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The complex and dynamic interactions between fungi and plants constitute a

critical arena in ecological science. In this comprehensive review paper, we

explore themultifaceted relationships at the fungi-plant interface, encompassing

both mutualistic and antagonistic interactions, and the environmental factors

influencing these associations. Mutualistic associations, notably mycorrhizal

relationships, play a pivotal role in enhancing plant health and ecological

balance. On the contrary, fungal diseases pose a significant threat to plant

health, agriculture, and natural ecosystems, such as rusts, smuts, powdery

mildews, downy mildews, and wilts, which can cause extensive damage and

lead to substantial economic losses. Environmental constraints encompassing

abiotic and biotic factors are elucidated to understand their role in shaping the

fungi-plant interface. Temperature, moisture, and soil conditions, along with the

presence of other microbes, herbivores, and competing plants, significantly

influence the outcome of these interactions. The interplay between mutualism

and antagonism is emphasised as a key determinant of ecosystem health and

stability. The implications of these interactions extend to overall ecosystem

productivity, agriculture, and conservation efforts. The potential applications of

this knowledge in bioremediation, biotechnology, and biocontrol strategies

emphasise the importance of adapting to climate change. However, challenges

and future directions in this field include the impacts of climate change,

emerging fungal pathogens, genomic insights, and the role of the fungi-plant

interface in restoration ecology. Hence, this review paper provides a

comprehensive overview of fungi-plant interactions, their environmental

influences, and their applications in agriculture, conservation, and

ecological restoration.
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GRAPHICAL ABSTRACT

Symbiotic and pathogenic interactions at the fungi-plant interface under environmental constraints (Chang et al., 2018).
1 Introduction

The intricate and ever-evolving interplay between fungi and

plants is a pivotal and dynamic aspect of ecological systems, where a

multitude of relationships are characterised by both mutualistic and

antagonistic interactions (Zeilinger et al., 2016; Balestrini, 2021;

Priyashantha et al., 2023). These interactions bear profound

repercussions for the vitality and adaptability of plant life, as well

as for the ecological equilibrium in diverse ecosystems (Zeilinger

et al., 2016; Balestrini, 2021; Figueiredo et al., 2021; Priyashantha

et al., 2023), as discussed in Figure 1. In this review, we embark on a

journey into the multitude of domains of the fungi-plant interface,

meticulously delving into the intricate mechanisms and ecological

implications that underlie these interactions.

Mycorrhizal symbiosis, in particular, has garnered significant

attention from researchers. In this mutualistic relationship, certain fungi,

predominantly arbuscular mycorrhizal fungi and ectomycorrhizal fungi,

form intricate associations with plant roots. These fungi enhance the

plant’s nutrient uptake, particularly phosphorus and nitrogen, by

expanding the root’s absorptive surface area through the formation of

mycorrhizal network structures (Lanfranco et al., 2016; Begumet al., 2019;

Shi et al., 2023). In return, plants offer a steady supply of carbon

compounds in the form of sugars to their fungal partners. This

mutualistic exchange of resources enhances plant growth, nutrient

acquisition, and stress tolerance, thereby promoting plant fitness (Stuart

and Plett, 2020; Priyashantha et al., 2023).

However, not all interactions between fungi and plants are

always beneficial. Antagonistic relationships in the form of

pathogenic interactions often challenge the vitality of plants
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(Frey-Klett et al., 2011; Deveau et al., 2018; Balestrini, 2021).

Many fungal species, such as rusts, smuts, and mildews, have

evolved strategies to infiltrate plant tissues and exploit them as

hosts. The consequences of such interactions can be detrimental,

leading to reduced plant growth, low crop yield or production, and

extensive ecological disruptions (Zeilinger et al., 2016; Peng et al.,

2021; Mapuranga et al., 2022). Understanding the mechanisms that

underpin fungi-plant pathogenesis is effective in devising strategies

to mitigate the impact of such antagonistic relationships (Selin et al.,

2016; Adnan et al., 2019; Dutta et al., 2023).

The modulation of these complex interactions is influenced by

multiple factors. Environmental conditions such as temperature,

humidity, and soil chemistry play a pivotal role in shaping the

outcome of these associations (Canarini et al., 2019; Abdul Rahman

et al., 2021; Rodrigues et al., 2023). Furthermore, plant genetic factors,

including resistance genes, also contribute to the plant’s response to

fungal partners, whether mutualistic or pathogenic. Recent research

also highlighted the role of plant microinteractions in shaping the

outcomes influencing fungal colonisation and plant health.

The broader implications of these interactions extend far beyond

the fungus-plant interface. They have profound consequences for

ecosystem dynamics. Mycorrhizal fungi not only benefit individual

plants but can also influence the composition and structure of entire

plant communities (Bonfante and Genre, 2010; Chen et al., 2018;

Wahab et al., 2023). Furthermore, mycorrhizal networks can facilitate

the transfer of nutrients between plants, connecting neighbouring

individuals in complex underground exchanges.

