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Plants, fungi, and many other eukaryotes have evolved an RNA interference

(RNAi) mechanism that is key for regulating gene expression and the control of

pathogens. RNAi inhibits gene expression, in a sequence-specific manner, by

recognizing and deploying cognate double-stranded RNA (dsRNA) either from

endogenous sources (e.g. pre-micro RNAs) or exogenous origin (e.g. viruses,

dsRNA, or small interfering RNAs, siRNAs). Recent studies have demonstrated

that fungal pathogens can transfer siRNAs into plant cells to suppress host

immunity and aid infection, in a mechanism termed cross-kingdom RNAi. New

technologies, based on RNAi are being developed for crop protection against

insect pests, viruses, and more recently against fungal pathogens. One

example, is host-induced gene silencing (HIGS), which is a mechanism

whereby transgenic plants are modified to produce siRNAs or dsRNAs

targeting key transcripts of plants, or their pathogens or pests. An alternative

gene regulation strategy that also co-opts the silencing machinery is spray-

induced gene silencing (SIGS), in which dsRNAs or single-stranded RNAs

(ssRNAs) are applied to target genes within a pathogen or pest. Fungi also

use their RNA silencing machinery against mycoviruses (fungal viruses) and

mycoviruses can deploy virus-encoded suppressors of RNAi (myco-VSRs) as a

counter-defence. We propose that myco-VSRs may impact new dsRNA-based

management methods, resulting in unintended outcomes, including

suppression of management by HIGS or SIGS. Despite a large diversity of

mycoviruses being discovered using high throughput sequencing, their biology

is poorly understood. In particular, the prevalence of mycoviruses and the

cellular effect of their encoded VSRs are under-appreciated when considering

the deployment of HIGS and SIGS strategies. This review focuses on

mycoviruses, their VSR activities in fungi, and the implications for control of

pathogenic fungi using RNAi.
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1 Introduction

Global demand for food and fuel crops has risen over the

past few years. At the same time the need for sustainable

agriculture has also grown; however, significant abiotic and

biotic factors impact plant productivity. Biotic factors include

pathogenic microorganisms and invertebrate pests that affect

both pre-harvest and post-harvest stages, interfering with both

crop yield and quality (Savary et al., 2019; Singh et al., 2022). In

the past few decades, alternatives for control of plant pests and

pathogens have been sought, because of consumer concerns over

environmental and human health, as well as the development of

pesticide resistance due to selection pressures arising from

decades of over-dependence on agrichemical use for pathogen

and pest control (Fisher et al., 2018; Bastos et al., 2021).

Eco-friendly alternatives for crop protection have been

attempted with varying degrees of success. These include:

biological control using microorganisms, including:

Trichoderma spp., Bacillus spp., Streptomyces spp., and

Pseudomonas spp. (Ferreira and Musumeci, 2021; Pandit et al.,

2022); deploying mycoviruses for fungal pathogen control

(Gupta et al., 2019); spray treatments using natural plant

extracts (Zaker, 2016); and RNA interference (RNAi, also

known as RNA silencing) technology that targets pests and

pathogens (Liu et al., 2021).

RNAi is a natural process present in many eukaryotes,

including plants, where it provides protection against

pathogenic microorganisms, with control of plant pathogenic

viruses being the most well understood (Ding et al., 2004; Jin

et al., 2021). In this process, plants react to the presence of

double-stranded RNA (dsRNA) and destroy corresponding

RNA sequences (for example viral genomes) using the plant’s

silencing machinery (Carbonell and Carrington, 2015). The use

of RNAi to control microbes or invertebrate pests depends on

the ability of those organisms to take up and process dsRNA,

impacting the pest or pathogen by RNAi targeting specific

transcripts (Dutta et al., 2015; Qiao et al., 2021). In early

examples of RNAi to control microbes, the dsRNA was

produced by a transgenic plant and later it was discovered that

the dsRNA could be applied directly onto the plant surfaces

(Wang and Jin, 2017; Sang and Kim, 2020). Transgenic plants

have been a commercial success for controlling various viral

diseases (Gonsalves et al., 2004; Rosa et al., 2018). The use of

spray applications of dsRNA targeting viruses was an exciting

next step to investigate. Targeting invertebrate vectors of viruses

came as a natural extension for the use of dsRNA sprays

(Kanakala and Ghanim, 2016).

The use of RNAi for fungal disease control was initiated after

the discovery of silencing in fungi and the subsequent

description of the cross-kingdom RNAi phenomenon. Many

fungi have been reported to have RNA silencing machinery

(Telengech et al., 2020; Gebremichael et al., 2021) with the most
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tantalizing recent finding that fungi produce dsRNA to attack

their plant host’s defenses (Weiberg et al., 2013). Likewise, plants

can counter-attack by delivering dsRNA into pathogenic fungi to

target critical transcripts (Cai et al., 2018). This extracellular

trafficking of dsRNA, by pathogens and plants, to induce cross-

kingdom RNAi inspired the concept of spraying dsRNA onto

plants to achieve disease control via the RNAi pathway (Knip

et al., 2014; Weiberg et al., 2015). This approach is absolutely

dependent on functional RNAi within pathogen cells.

We propose that viruses will impact dsRNA-based

management methods resulting in unintended outcomes. Like

plants, fungi use RNAi to control fungal viruses (mycoviruses)

(Swati et al., 2007; Nuss, 2011). The presence of mycoviruses

may disrupt the fungal RNAi and derail the RNAi-based control

strategy. This is because viruses, whether plant viruses or

mycoviruses, have evolved counter-defence strategies,

producing virus-encoded suppressors of RNAi (VSRs), that

disrupt their host’s RNAi (Aulia et al., 2021; Ko et al., 2021).

