◦ vertically, and weighs 1 kg. I used 
the standard sampling density with non-HDR imaging, which has 
a resolution of 10 mm at 10 m and a scan time of less than 
4 min (Loudermilk et al., 2023; Leica Geosystems, BLK360 Spec 
Sheet, 2019/2022). For each pile, four spikes with pink flagging 
were placed around the perimeter of the pile forming a square 
(see Supplementary Figure 1) to make combining each pile scan 
easier. Each pile was then taken apart (Supplementary Figure 8) and 
weighed using a luggage scale (Travelon, Franklin Park, IL) and the 
geometric volume and mass of those piles were calculated using the 
methodology described in Wright et al. (2009). This methodology 
was developed by measuring the geometric and surface shape 
volume of 121 piles in the western US. The geometric volumes 
were calculated using equations adapted from Hardy (1996). Of 
note, this method typically underestimates the true pile volume for 
very small piles and overestimates the true volume for larger piles 
(Wright et al., 2009). 

2.3 TLS scan processing 

Terrestrial laser scanning of the piles from both the field and the 
synthetic piles were uploaded using Cyclone REGISTER 360 Plus to 
convert the files on the BLK from. blk to .ptx files. The .ptx files are 
stitched together into a single point cloud and segmented to isolate 
only the pile using CloudCompare. The method used to stitch the 
scans for both handmade and field piles is described in detail in 
Table 1. 

Once the scans have been stitched, the pile needed segmented, 
from the larger point cloud. The segmenting process is 
outlined in Supplementary Figure 2 and he often takes more 
than two iterations. 

Following the segmentation of the pile from the larger point 
cloud, the volume for each pile point cloud was estimated using 
Poisson Recon Plugin in CloudCompare. To use the Plugin, normal 
must be computed for the point cloud, this accessed via “Edit> 
Normals> Compute.” This plug-in then creates a solid surface over 
the point cloud and allows you to turn it into a solid mesh. The 
solid mesh produces a scalar field where the color indicates the 
number of points in the point cloud (red representing the highest 
point density and blue representing the lowest point density) and 
allows the user to get rid of spaces on the solid mesh where there 
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FIGURE 1 

Synthetic piles. 

FIGURE 2 

Pile Locations at Hall Ranch Open Space (HROS). Yellow stars are locations in which piles were measured. 

are not as many points registered by the TLS. This step ensures 
that the user is only calculating the volume of the actual pile. 
For each field pile, space colored in blue or green (green has the 
next fewest point density following blue) were removed from the 
pile. To remove the space colored in blue and green, when using 
the Plugin, ensure that “output density as SF” is selected. Then 
the user can remove the blue and green colored spaces under 
“Properties > SF display params.” CloudCompare has a function 
that will then estimate the volume of the solid mesh. This function is 
accessed via “Edit > Mesh > Measure volume.” There is no further 
point cloud reconstruction required. 

2.3.1 Synthetic piles TLS scan processing 
Each of the synthetic piles were scanned four times, once on 

each side, and this process was repeated twice. TLS scans for each 

pile were positioned approximately 2–3 m away from the pile. 
Scanning each synthetic pile twice in total allowed us to estimate 
any error associated with the TLS scans on the same shapes of the 
synthetic piles. 

To explore the impact of stitching order on volume estimation, 
we explored all possible orders given the four scanned sides. Table 2 
summarizes those stitching orders. The dash indicates the scans 
being stitched. So, 1-2 means that scans 1 and 2 are stitched together 
first, and 12-3 means that scans 1 and 2 which are already aligned, 
are stitched to scan 3. 

2.3.2 Field piles TLS scan processing 
Each field pile was also scanned four times, once on each side. 

TLS scans for each pile were positioned approximately 2–3 m away 
from the pile. Each field pile was stitched together 15 times. The 
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TABLE 1 Stitching description. 

