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Invasive aspergillosis is a deadly fungal disease; more than 400,000 patients are infected
worldwide each year and the mortality rate can be as high as 50-95%. Of the ~450
species in the genus Aspergillus only a few are known to be clinically relevant, with the
major pathogen Aspergillus fumigatus being responsible for ~50% of all invasive mold
infections. Genomic comparisons between A. fumigatus and other Aspergillus species
have historically focused on protein-coding regions. However, most A. fumigatus genes,
including those that modulate its virulence, are also present in other pathogenic and non-
pathogenic closely related species. Our hypothesis is that differential gene regulation –

mediated through the non-coding regions upstream of genes’ first codon – contributes to
A. fumigatus pathogenicity. To begin testing this, we compared non-coding regions
upstream of the first codon of single-copy orthologous genes from the two A. fumigatus
reference strains Af293 and A1163 and eight closely related Aspergillus section Fumigati
species. We found that these non-coding regions showed extensive sequence variation
and lack of homology across species. By examining the evolutionary rates of both protein-
coding and non-coding regions in a subset of orthologous genes with highly conserved
non-coding regions across the phylogeny, we identified 418 genes, including 25 genes
known to modulate A. fumigatus virulence, whose non-coding regions exhibit a different
rate of evolution in A. fumigatus. Examination of sequence alignments of these non-coding
regions revealed numerous instances of insertions, deletions, and other types of
mutations of at least a few nucleotides in A. fumigatus compared to its close relatives.
These results show that closely related Aspergillus species that vary greatly in their
pathogenicity exhibit extensive non-coding sequence variation and identify numerous
changes in non-coding regions of A. fumigatus genes known to contribute to virulence.

Keywords: fungal genomics, evolution, Aspergillus fumigatus, non-coding region, evolutionary rate,
virulence factor
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INTRODUCTION

Invasive aspergillosis (IA), a human disease caused by members
of the fungal genus Aspergillus, is responsible for >400,000 cases
worldwide per year with a mortality rate between 50-95%
(Bongomin et al., 2017). More than 90% of IA cases are caused
by Aspergillus fumigatus, with about a dozen other species such
as Aspergillus lentulus, Aspergillus thermomutatus, and
Aspergillus udagawae accounting for the rest (Steinbach et al.,
2012; Rokas et al., 2020). Studies in both environmental (Flores
et al., 2014) and hospital settings (Wirmann et al., 2018) show
that asexual spores (conidia) of A. fumigatus and many other
Aspergillus species are present in the air, yet A. fumigatus causes
IA more frequently than its close relatives.

IA begins with inhalation of Aspergillus asexual spores and
subsequent interaction between the asexual spores and the
epithelium of the lung (Chotirmall et al., 2013). Several defense
mechanisms including physical removal of asexual spores (Croft
et al., 2016), secretion of antimicrobial peptides (Wiesner and
Klein, 2017), and recruitment of specialized immune cells are
employed by the human host to prevent spore germination
(Bertuzzi et al., 2018). To cause infection, A. fumigatus must
overcome these challenges and adapt to the host environment.
The dynamics and intricacies of the interaction between A.
fumigatus and host responses have yet to be fully elucidated.
Decades of work have identified at least 206 genetic determinants
of A. fumigatus virulence, that is genes whose deletion is known
to modulate the virulence of A. fumigatus (for a detailed list, see:
Steenwyk et al., 2021a). These genetic determinants of virulence
are involved in a wide range of activities including gene
regulation, RNA processing, protein modification, production
of secondary metabolites, amino acid biosynthesis, cell cycle
regulation, morphological regulation, and others (Steenwyk
et al., 2021b).

The phylogeny of the genus Aspergillus reveals that
pathogenic species are often more closely related to
nonpathogenic species than to other pathogenic ones
(Steenwyk et al., 2009; Houbraken et al., 2014; de Vries et al.,
2017; Rokas et al., 2020; Mead et al., 2021). For example, A.
fischeri is a close relative of A. fumigatus (the two share >90%
average nucleotide sequence similarity and >95% average amino
acid sequence similarity between orthologs), yet A. fischeri is less
virulent and is not considered clinically relevant (Mead et al.,
2019; Steenwyk et al., 2020a). Given the large disparity of IA
cases caused by A. fumigatus and closely related species, early
studies looked to species-specific genes in A. fumigatus as a
potential contributor (Fedorova et al., 2008). However, a recent
examination found that 206 known genetic determinants of
virulence in A. fumigatus are shared between A. fumigatus and
at least one other closely related species (Mead et al., 2021).

Variation in non-coding regions can also contribute to
phenotypic diversity (Carroll, 2008; Li and Johnson, 2010) and
disease (Ropero et al., 2017; Jang et al., 2018; Caron et al., 2019).
In fungi, non-coding regions found immediately upstream of
genes’ protein-coding regions are bound by transcription factors
(TFs), impact transcriptional activity (Kim et al., 2019), and play
roles in vital biological processes such as zinc homeostasis
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(Eide, 2020) and thermotolerance (Yamamoto et al., 2008).
Differences in gene expression have become an important
focus in understanding A. fumigatus virulence (Chung et al.,
2014; de Castro et al., 2014; Furukawa et al., 2020; Ries et al.,
2020; Takahashi et al., 2021; Colabardini et al., 2022). However,
the role non-coding regions play in differential gene regulation
between A. fumigatus and close re lat ives remains
largely unknown.