Alternatively, the presence of mycoviruses may reduce the

fitness of a fungal pathogen and enhance the RNAi-based

control. It is therefore necessary to review the roles of

mycoviruses, and their VSRs in the context of using RNAi for

fungal plant disease control.
2 Silencing mechanism in plants
and fungi

RNAi is a mechanism that is conserved in plants, fungi, and

many other eukaryotes. However, some fungi appear to have lost

their RNAi machinery, including species of the subphyla

Saccharomycotina, Wallemiomycetes, and some members of

the phylum Microsporidia (Laurie et al., 2012). The main role

of RNAi was discovered to be a defence mechanism against

foreign nucleic acids (such as RNA or DNA viruses). It also plays

several critical roles in biological processes such as the control of

transposon movement, gene regulation, and heterochromatin

formation (Ratcliff et al., 1997; Ketting, 2011; Castel and

Martienssen, 2013; Gebremichael et al., 2021).

In 1990, an RNAi silencing mechanism was reported (Napoli

et al., 1990) for the first time in pigmented petunia flowers;

nonetheless, it was not until 1998 that the requirement of dsRNA

for gene silencing was demonstrated in Nicotiana tabacum

(Waterhouse et al., 1998). In filamentous fungi, gene silencing

was first reported in the genetic model fungus, Neurospora

crassa, (Romano and Macino, 1992; Lax et al., 2020).

The RNAi mechanism has been described fully in various

reviews (Muhammad et al., 2019; Sang and Kim, 2020; Hung and

Slotkin, 2021). In brief, dsRNA is processed by an RNase III,

called Dicer (or Dicer-like in plants and fungi), into small

interfering RNAs (siRNAs), the siRNAs are incorporated and

activated within the RNA-induced silencing complex (RISC)
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along with the protein Argonaute (AGO or sometimes AGO-like

(AGL) in fungi) that targets RNA transcripts through sequence

complementarity to the RISC-loaded siRNA. RISC either directs

cleavage or inhibition of targeted transcripts. The sequence

complementary to the mRNA fragment can also be the primer

for RNA-dependent RNA polymerase (RdRp, Rdp, or QDE1 in

some fungi) to produce more dsRNAs that initiate and amplify

the RNAi cycle again. siRNAs can also be utilized to target

methylation of cognate DNA (Cogoni and Macino, 1999).

Importantly for this review, RNAi is activated by the presence

of dsRNA from either endogenous sources or exogenous origins

(Wang et al., 2017).

Although RNAi is a similar process across eukaryotes, there

are some variations in the components and their functionality

(Abdurakhmonov, 2016). The RNAi machinery in fungi has

been associated and reported with multiple functions: antiviral

(Table 1); control of transposable elements; regulation of

endogenous genes; heterochromatin formation; adaptation to

stress conditions; and pathogenesis (Lax et al., 2020). As in

plants, the number of genes that encode RNAi proteins differs

between fungal genera and species (Li et al., 2019; Neupane et al.,

2019). The initial mechanism of gene silencing described in

filamentous fungi, termed quelling, was identified through the

introduction of repeated sequences (Romano and Macino, 1992;

Cogoni and Macino, 1999). Quelling-defective (qde or QDE1)

genes that are required to induce gene silencing in N. crassa were

identified and cloned (Cogoni and Macino, 1999). Later, QDE1

was associated as a component of RdRp (Forrest et al., 2004) and

both were characterized as nuclear proteins (Nolan et al., 2008).

The presence of RdRp within eukaryotic genomes is associated

with the evolution of RNA viral genomes carrying an RdRp gene

which may have been incorporated into the host genome, but

eliminated from the Archaea domain (de Farias et al., 2017). Like

the RdRp, termed QDE1, in N. crassa, other RNAi genes may

bear alternative names, e.g. fungal AGO proteins are sometimes

termed AGO-like (AGL) (Lee et al., 2003; Segers et al., 2006; Yu

et al., 2020). The number of genes encoding each protein

involved in the RNAi mechanism differs in fungal species and

these may be required for distinct cellular activities (Hammond
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and Keller, 2005; Chen et al., 2015; Son et al., 2017; Yu

et al., 2018)
3 Implications of cross-kingdom
RNAi for control of plant
pathogenic fungi

Host-induced gene silencing (HIGS) has been deployed

commercially for decades to control a range of plant viruses

(Gonsalves et al., 2004; de Faria et al., 2016; Rosa et al., 2018) and

insects (Baum et al., 2007; Head et al., 2017). HIGS for fungal

control has been used only in experimental trials, with siRNA or

dsRNA generated by transgenic plants (Nowara et al., 2010; Nunes

and Dean, 2012; Raruang et al., 2020; Sang and Kim, 2020; Rajam

et al., 2021). To the best of our knowledge, the use of HIGS for

fungal control has not as yet been adopted commercially.

Alternatively, siRNA or dsRNA can be applied directly to

initiate RNAi to target cognate mRNAs. Various fungi have been

shown to take up exogenous dsRNAs from the environment:

Fusarium oxysporum and Mycosphaerella fijiensis (Mumbanza

et al., 2013); Sclerotinia sclerotiorum (Regente et al., 2017);

Botrytis cinerea and Verticillium dahliae (Wang et al., 2016).