Step Description 

1 Upload the scans of the pile into CloudCompare 

2 Select two of the scans in the DB tree 

3 Click the tool “Aligns two clouds by picking (at least four) 
equivalent point pairs” 

4 Select one of the scans as the pre-aligned scan, the scan chosen 

will vary depending on which order you are stitching the scans 
together 

5 Uncheck the check box for “show “to align” entities.” (Now, 
only the reference scan will be visible on the screen) 

6 Select a point on the reference scan, this could be one of the 

pink flags placed around the pile perimeter, or something else in 

the scan that is easily identifiable 

7 Unclick the “reference” entities box, re-click the “to align 

entities,” and find and select the same point to the best of your 

ability 

8 Repeat steps 5–7 until you have three matching entities and the 

align button is available 

9 Click align so that your point clouds will be easier to work with 

and closer to aligned 

10 Add one more so that there are at least four matching entities, 
and click align again 

11 Continue to add and delete entities as necessary until the error 

for all four matches is 0.05 or under, and there appears to be 

minimal or no “double vision” around plot center 

12 Once the two scans are now aligned, click the green check mark 

to close the tool 

13 To stitch together additional scans to the two aligned scans, 
select each of the scans in the DB tree 

14 Select the already aligned scans as the pre-aligned scans 

15 Repeat the steps listed above as many additional scans are 

needed for each pile 

TABLE 2 Stitching combinations used on each of the synthetic piles. 

Stitching 
order 

Stitching combinations 

O1 1-2, 12-3, 123-4 

O2 4-3,43-2, 432-1 

O3 1-3, 13-2, 132-4 

O4 2-4, 24-1, 241-3 

TABLE 3 Stitching combinations used on each of the field piles. 

Sides 
stitched 

Stitching combinations 

1 1, 2, 3, 4 

2 12, 13, 14, 23, 24, 34 

3 123, 124, 134, 234 

4 1234 

dierent stitching orders are shown below in Table 3, the stitching 
combinations represent the scans that were stitched together to 
estimate the pile mass. Scan 1 represents the 1st scan done of 

the pile, while the 4th scan is the last scan done of the pile. The 
scans are completed sequentially in a circle around the perimeter 
of the pile. The location of the first scan was chosen at random, 
and the second scan was done adjacent to the location of the 
first scan. 

For each of the piles, the mass was estimated using a varying 
number of sides; 1, 2, 3, and all 4 sides of each pile. To 
estimate the mass of a pile using only one scan, there are 
four dierent mass estimates, using each side of the pile scans. 
To estimate the mass of a pile using two scans, there are six 
dierent stitching combinations that can be used. To estimate 
the mass of a pile using three scans, there are four dierent 
stitching combinations that can be used. Finally, to estimate 
the mass of a pile using all four scans, there is only one 
stitching combination. Each of the combinations was completed 
for each pile in order to see how the selection of dierent 
numbers and orientations of scans would influence the mass 
estimate of the pile. 

The resulting volume estimation for each field pile was 
multiplied by a bulk density value of 76.79 kg/m3 (Wright et al., 
2009), for hand piles in coniferous forests of Washington and 
Oregon. Due to the similarity of the species composition and the 
construction of the piles we have in Colorado and the lack of 
geographically explicit bulk density estimates, we chose to use the 
bulk density calculated by Wright et al. (2009) in our analysis. Bulk 
density is the mass of the material in the pile divided by the total 
space that the pile occupies, which includes empty space between 
the fuel in the pile. 

The bulk density of the synthetic piles without any empty 
space is 415 and 116 kg/m3 for Pile 6 which was our attempt 
to mimic real-life conditions. Our bulk density values are much 
larger compared to the bulk density of conifer piles, indicating 
that there is much more empty space in the field piles. This mass 
estimation process was repeated for each of the 15 stitching orders 
across 16 field piles. 

