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The overarching issue we address here is how to extract clear and actionable

ecological and management insights from real-world field data that often do

not satisfy traditional statistical assumptions. Toward this goal, we developed

a general 12+6 step adaptive management framework tool. We applied

this framework tool to existing biodiversity monitoring data to create a

proof-of-concept result that addresses the overarching question of “why might

a specific native stream fish taxon be present or absent at specific locations?”

Our multi-step framework tool links established steps and steps that are unique

to our framework through weight-of evidence (WOE) integration, an approach

that combines quantitative results from multiple visualization and statistical

procedures. The systematic use of all steps in our framework can provide

improved conservation outcomes compared to a single analysis. Advantages

accrue from our approach because our framework tool refines the overarching

goal into related sub-questions, applies a specific quantitative procedure to each

sub-step, combines results from all sub-questions using a WOE integration,

identifies testable questions that elucidate ambiguities and gaps revealed through

WOE integration, and proposes practical field methods for obtaining this

clarifying information through future research and data collections. The process

of consideringmultiple visualizations and analyses as individual pieces of a shared

puzzle o�ers a new way to approach the use of existing data. Our team-based

approach transforms the collection and analysis of existing data into a series of

field tests that can guide future actions (e.g., data collection-analysis events,

restoration initiatives, research). Habitat and impact regressors will vary with

taxa and system, but our structured process tool has broad generality for a

range of conservation issues in which freshwater systems are threatened by

human impacts.
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1 Introduction

1.1 Need for a framework tool that
balances innovation with practicality

Ensuring that native freshwater biota can coexist with humans

is a high priority for environmental professionals, conservation

stakeholders, and society (e.g., Lindenmayer and Likens, 2009;

Counihan et al., 2022). To address this priority, our purpose

is to illustrate a weight-of-evidence (WOE) framework tool that

can be used to learn from existing real-world datasets and

consequently guide future, science-based, data-driven conservation

actions. Specifically, the intended audience for our new framework

tool is researchers and managers with access to geographically-

large datasets who seek to combat the detrimental effects of

human impacts in freshwater systems. The existing datasets that we

prioritize here (Rohweder, 2022) are monitoring (geographically

broad but may have many gaps), and site-specific research data

(substantial detail but limited geographic and temporal extents).

Throughout we refer to our method as a framework tool.

Our multi-step framework tool links steps that are established

and steps that are unique to our framework through WOE

integration, an approach that combines quantitative results from

multiple visualization and statistical procedures. Our contribution

is organized to (1) introduce gaps in existing approaches that

stimulated the development of our tool, (2) review methods that

we used to develop our general framework tool (objective 1), (3)

show results of a proof-of-concept application to existing stream

fish data (objective 2), and (4) discuss the advantages that our

framework provides.

As a result, our framework tool accumulates insights about

biodiversity. To make progress on difficult problems created by

human and climate impacts, freshwater researcher-manager teams

must move beyond one-time, one-place studies and be able to

use existing datasets to identify gaps, make testable predictions,

and prioritize future activities. Advantages accrue from our tool

because our multi-step framework refines the overarching goal into

related sub-questions, applies a specific quantitative procedure to

each sub-step, combines results from all sub-questions using WOE

integration, identifies testable questions that elucidate ambiguities

and gaps revealed in the WOE integration, proposes practical

methods for obtaining this clarifying information through future

research and data collection, and connects each iteration of

the framework.

1.2 Overview of gaps that our framework
tool can bridge

At least two categories of big-picture information gaps limit

the effectiveness of using existing data (research or monitoring) in

biodiversity conservation. The first gap is the absence of hands-on

practical guidelines for choosing, using, and interpreting statistical

analyses that are appropriate for real-world data (i.e., data which do

not meet the assumptions of most statistical approaches regardless

of the rigor of the design). The second gap is the limited availability

of implementable, step-by-step, adaptive management guidance

and realistic, multi-project planning tools tailored to specific

conservation problems. We review these issues below to provide

a foundation for our integrated multi-step framework tool.

1.3 Information gap 1—practical
quantitative analyses for real-world data

An integrated, structured process is needed to marry academic

statistical rigor with the strengths and weaknesses of real world

data. As strengths, existing monitoring datasets are essential

for assessing geographically- and temporally-broad trends (e.g.,

Vihervaara et al., 2013; Rohner et al., 2022; Bisson et al., 2023;White

et al., 2023), and for separating long- and short-term changes in

organismal distributions (e.g., National Research Council (NRC),

1996; Sutter et al., 2015; Rohner et al., 2022). However, both existing

monitoring and field survey research data often raise statistical

challenges such as problematic, highly-variable observations that

can be determined by convenience or accessibility rather than

scientific sampling design considerations. Furthermore, numerous

unknown gaps (e.g., empty cells, factors that are not even included

in the sampling protocol because their importance is unknown)

and limited spatial and temporal extents can create additional

uncertainty. As a result of these deviations from common statistical

assumptions (e.g., Counihan et al., 2022; Bunnell et al., 2023; Grüss

et al., 2023), real-world field data differ from data collected by

more-controlled academic approaches (e.g., Milliken and Johnson,

1989, 2001; Bolker, 2008; Ruiz-Gutierrez et al., 2016; Slater and

Villarini, 2017; Fischer et al., 2021).

1.4 Information gap 2—limited data
coordination and strategic planning

To effectively use existing field data for biodiversity

conservation, an integrated process is needed to connect specific

statistical interpretations with longer term goals and specific

conservation actions. Adaptive management, defined here as “a

systematic process for continually improving management policies

and practices by learning from the outcomes of previously employed

policies and practices” (Millennium Ecosystem Assessment, 2005),

provides a foundation on which to build coordinated and strategic

planning. We do not review the copious literature on adaptive

management (e.g., Parma, 1998; National Research Council (NRC),

2004; Williams, 2011; Hasselman, 2017), monitoring data designs

(e.g., Lindenmayer and Likens, 2009; Radinger et al., 2019; Lennox

et al., 2022; Counihan et al., 2022), or specific analyses (e.g., Bolker

et al., 2009; Guy and Brown, 2007; Doll and Jacquemin, 2018)

because these summaries exist elsewhere. Three reasons that

adaptive management plans are challenging to apply to specific

conservation problems (e.g., biodiversity conservation) are the

complexity involved in (1) linking datasets, (2) using data to

identify relevant science-driven decisions that are actionable,

and (3) translating general plans to actual problem-based steps

(Fontaine, 2011; Culina et al., 2021; Ladouceur and Shackelford,

2021; Mather and Dettmers, 2022). A problem-specific adaptive

management plan with milestones that coordinate questions,
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gaps, insights, and datasets, can connect parts and break complex

problems into more manageable segments (Dinerstein et al., 2019;

Sunmola, 2020; Warm et al., 2020).