In 2013, Weiberg et al. demonstrated that fungal pathogens

secrete siRNAs that are subsequently taken up into plant cells.

These fungal origin-siRNAs target host transcripts to suppress

host immunity and promote infection. More recently, Jin and

colleagues (2021) have demonstrated trafficking of siRNAs

between host and pathogen that they termed trans-kingdom or

cross-kingdom RNAi (Knip et al., 2014; Weiberg et al., 2015).

There are two potential pathways for fungi to take up exogenous

dsRNAs or siRNA, i.e., directly whereby the fungal cell takes up

RNA that it encounters on host cell surfaces, or indirectly, where

the plant first takes up exogenous dsRNA, then processes it into

siRNAs, which are then secreted directly or via extracellular

vesicles for uptake by the fungal pathogen (Sang and Kim, 2020;

Hernández-Soto and Chacón-Cerdas, 2021). The role of vesicles

in the delivery of siRNAs has also been demonstrated (Cai et al.,
TABLE 1 Fungal RNA interference is an antiviral activity.

Fungus Evidence, e.g. targeted virus Reference

Aspergillus nidulans Aspergillus virus 341 Hammond et al., 2008

Botrytis cinerea Botrytis gemydayirivirus 1 Khalifa and MacDiarmid, 2021

Colletotrichum higginsianum Colletotrichum higginsianum non-segmented dsRNA virus 1 Campo et al., 2016

Cryphonectria parasitica Cryphonectria hypovirus 1 Sun et al., 2009

Fusarium graminearum Fusarium graminearum virus 1 Yu et al., 2020

Magnaporthe oryzae Pyricularia oryzae ourmiavirus-like virus 1 and 2 Nguyen et al., 2018

Neurospora crassa Neurospora crassa fusarivirus 1, Neurospora crassa partitivirus 1 Honda et al., 2020

Sclerotinia sclerotiorum Sclerotinia sclerotiorum hypovirus 2-lactuca Mochama et al., 2018
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2018). These discoveries led to the proposition that the

application of exogenous dsRNA could be used for pest or

phytopathogen control (Wang et al., 2016). This dsRNA (or

siRNA) introduction may be direct, with spray applications of

antifungal dsRNA, in a process known as ‘spray-induced gene

silencing (SIGS)’ (Koch et al., 2016; Wang et al., 2017; Qiao

et al., 2021).

SIGS has been investigated for control of insect pests

(Turner et al., 2006; Zheng et al., 2019), viruses (Mitter et al.,

2017; Worrall et al., 2019; Routhu et al., 2022), and fungi (Sang

and Kim, 2020; Gebremichael et al., 2021; Niu et al., 2021).

Advantages and disadvantages of SIGS and HIGS are discussed

elsewhere (Gebremichael et al., 2021; Niu et al., 2021).

Importantly, both HIGS and SIGS approaches require a

functional RNAi mechanism in the target pest/pathogen for

control to be achieved.

Phytopathogenic fungal studies have used HIGS or SIGS to

target gene transcripts encoding proteins involved in basic

metabolism, such as chitin synthase (Sang and Kim, 2020)

or ergosterol biosynthesis (Duanis-Assaf et al., 2022),

pathogenicity factors or effectors (McLoughlin et al., 2018).

Many SIGS studies (33%) have targeted the fungal RNAi gene

silencing mechanisms, e.g., DICER, AGO or vesicle trafficking

of siRNAs (Gebremichael et al., 2021). The following HIGS

and SIGS studies are not included in the Gebremichael et al.,

2021 review and have been used with Fusarium graminearum

sterol 14a-demethylase genes FgCYP51A, FgCYP51B and the

virulence factor FgCYP51C, in Arabidopsis and barley (Koch

et al., 2019), and the Fg00677, Fg08731 (two essential protein

kinases), and CYP51 (cytochrome P450 lanosterol C14-a-
demethylase) genes in Brachypodium distachyon (He et al.,

2019). HIGS has also been used to target Sclerotinia

sclerotiorum genes Ssoah1 (regulatory pivot for oxalic acid

production) (Rana et al., 2022), Ss-caF1 (putative Ca2

+ binding protein), SspG1d (endopolygalacturonase), and

SsiTL (integrin) (Maximiano et al., 2022) and when

combatting Phakopsora pachyrhizi, three genes (ATC: acetyl‐

CoA acyltransferase, GCS_H: glycine cleavage system H protein,

and RP_S16: 40S ribosomal protein S16) of eight genes

evaluated, reduced the number of pustules of P. pachyrhizi

(Hu et al., 2020).
4 Mycoviruses and their encoded
suppressors of RNA silencing

Mycoviruses (viruses that multiply within fungi) and several

plant viruses, are hosted and vectored by members of the fungal

kingdom (Jiang et al., 2013; Buck, 2018; Bian et al., 2020). With

over 6 million species, the fungal kingdom comprises

microorganisms with varying morphologies, life cycle

strategies, and economic significance (Taylor et al., 2014).
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Mycoviruses have been reported in members of the three

major fungal phyla: Chytridiomycota, Ascomycota, and

Basidiomycota (Pearson et al. , 2009). Note that the

Zygomycota are no longer recognized as Fungi (Spatafora

et al., 2017; Tedersoo et al., 2018). Fungi are extensively

infected with mycoviruses (Ghabrial, 1998; Hong et al., 1999),

which are hosted in their cytoplasm or limited to the

mitochondria (Polashock et al., 1997; Varga et al., 2003).