2.4 Statistical analyses 

For the analysis of both the synthetic and field piles, we use the 
following metrics to compare the accuracy of TLS in predicting 
pile volume and mass to the actual known volume and mass. 
Additionally, these metrics are used to understand the impact of the 
user, stitching order, and scanning trial on the predicted volume of 
the synthetic piles. 

The root mean squared error (RMSE) (Equation 1), mean bias 
error (MBE) (Equation 2), correlation coeÿcients (calculated in 
MATLAB using a built in function), mean absolute percent error 
(MAPE) (Equation 3), percent errors (Equation 4), relative errors 
(Equation 5), and relative dierences (Equation 6) were calculated 
for each group of pile mass estimates. All analyses were completed 
in MATLAB. N is the number of samples in the sample size, xi 
is the actual measurement and x̂i is the predicted measurement. 

RMSE = 

r XN 

i = 1 
(xi − bxi)

2/N (1) 

MBE = 
1 

N 

XN 

i = 1 
(x̂i − xi) (2) 

Frontiers in Forests and Global Change 05 frontiersin.org 

https://doi.org/10.3389/ffgc.2025.1663753
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


gc-08-1663753 October 15, 2025 Time: 15:22 # 6

Guth et al. 10.3389/ffgc.2025.1663753 

MAPE = 100 ∗ 
1 

N 
∗ 

XN 

i = 1 
(xi − bxi)/bxi (3) 

% Error = (xi − bxi)/bxi ∗ 100 (4) 

Relative Error = (xi − bxi)/bxi (5) 

Relative Dierence = (x1 − x2)/((x1 − x2)/2) (6) 

3 Results 

The following section includes comparisons between the 
estimated mass values for the field piles and estimated volumes 
for the synthetic piles. Additionally, the field pile mass estimates 
were compared to both the mass estimates using the methodology 
developed by Wright et al. (2009) and the actual pile masses. 

3.1 Synthetic piles 

3.1.1 Synthetic pile measurements 
Figure 3 shows the actual and estimated volumes for each of 

the synthetic piles as well as the volume of empty space in each pile. 
Table 4 summarizes the comparison between actual and estimated 
volume for each pile. The green circle is the actual measured volume 
of the pile, whereas the red points are volume estimates from the 
TLS scans. The dierent shapes of the red points indicate the trial 
and stitching order. So, Volume_T1_O1 is the volume estimated 
from trial 1 of the pile scans, and the 1st stitching order. Whereas 
Volume _T2_O4 is the volume estimated from trial 2 of scans, and 
the 4th stitching order. Each stitching order is described in Table 1. 
The dierent shades of red represent the same stitching order and 
trial done by an additional person. For all synthetic piles except 
synthetic pile 5, the volume estimates were consistent for both 
people. However, for Pile 5, one person was able to more accurately 
estimate the pile volumes while the other was not. 

Piles 1–3 had the most accurate volume predictions; they had 
the lowest RMSEs, MBEs, and MAPES compared to piles 4–6. 
However, the RMSE and MBE for pile 2 were higher than expected 
since for trial 2 and 2nd stitching order, the volume estimate was 
much lower than the actual volume. The reason behind this error is 
unknown, and that stitching order was repeated several more times 
for that pile and still had the same results. Volume estimates for 
piles consistently overestimated the actual volumes of the piles. The 
inconsistent estimates for the masses for each pile based on both 
the stitching order as well as the trial does indicate that there is 
some error associated both with the stitching process as well as in 
the TLS scans. However, since the dierences in the estimates are 
not consistent in either under or overestimating the synthetic pile 
mass, this means that there is no bias associated with the stitching 
process. Based on the results above, when there is any empty 
space in the synthetic pile, the TLS underestimated the volume of 
fuel compared to synthetic piles with minimal empty space, and 
the pile with the largest volume of empty space, had the largest 
errors. Additionally, synthetic piles with empty space had higher 
associated RMSEs and MAPEs. 

