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Fungal diseases such as candidiasis are some of the deadliest diseases among

immunocompromised patients. These fungi naturally exist on human skin and throughout

the digestive system. When the microbiota balance becomes upset, these fungi become

pathogenic and potentially lethal. At the pathogenesis of fungal diseases, host immune

system response is diverse. At the early stages of fungal pathogenesis such as Candida

albicans, it was shown that these fungi use the immune cells of the host body and

cause malfunction the early induction of proinflammatory cytokines of the host body

leading to a reduction in their numbers. However, at some stages of fungal diseases,

the immune response is severe. Despite many treatments already being available, it

seems that one of the best treatments could be an immune-stimulatory agent. Some of

the subsets of MSCs and exosome-derived cells, as a cell-to-cell communicator agent,

have many roles in the human body, including anti-inflammatory and immune-modulatory

effects. However, the TLR4-primed and IL-17+ subsets of MSCs have been shown to

have immune-stimulatory effects. These subsets of the MSCs produce pro-inflammatory

cytokines and reduce immunosuppressive cytokines and chemokines. Thus, they could

trigger inflammation and stop fungal pathogenesis. As some biological activities and

molecules inherit elements of their exosomes from their maternal cells, the exosome-

derived TLR4-primed and IL-17+ subsets of MSCs could be a good candidate for

fighting against fungal diseases. The applications of exosomes in human diseases are

well-known and expanding. It is time to investigate the exosomes application in fungal

diseases. In this review, the probable role of exosomes in treating fungal diseases

is explored.
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INTRODUCTION

Host-Fungi Interactions: Normal Flora or Pathogen?
There are fungi in the human body that are known as normal flora (Prasad, 2007). This population
of fungi is called fungal microbiota or mycobiota (Limon et al., 2017). Knowing these microbiotas,
including mycobiota, is an important factor in host diseases and health (Limon et al., 2017). For
many reasons, when the balance of these mycobiota is upset they can become a pathogen. Fungal
diseases effect a quarter of the human population worldwide (Brown et al., 2012). However, while
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most of the fungal diseases are related to superficial skin
conditions and can be treated locally, the systemic fungal
infection could be so lethal (Brown et al., 2012; Vallabhaneni
et al., 2016). These systemic fungal diseases usually occur because
of diverse immune responses; especially in patients with immune
system suppression (Pappas et al., 2018). There are lots of
treatment option for systemic fungal diseases, but using them
has limitations and usually brings poor outcomes (Scriven et al.,
2017). It seems that one of the best choices to treat fungal diseases
is reversing immune deficiency, which occurs in patients with
immunosuppression (Scriven et al., 2017).

Pathogenesis of Fungi and Host Immunity
A previous study on C. albicans revealed that the host immune
response to C. albicans is downregulated at early stages by
pathogenic fungi (Halder et al., 2020). It was shown that the
C. albicans attached to the C3 receptor of the monocytes
by its β-glucan. Using this attachment to the monocytes, the
fungi stimulate the monocytes to release extracellular vesicles
contained transforming growth factor (TGF)-β. Using TGF-β-
transporting vesicles, the fungi reduce immune response and
cause anti-inflammatory effects at the early stages of fungi
pathogenesis (Halder et al., 2020). Moreover, using TGF-
β production, the fungi could reduce early production and
induction of pro-inflammatory cytokines (Netea et al., 2002;
Halder et al., 2020). This is how the fungi downregulate the host
immune system in order to favor its existence and survival.

FIGURE 1 | The exosome-derived mesenchymal stem cells (MSCs) cytokines and chemokines content. (A) Normal MSCs. (B) TLR3-primed and TLR4-primed

subtypes of MSCs. This figure shows chemokines and cytokines of exosomes-derived MSCs of different subtypes of MSCs and their biological activity.