1.5 Utility and applications of our
structured process tool

Our framework tool is a structured process that addresses both

of these gaps [i.e., (1) uses a rigorous quantitative approach that

is realistic about the strengths and weaknesses of real-world field

data, and (2) presents a pathway to connect statistical conclusions

with next steps for conservation actions (research, data collection-

analysis, regulation, planning)]. Our first objective is to illustrate

our framework tool for the specific applied problem of biodiversity

monitoring (methods section below). In our second proof-of-

concept objective, we apply our framework tool to a native stream

fish taxon to show how new ecological insights emerge (results

section below). Our framework tool is applicable to other taxa,

locations, habitat-impact variables, and conservation questions

even though specific variables and analyses may change with

organism and system.

We developed a 12+6 step framework tool that combines novel

and established steps. When used systematically, our framework

can create at least three improved, useful, usable, and innovative

outcomes. First, WOE integration of results from multiple

statistical analyses provides a practical way to meld the rigor of

academic analysis and the realism of existing data (addresses gap 1).

Second, our WOE integration identifies testable new questions and

predictions that can guide future conservation actions (addresses

gap 2). The conservation actions resulting from our framework can

be regulatory, but early iterations of complex problems are more

likely to be recommendations for the collection of focused data,

specific analyses, site selection to advance focused restoration plans,

or ideation of future adaptive management experiments (addresses

gap 2). Third, systematically following our framework through

multiple iterations can create an actionable science workplan that

translates a generic adaptive management plan into implementable

steps for specific conservation problems (addresses gap 2).

2 Methods for our framework tool
(objective 1)

2.1 Framework overview

Our adaptive management framework tool is an iterative,

structured process which combines 12 established and novel steps

(Figure 1A) within which six additional steps are embedded in

a quantitative sub-loop (Figure 1B). In brief, manager-researcher

teams strategically prioritize a focused overarching question of

interest (Step 1), thoughtfully isolate a carefully-chosen taxon and

scale (Step 2), review taxon-relevant literature (Step 3) to choose

taxon-relevant habitat-impact regressor variables (Step 4), acquire

regressor data for each location at which the target taxon was

sampled (GIS or empirical; Step 5), then undertake appropriate

cleaning and vetting procedures for taxon and regressor data

(Step 6). Steps 1–6 are established procedures that are currently

used in many data collection and analysis plans. The important

novelty that our framework tool adds to the established steps 1–

6 is that this first half of our 12-step process demands explicit

discussions about directions and connections that ensure that

questions, taxa, scale, literature review, regressor choice, and data

compilation are tactically designed to fit together into a realistic

focused, and integrated series of quantitative actions. Five of the

next six steps (Steps 7, 9–12) are novel to our framework. In

Step 7, the overarching question of interest (Step 1) is purposely

refined into specialized sub-questions that are each linked to a

specific individual visualization or analysis (Sub-steps 8A–F). Next,

teams integrate results from all quantitative sub-steps using aWOE

approach (e.g., Mehta and Rietjens, 2023; Step 9), translate the

resulting WOE integration into testable questions, predictions,

hypotheses, or gaps (Step 10), identify future data collection options

that link the WOE-driven agenda to practical realities (Step 11),

and link data activities across framework iterations (Step 12). Our

quantitative loop (Step 8) uses established statistical procedures

that are packaged interactively to produce creatively organized and

relevant output. Then framework steps 1–12 are repeated with

new overarching questions, different taxa, additional variables, or

enhanced datasets until teams are satisfied that the accumulated

knowledge is adequate for management, research projects, or

restoration actions. Below, we provide detailed guidance on each

step. Because making explicit connections among framework steps

is the primary element that provides improved outcomes, our

framework tool steps can be modified for different conservation

projects. We recommend always following all steps in order, but

for different projects, individual steps can be aggregated, specific

activities within a step can be modified, and different amounts of

time may be invested in each step.

2.2 Steps 1–2

In step 1, management-researcher teams will strategically

prioritize an overarching question of substantial scientific and

conservation interest (Figure 1A). In step 2, the team selects a target

taxon, spatial scale, and time period of interest. For both Steps 1–2,

the rationale must be documented to maintain a historic record for

future planning, ensure the continuity of the framework across staff

and leadership changes, and to justify specific data-driven activities

to outside interests. Realistically, a limited amount of information

can be obtained in a single project (or a single framework tool

iteration). If too many questions are asked at one time or too many

taxa and scales identified, none will be answered satisfactorily.

However, emerging questions, taxa, and scales can be addressed in

additional, linked framework iterations.

2.3 Step 3–4

Two established and one novel types of literature reviews,

used in step 3, provide context. First, per standard practice,

manager-researcher teams will summarize which habitat and

impact variables have been addressed in the current peer-reviewed

literature for the prioritized taxon at relevant spatial-temporal

scales. Second, as is typically done, teams will identify which
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FIGURE 1

(A) Our 12-step iterative, adaptive management framework tool, in which (B) our 6 sub-step quantitative loop is embedded (Step 8). This figure

summarizes our framework tool concept. Gray boxes are established steps that are currently used in many data collection-analysis designs (Steps

1–6). Colored boxes are partially (Step 8) or totally novel (Steps 7, 9–12) components of our framework. The multi-iteration expectation is that teams

will go around the framework cycle many times for complex questions. Roman numerals (I–IV; blue text) indicate the advantages of following our

framework compared to the use of select, isolated steps, and are reviewed in the discussion.
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of these habitat and impact regressors are available at the sites

where the target taxon was sampled. Third, as a novel literature

review procedure, we propose that benefits will accrue if teams also

format quantitative literature results to match the axes and scale

of their intended statistical model output (e.g., Table 1, columns

5–6, Y axis = probability of presence, X axis = regressor value).

TABLE 1 Literature predictions for how ecological regressors might a�ect Emerald Shiner presence for the 11 ecological categories used here including

numerical values; description of response; our interpretation of the expected trend (X axis = ecological category, Y axis = Emerald Shiner presence); a

hypothesized possible trend; definition; and citation. ? = no KS information.

# Ecological
category

Emerald shiner literature Possible
trend

Definition Citation

Value Description Expected
trend

1 Flow (Discharge

and Velocity)

Age 0 fish: (<0.6

m/s)1
Moderate

current (but can

thrive in

lacustrine

conditions)3 Lotic habitat

Annual mean flow (CFS)

or velocity (FPS)

estimate4

Cross, 1967

2 Substrates ? Sandy (but

tolerant of many

kinds)3 , silt -

rock1 , typically

sand or gravel2

Geological components

of the bottom surface

(%) (catchment area4)

Cross, 1967;

Boschung and

Mayden, 2004

3 Stream Order ? Large rivers3 ,

medium-large2
Size, network position;

Modified Strahler stream

order4

Becker, 1983;

Distler et al.,

2014; Haupt

and Phelps,

2016;

NatureServe,

2023

4A Reach—Stream

Width

? ? ? Calculated stream width

(m) for flowline exit

point4

“

4B Reach—Stream

Depth

Age 0: Avg. <1.5,

Range: 1–3 (m)1 ,

Lake spawning:

2–6 (m)2

Shallow and

deep water2,3
Calculated stream depth

(m) for flowline exit

point4

“

5 Catchment Area ? ? ? Network catchment area

(sqkm)4
“

6 Sinuosity ? ? ? Calculated average

curvature for the

flowline4

?