3.1.2 Synthetic pile error 
For the synthetic piles, we calculated the relative error when 

comparing each of the stitching orders to the actual pile volume, the 
relative dierence between users for the volume estimates, as well as 
the relative error between trials across both users. These results are 
shown in Supplementary Figures 3–5, respectively. 

For the stitching orders with adjacent stitching being done 
first, orders 1 and 2, the median relative errors when comparing 
each of the stitching orders to the actual pile volume, were 0.08 
and 0.14, respectively (Supplementary Figure 3). For the stitching 
orders with opposite sides being stitched first, orders 3 and 4, the 
median relative errors were 0.17 and 0.24, respectively. Stitching 
orders with opposite sides stitched together first had higher median 
relative errors.

For all piles, except pile 5, the median relative error between 
users was less than 0.01 (Supplementary Figure 4). This result 
means that there was not a bias associated with one user versus 
another (except for Pile 5). Additionally, when looking at the 
spread of relative errors between users for each pile there was 
less user dierence for the solid piles (Piles 1–3) than the piles 
with significant empty space. Using Piles 4 and 6 as reasonable 
real-world mimics, we can assess the random relative error, or 
uncertainty, associated with employing dierent users to determine 
pile volumes to be the standard deviation of the relative error. For 
our case study, that random relative error for each pile is as follows, 
0.05, 0.46, 0.06, 0.11, 0.43, 0.09; therefore, the random relative error 
associated with using dierent users to stitch scan is ∼0.10 or 10%. 

Each of the median relative errors between trials 
(Supplementary Figure 5) were all less than 0.07, the standard 
deviation of these relative errors can be considered the uncertainty 
associated with a measurement repeat (but the process and user 
stay the same); that uncertainty for each pile is as follows, 0.05, 
0.47, 0.08, 0.11, 0.13, 0.09. The one anomaly for Pile 2 is increasing 
the random relative error estimate for that pile; however, there 
appears to be no dierence between solid piles (Piles 1–3) and 
piles with empty space (Piles 4–6). In general, the random relative 
error associated with repeat trials is ∼0.10 or 10%, similar to the 
uncertainty associated with having dierent users stitch piles. 

3.2 Field piles 

Figure 4 shows the mass estimates for each pile using TLS as 
well as the method developed by Wright et al. (2009) compared to 
the actual mass of the pile weighed by hand. As mentioned in the 
methods section, each of the piles had 15 dierent mass estimates 
based on the varying stitching order. However, Figure 4 only shows 
the mass estimates of one stitching order for each number of scans. 
In other words, only one stitching order is being shown here for 
the mass estimated using three scans. Supplementary Figure 6 in 
the supplemental shows the 15 dierent mass estimates for only 
Field Pile 1, to show the variability between the dierent TLS 
mass estimations. There is variability associated with the chosen 
stitching order and the number of sides selected to estimate the 
pile mass. This same analysis was done with each of the dierent 
stitching orders and similar results were obtained for each. Looking 
at all piles, for estimating the mass using three scans, when the 
first stitching done is opposite, the mass estimate was less accurate 

Frontiers in Forests and Global Change 06 frontiersin.org 

https://doi.org/10.3389/ffgc.2025.1663753
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


gc-08-1663753 October 15, 2025 Time: 15:22 # 7

Guth et al. 10.3389/ffgc.2025.1663753 

FIGURE 3 

Actual vs. estimated volume for each synthetic pile and empty space volume. 

TABLE 4 Root mean squared error (RMSE), mean bias error (MBE), and 
mean absolute percent error (MAPE) of estimated mass values for 
synthetic piles. 

Pile RMSE (m3) MBE (m3) MAPE (%) 

1 0.88 −0.23 −0.18 

2 1.10 −0.65 −0.19 

3 0.79 −0.11 −0.15 

4 4.87 −3.36 2.38 

5 0.82 0.47 4.22 

6 8.87 −6.28 3.09 

compared to the mass estimate where the first stitching done is 
adjacent to one another. For estimating the mass using two scans, 
when the first stitching done is opposite, the mass estimate was 
more accurate compared to the mass estimate where the first 
stitching done is adjacent to one another. For example, the percent 
errors when stitching together opposite sides first using three sides, 
the median percent error was 44% compared to a percent error of 
15% when stitching together adjacent sides first. When using two 
sides, the percent error when stitching opposite sides first was 9% 
while stitching adjacent sides first had a percent error of 25%. 