Mesenchymal Stem/Stromal Cells (MSCs),
Immunosuppressive or
Immune-Stimulator?
The MSCs are the progenitor/stem cells that have the capacity
to differentiate into multilineage cells (Billing et al., 2016; de
Castro et al., 2019). Due to their potential for differentiation,
their immunomodulatory effect, and their regeneration capacity
(Zhang et al., 2020a; Oh et al., 2021), they are widely used
in treating injuries and some inflammatory disorders (Zhang
et al., 2020a; Liao et al., 2021). Clinical studies have shown that
because of the immunomodulatory function of some subsets of
MSCs, MSC therapy could suppress the immune system and treat
inflammatory and autoimmune diseases (Nauta and Fibbe, 2007;
Yang et al., 2013). In detail, the MSCs, directly or indirectly, affect
T cells and regulate them. The MSCs produce some chemokines
and cytokines such as interleukin 10 (IL-10), prostaglandin E2
(PGE2), nitric oxide (NO), TGF-β, indoleamine 2,3-dioxygenase
(IDO), tumor necrosis factor-inducible gene 6 (TSG-6), and
chemokine ligand 2 (Batten et al., 2006; Nauta and Fibbe, 2007;
Yang et al., 2013). Thesemolecules affect CD4+CD25+ regulatory
T (T reg) with positive transcription factor Foxp3 and T helper 17
(Th17) cells’ population and regulate them (Batten et al., 2006;
Park et al., 2011; Yang et al., 2013; Bi et al., 2020). That’s how
MSCs downregulate the immune system in inflammatory and
autoimmune diseases.

However, some previous studies have shown that another
type of MSCs has an immune-stimulatory effect, and this
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FIGURE 2 | The exosome-derived TLR4-primed and IL-17+ MSCs. This figure shows the mechanism of anti-fungal effects of exosomes-derived new subtypes of

MSCs.
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TABLE 1 | A list of companies producing various kinds of exosome-related products for therapeutic approaches.

Product application(s) Company Web site

Cancer detection Exosomics exosomics.eu

Cancer detection Lonza lonza.com

Carriers Anjarium Biosciences anjarium.com

Carriers Codiak Biosciences codiakbio.com

Carriers Ilias Biologics Inc. iliasbio.com

Carriers MDimune mdimune.com

Carriers Tavec tavecpharma.com

Exosome detection NanoView Biosciences nanoviewbio.com

Exosome isolation Clara Biotech clarabio.tech

Exosome isolation EverZom

Immunotherapy enhancer EV Therapeutics evtherapeutics.com

Inflammation therapy The Cell Factory esperite.com

Regenerative medicine Aegle Therapeutics aegletherapeutics.com

Regenerative medicine Aruna Bio arunabio.com

Regenerative medicine Capricor Therapeutics capricor.com

Regenerative medicine Vaccine Ciloa ciloa.fr

Regenerative medicine Creative Medical Technologies Holdings creativemedicaltechnology.com