Here, we perform genome-wide comparisons of intergenic,
non-coding regions upstream of the first codon of single-copy
orthologous genes of the reference strains A. fumigatus Af293
and A1163 against those of eight closely related species. We
identified 5,215 single-copy orthologous genes across the 10 taxa
of interest. Of the 5,215 genes, the non-coding regions of 4,483
genes either lacked homology across the ten taxa or showed
extensive sequence variation, such that multiple sequence
alignment was not possible. For the remaining 732 genes, each
non-coding sequence was ≥500 bp long in all ten taxa and the
sequence similarity of the sequence alignment between the A.
fumigatus Af293 sequence and those of all other nine strains/
species was ≥75%, enabling us to construct accurate multiple
sequence alignments. Examination of the evolutionary rates of
the non-coding and protein-coding regions of these 732 genes
identified 418 upstream non-coding and 100 protein-coding
regions whose evolutionary rate was different in A. fumigatus
compared to close relatives. These 418 non-coding regions
include 25 known genetic determinants of A. fumigatus
virulence, such as pkaR (a regulatory subunit essential for
protein kinase A pathway), gliG (glutathione S-transferase
required for gliotoxin production), and metR (transcription
factor required for sulfur assimilation).
METHODS

Genomic Data Collection
All Aspergillus genomes are publicly available and were
downloaded from NCBI (https://www.ncbi.nlm.nih.gov/).
These strains include A. fumigatus Af293 (Nierman et al.,
2005), A. fumigatus A1163 (Fedorova et al., 2008), A.
oerlinghausenensis CBS139183 (Steenwyk et al., 2020b), A.
fischeri NRRL1881 (Fedorova et al., 2008), A. lentulus
IFM54703 (Kusuya et al., 2016), A. novofumigatus IBT 16806
(GenBank accession: MSZS00000000.1) A. fumigatiaffinis 5878
(dos Santos et al., 2020), A. udagawae IFM 46973 (Kusuya et al.,
2016), A. turcosus HMR AF 1038 (Parent-Michaud et al., 2019),
and A. thermomutatus HMR AF 39 (Parent-Michaud
et al., 2019).

Identification of Single-Copy
Orthologous Genes
To infer single-copy orthologous genes among all protein-coding
sequences for all ten taxa, we used OrthoFinder, version 2.4.0
(Emms and Kelly, 2015). OrthoFinder clustered genes into
orthogroups from gene-gene sequence similarity information
obtained using the program DIAMOND version 2.0.9
July 2022 | Volume 3 | Article 802494
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(Buchfink et al., 2015) with the proteomes of the ten Aspergillus
species as input. The key parameters used in DIAMOND were e-
value = 1 x 10-3 with a percent identity cutoff of 30% and percent
match cutoff of 70%. This approach identified 5,215 single copy
orthologous genes (Table S1).

Identification of Highly Conserved Non-
Coding Regions
To identify highly conserved non-coding regions, we first
retrieved intergenic sequences directly upstream of the first
codon of all 5,215 single-copy orthologous genes for each of
the ten Aspergillus species/strains using a custom script (https://
github.com/alecbrown24/General_Bio_Scripts; this script was
based on a previously available script: https://github.com/
shenwei356/bio_scripts). We retrieved the first 500 bp of
intergenic sequence directly upstream of each gene’s first
codon and used these sequences to generate FASTA files of
non-coding regions, as well as FASTA files of single-copy
orthologous protein-coding sequences using Python version
3.8.2 (https://www.python.org/). For some of the non-coding
regions, there were <500 bp of non-coding sequence between the
first codon of the gene of interest and an upstream gene; in these
instances, only the intergenic region was used for
subsequent analyses.

All multiple sequence alignments were constructed using
MAFFT, version 7.453, with default parameter settings
(Rozewicki et al., 2019). Analyses were conducted using
custom Python scripts that used BioPython, version 1.78 (Cock
et al., 2009), and NumPy, version 1.20.3 (Harris et al., 2020),
modules. Sequence similarity in protein-coding and non-coding
regions was calculated from their corresponding multiple
sequence alignment files. The percent sequence similarity for
each position in the alignment was calculated by determining if
the nucleotide/amino acid at each position was the same as the
nucleotide/amino acid for A. fumigatus Af293 and then dividing
by 10. The percent similarity for each nucleotide/amino acid in
each of the 5,215 non-coding and protein-coding regions of
genes was averaged and reported. We discovered that the non-
coding regions of only 732 of the 5,215 genes contained ≥500 bp
of sequence directly upstream of the first codon in all ten taxa
and exhibited sequence similarity ≥75% between the A.
fumigatus Af293 sequence and each of the other nine strains/
species, enabling us to construct accurate multiple sequence
alignments. Thus, we focused our analyses on these 732 genes.

Phylogenetic Tree Inference
and Comparisons
To construct a phylogenomic data matrix, codon-based
alignments for all 5,215 single-copy protein-coding orthologs
were individually trimmed using ClipKIT, version 1.1.5
(Steenwyk et al., 2020a), with the ‘gappy’ mode and the gaps
parameter set to 0.7. The resulting trimmed codon-based
alignments were then concatenated into a single matrix with
9,248,205 sites using the ‘create_concat’ function from PhyKIT,
version 1.2.1 (Steenwyk et al., 2021a). Next, the evolutionary
history of the ten Aspergillus genomes was inferred using IQ-
Frontiers in Fungal Biology | www.frontiersin.org 3
TREE, version 2.0.6 (Minh et al., 2020), and the “GTR+F+I+G4”
model of sequence evolution, which was the best fitting one
according to the Bayesian Information Criterion (Waddell and
Steel, 1997; Vinet and Zhedanov, 2011). Bipartition support was
assessed using ultrafast bootstrap approximations (Hoang et al.,
2018). All bipartitions received full support. The inferred
topology is congruent with known relationships inferred from
analyses of single or a few loci as well as from genome-scale
analyses (Steenwyk et al., 2009; Hubka et al., 2018; dos Santos
et al., 2020).