7 Land Use—

Agriculture

? Sedimentation

and water

withdrawal

(irrigation)

cause declines3

Calculated (%)

agricultural cropping

(catchment area4

Jenkins and

Burkhead,

1994; Lange

et al., 2014

8 Land

Use—Developed

? Pollution linked

to imperilment

in some

populations3

Calculated developed

area (%) for the

catchment area4

“

9 Land

Use—Natural

? ? ? Calculated natural land

use (%) catchment area4
?

10 Dams

(Proximity)

? Impoundments

cause decline

(flow regulation)

or increase

(reduce

turbidity)2,3
Lotic habitat

Total distance between

upstream and/or

downstream mainstem

dams (km)4

Pflieger and

Grace, 1987;

Cross and

Collins, 1995

11 Gradient ? Low gradient3 ,

low-moderate2
Slope of flowline (m/m)

based on smoothed

elevations4

Cross, 1967;

Jenkins and

Burkhead,

1994

Web of Science1 , NatureServe2 , Kansas Fishes3 , Moore et al. (2019)4 .
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This quantitative standardization of results will allow an explicit

comparison of expected (literature predictions) with observed

(current study statistical output), will ensure shared goals across

studies, and will identify gaps across studies that require future

clarification. In Step 4, as is a common component of many

data collection and analysis plans, teams select habitat (physical

features) and impact (anthropogenic effects) variables relevant to

the target taxon, while documenting the rationale, strengths, and

weaknesses of these decisions.

2.4 Steps 5–6

Steps 5–6 are essential but not novel parts of our framework

tool. Ensuring that compiled data sets are accurate, understood,

and appropriately interpreted is a priority in adaptive management

frameworks that connect and build on existing datasets. In Step

5, using select GIS datasets, teams wrangle multiple habitat and

impact metrics at the latitude and longitude at which taxon

samples were collected. Ecological categories of habitat and impact

factors, regressor definitions, and specific GIS databases that we

used for our biodiversity conservation question are described

in objective 2 (proof-of-concept results). In Step 6, researcher-

manager teams apply quality control checks to the taxon and

habitat-impact regressor databases. The data wrangling and data

cleaning processes we used in steps are described elsewhere (e.g.,

Chapman, 2005; Terrizzano et al., 2015; Rattenbury et al., 2017;

Ilyas and Chu, 2019).

2.5 Step 7

Step 7, the first novel component of our framework tool,

refines the overarching question of interest (Step 1) into specialized,

connected sub-questions that are each paired with an individual

visualization or analysis (Sub-steps 8A–F). A common issue

that emerges with the analysis of large datasets addressing

complex questions is that individual quantitative activities can

unintentionally diverge from the overarching question. Step 7

maintains a unified focus by preventing unplanned fracturing

of directions across quantitative tools that can limit subsequent

integration. Below, individual sub-questions are listed with their

paired quantitative step (visualization, analysis, ormodel; Sub-steps

8A–F). Our specific sub-questions, listed below, explore drivers of

presence-absence of native fish taxa, but like steps 1–6, they can be

modified for other specific projects as needed.

2.6 Step 8

The quantitative loop in Sub-steps 8A–F (Figure 1B) illustrates

our visualization-and-analytical workflow. For this step, we

combined presence absence maps, proportional symbol maps,

histograms, box plots, probability plots, ridgeline plots, pie plots,

correlations, multiple logistic regressions, and 10-K fold cross

validations [ggplot2 (Wickham, 2016); ggridges (Wilke, 2022); plotly

(Sievert, 2020); corrplot (Wei and Simko, 2021); MuMIn (Bartoń,

2022); caret (Kuhn, 2022); and tidyverse (Wickham et al., 2019; R

Core Team, 2022)]. These visualizations and analyses worked well

for our taxa, system, and questions, but other analyses might be

appropriate for other projects.

2.6.1 Sub-question (8A): where was the target
taxon present or absent?

In this sub-step, data analysts can map and discuss taxon

presence and absence related to statewide spatial patterns, region-

specific patterns, gaps in distribution, and patterns of spatial

heterogeneity (e.g., are there a few presences in a sea of absences

or a few absences in a sea of presences).

2.6.2 Sub-question (8B): at what habitat
conditions was the target taxon sampled?

To interpret visualizations and statistical tests, data analysts

need to know what existing field conditions were sampled. Using

a hypothetical example, if a given taxon was caught only in

small streams and large streams were not sampled, little support

would exist for the conclusion that this taxon was only found in

smaller streams. For this statistical sub-step, we recommend two

complementary visualizations. First, we constructed histograms

[i.e., frequency distribution (Y axis) for specific values for each

potential habitat or impact regressor (X axis) across all sample sites]

to illustrate how often each quantitative condition was sampled.

A second visualization, statewide proportional symbol maps in

which symbols for target regressors vary in size, helped to visualize

the geographic location and magnitude of habitat and impact

regressors at the taxon sample sites.

2.6.3 Sub-question (8C): how did habitat and
impact variables di�er where the target taxon was
present or absent?

We recommend two types of exploratory visualizations

(boxplots and ridgeline plots) to better understand differences

in habitat and impact conditions at sites where an individual

taxon was present compared to sites where the same taxon

was absent. As a first visualization, box plots can be used to

compare discrete distributional benchmarks (e.g., central tendency,

quartiles) between presence-absence sites for each habitat and

impact variable. As a second visualization, ridgeline plots (i.e., a

stacked set of distributional density plots that create the impression

of a mountain range) visualized the full extent of continuous

distribution overlap for each variable at sites where a taxon was

present or absent. Both plots can be used to help interpret species

distribution model results (Sub-steps 8E–F).

2.6.4 Sub-question (8D): what metric and scale
options might best identify di�erences between
sites where the target taxa was present or absent?

Sub-step 8D can compare and prioritize the performance

of multiple GIS-related metrics and scales for a given ecological

category of regressors. For example, in the ecological substrate

category (i.e., soil components of the land surface), publicly
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available GIS data may include clay, silt, sand, and rock fragment

metrics at point, flowline, catchment, network flowline, and

network catchment scales (listed in order of increasing size).

However, in a parsimonious statistical model, data analysts

typically select a single metric-scale for each ecological category.

To systematically choose and justify best metric-scales for

each ecological category, we recommend two tools (i.e.,

exploratory boxplots and best-subset logistic regressions). As

a first visualization tool, we used exploratory boxplots to identify

the metric-scale option that was most likely to detect a difference

(i.e., had the least overlap between sites where the target taxon was

present or absent). For example, if exploratory boxplots showed

that geological substrates such as % silt differed little between

presence and absence sites and % sand differed greatly across

site categories, we chose % sand as the initial, default geological

metric for the substrate ecological category in the multiple logistic

regression (Sub-steps 8E–F). As a second analysis, we used

best-subsets multiple logistic regression (e.g., Hosmer et al., 1989;

King, 2003; Zhang, 2016) to compare and prioritize multiple

metrics within ecological and scale categories [(1) metrics within

an ecological category, and (2) the same metric at different scales].