However, the actions of pathogenic fungi can destabilise

ecosystems by affecting the health and survival of key plant species,
frontiersin.org
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cascading through the food web, and potentially causing shifts in

community composition (Gorzelak et al., 2015; Figueiredo et al., 2021).

The interactions between fungi and plants represent a

captivating and intricate tapestry of mutualistic and antagonistic

relationships. These associations are governed by an interplay of

environmental, genetic, and microbial factors, with far-reaching

consequences for plant health and ecosystem dynamics (Zeilinger

et al., 2016; Alam et al., 2021; Bastıás Campos et al., 2023;

Priyashantha et al., 2023). With a comprehensive understanding

of the mechanisms and ecological implications of these interactions,

we gain valuable insights into the functioning of our natural world

and pave the way for more informed strategies for the management

and preservation of ecosystems. In this review, we are exploring the

fungi-plant interplay both in terms of mutualism and antagonism.
2 Mutualistic associations

Mycorrhizal relationships are among the most intriguing and

ecologically significant mutualistic associations in the complex

realm of the fungi-plant interface. Mycorrhizal fungi encompass a

diverse array of taxa and form mutually beneficial symbiotic

partnerships with an astonishing majority of plant species,

spanning the evolutionary spectrum from humble liverworts to

advanced angiosperms, thus underscoring their ubiquity and

central role in shaping plant life (Lanfranco et al., 2016; Chen

et al., 2018; Huey et al., 2020; Wahab et al., 2023). They play a

pivotal role in bolstering nutrient acquisition and overall plant

fitness, as discussed in Table 1. These associations have evolved into

several distinct types, each finely tuned to the specific requirements

and ecological niches of different plant species and environments

(Huey et al., 2020; Shi et al., 2023).

Arbuscular mycorrhiza represents one of the most widespread

and ancient forms of mycorrhizal associations. These symbiotic
Frontiers in Fungal Biology 03
partnerships primarily involve fungi from the Glomeromycota

phylum. Arbuscular mycorrhizal fungi (AMF), such as

Rhizophagus intraradices, Glomus mosseae, Funneliformis

geosporum, and Claroideoglomus etunicatum, form intricate

networks within the root cells of plants, extending their hyphal

structures into the surrounding soil (Berruti et al., 2016; Chen et al.,

2018). This architecture dramatically increases the effective surface

area for nutrient uptake of essential elements like phosphorus and

nitrogen, which are frequently limiting factors in plant growth

(Giovannini et al., 2020; Mondal et al., 2022; Demir et al., 2022;

Wahab et al., 2023). Moreover, the formation of arbuscules within

plant root cells enables the efficient exchange of nutrients between

the plant and the fungus, exemplifying the intricate nature of this

association (Strack et al., 2003; Begum et al., 2019).

Ectomycorrhizal relationships predominantly involve fungi from

the Basidiomycota and Ascomycota groups. These mycorrhizal

associations entail the formation of a sheath around the tips of plant

roots, contributing to nutrient absorption and enhancing plant

resistance to multiple stresses (Tibbett and Sanders, 2002; Agerer,

2006; Gil-Martıńez et al., 2018). Ectomycorrhizal fungi contribute

significantly to forest ecosystems as they are frequently associated

with woody plant species, including many tree species. Examples of

ectomycorrhizal fungi include Pisolithus tinctorius, Amanita muscaria,

Laccaria bicolor, and Suillus luteus. By facilitating nutrient uptake and

conferring protection against diseases and environmental pressures,

ectomycorrhizal associations become integral to the health and vitality

of these long-lived and ecologically influential plant species (Itoo and

Reshi, 2013; Policelli et al., 2020; Liu et al., 2020).

Ericoid mycorrhizae constitute another unique variant of

mycorrhizal association and are commonly found in plants like

heathers and other ericaceous species. The fungi involved in ericoid

mycorrhizal associations predominantly belong to the Ascomycota

and Basidiomycota groups (Perotto et al., 2018; Fehrer et al., 2019;

Vohnıḱ, 2020). These fungi assist plants in accessing essential
FIGURE 1

Fungi-plant intricate relationship showing both mutualistic and antagonistic behaviour on plant health.
frontiersin.org

https://doi.org/10.3389/ffunb.2024.1363460
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org


Mishra et al. 10.3389/ffunb.2024.1363460
TABLE 1 Impact of mutualistic association of fungi-plant on the holistic growth of plant and improves stress management.

S. No. Fungi Host plant Type of fungi Impact on plant References

1. Glomus intraradices Black gram and Maize Arbuscular
mycorrhizal fungi

Improving nutrient use
efficiency also accelerates
the defense response in
Blackgram against S. litura.