To identify gene trees whose phylogeny was statistically
different from the species phylogeny, we used the
approximately unbiased test (Shimodaira, 2002). Protein-
coding region and non-coding region trees were inferred using
IQ-TREE, version 2.0.6 (Minh et al., 2020), with “GTR+I+G+F”
as it was the best fitting substitution model (Waddell and Steel,
1997; Vinet and Zhedanov, 2011). The distributions of branch
lengths for protein-coding region and non-coding region trees
were determined using the “total_tree_length” function from
PhyKIT version 1.2.1 (Steenwyk et al., 2021b) (Table S2).

Analysis of Molecular Evolutionary Rates
of Protein-Coding and Non-Coding
Regions Between the Major Pathogen A.
Fumigatus and its Relatives
To determine the rate of sequence evolution in protein-coding
region alignments between A. fumigatus and close relatives, we
examined variation in the ratio of the rate of nonsynonymous
(dN) to the rate of synonymous (dS) substitutions (dN/dS or w)
across the phylogeny. We first obtained codon-based alignments
from their corresponding protein sequence alignments using
pal2nal, version 14 (Suyama et al., 2006). We next used the
codon-based alignments to calculate w values under two different
hypotheses using the codeml module in paml, version 4.9 (Yang,
2007). For each gene tested, the null hypothesis (H0) was that all
branches of the phylogeny exhibit the same estimated w value.
We compared H0 to an alternative hypothesis (HA) which allows
for the branch leading to A. fumigatus to have a distinct
estimated w value from the rest of the branches. To determine
whether HA was significantly different from H0 for each of the
codon-based alignments, we used the likelihood ratio test with a
statistical significance threshold of a = 0.01.

To determine the rate of sequence evolution in non-coding
region alignments between A. fumigatus and close relatives, we
examined variation in the ratio of the rate of substitutions in each
non-coding region (dNC) to the rate of synonymous (dS)
substitutions in its corresponding protein-coding region (dNC/
dS or z) across the phylogeny. Like the analysis of the protein-
coding regions, the null hypothesis (H0) was that all branches of
the phylogeny exhibit the same estimated z value. We compared
H0 to an alternative hypothesis (HA) which allows for the branch
leading to A. fumigatus to have a distinct estimated z value from
the rest of the branches. z values were calculated under the
different hypotheses using HyPhy version 2.2.2 (Pond et al.,
2004) with the “nonCodingSelection.bf” batch file as established
by Oliver Fedrigo (Haygood et al., 2007; Fedrigo et al., 2011). To
July 2022 | Volume 3 | Article 802494
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determine whether HA was significantly different from H0 for
each of the non-coding region alignments, we used the likelihood
ratio test with a statistical significance threshold of a = 0.01.

Functional Enrichment Analyses of Genes
With Signatures of Different
Evolutionary Rates
To determine whether genes with signatures of different
evolutionary rates in either their protein-coding or non-coding
regions are enriched for particular functional categories, we
implemented the Gene Ontology (GO) Term Finder webtool
on AspGD (Cerqueira et al., 2013) using default settings. We
conducted two separate analyses. The first examined those A.
fumigatus genes that exhibited a different evolutionary rate in
their non-coding regions, whereas the second examined those A.
fumigatus genes with a different evolutionary rate in their
protein-coding regions. These gene sets were compared to a
general background set that includes all the features/gene names
in the database with at least one GO annotation for A. fumigatus.
Both analyses used a p-value cutoff of 0.05.

Examination and Visualization of
Mutational Signatures
To identify interesting examples of sequence variation between
A. fumigatus and the other species for non-coding regions of
genes of interest, we visualized and compared multiple sequence
alignments using the MView function in EMBL-EBI (Madeira
et al., 2019). Workflow of methods can be seen in Figure S1.
Frontiers in Fungal Biology | www.frontiersin.org 4
RESULTS

Aspergillus Species Exhibit Extensive
Sequence Variation in Their Non-
Coding Regions
To analyze the sequence diversity of non-coding regions in
section Fumigati, we first identified 5,215 single-copy
orthologous genes amongst ten strains/species in the section
(Figure 1A). We then computed the percent similarity
between the non-coding and protein-coding regions of each
A. fumigatus Af293 ortholog and their homologous non-
coding and protein-coding regions in the other nine taxa
(Tables S3, S4). Those individual percent similarities were
then averaged to get the final percent similarity for the non-
coding and protein-coding regions of that ortholog. Averaging
the non-coding region percent similarities for the 5,215 single-
copy orthologous genes revealed an average similarity of
~72%; 648 alignments exhibited <50% similarity, 3,665
exhibited sequence similarity between ≥50% and <75%, and
902 exhibited ≥75% similarity. Interestingly, three genes
exhibited > 90% similarity. These genes were cnaB, whose
protein product is a calcineurin regulatory subunit and whose
transcript is induced by exposure to human airway epithelial
cells (Juvvadi et al. , 2011; Oosthuizen et al. , 2011),
AFUA_6G07800, which is predicted to be a transcription
factor with unknown function (Cerqueira et al., 2013), and
AFUA_6G04530, which is predicted to have a role in histone
acetylation (Cerqueira et al., 2013).
A