Although the antiviral defences of the host fungi may limit the

challenge of infection by some mycoviruses, successful

mycovirus infections can have an observed impact on their

fungal host’s growth and even impact pathogenicity of some

phytopathogenic fungi. Mycovirus-encoded counter defences

that reduce the RNAi activity of a target fungus could also

decrease the efficacy of SIGS and HIGS due to the requirement of

this activity for silencing to function.
4.1 The form and taxonomy
of mycoviruses

Currently, three genome types, double stranded RNA

(dsRNA), single-stranded RNA (ssRNA), and single-stranded

DNA (ssDNA) are reported and verified as mycoviral genomes,

with dsRNA historically being the most often reported among all

known mycoviruses (Kondo et al., 2022). This dsRNA genome

bias may be related to the ‘pre-sequencing era’ use of dsRNA

purification and profiling to detect the presence of fungal viruses.

Unlike most ssRNA mycoviruses, most dsRNA viruses are

encapsidated. Mycoviruses have been categorized into at least

27 viral families with certain genera remaining unclassified and

unassigned to any known virus family (Mu et al., 2021; Ruiz-

Padilla et al., 2021; Myers and James, 2022; Kondo et al., 2022,

Matthijnssens et al. in press). To date, mycoviruses have been

recorded (established or proposed) to include: members within

dsRNA virus families (Amalgaviridae, Chrysoviridae,

Curvu lav i r idae , Megab i rnav i r idae , Par t i t i v i r idae ,

Polymycoviridae, Quadriviridae, Spinareoviridae (previously

Reoviridae), Totiviridae and Botybirnaviridae); members

within positive sense ssRNA virus families (Alphaflexiviridae,

Barnavir idae , Botourmiav ir idae , De l taflex iv i r idae ,

Endorav i r idae , Fusa r iv i r idae , Gammaflex i v i r idae ,

Hadakaviridae, Hypoviridae, Mitoviridae, Narnaviridae,

Yadokariviridae); members within positive sense ssRNA

families that act like retroviruses (Metaviridae and

Pseudoviridae); members within negative-sense ssRNA virus

famil ies (Mymonavir idae and Phenuivir idae ) ; and

Genomoviridae, which comprises circular ssDNA viruses and

represents the sole DNA mycovirus family as no dsDNA

mycoviruses have been described as yet (Hisano et al., 2018;

Khan et al., 2021; Kondo et al., 2022; Matthijnssens et al., 2022 in

press; Walker et al., 2020).
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4.2 Technologies used to
discover mycoviruses

The rate of mycovirus discovery has surged over the past

decade due to the application of semi- and non-targeted high

throughput sequencing (HTS). Previously, mycoviruses were

detected based on the presence of dsRNA in total RNA or

dsRNA-enriched extracts from fungi, then the genome could be

identified by sequencing cloned genomic pieces (Khalifa et al.,

2016). With the development of HTS methods, mycovirus

discovery has become increasingly practical, and numerous

mycovirus sequences are being uploaded to the GenBank

databases on a continuous basis (Ho and Tzanetakis, 2014). A

range of HTS methods are used based on total RNA (sometimes

ribo-depleted) or total DNA (fungal genome including

integrated or non-integrated viruses), or purified virions or

virus enriched nucleic acid structures, e.g. dsRNA from RNA

and/or DNA viruses or circular DNA multiplied by rolling circle

amplification (Fitzpatrick et al., 2021). However, knowledge of

mycovirus cellular biology, host interaction, and environmental

impacts is still limited.

Pioneer virologists focused solely on hosts displaying

symptoms to discover associated viruses, whereas today’s

virologists can target any host or even environmental samples

more easily, using high throughput sequencing technologies.

These technologies enable discovery of viruses within their host

(enabling immediate association with at least one host) or in the

absence of their host (e.g., in water or associated with top

predator insects such as dragonflies). The former approach

requires only confirmation of the host using a second method,

whereas the latter approach requires ‘de-orphaning’ of the virus

sequence to identify the host(s) in which the genome replicates.

Both approaches are agnostic to symptoms that may be

associated with virus infection. Subsequent biological studies

of the virus-host interaction are required to understand the

impacts of the virus-host interactions within different abiotic

and biotic conditions. The focus on fungi as hosts of viruses

intensified from 2012 to the present day when the application of

HTS increased the rate of mycovirus discovery (Mokili et al.,

2012; Rosario et al., 2012; Khalifa et al., 2016). Therefore,

mycovirology, founded 60 years ago with the discovery of the

first mycoviruses (Hollings, 1962), is an emerging discipline that

is now primed with methods that enable the rapid discovery of

new species, genera, and families but requires essential biological

research to understand mycovirus impacts in their hosts and the

wider environment.
4.3 Mycovirus prevalence in fungi

The prevalence of mycoviruses in filamentous fungi ranges

from all to no isolates infected with one or more mycoviruses

depending on the host/virus combination, research location, as
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well as how the mycovirus research was conducted (Table 1S,

