AUTHOR=Guth Annamarie , Dauner Marissa , Fowler Alexandra , Hoehl Spencer , Hamlington Peter , Hoffman Chad , Hannigan Michael TITLE=Using terrestrial laser scanning to estimate mass of hand-built slash piles following hazardous fuels treatments JOURNAL=Frontiers in Forests and Global Change VOLUME=Volume 8 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/forests-and-global-change/articles/10.3389/ffgc.2025.1663753 DOI=10.3389/ffgc.2025.1663753 ISSN=2624-893X ABSTRACT=Pile burning is increasingly used in many forest and woodland ecosystems to reduce hazardous fuel loads following fuel hazard reduction or forest restoration efforts. Pile burning is often linked to thinning practices where residual fuel is piled and subsequently burned; the burning is typically done in winter months when conditions reduce the risk of unwanted fire behavior such as escapes. A key aspect of pile burning is estimating the amount of pile biomass and the amount of fuel consumed during burning as these two variables are critical for estimating treatment efficacy and smoke emissions. Methods to estimate pile masses have been studied and developed previously, however, they are time consuming and require extensive user training. Terrestrial laser scanning (TLS) is a remote sensing tool that has been successfully used on broadcast burning for fuel characterization and has the potential to estimate pile masses at prescribed burning sites. TLS reduces measurement error, requires less extensive user training, and eliminates observer bias in measurements. A total of 16 pile masses were measured across Colorado, United States, using a previously developed pile measurement methodology, using TLS, and by taking apart the pile and weighing the contents of the pile, to determine if TLS would be an adequate method for predicting pile masses. Individually, TLS did not do a good job predicting pile masses, however, when comparing across all 15 piles, using three TLS scans of a pile to estimate pile mass had the lowest median percent error across all piles.