B DC

FIGURE 1 | Aspergillus section Fumigati species exhibit sequence variation in non-coding regions that are 500 base pairs upstream of genes’ first codon.
(A) Species phylogeny of two A fumigatus reference strains (Af293 and A1163) and closely related Aspergillus section Fumigati species constructed from
concatenation analysis of a 5,215-gene data matrix. Branch lengths correspond to nucleotide substitutions/site. Note the long branch leading to A fumigatus,
indicative of a greater number of nucleotide substitutions per site in this species. The number of genes whose non-coding regions were conserved (≥ 75%
sequence similarity between each species and ≥ 500 bp in length) between A. fumigatus Af293 and each species are shown next to the corresponding taxa.
(B) Average percent sequence similarity of non-coding regions of 5,215 genes by position, relative to the gene’s first codon. Sequence alignments of non-coding
regions were compared by position and the average percent similarities for each site are reported with -1 indicating the site directly upstream of the first codon and -500
indicating the site 500 bp upstream of the first codon. (C) Average percent sequence similarity by position of the first 167 amino acid sites in the alignments of 5,215 genes,
relative to the gene’s first codon. The average percent similarity for each site is reported, with +1 indicating the first amino acid. (D) Average sequence alignment lengths of
the 5,215 non-coding regions examined in this study. 4,079 of the 5,215 non-coding regions have ≥ 500 bp in all 10 strains/species used in this study.
July 2022 | Volume 3 | Article 802494
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Average percent similarity by position in Aspergillus non-
coding region alignments (Figure 1B) revealed that the percent
similarity directly upstream of the first codon (-1 bp upstream) is
higher than 60% and decreases as the distance from the first
codon increases, approaching 40% similarity. This result suggests
that potentially conserved promoter and cis-regulatory elements
occur in these non-coding regions and is consistent with
transcription factor binding location in A. fumigatus (Chung
et al., 2014; de Castro et al., 2014). For comparison, we also
calculated the average percent similarity by position in the
protein-coding region alignments of all 5,215 genes
(Figure 1C). We found that the percent similarity of the first
amino acid (+1) was ~100%, indicative of the first methionine;
similarity was high throughout the first 167 sites of amino acid
alignment but decreased as the distance from the first amino acid
increased, approaching 60% amino acid sequence similarity.

Examination of the 4,567 genes whose non-coding region
alignments exhibited ≥50% similarity (i.e., the 3,665 genes whose
similarity was ≥50% and <75%, and the 902 that had ≥75%
similarity) revealed several instances in which one or more
sequences were poorly aligned for stretches of 100 bp or more.
This was especially true when sequences in these alignments
exhibited large variation in their lengths. Further, we found a low
level of synteny as genes immediately upstream of a non-coding
region of interest generally differed between species.

We also determined the number of conserved non-coding
regions with ≥75% sequence similarity and that were ≥500 bp in
length between A. fumigatus Af293 and each of the other nine
taxa, separately (Figure 1). We found that A. novofumigatus
shares the fewest number of conserved non-coding regions
(2,321) despite being more closely related to A. fumigatus than
other species included in our phylogeny (Steenwyk et al., 2009;
Houbraken et al., 2014; Rokas et al., 2020); this suggests that the
quality of annotations may differ across the ten genomes
examined and that improvements in the gene annotation of
these genomes could increase the number of conserved non-
coding regions shared by these taxa. A. fumigatus A1163 shared
the greatest number of conserved non-coding regions with A.
fumigatus Af293 (5,020). With the exceptions of A.
novofumigatus, A. oerlinghausenensis, and A. thermomutatus,
the closer a relative is to A. fumigatus Af293, the greater the
number of conserved non-coding regions that are shared.

Phylogenetic Analyses Reveal Differences
Between Non-Coding Region Trees and
Protein-Coding Region Trees
To help determine if differences existed between non-coding and
protein-coding regions across our species, we first compared
total branch lengths in phylogenetic trees constructed from both
non-coding and protein-coding regions from all 5,215 genes
(Figure S2). Comparisons of the overall distributions between
these two groups revealed a statistically significant difference
between the overall branch lengths of protein-coding and non-
coding regions (Wilcoxon signed-ranked test; p-value = 0.004),
suggesting that non-coding regions of single-copy orthologs
evolve faster than protein-coding regions.
Frontiers in Fungal Biology | www.frontiersin.org 5
Many Non-Coding but Fewer Protein-
Coding Regions Exhibit Different Rates of
Evolution in A. fumigatus
Given the uncertainty regarding the homology of some
sequences in these 5,215 non-coding region alignments and
our finding that most sequence conservation was found near
the first codon position, we focused our evolutionary rate
analyses only on the 732 non-coding region alignments whose
sequences were all ≥500 bp long and exhibited ≥75% sequence
similarity between A. fumigatus Af293 and each other strain/
species in the phylogeny. Briefly, to determine the rate of
sequence evolution in protein-coding and non-coding region
alignments between A. fumigatus and close relatives, we
examined variation in the ratio of the rate of nonsynonymous
(dN) to the rate of synonymous (dS) substitutions (w value) for
protein-coding regions and the variation in the ratio of the rate of
non-coding (dNC) to the rate of synonymous (dS) substitutions
(dNC/dS or z value) for non-coding regions across the
phylogeny. To test whether the molecular evolutionary rates of
protein-coding and non-coding regions differed between the
major pathogen A. fumigatus and its relatives, we statistically
examined whether protein-coding and non-coding A. fumigatus
sequences evolved at a similar (H0) or different (HA) rate as those
of other taxa (Figure 2).