Selvaraj et al., 2020

Rhizophagus irregularis Wheat

Funneliformis mosseae Soyabean

Gigaspora margarita Rice

Claroideoglomus etunicatum Tomato

2. Rhizophagus irregularis Wheat, Barley, Rice Endophytic
mycorrhizal fungi

Improved stress tolerance:
Mycorrhizal associations
enhance plant resilience to
environmental stresses such
as drought, salinity, and
heavy metal toxicity.

Ghimire et al., 2020

Claroideoglomus
etunicatum

Maize

Glomus mosseae Soyabean

3. Neotyphodium
coenophialum

Tall fescue Neotyphodium
endophytes fungi

Enhanced drought
resistance and improved
growth: Neotyphodium
endophytes enhance
drought tolerance and
growth in host grasses.

Freitas et al., 2020

Neotyphodium uncinatum Chewings fescue

Neotyphodium huerfanoense Hard fescue

Neotyphodium typhinum Strong creeping red fescue

4. Neotyphodium
coenophialum

Grasses Endophytic
mycorrhizal fungi

Increased resistance to
herbivores. Endophytic
fungi produce compounds
toxic to herbivores,
enhancing plant defense
mechanisms and
reducing herbivory.

Lee et al., 2021; Sun and
Shahrajabian, 2023

Neotyphodium lolii Tall fescue

Epichloë festucae Ryegrass

Fusarium verticillioides Maize

Piriformospora indica Barley

5. Phialocephala fortinii Wheat Dark septate
endophytes fungi

Enhanced stress tolerance
and nutrient uptake: Dark
Septate Endophytes (DSE)
improve plant stress
tolerance and nutrient
uptake, particularly under
harsh
environmental conditions.

Malicka et al., 2022

Cadophora sp. Barley

Microdochium bolleyi Corn

Paraphoma radicina Rice

Periconia macrospinosa Tomato

6. Pezoloma ericae Calluna vulgaris Ericoid mycorrhizal fungi Improved nutrient uptake in
acidic soils.
enhancing the plant’s ability
to absorb nutrients such as
phosphorus and zinc.

Vohnıḱ and Réblová, 2023

Hymenoscyphus ericae Rhododendron

Scytalidium vaccinii Blueberry

Meliniomyces bicolor Cranberry

Liriodendron maius Heathland plants

7. Claroideoglomus
Etunicatum

Corn Arbuscular
mycorrhizae fungi

Enhanced nutrient uptake:
Arbuscular Mycorrhizae
(AM) form symbiotic
relationships with plant
roots, increasing the
absorption surface area and
facilitating
nutrient exchange.

Wahab et al., 2023

Glomus fasciculatum, Barley

Glomus mosseae Sunflower

8. Pisolithus tinctorius Pine trees Ectomycorrhizal fungi Increase in vigor and stress
resistance of young plants.
Increased
nutrient absorption.

Dyshko et al., 2024

Laccaria bicolor Oak

Paxillus involutus Birch

Thelephora terrestris Eucalyptus

Hebeloma crustuliniforme Spruce
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nutrients, particularly in acidic, nutrient-poor soils where other

nutrient acquisition strategies may prove insufficient (Cairney and

Meharg, 2003; Wei et al., 2022). The fact that ericoid mycorrhizal

fungi such as Rhodotorula mucilaginosa, Oidiodendron maius,

Meliniomyces variabilis, and Hymenoscyphus ericae have the ability

to break down complex organic compounds in such adverse

environments showcases their importance in plant adaptation to

challenging ecological niches.

Moving beyond endophytic associations represents another

fascinating facet of mutualistic interactions between fungi and plants.

Endophytic fungi take up residence within plant tissues, inhabiting the

plant’s interior without causing apparent harm. Instead, they offer an

array of benefits to their host, including increased resistance to

herbivores and pathogens, improved tolerance to abiotic stress, and

enhanced nutrient uptake (Alam et al., 2021; Chaudhary et al., 2022;

Akram et al., 2023). Endophytic associations involve Neotyphodium

endophytes and grasses, particularly within the Poaceae family. These

endophytes produce alkaloids that deter herbivores and confer a

competitive advantage to the host plant (Malinowski and Belesky,

2006; Rasmussen et al., 2008; Caradus and Johnson, 2020). The

presence of Neotyphodium endophytes can significantly enhance the

survival and vigour of grasses, which has substantial implications for

both natural ecosystems and agriculture (Fadiji and Babalola, 2020).