2.6.5 Sub-question (8E): can we create models
and evaluate their quality?

For Sub-step 8E, we undertook the following actions to create

multiple logistic regression models (referred to throughout as all-

ecological-categories models) that identified which habitat and

impact variables influenced the probability of target-taxon presence

or absence. (1) We selected one scale-specific metric from each

ecological category based on the results of Sub-steps 8C–D. (2)

We balanced our dataset by randomly removing data points from

the larger of the two classes (usually absences) until presences

equaled absences (Salas-Eljatib et al., 2018). (3) We examined

correlations among model-specific regressors (Appendix Figure 1),

and one of any highly correlated (P > 0.7) pair was removed

(Mukaka, 2012). (4) We fit multiple logistic regression models to

uncorrelated metrics.

2.6.6 Sub-question (8F): in the top models, which
habitat-impact regressors were associated with
taxon presence or absence?

In Sub-step 8F, we summarized which habitat and impact

regressor variables were most important in the logistic regression.

(1) For top models, defined as models with delta Akaike

Information Criterion (1AIC) < 2 (Anderson and Burnham,

2002), we evaluated the size and direction of the parameter

estimates, error size, and parameter-specific P-values. (2) For

regressors with P < 0.05 in the top models, we constructed

probability plots (Y axis = probability of presence, X axis =

magnitude of individual regressor values) to visually examine

the relationship between significant regressors and target-taxon

presence and absence. We appreciate that P-values do not have

an exact meaning for messy field data, and here we only used

them to prioritize trends (Murtaugh, 2014). (3) To evaluate the

accuracy of the model, we applied a 10-K fold cross validation to

identify the percent of the model classifications that were correct

(Manorathna, 2020). (4) We tested multicollinearity assumptions

using variable inflation factors (VIF; car, Fox and Weisberg, 2018)

and condition numbers (CN; klaR, Weihs et al., 2005). A VIF <

10 has been considered an acceptable rule of thumb for detecting

multicollinearity although some analysts suggest investigating

lower values (VIF < 5–10; Menard, 2002; Vittinghoff et al., 2005;

James et al., 2014). A CN < 30 has been considered an upper level

for acceptable multicollinearity but again some analysts suggest

investigating lower values (CN < 10–30; Freund and Littell, 2000;

Salmeron et al., 2022; Roever et al., 2023). (5) Finally, we calculated

the D2 statistic for the top model to observe the amount of variance

that the model explained (stats; R Core Team, 2022). Instead of

calculating accumulated error rates across sub-steps, we report

the quantitative steps undertaken in detail. Our use of logistic

regression follows an established statistical process for a frequently

used species distributionmodel. However, specifics of Sub-step 8E–

F are adaptable across projects because our framework allows for

the systematic testing, comparison, and addition of other modeling

and visualization tools (e.g., random forests, boosting, bagging,

stacking, and alternate modeling techniques). The novelty we add

lies in the explicit integration of quantitative literature predictions,

exploratory visualizations, and a regression model to identify data

connections-gaps and suggest future actions (Steps 3, 9–12).

2.7 Step 9

Weight of evidence integration (WOE; Step 9) is the novel step

that summarizes what was learned cumulatively across quantitative

tests of six specific sub-questions (Figure 1B). Here, we implement

WOE integration by comparing descriptive visualizations of

habitat composition at presence and absence sites. Other ways

to operationalize WOE integration include comparing model

coefficients to trends expected from literature, or comparing overall

habitat variable distributions across the area of interest in relation

to the model coefficients. Our WOE integration of all results

from multiple visualizations and analyses prevents subjective

omission of inconvenient results which can introduce ambiguity

when different analysts selectively interpret the results from their

chosen approach. In summary, WOE uniquely pinpoints: (1)

consistent insights on which to build; (2) ambiguous insights that

demand focused attention in future sampling-analysis; (3) gaps

in understanding and data availability, and (4) future directions

that prioritize and guide thoughtful new data collection and

analyses. We provide five specific examples of the benefits of WOE

integration below in our proof-of-concept example in the results

section (objective 2).

2.8 Steps 10–12

The next four novel steps convert WOE data syntheses

into future actions. Specifically, teams will translate the WOE

integration into relevant new questions, data-ready predictions,

and testable hypotheses (Step 10). Realistic data collection regimes

(general and specific) can then be identified to address these

questions-predictions-hypotheses, and inform gaps (Step 11). Our
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expectation is that planners, administrators, and biologists agree to

follow up on each framework iteration by subsequently collecting

and analyzing the recommended data to address the emergent

questions-predictions-hypotheses, and link datasets to accumulate

understanding (Step 12). We provide multiple examples of these

data-action steps below in our proof-of-concept (objective 2) in the

results section.

3 Proof-of-concept results for our
framework tool

3.1 Organization of the results section

For objective 2, we show how new ecological and management

insights and options for actionable science emerge from our

FIGURE 2

(A) Map of our study area with all fish sampling locations indicated. Each green dot represents a unique sample site. (B) Fish sample sites at which

Emerald Shiner was present (gold dots; n = 1,131 total presences at 903 unique locations) or absent (blue dots; n = 7,713 total absences at 7,076

unique locations). On both panels, names of major river basins in Kansas are indicated. This visualization corresponded to Sub-step 8A in our

quantitative loop.
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framework tool. When the results for the 12-step framework tool

are viewed together, the specific analysis foundation (Steps 1–6)

sets up the individual quantitative results (Steps 7–8), upon which

the innovative WOE integration, application, and connections

emerge (Steps 9–12). For best results, all steps, sub-steps, sites,

and regressors are systematically analyzed and recorded as part of

the information accumulation process. However, reporting these

voluminous results here is impractical. For readability, we only

show two types of visualization results. (1) We review results for

substrate (geologic bottom materials) to illustrate how a single

regressor behaved across all visualization sub-steps (Sub-steps 8B–

D). (2) We review results for a pair of regressors [order, land

types; Sub-steps 8C–D)] that were significant in our all-ecological-

category regression models (Sub-steps 8E–F) to add ecological

understanding. For space, we also limit data synthesis-to-action

examples (Steps 9–11) to five regressor variables (order, substrate,

sinuosity, dams, natural land use).

3.2 Steps 1–2, 4–6

In our proof-of-concept results, Steps 1–2, 4–6 identify

directions that provide the foundation for the first framework

iteration (overarching question, taxa, data steps). We chose

Emerald Shiner (Notropis atherinoides) for all time periods of data

collection across the statewide Kansas scale [Kansas Geological

Survey (KGS), 2012] to address the general question of “if and

why might a specific, native stream fish taxon be present or absent

at specific locations?” Emerald Shiner has a wide U.S. distribution

(Page and Burr, 2011), is an ecologically important fish in many

aquatic food webs (Etnier and Starnes, 1993), has some physical

habitat associations, but occurs in diverse habitats (Distler et al.,

2014), and had a high number of presences in our existing dataset.