Examination of protein-coding regions identified 100/732
genes (Table S5) (13.7% of examined genes) that significantly
rejected H0 (under which all branches exhibited the same w value)
(Figure 3A) over HA (which postulates that the w value of the
branch leading to A. fumigatus was distinct from the background
w value of all other branches) (Figure 3B). Examination of non-
coding regions identified 418/732 genes (Table S6) (57.1% of
examined genes) that significantly rejected H0 (under which all
branches exhibited the same z value) over HA (which postulates
that the z value of the branch leading to A. fumigatus was distinct
from the background z value of all other branches) (Figure 3C).
Taken together, these results suggest a much higher amount of
variation in non-coding regions than in protein-coding regions
between A. fumigatus and relatives. The p-value distribution of
protein-coding regions is uniform, while the p-value distribution
of non-coding regions is bimodal with nearly all p-values being
either under 0.05 or 1.0. This result suggests that the 418 non-
coding regions exhibited major differences in their relative fit for
the two hypotheses, whereas protein-coding regions exhibited
much smaller differences.

Genes With Signatures of a Different
Evolutionary Rate in Non-Coding Regions
are Enriched for Regulatory Functions in
A. fumigatus
To identify functions that were over-represented in the list of
genes that rejected H0 for either their coding or non-coding
regions, we conducted gene ontology (GO) enrichment analyses.
Examination of significantly over-represented GO terms for the
418 genes (Table S7) with signatures of different evolutionary
rates in non-coding regions revealed numerous biological
processes related to regulation, metabolism, and development
July 2022 | Volume 3 | Article 802494
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(e.g., “cellular component organization or biogenesis”, p =
0.00016; “regulation of protein metabolic process”, p =
0.00101; “hyphal growth”, p = 0.00352; “regulation of cell
cycle”; p = 0.0076; “developmental process”, p = 0.01233;
“reproduction”. p = 0.00361). Of the 418 genes, 71 lacked any
functional GO annotation. In comparison, for the 314 genes that
did not exhibit a different evolutionary rate in their non-coding
regions (Table S8), the only term that was enriched was
“nucleotide binding” (p = 0.06129) and was found associated
with 48 genes. For the 100 genes with signatures of different
evolutionary rate in their protein-coding regions, only one
function was found enriched (“regulation of cellular process”,
p = 0.02647). Of note, 74 of the protein-coding genes lacked any
functional GO annotation (Table S9).

Four Genes Whose Non-Coding Regions
Exhibit Different Evolutionary Rates in A.
fumigatus also bind transcription factors
That are Known Genetic Determinants
of Virulence
To identify if any of the A. fumigatus genes with different
evolutionary rates in their respective non-coding regions also
contain known TF binding sites, we compared the list of 418
non-coding regions to binding sites of two TFs known to be
genetic determinants of virulence, CrzA and SrbA (Cramer et al.,
2008; Willger et al., 2008). ChIP-seq analysis of CrzA (de Castro
et al., 2014) uncovered 110 genes that are directly bound by the
TF in A. fumigatus strain Af293. Of these, 28 were reported to
exhibit CrzA binding within 500 bp of the first codon, and two
genes, AFUA_8G05090 (a putative MFS transporter) and
AFUA_3G09960 (Aureobasidin resistance protein), exhibited a
Frontiers in Fungal Biology | www.frontiersin.org 6
different evolutionary rate in the non-coding regions of A.
fumigatus strains in our analysis. ChIP-seq analysis of SrbA
(Chung et al., 2014) revealed 112 genes directly bound by the TF
in A. fumigatus strain A1163. Of these, 57 were reported to
exhibit SrbA binding within 500 bp of the first codon, and two
genes, AFUB_074100 (a gene of unknown function which
appears to interact with sldA, a checkpoint protein kinase) and
AFUB_012300 (a gene predicted to be involved in nitrate
assimilation), exhibited a different evolutionary rate in the
non-coding regions of A. fumigatus strains in our analysis.
Importantly, we found that for all four genes (AFUA_8G05090,
AFUA_3G09960, AFUB_074100, and AFUB_012300) there was
at least a 2 bp sequence difference between A. fumigatus and at
least one close relative in their sequences at the TF binding site
location (Figure 4). Together, our results suggest that intergenic
non-coding regions that bind known TFs can exhibit substantial
differences in their evolutionary rates between A. fumigatus and
close relatives, which raises the hypothesis that these differences
may lead to differences in gene expression.