Regenerative medicine Direct Biologics

Regenerative medicine Evox Therapeutics evoxtherapeutics.com

Regenerative medicine Exocel Bio exocelbio.com

Regenerative medicine ExoCoBio exocobio.com

Regenerative medicine Exopharm exopharm.com

Regenerative medicine Exosome exosomesciences.com

Regenerative medicine Exogenus Therapeutics exogenus-t.com

Regenerative medicine Invitrx’s www.invitrx.com

Regenerative medicine Kimera Labs kimeralabs.com

Regenerative medicine Oasis Diagnostics 4saliva.com

Regenerative medicine OmniSpirant omnispirant.com

Regenerative medicine Organicell organicell.com

Regenerative medicine Percia Vista perciavista.co

Regenerative medicine Regen Suppliers regensuppliers.com

Regenerative medicine ReNeuron reneuron.com

Regenerative medicine RoosterBio roosterbio.com

Regenerative medicine Stem Cell Medicine Ltd. stemcell-medicine.com

Regenerative medicine Unicyte unicyte.ch

Regenerative medicine VivaZome Therapeutics vivazome.com

Regenerative medicine XOStem xostem.com

Tumor exosome capture Aethlon Medical aethlonmedical.com

variety of the biological functions of MSCs depends on Toll-
like receptors (TLRs) (Figure 1) (Waterman et al., 2010; Yang
et al., 2013). It was shown that engagement of TLR-4 could
enhance the production of pro-inflammatory mediators such as
IL-17 and these MSCs are called TLR4-primed MSCs (Figure 1)
(Waterman et al., 2010; Yang et al., 2013). In contrast, it was
shown that TLR3-primed MSCs act as an immunomodulatory
subset of MSCs (Waterman et al., 2010; Yang et al., 2013).
The TLR4-primed MSCs, in contrast with TLR3-primed MSCs,

was shown to increase expression of IL-6 and IL-13 as a
pro-inflammatory cytokine and decrease IL-4, IDO, and PGE2
as an immunomodulatory cytokine and chemokine (Figure 1)
(Waterman et al., 2010; Yang et al., 2013). IL-17 is a pro-
inflammatory cytokine that plays a crucial role in intracellular
and extracellular pathogenic defense (Yang et al., 2013; Schinocca
et al., 2021). It was shown that a subpopulation of IL-17+ MSCs
could inhibit C. albicans (Yang et al., 2013). Taken together, it
might result that TLR4-primed and IL-17+ subsets of MSCs
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TABLE 2 | Animal studies of exosomes-derived MSCs.

Cell source Therapeutics Transplantation Donor species Recipient

species

Biological effects References

Embryonic MSCs Exosome Xenotransplant Human Rat Osteochondral regeneration promotion Zhang et al., 2016

Adipose tissue-derived MSCs Exosome Xenotransplant Human Mouse Atopic dermatitis alleviation Cho et al., 2018

Adipose tissue-derived MSCs Exosome Xenotransplant Human Rat Evaluation of exosomes cell toxicity Ha et al., 2020

Bone marrow- derived MSCs Exosome Xenotransplant Rat Mouse Neuroprotective effect via inhibiting early

neuroinflammation

Ni et al., 2019

Wharton’s jelly-derived MSCs Exosome Xenotransplant Human Rat Anti-inflammatory effects on microglia in

perinatal brain injury

Thomi et al., 2019

Umbilical cord-derived MSCs Exosome Xenotransplant Human Mouse Acute liver failure alleviation Jiang et al., 2019

Bone marrow- derived MSCs Exosome Xenotransplant Rat Mouse Inadequate promotion of bone

regeneration in type 1 diabetes

Zhu et al., 2019

Bone marrow- derived MSCs Exosome Allotransplant Rabbit Rabbit Regulation of injured endometrium repair Yao et al., 2019

Umbilical cord-derived MSCs Exosome Xenotransplant Human Mouse Inflammatory bowel disease treatment Mao et al., 2017

Adipose tissue-derived MSCs Exosome Allotransplant Rat Rat Promotion of endometrium regeneration

in rats with intrauterine adhesion

Zhao et al., 2020

Placental- derived MSCs Exosome Xenotransplant Human Mouse Enhancement of angiogenesis and

improvement of neurologic function

Zhang et al., 2020b

Umbilical cord-derived MSCs Exosome Xenotransplant Human Mouse Inhibition of silica-induced PF and

improve lung function

Xu et al., 2020a

Bone marrow- derived MSCs

Adipose tissue-derived MSCs

Exosome – – Rat Improvement of erectile dysfunction in

bilateral cavernous nerve injury

Li et al., 2018

Bone marrow- derived MSCs Exosome Allotransplant Rat Rat Rescuing myocardial

ischaemia/reperfusion injury

Liu et al., 2017

Umbilical cord-derived MSCs Exosome Xenotransplant Human Rat Inhibition of vein graft neointimal

hyperplasia and acceleration of

reendothelialization

Qu et al., 2020

Adipose tissue-derived MSCs Exosome Allotransplant Mouse Mouse Exo-circAkap7, a potential treatment for

cerebral ischemic injury.