We used monitoring data from 8,844 fish samples collected at 7,872

unique statewide stream locations of which 70% were collected

between 2010 and 2021 (Figure 2A). We identified 11 fish taxa-

relevant ecological categories: (1) flow, (2) substrate, (3) order, (4)

reach size [(A) width, (B) depth], (5) catchment size, (6) sinuosity,

(7) agricultural land, (8) developed land, (9) natural land, (10) dam

characteristics (e.g., dam proximity measured as total mainstem

distance to adjacent upstream and downstream dams), and (11)

gradient. Definitions of variables are shown in the second to the last

column of Table 1. For land and impact regressors, we used 2021

data tomatch the timing of most fish collections. At the latitude and

longitude at which fish taxon samples were collected, we compiled

multiple metrics for these 11 ecological categories at multiple scales

using select GIS datasets (Table 2). As an illustration of a benefit of

using GIS for habitat and impact variables, we were able to obtain

regressor data for most of the 7,872 locations in our fishmonitoring

database, compared to 1,679 sites at which matching empirical

habitat data were available (Reed, 2023). In future iterations, other

abiotic-biotic variables, databases, and years can be examined.

3.3 Step 3

Our two established literature reviews, described in the

methods section, identified choice of ecological categories of

regressors. From our novel quantitative literature review, we

predicted that Emerald Shiner presence will be more likely at

sites with intermediate flows (ecological category 1; Table 1) and

increased stream size (ecological categories 3, 4, 5) because in

Kansas streams this “large river” fish is often caught at sites with

moderate currents. We predicted that the probability of Emerald

Shiner presence is less likely at sites with extreme bottom substrate

sizes (ecological category 2), more land alterations (ecological

categories 7, 8), and with high gradients (ecological category

11) because Emerald Shiner is often associated with sand beds,

limited agriculture, restricted human land development, and low

to moderate gradients. Little is known about the effect of sinuosity

on this taxon (ecological category 6). Similarly, little data exist

on Emerald Shiner response to natural land (ecological category

9), but this common native fish is widely distributed so multiple

outcomes are possible. We also predicted multiple outcomes for

dam proximity (ecological category 10) because dams both reduce

flow (negative effect) but also reduce turbidity (positive effect).

TABLE 2 GIS database name, source, citation, year, ecological category, and metrics used to wrangle habitat and impact data for our “12+6 step

adaptive management framework” tool.

Name of GIS
Database

Source Citation and Year Ecological Category (Metrics
Used)

National Hydrography

Database Plus Volume 2

(NHDPlus V2)

United State Environmental Protection

Agency (EPA), United States Geological

Survey (USGS)

U.S. Environmental Protection

Agency and U.S. Geological Survey

(USEPA and USGS), 2019

Flow (Discharge and Velocities), Stream

Position (Order), Sinuosity Gradients, Reach

Measures (Width, Depth), Catchment Sizes

CropScape—Cropland Data

Layer (CDL)

United States Department of Agriculture

(USDA): National Agricultural Statistics

Service (NASS)

Han et al., 2014 Land Use (Agriculture, Natural, Developed)

Soil Survey Geographic

Database (SSURGO)

United States Department of Agriculture

(USDA): Natural Resources Conservation

Service (NRCS)

Soil Survey Staff, Natural Resources

Conservation Service (NRCS),

United States Department of

Agriculture (USDA), 2022

Substrates

National Land Cover

Database (NLCD)

United States Geological Survey (USGS) Dewitz, 2021 Land Use (Agriculture, Natural, Developed)

National Anthropogenic

Barrier Dataset (NABD)

United States Geological Survey (USGS),

United States Army Corp of Engineers

(USACE)

USGS, 2013; Ostroff et al., 2013 DamMetrics
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3.3.1 Where was the target fish taxon present or
absent (8A)?

Emerald Shiner was widely distributed across the state of

Kansas (presence = 1,131 samples at 903 unique locations,

absence = 7,713 samples at 7,076 unique locations; Figure 2B).

Regionally, this taxon was present in south-central Kansas

(Lower Arkansas Basin, n = 696) and northeast Kansas

(Kansas-Lower Republican Basin, n = 354). Emerald Shiner

was largely absent from watersheds in the western third of

the state. Both the frequency of occurrence and regional

distribution of Emerald Shiner provided important information

about this species.

FIGURE 3

For silt substrate, shown are (A) a frequency distribution plot and (B) a proportional symbol map for all samples taken within our study area

(calculated at the local catchment area scale). For proportional symbol maps, dot size (small–large) and color (dark blue to light blue) both indicate

the relative proportion of silt substrate at that site (e.g., a large, royal blue dot indicates high amounts of silt whereas a small, dark blue dot indicates

low amounts of silt substrate). Major river basins are indicated. These visualizations corresponded to Sub-step 8B in our quantitative loop.
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3.3.2 At what habitat conditions was the target
fish taxon sampled (8B)?

Histograms showed which habitat conditions were most

common where fish were sampled and proportional symbol maps

added a spatial component. Specifically, histograms illustrated that

silt is a very common substrate in Kansas (Figure 3A). Proportional

symbol maps added information on where geographically-high

percentages of silt substrate were found (eastern and north-central

FIGURE 4

For sand substrate, shown are (A) a frequency distribution and (B) proportional symbol map for all fish samples taken within our study area

(calculated at the local catchment area scale). For proportional symbol maps, dot size (small–large) and color (dark blue to light blue) both indicate

the relative proportion of sand substrate at that site (e.g., a large, royal blue dot indicates high amounts of sand substrate whereas a small, dark blue

dot indicates low amounts of sand). Major river basins are indicated. These visualizations corresponded to Sub-step 8B in our quantitative loop.
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FIGURE 5

Ridgeline plots showing how proportion of samples in which Emerald Shiner were present was related to (A) silt substrate (%), (B) sand substrate (%),

and (C) stream order. Orange ridges are sites where Emerald Shiner was present, and purple ridges are sites where Emerald Shiner was absent. These

visualizations corresponded to Sub-step 8C in our quantitative loop.
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FIGURE 6

Boxplots of the distributions of substrate (A–L) and substrate-related metrics (M–O) at sites where Emerald Shiner was present or absent. Shown are

median (thick black bar), quartiles (white box), and minimum and maximum (individual points). (A–C) clay at the (A) catchment, (B) flowline, and (C)

point scale. (D–F) rock fragments (3–10 in) at the (D) catchment, (E) flowline, and (F) point scales. (G–I) sand substrates at the (G) catchment, (H)

flowline, and (I) point scales. (J–L) silt at the (J) catchment, (K) flowline, and (L) point scales. (M–O) soil erodibilities at the (M) catchment, (N)

flowline, and (O) point scales. Minimal overlap between presence and absence bars indicates that a specific metric-scale di�ers for sites where

Emerald Shiner was present or absent. Box plots depict the minimum, first quartile, median, third quartile, and maximum, with outliers depicted as

single points. This visualization corresponded to Sub-step 8D in our quantitative loop and helped select metrics for the all-ecological-categories

multiple logistic regression.

KS; Figure 3B; large, bright royal-blue circles). Although many fish

sample sites had low proportions of sand substrate (Figure 4A),

sand was most common in the south-central region and select areas

of northeast Kansas (Figure 4B).