Dark-septate endophytes (DSE) are characterised by their

diverse presence in various plant species. They often enhance

plant stress tolerance and nutrient uptake, making them

indispensable for plant adaptation to adverse environmental

conditions (Hou et al., 2020; Farias et al., 2020; Malicka et al.,

2022). Porras-Alfaro and Bayman (2011) highlighted the role of

DSE in helping plants thrive in high-stress environments, including

those with high salinity and heavy metal contamination, such as

Phialophora fortinii, Cadophora finlandica, Darksidea sp., and

Periconia macrospinosa. These fungi have demonstrated

significant potential for supporting plant growth and resilience in

cha l l eng ing cond i t i on s , f u r th e r emphas i s i ng the i r

ecological importance.
3 Antagonistic interactions

Within the intricate tapestry of the fungi-plant interface, there

exists a darker side characterised by antagonistic interactions

between fungi and plants, as discussed in Table 2. This facet of

the relationship involves the capacity of fungal pathogens to inflict

devastating diseases upon their plant hosts. Fungal infections have

profound consequences for plant health, agricultural production,

and the equilibrium of natural ecosystems (Zeilinger et al., 2016;

Peng et al., 2021; Priyashantha et al., 2023). Rusts and smuts are

formidable adversaries belonging to the Pucciniales and

Ustilaginales orders, respectively (Zuo et al., 2019; Thambugala

et al., 2020; Peng et al., 2021). They inflict diseases on numerous

crop plants, including staple grains such as wheat, barley, and oats.

The terms “rust” and “smut” aptly describe the characteristic

appearances of these diseases on plant surfaces, where they

manifest as conspicuous, powdery lesions or dark, sooty pustules
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(Doehlemann et al., 2017; Zuo et al., 2019). These diseases are

renowned for their yield losses, making them subjects of intensive

study and management efforts in agriculture.

Powdery mildews, primarily originating from the Erysiphales

order, are formidable fungal pathogens with a broad host range,

infecting various plant species and targeting different parts such as

leaves, stems, and flowers. The distinctive powdery white colonies

on plant surfaces mark their presence (Micali et al., 2008; Kiss

et al., 2020; Yeh et al., 2021). Although these fungi do not always

cause catastrophic damage, they can weaken plants and reduce the

quality of agricultural and horticultural products. For instance,

Erysiphe cichoracearum affects many cucurbits, including

cucumbers and melons, leading to significant yield losses

(McGrath et al., 2001). Blumeria graminis is known for its

impact on cereal crops like wheat and barley, causing severe

reductions in crop yield and quality (Troch et al., 2014;

Basandrai et al., 2023). Podosphaera leucotricha commonly

infects apple and pear trees, affecting both leaves and fruits,

resulting in economic losses in fruit production (Heidenreich

and Turechek, 2016; Whitehead et al., 2021). Additionally,

Golovinomyces orontii targets a wide range of ornamental plants

and vegetables, including members of the Asteraceae family, such

as lettuce and sunflower (Prahl et al., 2023). These examples

highlight the diverse impact of powdery mildew fungi on

agricultural and horticultural plants, emphasising the need for

effective management strategies to mitigate their effects.

Downy mildews, belonging to the oomycetes group, represent a

significant threat to agriculture due to their devastating impact on

various crops, including grapes and potatoes. These pathogens are

notorious for their ability to rapidly spread and infect entire

harvests. They produce sporangia that can be easily dispersed by

wind and water, facilitating widespread infection of new plant hosts

(Thakur and Mathur, 2002; Salcedo et al., 2021). For example,

Plasmopara viticola, the causative agent of grapevine downy

mildew, can lead to severe yield losses in vineyards if not

properly managed (Gessler et al., 2011; Puelles et al., 2024).

Phytophthora infestans, responsible for potato late blight, has

historically caused catastrophic famines and continues to pose a

major challenge to potato production worldwide (Haverkort et al.,

2009). Peronospora destructor targets onion crops, significantly

affecting bulb quality and yield (Schwartz and Mohan, 2008;

Zhou, 2023). Additionally, Bremia lactucae is known to infect

lettuce, leading to substantial losses in both field and greenhouse

settings (Lebeda et al., 2008; Macioszek et al., 2023). The extensive

damage caused by downy mildew necessitates vigilant monitoring

and effective management practices to mitigate their impact

on agriculture.

Fusarium wilt, caused by various Fusarium species, is yet another

formidable fungal disease that strikes at the heart of agriculture. This

disease targets a range of economically significant crops, including

tomatoes, bananas, and cotton (Dita et al., 2018; De Lamo and

Takken, 2020; Duvnjak et al., 2023; Zakaria, 2023). Fusarium wilt is

characterised by the wilting and death of affected plants (Ismaila et al.,

2023). The Fusarium fungi often enter plants through the roots,

where they disrupt water and nutrient transport systems, leading to
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the characteristic wilting and necrosis of plant tissues (Dita et al.,

2018; Ismaila et al., 2023; Zakaria, 2023).