Non-Coding Regions Upstream of Genetic
Determinants of Virulence With Different
Rates of Evolution in A. fumigatus
We identified 25 genetic determinants of virulence whose non-
coding regions exhibited a different rate of evolution in A.
fumigatus (Table 1). Three genes (metR, his3, and met16) are
involved in amino acid biosynthesis, eight genes (chsF, calA, gel2,
nrps1, gfa1, csmB, rlmA, and rodA) are involved in cell wall
biosynthesis, nine genes (noc3, spe2, gus1, pri1, AFUA_2G10600,
mak5, pkaR, ramA, and somA) are involved in cellular
metabolism, two genes (aspB and tom40) are involved in
FIGURE 2 | Examining whether the non-coding and protein-coding regions of 732 genes have different evolutionary rates in the major pathogen A. fumigatus. The
top two panels present the null and alternative hypotheses for evolutionary rate difference in the protein-coding regions of A. fumigatus genes relative to the other
species. The null hypothesis (H0, upper left) constrains all w (dN/dS) values across all branches to be less than or equal to 1, the neutral evolutionary rate. The
alternative hypothesis (HA, upper right) allows the branch leading to A. fumigatus (dashed branch) to have an w value lower than, equal to, or greater than 1 (indicative of
evolutionary rate difference) compared to the background branches. The bottom two panels present the null and alternative hypotheses for evolutionary rate difference in the
non-coding regions of A. fumigatus genes relative to other species. Similarly, the null hypothesis (H0, bottom left) constrains all z (dNC/dS) values across all branches to less
than or equal to 1. The alternative hypothesis (HA, bottom right) allows for the branch leading to A. fumigatus (dashed branch) to have a z value lower than, equal to, or
greater than 1 (evolutionary rate difference) compared to the background branches. For each protein-coding and non-coding region, a likelihood ratio test was used to
determine which hypothesis best fits the data.
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hyphal growth, and three genes (gliG, gliI, and gliJ) are involved
in gliotoxin biosynthesis. Of the 25, 14 genes (metR, chsF, calA,
gel2, nrps1, gfa1, csmB, rlmA, rodA, AFUA_2G10600, pkaR,
ramA, somA, and aspB) have been shown to modulate
virulence in an animal model of infectious disease. Three genes
(gliG, gliI, and gliJ) are required for the biosynthesis of gliotoxin,
a secondary metabolite involved in A. fumigatus virulence
(Brakhage and Langfelder, 2002; Dagenais and Keller, 2009),
and deletions of the eight remaining genes (his3, met16, noc3,
spe2, gus1, pri1, mak5, and tom40) have been previously shown
to be important for viability and therefore, likely virulence (for a
detailed list, see: Steenwyk et al., 2021a). Interestingly, only two
of these 25 genes (csmB and rodA) exhibit a signature of different
evolutionary rate in their protein-coding region as well, a finding
consistent with our result that there are more changes in
non-coding regions than in protein-coding regions of
Aspergillus genes.

Examination of sequence alignments of non-coding regions
of these 25 genes (Table 1) revealed several interesting patterns
(Figure 5). For example, the non-coding region of pkaR exhibits
a 10 bp stretch from -434 bp to -424 bp upstream of the first
codon, which is deleted exclusively in A. fumigatus and present
Frontiers in Fungal Biology | www.frontiersin.org 7
and largely conserved in all other species (Figure 5A). The non-
coding region of gfa1 also has a stretch of 5 bp exclusively deleted
in A. fumigatus and present in all other species. Sequence
alignment of the gliG non-coding region revealed an 11 bp G-
rich insertion that is unique to the two A. fumigatus strains
(Figure 5B). In addition to A. fumigatus-specific indels, we also
observed that the non-coding regions of several genes known to
be involved in A. fumigatus virulence exhibited indel variation
across the other Aspergillus species examined as well. For
example, the non-coding region of metR exhibits a 7 bp
pyrimidine rich insertion that is found only in A. fumigatus, A.
oerlinghausenensis, and A. lentulus (Figure 5C), while the non-
coding regions of calA and pri1 both have small sequences (12 bp
and 5 bp, respectively) that are exclusively absent in A. fumigatus
strains Af293 andA1163, and in A. oerlinghausenensis.
DISCUSSION

We identified a set of 732 genes whose non-coding regions were
conserved between the genomes of reference strain A. fumigatus
Af293, the more virulent A. fumigatus reference strain A1163,
A

B

C

FIGURE 3 | Non-coding regions of A. fumigatus genes exhibit many more signatures of evolutionary rate difference than their corresponding protein-coding regions.
(A) The null hypothesis (H0) that all branches have the same evolutionary rate. (B, C) The alternative hypotheses assume that the w value (Bi) or the z value (Ci) in the
branch leading to A. fumigatus differs from the value in the rest of the branches of the phylogeny. Bii. 632 of 732 protein-coding regions (84.34%) did not reject H0

(gray) and 100 of 732 (16.66%) rejected H0 (blue). Biii. The distribution of p-values for protein-coding regions that did not (gray) and did (blue) reject H0. Cii. 314 of
732 non-coding regions (42.90%) did not reject H0 (gray) and 418 of 732 non-coding regions (57.10%) rejected H0 (red), which suggests a greater amount of
variation in non-coding regions than in protein-coding regions between A. fumigatus and relatives. Ciii The distribution of p-values for non-coding regions that did not
(gray) and did (red) reject H0.
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and eight closely related species. In these 732 genes, we also
tested whether the branch leading to A. fumigatus exhibited a
difference in the evolutionary rate in either its protein-coding or
its non-coding regions compared to the other species. We found
that the non-coding regions of 418 of these genes exhibit
signatures of a different evolutionary rate in A. fumigatus.
These 418 genes include 25 that are known genetic
determinants of A. fumigatus virulence (Steenwyk et al., 2021b)
(Table 1). Given the differences in reported invasive aspergillosis
cases caused by A. fumigatus compared to other Aspergillus
species (Steinbach et al., 2012), genetic differences in the non-
coding regions of these 418 genes, and especially of these 25
genes previously connected to virulence, may play a role in
varying pathogenic potentials of Aspergil lus section
Fumigati species.