3.3.3 How did habitat and impact variables di�er
where the target taxon was present or absent
(8C)?

Ridgeline plots showed how the distribution varied between

presence and absence sites for each regressor. For substrate,

Emerald Shiner tolerated some level of adverse silt substrate in

the northeast region (Figure 5A), but was positively associated

with sand substrate where available (Figure 5B). For stream order,

ridgeline plots showed that Emerald Shiner was present in stream

size orders 7–8 and generally absent from smaller stream sizes

(stream orders < 6; Figure 5C).

3.3.4 What useful metric and scale options exist
(8D)?

In our proof-of-concept, we used this sub-step to select a single

metric-scale for each ecological category used in our regression

analyses (Figures 6A–O). We prioritized two substrate scales

(e.g., flowline, catchment) for use in our all-ecological-categories

regression models (Sub-steps 8E–F). Specifically, when we used

paired (presence vs. absence) box plots to compare substrates at

three scales (point, flowline, catchment; sand (Figures 6G, H), and

silt (Figures 6J, K) measured at the flowline and catchment scales,

showed the greatest differences between conditions where Emerald

Shiner was present or absent.

We prioritized two natural land metric-scales (grassland,

natural land metrics at the catchment and flowline scales) for

use in our regression models (Sub-step 8E–F). Specifically, when

five scales (point, flowline, catchment, network flowline, network

catchment) for two natural land metrics (grassland, natural
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cover; Appendix Figures 2A–J) were plotted for Emerald Shiner

presence and absence sites, (1) grassland at the catchment scale

(Appendix Figure 2G) and (2) natural cover at the flowline scale

(Appendix Figure 2I) exhibited the greatest median difference

between sites at which Emerald Shiner was present or absent.

Across-scale comparisons can be added as separate variables in

future framework iterations.

3.3.5 Can we create models and evaluate their
quality (8E)? In top models, which variables were
associated with target fish taxon presence and
absence (8F)?

Two “top” models with a 1AIC < 2 had five significant

regressors representing the same ecological categories (P < 0.05;

Table 3A, B): (1) silt substrate, (2) stream order, (3) sinuosity,

(4) agricultural land (pasture or cultivated crops), and (5) natural

grassland. In our analysis, 96% of regressor variables exhibited

VIF values < 5, and 100% exhibited VIF values < 6. Further,

82% of our regressor variables had CN values < 10, and 100%

exhibited CN values < 20. Of the six models that used a single

uncorrelated metric from each ecological category, the top model

with the highest accuracy (Table 3A) predicted presence and

absences correctly 74% of the time (Appendix Tables 1A, B) and

explained 23% of the variation between the balanced sample classes

for Emerald Shiner (D2; Appendix Table 1C). All flow variables, one

reach measure [width], and one classification of natural land were

removed because they were highly correlated with other regressors.

Correlated substrates and land types were tested in separate models.

Balancing presence and absence sample sizes did not change mean

values substantially (Appendix Table 2).

In both top models, influential regressors had the same

directional effects on probability of Emerald Shiner presence

(Table 3A, B) An increase in the small substrate, silt, decreased

the probability that Emerald Shiner would be present at a site

(Table 3A, B; Figure 7A), and an increase in sand (in a different

model) increased the probability of Emerald Shiner presence

(Table 3C, D; Figure 7B). As stream order increased so did

the probability of Emerald Shiner being present (Table 3A, B;

Figure 7C). The probability of Emerald Shiner presence was

inversely related to sinuosity (Table 3A, B; Figure 7D). Both types

of agricultural land (pasture cover and cultivated crops) were

inversely related to the probability of Emerald Shiner presence

(Table 3A, B; Figures 7E, F). Percent of grassland decreased the

probability of Emerald Shiner being present at a site (Table 3A, B;

Figure 7G). Clay substrate, catchment size, total mainstem distance

between dams (TM2D), and gradient were never significant in top

models; sand and silt substrates were never in the same model

(Table 3).

3.4 Steps 9–12

Weight of evidence integration (WOE; Step 9) coordinated

individual results, and connected present data and future actions.

As such, this step provided the centerpiece and payoff for our

framework tool. Specifically, WOE integration detected areas T
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FIGURE 7

Probability plots for all metrics (P < 0.05) included within the top model(s) for presence of Emerald Shiner. (A) Silt substrate (%)—Catchment Scale, (B)

Sand substrate (%)—Catchment Scale, (C) Stream Order, (D) Sinuosity—Flowline Scale, (E) Agricultural land—Pasture (%)—Catchment Scale, (F)

Agricultural land—Crop (%)—Catchment Scale, (G) Natural land—Grassland (%)—Catchment Scale. The level of significance was used to prioritize

regressors for interpretation and can be viewed in the top left corner (Significance Codes: “***”P < 0.001; “**”, 0.001 < P < 0.01; “*” 0.01 < P < 0.05).

This analysis corresponded to Sub-step 8-F in our quantitative loop.
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of agreement for which no additional data collection-analysis

is required, and identified ambiguous results that require

additional data clarification. For example, below we show

how combining literature predictions (Step 3), and multiple

maps and visualizations (Sub-steps 8A–D) aided ecologically-

convincing and quantitatively-consistent interpretations of the

all-ecological-categories multiple logistic regression models (Sub-

steps 8E–F). WOE integration also uncovered emerging questions,

predictions, and gaps (Step 10) that would be beneficial to

address in future data collection and research (Step 11). Testing

of field predictions (in iteration 2) that were identified in

steps 1–10 of iteration 1 linked datasets and across-iteration

analyses (Step 12).

For some variables (e.g., agriculture, gradient, order), the

combined interpretation of all visualizations (Sub-steps 8A–D)

and the all-ecological-categories logistic regression analysis (Sub-

steps 8E–F) were similar across quantitative steps and consistently

trended as expected from literature predictions (Step 3). As an

example, the adverse effect of agricultural land (Steps 8C, E–F;

Figures 7E, F) was expected from literature predictions (Step 3;

Table 1, line 7) even though pasture (grass monocultures often

associated with livestock grazing; Broom, 2019) and cultivated crops

(any land used for annual crop production such as wheat, corn,

sorghum, and soybean; Danielson et al., 2016; Laird, 2022) are very

different. In the low-elevation, rural state of Kansas, the lack of

significance for developed land and gradient (Sub-step 8C, E–F) was

not unexpected given available conditions (Sub-step 8B), and, as

such, was consistent with literature expectations (Step 3).

We also expected the consistent, observed positive relationship

between stream order and Emerald Shiner presence from the

literature. WOE integration (Step 9) informed the role of stream

order on Emerald Shiner distribution by combining insights

on representativeness of sampling conditions (Sub-step 8B;

histograms, proportional symbol maps), values at which Emerald

Shiner was present or absent (Sub-step 8C; ridgeline plots),

variable behavior across scales (Sub-step 8D; paired boxplots), and

the multiple logistic regression (Sub-steps 8E–F). The combined

WOE for Emerald Shiner use of larger streams reinforced

the importance of width, depth, order, and catchment area for

Emerald Shiner in the literature (Distler et al., 2014; Haupt

and Phelps, 2016). The WOE integration also identified useful

and testable questions about interactions among system size and

geomorphology of instream habitats (Step 10) such as “Can a

detailed quantification of multiple aspects of channel morphometry

(width vs. depth within an order) better predict taxon presence?”