In Figure 4, the actual weighed mass is represented with a 
green circle, whereas the estimated mass values are all shown in 

red. For Mass_Estimated_X, the number represents the amount 
of sides that were stitched. Mass_Estimated_4 means that all four 
sides of the pile were stitched and used to estimate the pile mass, 
whereas Mass_Estimated_1 means only one side of the pile was 
used to estimate the pile mass. Note that the measurements needed 
to be collected in order to estimate the mass using the methodology 
developed by Wright et al. (2009); however, for this study, for 
piles 1, 2, and 10, we did not follow that approach, so we do 
not include that estimate for those three piles. The Wright mass 
estimates consistently underestimated the actual masses of the piles, 
meaning this is a biased estimate. From this plot it is evident 
that neither the TLS or the previous methodology from Wright 
are consistently accurate in predicting the individual pile masses. 
There is no consistent pattern between the masses estimated using 
the TLS and the actual masses of the piles. Additionally, there 
is no consistent pattern associated with the number of sides 
scanned and stitched. 

Figure 5 shows the estimated vs. actual pile masses when 
using the dierent number of sides to estimate the pile masses. 
Table 5 shows the ranges of RMSE, MBE, correlation coeÿcients, 
and MAPE for the in-field pile data shown in Figure 5. There 
is little correlation between the actual and estimated masses 
regardless of the number of sides stitched. Stitching all four 
sides was the most correlated with the individual pile masses, 
however, the R2 value is still low. The RMSEs and MBEs 

Frontiers in Forests and Global Change 07 frontiersin.org 

https://doi.org/10.3389/ffgc.2025.1663753
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


gc-08-1663753 October 15, 2025 Time: 15:22 # 8

Guth et al. 10.3389/ffgc.2025.1663753 

FIGURE 4 

Actual vs. estimated mass values for each pile. Actual pile masses compared to estimated pile masses using methods developed by Wright et al. 
(2009) and the terrestrial laser scanning (TLS). For three sides the stitching order is 123 and for two sides the stitching orders, refer to Supplementary 
Figures 6, 7. 

FIGURE 5 

Estimated pile mass vs. actual pile mass. The stitching order is as follows, estimating the mass using three sides, 123, estimating the mass using two 
sides, 13, estimating the mass using one side, scan one was used. 
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TABLE 5 Root mean squared error (RMSE), mean bias error (MBE), and correlation coefficients of estimated mass values for in-field piles. 

Sides stitched No. of stitching orders RMSE (kg) MBE (kg) Correlation coefficient MAPE (%) 

4 1 96.5 36.8 0.59 −17.5 

3 4 83.7–116.3 37.0–71.7 0.22–0.56 −35.8 to −22.4 

2 6 51.1–141.5 −45.8 to 21.7 0.11–0.45 −2.8 to 15.4 

1 4 99.2–159.1 −110.9 to −30.7 −0.12–0.38 11.3–45.2 

FIGURE 6 

Percent error between actual and estimated pile masses. The stitching order is the same as in Figure 4. 

were all fairly high regardless of the number of sides stitched, 
ranging from 51 to 159 kg, which in some cases was more 
than half of the weight of the actual pile mass. Figure 5 and 
Table 5 highlight the inability of TLS to accurately predict a 
single pile mass. 