Antagonistic fungal interactions with plants have significant

ecological and economic ramifications. They necessitate a

multifaceted approach to disease management, including

cultural practices, resistant plant varieties, and, in some cases,

chemical control measures (Thambugala et al., 2020; He et al.,

2021). Understanding the molecular and ecological intricacies of

these interactions is vital for the development of more effective

and sustainable disease management strategies. Furthermore,

these interactions underscore the need for ongoing research to

combat the ever-present threat of fungal pathogens to global

agriculture and natural ecosystems.
4 Effect of enviornment on plant
fungi interaction

The versatile interconnection dynamic interplay between

mutualistic and antagonistic interactions within the fungi-plant
Frontiers in Fungal Biology 06
interface is far from static; it is profoundly influenced by a

myriad of environmental factors that dictate the outcome of these

associations, as shown in Figure 2. A comprehensive understanding

of these environmental constraints is pivotal for predicting,

managing, and harnessing these interactions effectively for the

benefit of ecosystems and agriculture (Singh et al., 2023;

Priyashantha et al., 2023). The environmental constraints are

basically divided into two categories biotic and abiotic stress.
4.1 Abiotic factors

4.1.1 Temperature
Temperature significantly influences the fungi-plant interface,

affecting both mutualistic and antagonistic interactions. Temperature

fluctuations impact plant susceptibility to fungal infections and

the growth patterns of fungal pathogens, determining disease severity

(Singh et al., 2023; Priyashantha et al., 2023). Mycorrhizal associations

are also temperature-sensitive, affecting their effectiveness in various

conditions. It was reported that Glomus intraradices perform optimally

at 20–25°C, enhancing nutrient uptake and plant growth, but
TABLE 2 Impact of antagonistic interaction between fungi-plant on the overall growth of plant species and productivity.

S.No. Type of Fungi Fungi Species Host Plant Disadvantages References

1. Rust Fungi Puccinia graminis,
Puccinia striiformis,
Uromyces
appendiculatus, Melampsora
lini, Cronartium ribicola

Wheat
Barley
Oats

Severe crop yield reduction,
economic losses, decreased
food security.

Zuo et al., 2019

2. Smut Fungi Ustilago maydis,
Sporisorium sorghi, Ustilago
avenae, Tilletia
caries, Ustilago tritici

Corn Sorghum
Wheat Barley

Distorted plant growth,
reduced yield, grain
quality issues.

Ghimire et al., 2020

3. Powdery Mildews Erysiphe necator,
Podosphaera xanthii,
Sphaerotheca pannosa,
Blumeria graminis,
Leveillula taurica

Roses Cucumbers Grapes Weakening of plants,
reduced vigor, lower
crop quality

Thakur et al., 2023

4. Fusarium Species Fusarium
oxysporum,
Fusarium verticillioides,
Fusarium solani,
Fusarium
proliferatum

Tomatoes Bananas Wilt, necrosis, significant
yield
loss, severe
economic impact.

Zakaria, 2023

5 Fusarium Species Fusarium
graminearum,
Fusarium
proliferatum

Wheat
Maize

Head blight, reduced grain
quality, mycotoxin
contamination,
economic loss.

Ismaila et al., 2023

6. Downy Mildew Plasmopara viticola,
Peronospora farinosa,
Bremia lactucae.

Grapes
Cucurbits Cucumbers,
Melons
Brassicas Broccoli,
Cauliflower Lettuce,
Spinach, Sunflowers

Leaf spots, chlorosis, wilting,
defoliation, stunted growth,
significant yield loss,
reduced marketability
of crops.

Salcedo et al., (2021)

7. Downy Mildew Hyaloperonospora
parasitica,
Pseudoperonospora cubensis

Brassicas Broccoli,
Cauliflower Cucurbits
Cucumbers
Melons

Reduced photosynthesis,
increased plant stress,
premature leaf drop
impaired plant development.

Salcedo et al., 2023
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itsefficiency decreases at higher temperatures (Tian et al., 2023). Botrytis

cinerea, apathogencausinggreymould, shows increasedvirulenceat15–

20°C,makingcooler climatesmoreprone tooutbreaks (Bika et al., 2021).

Piriformospora indica promotes plant growth and stress resistance best

at 25–30°C, with reduced benefits in cooler conditions necessitating

temperature consideration in agricultural use (Li et al., 2023).

4.1.2 Moisture
Soil moisture levels are crucial for mycorrhizal relationships and

fungal pathogen activity. Arbuscular mycorrhizal fungi are less

moisture-dependent but still affected, while ectomycorrhizal fungi

are highly sensitive to soil water content. Moreover, moisture

influences fungal spore germination, growth, and pathogenicity

(Begum et al., 2019; Wahab et al., 2023). For example, the

ectomycorrhizal fungus Pisolithus tinctorius requires high soil

moisture for optimal symbiosis with pines (Dyshko et al., 2024).