A sampling plan that addresses this question (Step 11) could

select a range of sites where Emerald Shiner is present and

absent, then quantify stream morphometry (width, depth, order)

to assess if this taxon is more common at different combinations

of these size parameters (e.g., wide-deep vs. wide-shallow vs.

narrow-deep). Following this analysis, the results of predictions

and additional sampling could be incorporated into future

iterations (Step 12).

Ambiguous and inconsistent trends emerged for other

regressors (substrate, dams, natural land) that did not agree with

predictions from the literature. For example, substrate did not

trend as expected. We expected this taxon to be solely associated

with sand substrate (Table 1, line 2), but silt emerged as the most

influential substrate variable. This ambiguous trend was better

understood in the context of the combined WOE integration [fish

maps (Sub-step 8A), histograms and proportional symbol maps

(Sub-step 8B), and ridgeline plots (Sub-step 8C)]. Specifically,

Emerald Shiner was associated with sand substrate when it was

available (Figures 4A, B, 5B). Silt substrate, which can impair

foraging success and population persistence of even tolerant sight-

feeders like Emerald Shiner (Pflieger and Grace, 1987; Jenkins

and Burkhead, 1994), was common statewide and also regionally

distributed (Figures 3A, B). Combining these visualizations with

the multiple logistic regression, a geographic substrate association

emerged. Emerald Shiner was present where the beneficial sand

substrate was common and the potentially harmful silt substrate

was reduced (south-central region). Emerald Shiner was not often

present in regions where silt substrate dominated without sand

substrate (southeast region). However, the somewhat tolerant

Emerald Shiner occurred in some areas where both sand and silt

substrates co-occurred (northeast region).

As a result of the WOE integration (Step 9), three testable

new questions (Step 10) about the interconnected roles of co-

occurring sand (potentially beneficial) and silt (potentially harmful)

substrates were identified. (1) “What is the minimum proportion of

a “positive” substrate that is needed for this fish to thrive (e.g., sand)?

(2) What is the threshold at which adverse substrates (e.g. silt) can

no longer be tolerated? (3) Are some common taxa (e.g., Emerald

Shiner) better able to tolerate silt compared to uncommon native

species in need of conservation (e.g., Plains Minnow)?” Collecting

detailed empirical substrate data (especially co-occurring silt and

sand) at a set of sites where Emerald Shiner (and other less common

native taxa) are present or absent (especially in the northeast and

south-central regions of Kansas) would link these WOE-derived

questions to future directions for data collection (Step 11). Focusing

on interactions among multiple substrates would provide more

utility for future planning (Step 12) than simply correlating fish

taxon distribution to a single, commonly-used substrate.

Sinuosity (significant effect) was a regressor for which we had

no clear expectations because of lack of published information

(Step 3, Table 1, line 6), but for which our framework provided

guidance for future actions. WOE integration (Step 9) of multiple

quantitative steps (Sub-steps 8C, E–F) consistently identified

that Emerald Shiner presence was inversely related to sinuosity

(e.g., Figure 7D). Instream complexity (e.g., channel units, bends,

sandbars) is ecologically important for fish (Kaufmann et al.,

2022; Hart, 2023) and may be related to sinuosity. Because

Emerald Shiner typically shoal in straight, simply-structured stream

channels or runs (Jenkins and Burkhead, 1994), our framework

raises an intriguing question on which to focus future data

collection (Step 10). Specifically, “Can sinuosity (an easily measured

GIS variable) predict ecologically-relevant (but difficult-to-measure)

instream habitat complexity?” The relationship between instream

complexity, and sinuosity could be tested by measuring channel

units, bends, sandbars (instream complexity) and sinuosity at a

subset of sites at which Emerald Shiner is either present or absent

(Step 11). Whether this taxon is more often present at non-

sinuous locations (simpler habitat) can be integrated into future

iterations (Step 12).

The metric that we used for dam presence (non-significant

effect) was another regressor for which we had no consistent

Frontiers in Freshwater Science 16 frontiersin.org

https://doi.org/10.3389/ffwsc.2025.1520312
https://www.frontiersin.org/journals/freshwater-science
https://www.frontiersin.org


Rode et al. 10.3389/�wsc.2025.1520312

expectations because of lack of published information about fish

relationships to specific dam metrics (Step 3; Table 1, line 10).

Again, WOE integration provided guidance for future actions.

Dams are complex disturbances that often harm stream fish (e.g.,

Barbarossa et al., 2020), but environmental professionals know

relatively little about which dam metrics best quantify the adverse

effect of dams on non-migratory, prairie stream fish. Using a recent

database of GIS dam metrics (Ostroff et al., 2013), we did not find

specific impacts of the dam proximity metric on Emerald Shiner

(Step 8; Table 3). However, through our WOE iterations (Step 9),

we identified a gap [i.e., when, where, and how do different dam

metrics influence native fish taxa]. Future iterations of question-

directed analyses can fill this gap (Step 10). Promising questions

include (1) “What are the differential effects of related metrics

(dam proximity, number, density, inter-dam distance)? (2) Does

the direction of dam location matter relative to the fish sample

site (upstream or downstream)? (3) Which scales of dam effects

are consistently more influential (local or watershed)? (4) How do

different fish taxa respond to these dam metrics? (5) Are there

accumulated and interactive dam effects? Future analyses can be

undertaken with existing data at a selection of sites with and

without the target taxon to assess which dammetrics differ between

presence and absence sites (Step 11). Thus, for the ecological

and impact category, dams, our framework provided a systematic

process for using existing data to fill gaps.

Emerald Shiner response to natural land (Step 3, Table 1, line

9; Figure 7G) was a puzzler (Steps 8–9). In general, the literature

regarding land and prairie stream fish is very limited (Step 3).

Despite ambiguity of these results, our framework identified useful

questions about natural land for future analyses (Step 10) such

as “Does natural land have real adverse effects on prairie fish (and

why) or is this metric simply an amalgamation of different land

types that has no clear ecological meaning?” Analyzing relationships

among different subtypes of natural land and between these

subtypes and sites at which Emerald Shiner is present or absent

(Step 11) would help answer these questions and facilitate future

directions to accumulate a better understanding of the role of this

regressor (Step 12).

4 Discussion of the benefits of our
framework tool

4.1 Overview

Using our framework tool with existing monitoring data

identified testable questions-predictions-hypotheses for future

data-action connections. Below, we review four take-home

messages that show benefits of our adaptive management

framework tool.

4.2 Take home message 1. Value of the
systematic use of our holistic structured
process

Using all framework tool steps together can provide improved

outcomes (Figure 1A—I). A realistic expectation is that for every

major conservation question of interest, a team of professionals

will go around our 12+6 step framework multiple times

to accumulate required understanding and relevant guidance.

Although intellectually obvious, making these links across steps

and iterations is conceptually and operationally challenging.