Pearson et al., 2009; Ghabrial et al., 2015). To our knowledge,

only six studies have quantified directly (with no sub-culturing

step) the natural prevalence of mycovirus infection using

different methods to detect mycovirus infection. These studies

have detected upwards of 19% prevalence. Recently, 20

partitiviruses with representatives across three genera were

characterized by Sanger sequencing of viral dsRNAs and HTS

on total RNAs from 16 field isolates of Rosellinia necatrix (125%

incidence, though these may have been pre-screened for dsRNA

presence, Telengech et al., 2020). By contrast, dsRNA bands were

detected from only 21% of field isolates of R. necatrix (Arakawa

et al., 2002). All 248 field isolates of Botrytis cinerea isolated

from grapevines were mycovirus infected compared with

cultured isolates that had lower prevalence (Ruiz-Padilla et al.,

2021, Table 1S). High prevalence (100–34%) of Ustilago maydis

virus H1 (Umv-H1) was detected in field isolates of Ustilago

maydis from maize and teosinte growing in USA and Mexico

(Voth et al., 2006). When studying the causative agent of Phoma

stem canker disease on oilseed rape 69% of the isolates of

Leptosphaeria biglobosa were mycovirus infected, but none of

the L. Maculans isolates (that cause black leg on rape) had

detectable mycovirus infections (Shah et al., 2020). In

Magnaporthe oryzae, the pathogen that causes rice blast, and

arguably the most important plant pathogen in the world, 11 of

58 isolates carried dsRNA elements (Urayama et al., 2010). By

contrast to mycovirus prevalence in field isolates, only two of 105

isolates of cultured Fusarium species were found to be infected

with mycoviruses in a recent investigation that sequenced

isolated dsRNA (Jacquat et al., 2020). A wide range of

mycovirus prevalence (100–2.2%) has been detected in Botrytis

cinerea by different methods though no direct methodological

comparison was investigated (Table 1S, and references therein).

While different detection technologies ranging from

metatranscriptomics, virus-specific amplification, enrichment

by virion-associated nucleic acid (Filloux et al., 2015) or

rolling circle amplification (James et al., 2011) or dsRNA have

been applied, the most common method used to estimate the

prevalence of mycoviruses has been traditional dsRNA band

profiling. Viruses have also been identified, using a range of

similar techniques, in Oomycetes (Botella and Jung, 2021;

Fukunishi et al., 2021; Raco et al., 2022); however, as

Oomycetes are not fungi, these have not been included in

this review.

Several studies have shown that the reported prevalence of

mycovirus infection may not be accurate because cultured

isolates were used thereby providing opportunity for the

elimination of mycoviruses that are lost through passaging

(Bao and Roossinck, 2013). Further inaccuracies in reporting

may arise through use of dsRNA bands as a proxy for mycovirus

infection. Banding profiles of dsRNA do not consistently

correlate with specific virus infections (Raco et al., 2022).

Some single-stranded RNA viruses do not seem to accumulate
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dsRNA in infected mycelium and therefore are under-

represented by dsRNA band profiling. Similarly, DNA

mycoviruses are not accounted for using dsRNA profiling and

were not discovered within fungi until this century when rolling

circle amplification was applied to enrich for these circular

structures (Herrero et al., 2009). Another virus discovery

method VANA enriches virion-like particles but this method

disregards unencapsulated mycoviruses (Chong et al., 2018; Hall

et al., 2014). Perhaps the method that most faithfully discovers

all mycoviral structural forms is metatranscriptomics, which

compensates an enrichment step through high sequence depth

of all RNA transcripts present in a cell, then relies on

bioinformatic analyses to discriminate host transcripts from

those copied from either RNA or DNA mycoviruses. For

instance, the recent non-targeted metatranscriptome survey by

Ruiz-Padilla and colleagues (2021) revealed that the majority of

248 B. cinerea grapevine isolates from Italy and Spain carried

one or more mycoviruses, including some mycoviruses not

previously associated with B. cinerea and four bisegmented

viruses (binarnaviruses) that were new to science. High-

throughput sequencing of transcriptomes (RNAseq) from

ericoid and orchid mycorrhizal fungi identified viruses

belonging to already known taxa as well as previously

uncharacterized members (Sutela et al., 2020). In another

study conducted to monitor the interannual dynamics and

abundance of mycoviruses infecting S. sclerotiorum within a

rapeseed-field, 68 mycoviruses were identified, among which 28

were novel (Jia et al., 2021).
4.4 The impact of mycovirus infection on
the pathogenicity of their host fungus

Mycoviruses are associated with the full spectrum of impacts

on their phytopathogenic fungal hosts; hypovirulence, through

latency and/or seemingly benign impacts, to hypervirulence

(Kotta-Loizou, 2021). The impact(s) of mycovirus infections in

non-pathogenic fungi is unknown. Mycoviruses hijack the

intracellular processes to result in changes in the host

transcript and protein expression and functioning, in part due

to manipulation of the antiviral RNA silencing mechanism

(Myers and James, 2022). Hypovirulence describes when the

host phytopathogenic fungus has no or very low pathogenicity

when infected with a mycovirus. An example is Cryphonectria

hypovirus 1 (CHV1) that reduces the phytopathogenicity of

infected Cryphonectria parasitica thereby providing a unique

form of biological control for the chestnut blight pathogen

(Shapira et al., 1991). Latent mycovirus infection is where

there is no apparent change to the fungal host when infected

with a mycovirus, as exampled by most mycoviruses that are

members of Totiviridae (Yie et al., 2014; Khalifa and

MacDiarmid, 2019), Chrysoviridae (Kotta-Loizou et al., 2020)

or Endornaviridae (Valverde et al., 2019). Other examples of
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mycovirus infection cause changes in sporulation or sectoring

patterns on culture plates (Ejmal et al., 2018a, and Ejmal et al.,

2018b). Other mycovirus infections can be observed as causing

benefits to the immediate and/or secondary host, such as

thermal tolerance (Márquez et a l . , 2007) . Final ly ,

hypervirulence is when the mycovirus-infected fungus is more

pathogenic or has heightened pathogenicity compared to the

uninfected fungus, as recently exampled by a potential member

of the Partitiviridae and Rhabdoviridiae (Olivé and Campo,

2021; Li et al., 2022). Further research to describe the role/s of

mycoviruses within pathogenic (and non-pathogenic) fungi and

to directly test their impacts on their host(s) is necessary to

elucidate the full influence of mycoviruses in various ecosystems.