Rhizophagus irregularis, an arbuscular mycorrhizal fungus, thrives

best in moderate moisture conditions but is adaptable to a variety of

other environments (Wahab et al., 2023). The pathogen Phytophthora

infestans, causing potato blight, thrives inmoist conditions, enhancing

spore germination and infection (Ivanov et al., 2021). Fusarium

oxysporum, a pathogen that causes wilt, depends on sufficient soil

moisture for its spores to germinate and spread (Purohit et al., 2023).

4.1.3 Soil conditions
Soil characteristics, including pH, nutrient availability, and

organic matter content, significantly influence the type and

effectiveness of mycorrhizal associations (Huey et al., 2020). Some

mycorrhizal fungi exhibit adaptations to specific soil conditions, such

as ericoid mycorrhizae thriving in acidic soils (Huey et al., 2020;

Wahab et al., 2023). Soil pH can dramatically affect the availability of

essential nutrients like phosphorus, impacting the benefits of

mycorrhizal associations. Fungal pathogens also exhibit preferences

for particular soil types, affecting antagonistic interactions (Begum

et al., 2019). For example, ericoid mycorrhizae such as Rhizoscyphus
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ericae thrive in acidic soils, aiding plants in nutrient-poor conditions

(Yang et al., 2023). The arbuscular mycorrhizal fungus Glomus

mosseae performs well in neutral to slightly acidic soils, enhancing

phosphorus uptake (Wahab et al., 2023; Ding et al., 2024). The

pathogen Verticillium dahliae, causing wilt, prefers alkaline soils,

where it becomes more virulent (Zhang et al., 2024). The beneficial

fungus Pseudomonas fluorescens, which can suppress soil-borne

pathogens, shows enhanced activity in soils with high organic

matter (Chen et al., 2023).
4.2 Biotic factors

4.2.1 Microbes
In the soil ecosystem, various microbes interact with symbiotic

and antagonistic fungi, impacting mycorrhizal associations

differently. Bacteria like Pseudomonas spp. may compete for

resources, while Bacillus sp. enhances plant growth. Rhizobium

sp. influences mycorrhizal colonisation. Some fungi, like

Trichoderma sp. and Gliocladium sp., inhibit mycorrhizal growth,

while others, like Penicillium sp., either compete or cooperate.

Protozoa, such as Amoeba sp., graze on mycorrhizal fungi.

Methanotrophic archaea affect soil microbial communities.

Mycoviruses infect fungi, altering their competitiveness.

Understanding these interactions is crucial for comprehending

the intricate web of relationships in soil ecosystems (Netherway

et al., 2021; Santoyo et al., 2021). For example, Pseudomonas

fluorescens competes with mycorrhizal fungi for nutrients,

potentially reducing their effectiveness. Bacillus subtilis enhances

plant growth and can promote mycorrhizal colonisation by

producing beneficial compounds (Kulkova et al., 2023).

Rhizobium leguminosarum positively influences mycorrhizal

colonisation by improving nutrient availability through nitrogen

fixation (Dhiman et al., 2024). Trichoderma harzianum inhibits

mycorrhizal fungi through the production of antifungal compounds

(Rahman et al., 2023). Penicillium bilaii can either compete with or

assist mycorrhizal fungi in phosphate solubilisation, depending on

environmental conditions (Suraby et al., 2023).
4.2.2 Herbivores
Herbivores such as insects and mammals indirectly impact the

fungi-plant interface by damaging plant tissues and creating entry

points for fungal pathogens. This damage can render plants more

susceptible to infections, particularly by fungal pathogens that exploit

wounds or weaken plant defenses. Conversely, certain endophytic

fungi residing within plant tissues produce compounds that deter

herbivores from feeding, thus indirectly protecting their host plants

(Lu et al., 2021; Chaudhary et al., 2022). These interactions highlight

the interconnectedness of different biotic factors and their

repercussions on the fungi-plant interface. For example, insect

herbivory by caterpillars on leaves creates wounds that can be

exploited by the fungal pathogen Botrytis cinerea, leading to

increased infection rates (Ngah et al., 2024). Mammalian herbivores,

such as deer, can damage bark and stems, providing entry points for
FIGURE 2

Environmental modulators of fungi-plant interface abiotic and
biotic factors.
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fungal pathogens like Armillaria spp., which cause root rot (Kranjec

Orlović et al., 2024). Aphid feeding canweaken plant defences,making

them more susceptible to fungal infections like Verticillium dahliae,

which cause wilt (Sun et al., 2023). Endophytic fungi such as

Neotyphodium sp. produce alkaloids that deter herbivores like

grasshoppers, thereby protecting their host plants (Lin et al., 2024).

The endophytic fungus Piriformospora indica enhances plant

resistance to herbivores by inducing systemic defence responses,

reducingdamage frompests like aphids (AdedayoandBabalola, 2023).