Gene Ontology (GO) analysis of the 418 genes which exhibit
signatures of a different evolutionary rate in non-coding regions
revealed an enrichment for genes involved in regulation of
metabolism and development. This is consistent with previous
studies of the evolution of non-coding regions in humans
(Haygood et al., 2007), which experienced positive selection in
non-coding regions for genes involved in metabolism regulation
(particularly glucose metabolism) and regulation of development
(particularly the nervous system) compared to close relatives.
These results raise the possibility that non-coding regions
associated with particular functions in diverse taxa are more
likely to experience changes in their evolutionary rates.

We compared our list of genes with signatures of different
evolutionary rates with previous ChIP-seq studies of the
Frontiers in Fungal Biology | www.frontiersin.org 8
transcription factors CrzA and SrbA, both of which are well
studied genetic determinants of virulence for A. fumigatus
(Cramer et al., 2008; Willger et al., 2008; Chung et al., 2014; de
Castro et al., 2014; Colabardini et al., 2022). We found that the
non-coding regions of two genes bound by CrzA
(AFUA_8G05090 and AFUA_3G09960) and two genes bound
by SrbA (AFUB_074100 and AFUB_012300) also exhibited
different evolutionary rates in A. fumigatus. We found several
nucleotide differences in these non-coding regions that likely
contributed to the observed differences in evolutionary rate.
Interestingly, when we examined the sequence alignments of
the non-coding regions of these genes, we found differences at
the TF binding sites (TFBS) between A. fumigatus and relatives.
We hypothesize that the different evolutionary rate we observed
in these A. fumigatus genes are due, in part, to changes in the
associated TFBS, which may influence the regulation of
these genes.

Comparisons between Saccharomyces cerevisiae and
Saccharomyces paradoxus non-coding regions that were similar to
the ones we report here, revealed that TFBS tend be more conserved
in the proximal promoter region (within 200bp of the transcription
start site) than the distal region, yet some differences in TFBS were
reported between the two species in their respective proximal
promoter regions (Schaefke et al., 2015). Evolutionary differences
near the transcription start site have also been reported in
Drosophila species, with certain species (such as Drosophila
pseudoobscura) exhibiting an increased mutation rate upstream of
the transcription start site when compared to Drosophila
melanogaster (Main et al., 2013). Combined with the results
FIGURE 4 | CrzA and SrbA binding locations in 4 genes that exhibit a different evolutionary rate in their non-coding regions. Two A. fumigatus genes (AFUA_8G05090 and
AFUA_3G09960) known to bind CrzA in their non-coding regions and two A. fumigatus genes (AFUB_074100 and AFUB_012300) known to bind SrbA in their non-coding
regions have at least a 2 bp difference in the TF binding site between A. fumigatus and one or more relatives. Red boxes represent the binding site locations found in previous
ChIP-seq experiments.
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presented here, it is likely that the evolution of non-coding regions is
not uniform across closely related species and that these differences
may play a functional role in downstream gene expression.

We compared our list of 418 genes with signatures of a
different evolutionary rate in the non-coding regions of A.
fumigatus to a previously curated set of 206 genetic
determinants of A. fumigatus virulence (Steenwyk et al., 2021a)
and found that 25 of the 206 exhibited a different evolutionary
rate their non-coding regions between A. fumigatus and close
relatives (Table S6). We found that the most represented general
function amongst these 25 genes was “metabolism”, which raises
the question of their impact on virulence, given the role that
metabolism has been shown to play in A. fumigatus virulence
(Willger et al., 2009). In particular, pkaR is essential for proper
protein kinase A signaling (Griffioen and Thevelein, 2002) and
plays a key role in the germination and growth of A. fumigatus
asexual spores (Zhao et al., 2006). Moreover, pkaR has been
shown to be required for A. fumigatus virulence (Lin et al., 2015)
in an immunocompromised murine model of invasive
aspergillosis (Fuller et al., 2011). We found that the protein-
coding region of pkaR does not exhibit a different evolutionary
rate in A. fumigatus, suggesting that it is conserved. However,
analysis of the sequence alignment of the non-coding region
revealed a 11 bp region (CAACTTCTTT) absent in A. fumigatus
but present in all other species (Figure 5). Interestingly, this
binding site is similar to the predicted TFBS for the S. cerevisiae
TF Ste12 (Badis et al., 2008), a homolog to SteA in A. fumigatus.
While it has yet to be elucidated if this region is involved in SteA
binding, it may be that its absence changed the regulation of
pkaR and thus somehow contributed to the evolution of A.
fumigatus virulence.
Frontiers in Fungal Biology | www.frontiersin.org 9
The role of gliotoxin inA. fumigatus-mediated disease has been of
increasing interest, due to its ability to inhibit the host immune
response (Raffa and Keller, 2019). However, the gliotoxin
biosynthetic gene cluster is found in both A. fumigatus and its
non-pathogenic close relatives A. oerlinghausenensis and A. fischeri,
and all three species are known to produce gliotoxin (Knowles et al.,
2020; Steenwyk et al., 2020b). Here, we identify that three genes in
the gliotoxin biosynthetic gene cluster (gliG, gliJ, gliI) exhibit a
different evolutionary rate in their non-coding regions in A.
fumigatus. Gliotoxin genes have been shown to require certain TFs
(GliZ and RglT for example) for gliotoxin biosynthesis and/or self-
protection (Schrettl et al., 2010; Ries et al., 2020; de Castro et al.,
2022). Interestingly, analysis of the sequence alignment of the non-
coding region of gliG revealed a G-rich region unique toA. fumigatus
(Figure 5). G-rich regions have been previously reported to be found
in biologically active sites and to play important roles in regulating
cellular processes such as gene expression (Maizels and Gray, 2013;
Maity et al., 2020). This A. fumigatus-specific G-rich region may
contribute to some unknown gliotoxin expression pattern that
contributes to A. fumigatus virulence or the lack of disease caused
by other closely related Aspergillus species.