In our holistic framework tool, established steps (Steps 1–6)

provided the foundation. WOE data interpretation (Step 9) of sub-

question-focused visualizations (Step 7, Sub-steps 8A–D), and a

species distribution model with probability plots (Sub-steps 8E–

F) identified important unanswered questions, testable predictions,

and gaps (Step 10). These information needs can be examined in

the future with a realistic and focused data collection plan (Step

11). The result is a practical plan to connect data and insights

across projects, framework steps, and framework iterations (Step

12). As examples of useful outcomes, we identified consistent

areas of consensus on which to build (order, agriculture, gradient),

areas of ambiguity which require clarification (substrate), clearly

addressable gaps (sinuosity, dams), and a more puzzling disparity

(natural land). Another important gap that we identified was

that specific quantitative literature predictions often did not exist

for most regressors at the scale and precision that matched

analysis outputs. Providing data-driven predictions for literature

expectations at relevant state, region, and global scales should be

a priority in the future as this lack of realistic expectations affects

interpretation, confidence in the analysis, and ability to prioritize

future workplans.

4.3 Take home message 2. Utility of weight
of evidence (WOE) integration and
associated predictions

WOE integration is a unique aspect of our framework tool that

packages quantitative conservation data differently, and provides

more productive outcomes than a single isolated analysis presented

alone (Figure 1A—II). Within the context of our framework, WOE

for order, substrate, sinuosity, natural land, and dams provided five

useful future directions reviewed in the results section [e.g., (1)

potential utility of geomorphology-stream size categories (order,

width, depth, catchment area), (2) need for multiple upper and

lower substrate thresholds, (3) possible applications of sinuosity

to instream habitat complexity, (4) potentially confounding effect

of isolated vs. aggregated natural land categories, and (5) the

need to tease apart the role of specific dam metrics]. In

many traditional data analyses, when analysts adhere to specific

statistical significance thresholds from a single favored quantitative

approach, conflicting approach-specific interpretations can lead to

unproductive disagreements amongst professionals using different

statistics. In contrast, the philosophy underlying the WOE concept

is that for complex issues (e.g., decision-making, risk assessment),

integration ofmultiple pieces of evidence thatmay agree or disagree

is required (e.g., Hong et al., 2018; Mehta and Rietjens, 2023).Thus,

WOE integration can lead to a discussion of future needs. As an

example, if we had only interpreted the top model or a single

visualization, we would not have identified the interacting roles of

sand and silt substrates.
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FIGURE 8

Three di�erent configurations of our 12+6 step framework tool that have the same steps and provide the same advantages (Figure 1A, II, III, IV). (A) is

the basic approach illustrated here in which a single iteration addresses a large multi-variable problem. (B) illustrates an approach for which the

question, system, literature, and data have been previously explored and for which a more complex statistical analysis is the primary focus of the

project. Note that (B) di�ers from a stand-alone species distribution modeling exercise because (1) the rationale for the model must be repeatedly

reviewed and justified relative to previously identified goals (Steps 1–6) and (2) the framework requires that output explicitly be processed through

WOE integration (Step 9), linked to testable predictions or data-ready questions (Step 10) with realistic and appropriate methods (Step 11), and

(Continued)
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FIGURE 8 (Continued)

coordinated with the next iteration (Step 12). (C) illustrates a problem in which the specific questions (Step 7) are transformed into a series of focused

hypotheses that are addressed sequentially. Project C is thoughtfully-justified in an initial iteration (Steps 1–6) although steps 2–7 may or may not be

major foci in future iterations. Then for each hypothesis and analysis (Steps 7, 8), the link to the overarching question is reassessed and adjusted as

needed (dashed arrow) and results outputted into a WOE integration (Step 9) followed by a data-to-action sequence (Steps 10–11). In all options,

Step 12 connects present and future data activities.

4.4 Take home message 3. Our framework
facilitates implementation and guides
future actions

Our framework tool is an example of an adaptive management

plan for biodiversity monitoring that can be used immediately and

can ultimately guide future actions (Figure 1A—III). Outside of

harvest models and select other examples, relatively few adaptive

management efforts provide detailed steps for specific resource

management problems (Fontaine, 2011; Rist et al., 2013). The

accuracy of our first-iteration, all-ecological-categories multiple

logistic regression model for Emerald Shiner (Sub-steps 8E–F)

was high (74% correct predictions) and produced consistently

interpretable information about regressors that were (order,

substrate, sinuosity, land) and were not (dams) influential. If we

had followed a more narrowly-defined methodology, we might

have published this single analysis as a final product. However,

our iterative 12+6 step framework tool illustrated that a single

result is not especially useful for complex conservation questions.

Instead, an implementable step-by step iterative process, like

our 12+6 step framework tool, that systematically accumulates

knowledge to make better and better use of existing data

is more likely to assist practitioners. Of course, definitive

management actions related to restoration, stocking, human

land and water modifications should be the ultimate goal of

the applied analysis of monitoring data. However, because of

the complexity of many natural resource problems, defensible

science-based management regulatory actions do not always

emerge from just a few data-driven studies. Often intermediate

knowledge steps are required before specific science-based

management actions can be recommended. Here, identifying

regressors and sites to focus future data collection and restoration

initiatives represent these intermediate actions that link data

and decision-making.

4.5 Take home message 4. General
advantages for coordination and planning

Our framework is adaptable to other questions, data, and

systems (Figure 8). Panel A depicts the approach illustrated

here in which a single iteration addresses a large multi-variable

problem. Panel B illustrates an approach for which the question,

system, literature, and data have been previously explored, and

for which a more complex quantitative loop is the primary

focus of the project. In the panel B example, Steps 1–6 may be

addressed quickly because the specifics of the problem are well

known. Using our framework on largely statistical projects can

add practical benefits by linking all analyses together through

WOE integration (Step 9), adding a data-action connection to

each iteration (Steps 10–11), maintaining a unified focus on the

original overarching question (Step 1), and directing linkages

across iterations/projects (Step 12). Panel C illustrates a problem

in which the specific questions are transformed into a series

of focused hypotheses that are addressed sequentially (Step 7).

In this third example, Steps 1–6 are addressed in detail in the

first iteration, but may only be briefly considered in subsequent

iterations. All variations of our framework explicitly embed past-

present-future connections and management actions within each

iteration. As a result our framework advances the spirit of the

adaptive management concept.

In summary, examining individual analyses and isolated

datasets can limit the efficacy of conservation planning because

multiple components, diverse stakeholders, and competing

priorities intersect in non-academic, real-world conservation

projects (Davis et al., 2006; Vidal and Marle, 2008). A good

literature review is needed, but might not be easily attainable for

some taxon or geographical areas. Our framework tool connected

datasets and activities (Figure 1A—IV). For example, real time

data analysis conducted in a professional group setting can lead to

productive conversations about priorities (Mather et al., 2023). The

framework needs to be tested on biota about which less is known, a

process that is now possible with the step-by-step guide presented

here. A future plug-and-play version of our framework with a

dashboard of appropriate data layers could provide opportunities

for teams of researchers and managers to regularly discuss data

interpretation and future directions.
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