Finally, understanding the mechanism(s) by which mycoviruses

influence their host (and secondary hosts) will enable their

manipulation and use to maximise their potential in reducing

pathogen burdens and response to a changing climate.
4.5 Mycovirus-encoded suppressors of
RNA silencing (myco-VSRs)

One of the tactics used by viruses to fight host antiviral

machinery is to encode one or more VSRs; for mycovirus we use

the term myco-VSRs. Typically, VSRs reduce the RNAi activity

within their host to enable virus genome replication, sub-

genomic RNA production and movement of the virus into

new cells (Yang and Li, 2018). By altering the normal

functioning of RNAi in the cell, the VSR may perturb the gene

regulation required for development and cross-kingdom

communication that typically occurs in an uninfected cell.

Gene transcripts that are typically downregulated by micro-

RNAs may become upregulated and siRNAs that are produced

for defence or pathogenicity may be reduced in number,

sequestered, or otherwise rendered ineffective. Such

suppression of RNAi may be one of the mechanisms by which

mycovirus-associated hypovirulence is conferred to an otherwise

pathogenic fungus (Table 2). Myco-VSRs present in target

fungal cells are also likely to negatively impact the efficacy of

SIGS and HIGs as these both require functional RNAi in the

target cell. Identification of myco-VSRs and knowledge of their

mode of action will assist in developing efficacious pathogenic

fungal control methods.

To date, four myco-VSRs have been described and one was

inferred (Table 2). The first myco-VSR described was for p29

encoded by Cryphonectria hypovirus 1 (CHV1-EP713) by Segers

and colleagues who used both the natural Cryphonectria

parasitica host or a plant host overexpressing a hairpin GFP

construct to detect VSR activity (Segers et al., 2006; and Segers

et al., 2007). Zhang and colleagues (2008) described the specific

repression of the host C. parasitica dcl-2 in a manner dependent

on expression of p29 papain-like protease encoded by

Cryphonectria hypovirus 1 (CHV1-EP713). Aulia and
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colleagues (2021) demonstrated myco-VSR activity of the

Cryphonectria hypovirus 4 (CHV4) encoded p24, a homolog

of CHV1 p29. It is likely that these myco-VSR activities of both

CHV1 and CHV4 support the co-infection of mycoreovirus 1-

Cp9B21 (MyRV1-Cp9B21) and mycoreovirus 2 (MyRV2),

respectively, in C. parasitica resulting in additional symptoms

or sustained infections compared with single mycoreovirus

infections (Sun et al., 2006; Aulia et al., 2019). By contrast,

using GFP expressed from either the F. graminearum DCL2 or

AGO1 promoter in the presence of Fusarium graminearum virus

1 (FgV1) or assessing host transcript accumulation in the

presence of each ectopically expressed FgV1 coding region,

pORF2 was identified as a VSR that targets the promoter

regions of FgDICER2 and FgAGO1 (Yu et al., 2020). Using a

reporter and dsRNA inducer method, a Rosellinia necatrix line

overexpressing GFP and a dsRNA GFP was tested against four

divergent mycoviruses to determine whether they could

suppress the silencing of the GFP. Only the mycoreovirus

(Rosellinia necatrix mycoreovirus 3; RnMyRV3) showed VSR

activity and the RnMyRV3 p10 (S10) suppressed RNAi in the

widely used Nicotiana benthamiana 16c line, likely by

interfering with siRNA production as these accumulated to

only low levels (Yaegashi et al., 2013). Likewise, VSR activity

was determined by Hammond and colleagues (2008) who

induced RNAi targeting an mRNA required for synthesis of a

secondary metabolite in Aspergillus species then monitored the

metabolite in the presence or absence of mycoviruses. From the

three different mycoviruses tested, only Aspergillus virus 1816

within A. nidulans was capable of suppressing RNAi and this

resulted in reduced siRNA. It has also been demonstrated that a
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fungal host’s RNAi machinery is upregulated in the presence of

mycovirus that lacks a VSR (compared to one that has an active

VSR) (Hammond et al., 2008; Zhang et al., 2008).

Determining the presence and prevalence of mycovirus-

encoded suppressors by bioinformatics is often impractical

since there are no generalized, conserved sequence motifs

characteristic for VSRs across different virus groups/families.

Inference of myco-VSR presence can only be made between

related viruses, where there may be some remaining sequence

similarity. Commonly, empirical methods are used to determine

VSR activity associated with each virus-encoded protein.

Standard techniques used to date have predominantly been for

plant-VSRs (Roth et al., 2004), or using plant-based methods to

identify suppressors of RNAi encoded by entities other than

plant viruses, e.g., the plant host itself (rgs-CaM protein)

(Anandalakshmi et al., 2000), human- or insect-VSRs (Li

et al., 2004). Other methods include overexpression of the

potential VSR in the fungal host (wildtype or mutant for a

gene whose encoded protein is involved in the RNA silencing

machinery) and detection of changes in RNAi metabolism

compared to cells lacking VSR expression (Aulia et al.,

2021, Table 2).
5 Scenarios of SIGS in the presence
of mycoviruses in fungi

Mycoviruses have the potential to impact the outcome when

HIGS or SIGS is deployed for phytopathogenic fungal control.