Figure 6 shows the percent error between the actual and 
estimated masses for the field piles as well as the estimated masses 
using the methodology developed by Wright et al. (2009). For each 
mass prediction method, only one stitching combination is being 
used in this analysis, however, this analysis was completed for each 
of the additional stitching combinations. When using three sides 
of the pile to predict pile mass, the percent error was the lowest 
across all piles when the scans were in sequential order, for example, 
scans 123 and scans 234. When using two sides of the pile to 
estimate the mass, the percent dierence was the lowest for stitching 
combinations that were opposite of each other, for example, 13 
and 24. In each case, regardless of the number of sides stitched to 
predict the pile mass, they were not consistent in either over or 
underestimating the pile masses, meaning that this measurement 
is not biased. As shown in Figure 5, the TLS is not accurate in 
estimating the mass of a single pile, but over the entire sample size 
(Figure 6), the median percent error across all piles is near 0. 

4 Discussion 

Using TLS to estimate pile mass reduces the bias in the 
estimated mass compared to previous pile estimation techniques 
used by Wright et al. (2009). Using each of the dierent stitching 
methods from the TLS scans is not accurate for predicting a single 
pile mass, but for the entire sample size, the median percent error 
was lower compared to previous pile mass estimation techniques. 
Across multiple piles, TLS performed well in estimating pile masses. 
Similar to the results of both Long and Boston (2014), Casey 
et al. (2015), the TLS did a better job at estimating the volumes 
of piles compared to traditional volume estimation methods for 
“smaller” piles. 

For synthetic piles, the dierence between the users completing 
stitching did not influence the results much, ∼10% for piles that 
mimic real world. There was also not a big dierence for repeats 
of the TLS scans, ∼10%. However, the stitching order did make 
a dierence. Based on the comparison between stitching orders, 
orders that included stitching adjacent scans first (orders three and 
four) had higher relative errors. This is inconsistent with what 
was found for the field piles, where the estimates of pile masses 
using both three and two sides had lower relative errors when the 
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scans were adjacent. Based on the stitching order results, we do not 
have any recommendations of which stitching order to use while 
stitching pile scans. 

Being able to estimate the masses of large quantities of piles 
is crucial for land managers in understanding the treatment eect 
of prescribed fire. Land managers prioritize being able to estimate 
large numbers of piles and will rarely need to estimate the mass of 
only a single pile. Stitching three sides of a pile was overall the most 
accurate method to estimating the mass of all of the piles in total. 
However, all of the other stitching methods had a median percent 
error of less than 20%. Therefore, if there is not enough time to do 
three scans per pile, scanning either one or two sides of the pile will 
not result in a significant increase in error. Although using three 
sides had the lowest error when looking at all of the piles, using four 
sides had the highest correlation when predicting individual mass. 

Although TLS had an overall lower mean percent error relative 
to previous methods, there are still constraints associated with 
operationalizing TLS for pile estimation. There is a time cost 
associated with the processing of the TLS scans. Future work could 
involve looking into ways to make the process of processing these 
TLS scans more eÿcient. Scanning a large sample of piles all at 
once could reduce the scanning time and time spent processing the 
scans. Additionally, this study had a relatively small sample size, 15 
piles, on only one ecosystem. Future work that measures more piles 
across several ecosystems would be helpful to assess if the results 
are the same across a larger sample size and dierent locations. 

For future work, there is a need for methods to actually 
predict pile masses. In future studies, the development of a quick 
(< 5 min) in-field measurement that could be used in combination 
with the TLS scans to predict pile masses may prove to be 
useful to prescribed fire implementers. TLS scans take less time 
than traditional field measurements, so any additional non time 
intensive field metrics that could help predict total pile masses 
could be helpful. Additionally, methods to calculate bulk density 
of piles could eliminate the need for a two-step process in mass 
prediction, as shown in this analysis. There are metrics that can 
be derived from point clouds such as height distributions, crown 
volume, vertical density profiles, as well as point return counts that 
have been used in previous studies to predict fuel types and fuel 
loading (Gallagher et al., 2024; Loudermilk et al., 2023). It would 
be interesting to assess the ability of those variables to help further 
predict the total mass of the piles. 
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