4.2.3 Competing plants
Thepresenceofother plant species canprofoundly affect the fungi-

plant interface. In the context of mycorrhizal fungi, competition for

resources in the rhizosphere significantly influences the distribution

and effectiveness of these mutualistic associations. Some plants have

stronger mycorrhizal associations, leading to disparities in nutrient

acquisition and competitive advantage (Figueiredo et al., 2021;Wahab

et al., 2023). These dynamics impact plant community composition

and ecosystem function. For example, legumes like Trifolium repens

(white clover) often form strong mycorrhizal associations, enhancing

their nutrient uptake and competitiveness (Tello-Garcıá et al., 2023).

Grasses such as Lolium perenne (perennial ryegrass) can outcompete

other plants by efficiently utilising mycorrhizal networks to access soil

nutrients (Sudharsan et al., 2023).Helianthus annuus (sunflower)may

dominate in nutrient-poor soils due to its effective mycorrhizal

associations, giving it a competitive edge over less mycorrhizal-

dependent species (Wahab et al., 2023). Invasive species like

Ailanthus altissima (the tree of heaven) can disrupt local

mycorrhizal networks, negatively impacting native plant species that

rely on these fungi (Raspor et al., 2023). Betula pendula (silver birch)

forms strong ectomycorrhizal associations, allowing it to compete

effectively in mixed forests by accessing deep soil nutrients.

The interactions within the fungi-plant interface are intricately

woven into the fabric of the natural world, and they are highly

contingent upon a multitude of abiotic and biotic factors.

Understanding these environmental constraints is essential for

predicting the outcomes of mutualistic and antagonistic associations,

enabling more effective management strategies, and shedding light on

the delicate balance that governs ecological and agricultural systems

(Singh et al., 2011; Balestrini, 2021). These insights are crucial for

mitigating the impact of fungal diseases in agriculture and harnessing

the benefits of mycorrhizal symbiosis.
5 The significance and challenges of
fungus-plant interaction in
various fields

The fungi-plant interface represents a dynamic and ever-

evolving realm where mutualistic and antagonistic interactions

are perpetually at play. These interactions are emblematic of the

intricate web of life that characterises the natural world. As we delve

deeper into the intricacies of these associations, it becomes

increasingly apparent that the equilibrium between mutualism
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and antagonism is a backbone in determining the health and

stability of ecosystems, as shown in Figure 3 (Zeilinger et al.,

2016; Mayer et al., 2023).
5.1 Consequences for the ecosystem

Healthy mycorrhizal associations play a pivotal role in

enhancing the overall productivity of ecosystems. They enhance

nutrient cycling by improving the acquisition of vital elements, such

as phosphorus and nitrogen. This nutrient cycling helps many plant

communities grow and survive, not just individual plants (Begum

et al., 2019; Huey et al., 2020; Priyashantha et al., 2023). These

intricate networks of cooperation beneath the soil surface not only

nourish individual plants but also facilitate the transfer of nutrients

and signalling compounds between neighbouring plants. This

interconnection influences the composition and structure of

entire plant communities and has a cascading effect on the

ecological balance of ecosystems (Yu et al., 2022; Shi et al., 2023).

On the contrary, outbreaks of fungal diseases can have devastating

consequences for plant populations and the intricate food chains that

depend on them. Such diseases can lead to a decline in plant species,

reducing food resources for herbivores and, in turn, impacting their

predators. These disruptions can reverberate through the entire

ecosystem, leading to imbalances in predator-prey relationships and

ultimately affecting ecosystem stability (Godfray et al., 2016; Almeida

et al., 2019; Priyashantha et al., 2023). The consequences of these

interactions emphasise the intricate interdependency within natural

systems and the critical role of the fungi-plant interface in shaping the

health and resilience of ecosystems.
5.2 Agriculture

In the agricultural domain, comprehending and managing the

fungus-plant interface holds significant value. Farmers and

agronomists can leverage mycorrhizal associations to enhance crop

yields and reduce dependence on chemical fertilisers. These symbiotic

interactions substantially augment nutrient uptake in crops, fostering

improved plant growth and development. By facilitating the acquisition

of essential nutrients, such mutualistic associations contribute to

sustainable farming practices (Berruti et al., 2016; Wahab et al., 2023).

At the same time, developing strategies to mitigate fungal

pathogens’ impact on crops is pivotal for preserving crop

yields. Fungal diseases can cause considerable yield losses and

economic setbacks in agriculture. Management techniques

typically involve fungicide use, breeding for disease resistance,

and cultural practices. Achieving a balance between harnessing

the benefits of mutualistic associations and safeguarding crops from

antagonistic interactions remains an ongoing challenge in the

agricultural sector (Wahab et al., 2023).

Understanding the fungi-plant interface has sparked innovative

applications in biotechnology. Mycorrhizal inoculants, including

species such as Rhizophagus irregularis, Funneliformis mosseae, and

Gigaspora margarita, form symbiotic partnerships with soybean
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roots, enhancing nutrient uptake, particularly phosphorus (Wahab

et al., 2023). Research confirms that these inoculants significantly

increase soybean growth, nitrogen fixation, and nutrient uptake,

leading to improved yield and quality (Leite et al., 2024).