Here we discuss these potential impacts using SIGS as an
TABLE 2 Mechanisms of action used by mycovirus-encoded suppressors of RNA silencing (myco-VSRs) to repress fungal RNAi.

Fungus Virus Myco-VSR Myco-VSR
protein
function

Mechanism Reference

Aspergillus nidulans Aspergillus virus
1816

– – Reduction of small interfering RNA accumulation Hammond et al.,
2008

Cryphonectria
parasitica

Cryphonectria
hypovirus 1

p29 Papain-like
cysteine protease
symptom inducer
RNA silencing
suppressor

Reduction in transcription level of DCL2 and AGL2 Segers et al., 2006;
Segers et al., 2007

Cryphonectria
hypovirus 4

P24 A protease
antiviral RNA
silencing
suppressor

Aulia et al., 2021

Fusarium
graminearum

Fusarium
graminearum
virus 1

P2 – Suppresses transcriptional upregulation of the key enzymes
genes, i.e., FgDICER2 (a dcl) and FgAGO1 (an agl or ago)

Yu et al., 2020

Rosellinia necatrix Rosellinia necatrix
mycoreovirus 3

P10 or S10 – Not determined Yaegashi et al.,
2013

Orchid mycorrhizal
fungi (Tulasnella)

Tulasnella
partitivirus 2
Tulasnella
partitivirus 3

CP Structural
protein
RNA silencing
suppressor

Shimura et al., 2022
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example; however, the same issues are relevant to HIGS.

Figure 1A–H represents our predicted scenarios of interactions

between fungi, with and without mycoviruses (that in turn may,

or may not, encode VSRs), in the absence or presence of

deployed SIGS. A SIGS-treated fungus is depicted either

targeting the RNAi machinery (DCL and AGO, Figures 1B, D,

F) or b-tubulin (Figures 1G, H). These scenarios are particularly

relevant for those fungi that produce dsRNA to target the host

defence response. Figures 1E, F, H show the scenarios with SIGS

in the presence of mycoviruses which encode a VSR that may

alter the outcome of SIGS.

Fig 1A illustrates a fungus producing and delivering ds/

siRNAs to suppress host plant immunity, a key function in

fungal phytopathogenicity (Weiberg and Jin, 2015; Cai et al.,

2018). Figure 1B represents SIGS targeting the silencing

mechanism (DCL1/2 and AGO1/2) of a fungus that is not

infected by a mycovirus. Here, the SIGS-delivered dsRNA

initiates silencing of the target transcripts DCL1/2 or AGO1/2.

As the DCL1/2 or AGO1/2 transcript targets decrease in

abundance, and the pre-existing DCL1/2 or AGO1/2 proteins

expire, the fungal RNAi machinery reduces in efficacy with

negative impacts on general fungal metabolism and

phytopathogenicity. With no (or reduced) silencing

machinery, the fungus is unable to produce and deliver

dsRNA into the plant to suppress plant defences thereby

enabling the plant’s defences to control the fungal infection

(Wang et al., 2016). The fungal fitness is reduced, and the fungus

is controlled at least temporarily. Over time the SIGS becomes

less effective due to dependence on RNAi activity (including

DCL1/2 or AGO1/2) to cleave their own target DCL1/2 or

AGO1/2 transcripts.

Despite the prevalence of mycoviruses of up to 100% of all

fungal isolates examined (Voth et al., 2006), the interaction

between a fungus and a mycovirus has not been previously

considered or studied in the context of SIGS or HIGS. To the

best of our knowledge, no reported studies that utilize HIGS or

SIGS to alter or examine fungal-plant interactions have

determined the mycoviral status of the experimental

fungal strains.

Figure 1C represents the scenario where a fungus infected

with a mycovirus (either encoding no, or a weak VSR) is able to

limit the mycoviral infection through fungal silencing

machinery. In this scenario, the mycovirus does not

accumulate (or to only a limited extent) and the fungus

remains relatively fit and able to infect the plant. This scenario

could represent latent mycovirus infections of a fungus.

Similarly, Figure 1D represents the scenario described in

Figure 1C with the additional application of SIGS targeting the

silencing mechanism (DCL1/2 and AGO1/2). In this scenario, if

SIGS effectively reduces fungal RNAi activity, uncontrolled

mycovirus replication may occur, thereby debilitating the

fitness and the pathogenicity of the fungus. A scenario similar
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to this has been demonstrated in an elegant study by Mochama

et al., 2018; however, in their study gene knockouts were used to

remove silencing machinery, rather than SIGS. In this study, the

authors showed that a Ddcl-1/dcl-2 double knockout mutant in

Sclerotinia sclerotiorum grew more slowly compared with

wildtype; however, infection by the fungus of its host plant

was not affected. When the knockout mutant fungus was

infected with a mycovirus its in vitro growth and infection of

the plant were severely affected (Mochama et al., 2018). This

study has significant relevance for the proposal of using HIGS or

SIGS in the field. For this reason it recommended that HIGS and

SIGS studies compare fungal strains with and without a range of

mycoviruses in different fungal host species.