metR encodes a bZIP DNA binding protein required for sulfur
metabolism inA. fumigatus andwhose gene expression is regulated
by LaeA, a major regulator of secondary metabolism (Jain et al.,
2018. Pertaining toA. fumigatus virulence, sulfur assimilation plays
key roles in oxidative stress response and gliotoxin biosynthesis
(Traynor et al., 2019). Recent efforts have identified differences in
the transcriptional profiles ofA. fumigatus and relatives in response
to exogenous gliotoxin, highlighting the pathways relating sulfur
assimilation and gliotoxin production (de Castro et al., 2022). The
non-coding region ofmetR contains a 7 bp region (TCACCT) inA.
TABLE 1 | Twenty-five genetic determinants of A. fumigatus virulence have a different evolutionary rate in their non-coding regions.

Gene ID Gene Name Specific Function General Pathway Reference

AFUA_4G06530 metR putative bZip transcription factor amino acid biosynthesis Amich et al., 2013
AFUA_6G04700 his3 Putative imidazoleglycerol-phosphate dehydratase amino acid biosynthesis Hu et al., 2007
AFUA_3G06540 met16 phosphoadenylyl-sulfate reductase (thioredoxin) activity amino acid biosynthesis Hu et al., 2007
AFUA_8G05630 chsF putative chitin synthase cell wall biology Muszkieta et al., 2014
AFUA_5G09360 calA calcineurin a catalytic subunit cell wall biology Juvvadi et al., 2013
AFUA_6G11390 gel2 GPI-anchored 1,3-beta-glucanosyltransferase cell wall biology Mouyna et al., 2005
AFUA_1G10380 nrps1 non-ribosomal peptide synthase cell wall biology Reeves et al., 2006
AFUA_6G06340 gfa1 glutamine-fructose-6-phosphate transaminase activity cell wall biology Hu et al., 2007
AFUA_2G13430 csmB putative chitin synthase cell wall biology Muszkieta et al., 2014
AFUA_3G08520 rlmA cell wall organization, cellular response to stress cell wall biology Rocha et al., 2016
AFUA_5G09580 rodA Asexual spores hydrophobin cell wall biology Shibuya et al., 1999
AFUA_2G17050 noc3 rRNA processing metabolism Hu et al., 2007
AFUA_5G03670 spe2 role in spermidine biosynthetic process metabolism Hu et al., 2007
AFUA_5G03560 gus1 Putative glutamyl-tRNA synthetase metabolism Hu et al., 2007
AFUA_3G09020 pri1 DNA primase small subunit metabolism Hu et al., 2007
AFUA_2G10600 N/A Complex I NADH oxidoredutase metabolism Bromley et al., 2016
AFUA_6G08900 mak5 role in maturation of 5.8S rRNA metabolism Hu et al., 2007
AFUA_3G10000 pkaR cAMP-dependent protein kinase regulatory subunit metabolism Zhao et al., 2006
AFUA_4G10330 ramA role in protein farnesylation metabolism Norton et al., 2017
AFUA_7G02260 somA putative role in lipid homeostasis metabolism Lin et al., 2015
AFUA_7G05370 aspB Putative septin hyphal growth Vargas-Muñiz et al., 2015
AFUA_6G05110 tom40 role in conidium formation, hyphal growth hyphal growth Hu et al., 2007
AFUA_6G09690 gliG gliotoxin production, Glutathione S-transferase secondary metabolism Scharf et al., 2011
AFUA_6G09640 gliI gliotoxin production, Aminotransferase secondary metabolism Forseth et al., 2011
AFUA_6G09650 gliJ gliotoxin production, Dipeptidase secondary metabolism Scharf et al., 2011
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fischeri and five other species; in contrast, the two strains of A.
fumigatus, A. oerlinghausenensis and A. lentulus all lack this 7 bp
motif (Figure 5). While it remains unclear if this 7 bp motif has a
functional role in the expressionofmetR, this result nicely illustrates
the complex patterns of sequence evolution of non-coding regions
in this clade of pathogens and non-pathogens.

A major outstanding question emanating from our work is
whether this extensive non-coding sequence variation of closely
related Aspergillus species that vary in their pathogenicity
functionally contributes to differences in gene expression between
strains and species. Currently, there are no datasets available that
report genome-wide differential expression data for A. fumigatus
and close relatives; to our knowledge, the only publisheddifferential
expression study of A. fumigatus and close relatives focused on
Frontiers in Fungal Biology | www.frontiersin.org 10
expression differences only for genes involved in secondary
metabolism (Takahashi et al., 2021). Designing and performing
differential gene expression experiments in diverse Aspergillus
species will be a future aim. Additional future work will include
functionally test if the non-coding region differences we report here
play a role inA. fumigatus expressionandvirulence. Further, testing
if non-coding regions in a larger set of A. fumigatus strains exhibit
differences inevolutionary rateswouldhelp toelucidatemore recent
evolutionary changes in A. fumigatus and the pathogenic
differences observed in these strains as well.
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