Xu et al., 2020b

Bone marrow- derived MSCs Exosome Xenotransplant Rat Guinea pig Reduction of demyelination and

neuroinflammation in an immune-induced

demyelination model

Li et al., 2019

Bone marrow- derived MSCs Exosome Allotransplant Rat Rat Promotion of immunotolerance and

prolong the survival of cardiac allografts

He et al., 2018

MSCs, mesenchymal stem cells.

could be good candidates for fighting against fungal diseases
(Figures 1, 2) (Waterman et al., 2010; Yang et al., 2013).

The Extracellular Vesicles (EVs) and Its
Classification
EVs have the main role in cell-to-cell communications
(Andaloussi et al., 2013),and have been observed in both
eukaryotes and prokaryotes (Ellis and Kuehn, 2010; Andaloussi
et al., 2013). Studies have shown that the EVs could transfer
the proteins and nucleic acids by its bilayer membrane (Lee
et al., 2012; Ratajczak et al., 2012). Due to their potential for
transferring proteins and nucleic acids, EVs are used widely
as drug delivery agents (Elsharkasy et al., 2020). In order to
best discuss the biological roles of EVs, here we describe the
classification of EVs. The EVs based on their cellular origin,
biological function, biogenesis, and size classified into three
main groups: exosomes, microvesicles, and apoptotic bodies
(Andaloussi et al., 2013; Yáñez et al., 2015). The two first particles,
the exosomes and microvesicles, have been shown to have

therapeutic effects (Wang et al., 2015; Phinney and Pittenger,
2017). The exosomes, with 40–120 nm in size, are generated
by the endolysosomal pathway. In contrast with exosomes, the
microvesicles are generated by budding from the cell surface
(Andaloussi et al., 2013; Raposo and Stoorvogel, 2013). The
exosomes with their non-sized particles, composed of a bilayer
membrane and cytoplasm, contained mRNA, miRNA, and other
RNAs’ generated from the parent cell (Andaloussi et al., 2013;
Raposo and Stoorvogel, 2013).

The Exosomes-Derived MSCs and Their
Biological Activity
Stem cells, especially mesenchymal stem cells, were used widely
in past decades as a candidate for therapies of various diseases.
In recent years, exosome-derived stem cells were substitutionally
used for regenerative and immune-therapy as a cell-free therapy
(Ji et al., 2019; Qiu et al., 2020). Previous studies have shown
that the exosome-derived stem cells contained various bioactive
molecules, especially proteins and microRNAs which originated
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from maternal cells (Baharlooi et al., 2020; Ma et al., 2020).
These exosomes were shown to have some biological effects
inherited from their maternal cells (Baharlooi et al., 2020). For
instance, the exosome-derived MSCs displayed angiogenesis,
regeneration, and especially anti-inflammatory effects (Baharlooi
et al., 2020). Moreover, it was shown that these exosomes could
carry various cytokines and chemokines originated and produced
by the maternal cell (Di Trapani et al., 2016; Baharlooi et al.,
2020). So, here we can hypothesize that the TLR4-primed MSCs
could pass their pro-inflammatory cytokines and chemokines
into exosomes derived from them. Exosomes-derived TLR4-
primed MSCs could trigger the host immune system to start
inflammation against fungal pathogens and fight against the
immunosuppressive path of fungi.

DISCUSSION

The MSCs have been used in the treatment of microbial diseases
for the past decades (Zhou and Xu, 2020). In most microbial
diseases, the host-microbe interactions cause inflammation,
which damaged host tissues (Qiu et al., 2020). Some of the
subsets of MSCs, using the production of anti-inflammatory
and immunomodulatory cytokines and chemokines, serve
to downregulate the host immune system and reduce host
tissue damages (Waterman et al., 2010; Baharlooi et al.,
2020). That is why the MSCs were widely used in past
decades for inflammatory and autoimmune diseases treatment.
Among all microbial diseases, the pathogenesis of fungal
diseases is more complicated. The fungi pathogen at the
first stages of pathogenesis downregulates the immune
system of the host body using TGF-β-transporting vesicles
produced by induced monocytes (Netea et al., 2002; Halder
et al., 2020). Using immunosuppression, the pathogen could
survive better.