Mycoviruses can suppress the fungal RNAi silencing

machinery thereby enabling a mycovirus to replicate and

thrive in the fungus. The mycovirus VSR(s) may suppress

either DCL or AGO (Table 2), or potentially RdRp, siRNA

movement or other RNAi activities (Figure 1E). It is important

therefore to consider the role of mycoviruses and their encoded

VSRs for the control of fungi using SIGS or HIGS. Figure 1F

represents the scenario described in Figure 1E but in the

presence of SIGS targeting DCL1/2 and AGO1/2. If SIGS were

applied under these circumstances, the dsRNA or siRNA taken

up by the fungus may be inactivated (as observed by some plant-

VSRs) via direct binding by the myco-VSR or indirectly by the

VSR inactivating the DCL, AGO or RdRp (reviewed in Rahman

et al., 2021). Due to the lack of research, it is unknown what the

outcome would be and whether all mycoviruses (and their

encoded VSRs) may have a similar or distinct impact. Such an

interaction may result in no impact to the mycovirus-infected

and SIGS-treated fungus (resulting in the same outcome as

depicted in Figure 1E), or SIGS applied dsRNA or siRNA may

outcompete stoichiometrically, the myco-VSR(s) (resulting in

the same outcome as depicted in Figure 1B) or may result in

uncontrolled mycovirus replication as described and depicted

in Figure 1D.

Inhibitors of tubulin polymerization are commonly used to

control phytopathogens (Young, 2015). Figure 1G illustrates the

scenario where the b-tubulin transcript is targeted by SIGS,

resulting in disruption of cell division leading to fungal cell

death. Figure 1H represents an alternative scenario that is similar

to Figure 1F, except that the SIGS target is not a transcript

encoding a component of the fungal RNAi machinery, but

instead a protein necessary for basic metabolism, such as b-
tubulin, as described and depicted in Figure 1G. In such a

scenario, the SIGS RNAi may not directly affect the fungal-

mycovirus (and its VSR) balance. However, the SIGS would

remain dependent on effective RNAi activity in the fungal cells.

The outcome would likely depend on the cellular target and

strength and activity of any myco-VSR(s), if present, and how

efficiently they suppress the SIGS-initiated RNAi targeting of

b-tubulin.
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FIGURE 1

Various scenarios depicting the impact of fungal control using spray-induced gene silencing (SIGS) targeting fungal silencing machinery and
mycovirus infection. These scenarios are particularly relevant for those fungi that produce dsRNA to target the host defence response. (A)
Fungus produces either double stranded RNA (dsRNAs) and/or small interfering RNAs (siRNAs) to suppress host plant immunity or regulate
virulence genes (effectors). (B) The dsRNAs and/or siRNAs from SIGS are taken up by a fungus and processed by RNAIII enzyme, DICER. Then,
Argonaute (AGO) and RNA-induced silencing complex (RISC) include one siRNA strand that guides silencing of DCL1/2 and AGO1/2 messenger
mRNA (mRNA). Alternatively, siRNAs prime RNA-dependent RNA polymerase (RdRP) to create more dsRNA that amplifies the RNAi machinery to
target more DCL1/2 and AGO1/2 mRNAs. In scenario B the RNAi activity in the cell will be reduced resulting in few siRNA required for
pathogenesis. If the fungus relies on siRNAs as key secreted virulence factors, then fungal fitness and pathogenicity will be reduced. (C) Fungus
is infected by mycovirus with no or weak virus-encoded suppressors of RNAi (VSRs) resulting in mycovirus replication that is limited by active
fungal host RNAi (dependent on specific mycovirus and fungal host interaction). (D) This scenario depicts the combinations of A and B, where
the fungus has a mycovirus and SIGS targets either DICER or AGO resulting in reduced antiviral activity, increased mycovirus replication and
reducing fungal virulence compared with scenario (C) virulence. (E) Mycovirus produces VSRs to deactivate the fungal RNAi machinery (DICER,
AGO, RdRP or other RNAi targets/activities), resulting in mycovirus accumulation and reduction in fungal fitness. (F) Depicts a scenario of a
fungus with SIGS (targeting DICER and AGO) and a mycovirus encoding strong VSR activity; the outcome is unknown, and probably dependent
on a balance between mycovirus, VSR activity and strength, and the efficiency of the dsRNA to achieve silencing. (G) Depicts a fungus with SIGS
applied to target b-tubulin (a protein not involved in RNAi). Fungal death results from the inhibition of tubulin polymerization. (H) depicts a
scenario that combines E and G whereby the fungal cell is infected with a mycovirus with strong VSR activity and tubulin polymerization is
inhibited via RNAi. Fitness of the fungus in this scenario will depend on the balance between SIGS-induced RNAi efficacy and VSR deactivation
of the RNAi machinery similar to scenario (F). The illustration was created with BioRender.
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6 Future research

It is clear that additional research is required to determine

the impact of mycoviruses on HIGS or/and SIGS for control of

fungal plant pathogens. In particular, the presence or absence of

mycoviruses, the role of VSRs, and their interactions with HIGS

and SIGS should be demonstrated with a range of fungal plant

pathogens and mycoviruses. To aid discovery, a rapid and

standard method to identify the presence of myco-VSR

activity, including strength and mechanism of action would be

of great benefit to the mycovirus, fungal biology, and wider

biology community. The implication of mycovirus infection in a

fungal field population context should also be taken into

consideration prior to deploying HIGS or SIGS in the field. As

described in Figure 1C, some mycoviruses will benefit from the

application of HIGS or SIGS. The potential for selecting

members of the fungal population through application of

dsRNA or siRNAs is a risk, which needs to be determined.
7 Conclusions

The development of novel and environmentally sustainable

control options for plant pathogenic fungi is critical for future crop

production. A greater understanding of the role of mycoviruses

in fungal pathogen systems will enable us to harness the

potential of HIGS and/or SIGS for fungal disease control.
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