In recent years, it was noticed that the different subtypes
of MSCs could show different biological activities (Waterman
et al., 2010; Yang et al., 2013; Baharlooi et al., 2020). It
was shown that induction of TLR-4 of MSCs could enhance
its immune-stimulatory activity using the production of pro-
inflammatory cytokines and chemokines (Waterman et al.,
2010; Yang et al., 2013). As is obvious, in contrast with
other microbial pathogenesis (Nauta and Fibbe, 2007) the
fungal pathogen stops inflammation and downregulates the
host immune system; so to fight that, the immune system
needs to be upregulated and made able to inflame (Waterman
et al., 2010; Yang et al., 2013). It was shown that the TLR4-
primed and IL-17+ subsets of MSCs could express pro-
inflammatory cytokines and chemokines, which could lead
to inflammation (Waterman et al., 2010; Yang et al., 2013).
These subtypes of MSCs could be an agent for fungal
diseases treatment.

As is known, cell therapy has some challenges for human
diseases therapy (Choi and Lee, 2016). The exosomes, as a
cell-free therapy, solve most of the problems of cell therapy

(Choi and Lee, 2016). Unlike a cell therapy, the exosomes are
capable of crossing the blood-brain barrier and traveling through
capillaries, and owing to their small sizes they are safe from
reticuloendothelial system clearing (Li and Huang, 2009; Choi
and Lee, 2016; Baharlooi et al., 2020). Moreover, as the exosomes
inherited some of the molecules and biological activity of their
maternal cells, they could be a good substitute for cell therapy (Di
Trapani et al., 2016; Baharlooi et al., 2020; Ma et al., 2020). The
exosome-derived MSCs showed to have anti-inflammatory and
regenerative effects, the same as their maternal cells (Baharlooi
et al., 2020). Several companies are developing exosome-derived
products to take advantage of these applications, which suggests
that in the future exosomes and their derived applications will be
a viable choice for various disease therapies (Table 1).

As the maternal cell produces anti-inflammatory cytokines
and chemokines, these molecules could pass into the exosomes
(Wang et al., 2015; Baharlooi et al., 2020). Based on previous
results, it could be hypothesized that the TLR4-primed and IL-
17+ subsets of MSCs could pass its produced pro-inflammatory
cytokines and its immune-stimulatory activity into its exosomes.
These exosomes could be a treatment for fungal pathogenesis.

During the past decade, many preclinical studies of exosomes
have been conducted. Some of these studies have been shown
in Table 2. These studies demonstrated that exosomes-derived
MSCs could have anti-inflammatory, anti-atopic dermatitis,
anti-neurodegenerative, anti-liver fibrosis biological activities,
and so on (Li et al., 2013; Cho et al., 2018; Lee et al.,
2018; Gowen et al., 2020). Despite many preclinical studies
of exosomes, clinical studies of the MSCs-derived exosomes
are few (Gowen et al., 2020). The MSCs-derived exosomes
were used in previous clinical studies to treat diseases such
as graft-versus-host disease (Kordelas et al., 2014), chronic
kidney disease with grade III and IV (Nassar et al., 2016),
type II diabetes (Sun et al., 2018), and prevention of the
onset of type-1 diabetes via suppression of immune system
and induction of beta cells regeneration (Ezquer et al.,
2012). There are also several studies which have not yet
been published.

However, stem cell-derived exosomes have some limitations
for clinical studies. For instance, large-scale exosome production
is lacking; large-scale exosome quantifications methods with
rapid and accurate results, and determination of exosomes’
contents with high accuracy also present dificulties (Gowen et al.,
2020). Moreover, the pharmacokinetics, pathways, targets and
mechanisms of action of the exosomes in the human body
still remain unknown. Additionally, more studies are needed
to evaluate the correct dosage of the exosomes for clinical
studies in order to prevent possible toxicities (Gowen et al.,
2020).
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