Synergistic effects with nitrogen-fixing bacteria such as

Bradyrhizobium japonicum further enhance plant biomass and

nitrogen content (Leite et al., 2024). Mixed inoculant formulations,

incorporating multiple mycorrhizal fungi species, have demonstrated

enhanced growth and stress tolerance in soybeans compared to

single-species inoculants (Igiehon and Babalola, 2021).

Additionally, mycorrhizal inoculants have shown promising results

in various other crops. In maize cultivation, Rhizophagus irregularis

has been found to improve nutrient uptake and increase plant

growth. Similarly, in wheat, mycorrhizal inoculants enhance

phosphorus acquisition and improve crop yield (Wu et al., 2022;

Wahab et al., 2023). Moreover, in leguminous crops like common

bean, mycorrhizal symbiosis enhances nitrogen fixation and

promotes plant growth (Yu et al., 2024). These findings

underscore the broad applicability and effectiveness of mycorrhizal

inoculants across different crops, reinforcing their role in sustainable

agriculture practices aimed at reducing chemical fertiliser

dependence and improving overall crop productivity.

Mycorrhizal inoculants have undergone testing across various

crop systems, yielding promising results. These formulations
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contain carefully selected mycorrhizal fungal species that establish

beneficial associations with crops, enhancing access to vital

nutrients like phosphorus and nitrogen. By bolstering nutrient

uptake, these inoculants can amplify crop yields and elevate

agricultural product quality (Berruti et al., 2016; Emmanuel and

Babalola, 2020; Etesami et al., 2021). This approach resonates with

precision agriculture principles, emphasising efficient input

uti l isation to optimise productivity while minimising

environmental impact (Wahab et al., 2023).
5.3 Conservation

In the realm of conservation biology, maintaining the equilibrium

between mutualistic and antagonistic interactions in natural

ecosystems is crucial for the preservation of biodiversity. Many

plant species rely on mycorrhizal relationships for their growth and

survival. Disruptions in these associations can have far-reaching

consequences, particularly for rare and endangered species. The

ghost orchid (Dendrophylax lindenii), which is native to the

nutrient-poor swamps of Florida and Cuba, depends heavily on its

mycorrhizal associations with specific fungal partners to thrive.

Mycorrhizal symbiosis can be especially vital for plants in nutrient-

poor environments, where they depend on their fungal partners to
FIGURE 3

A holistic overview of fungi-plant interaction under environmental constraints, challenges and future aspects.
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survive (Begum et al., 2019; Li et al., 2021). Conserving the diversity

of mycorrhizal fungi and understanding their relationships with

plants is pivotal for the protection of plant species and the

maintenance of ecological balance in natural ecosystems.

The equilibrium between symbiotic relationships is crucial for

ecosystem health and stability, impacting organisms and trophic

networks alike (Bahram and Netherway, 2022; Shi et al., 2023). In

agriculture, it supports sustainable practices and crop resilience, while in

conservation biology, it emphasises the need to protect trophic

interdependencies. Studying and utilising the mycorrhizal-plant

interface holds promise for ecological restoration and agricultural

sustainability in a changing world.

A recent study by Bahram and Netherway (2022) exemplifies the

impact of mycorrhizal associations on plant nutrient acquisition and

stress tolerance. They found that specific mycorrhizal fungi, such as

Rhizophagus irregularis, enhance phosphorus uptake in plants, thereby

increasing nutrient acquisition efficiency and improving resilience to

environmental stresses like drought, as well as their role in shaping

ecosystem dynamics and resilience (e.g., Shi et al., 2023).
5.4 Bioremediation

Mycorrhizal fungi, particularly arbuscular mycorrhizae, are

integral to soil health and have garnered attention for their

potential in bioremediation efforts. One of the most notable

applications is in the restoration of degraded ecosystems and the

remediation of contaminated soils (Asmelash et al., 2016; Sharma

et al., 2021; Wahab et al., 2023). For instance, Rhizophagus irregularis

has been extensively studied for its role in enhancing the uptake of

pollutants, such as heavy metals, by plants, thereby aiding in the

detoxification and removal of these contaminants from the soil

(Boorboori and Zhang, 2022; Ma et al., 2022; Fall et al., 2022).

Additionally, Glomus mosseae, Funneliformis mosseae, and Gigaspora

margarita have also shown promising potential in bioremediation

efforts through their ability to improve plant tolerance to

environmental stresses and facilitate the degradation of various soil

pollutants (Smith et al., 2018; Zhang et al., 2020; Li et al., 2023).

Arbuscular mycorrhizal fungi have been identified as forming

symbiotic associations with plants thriving in polluted environments,

enhancing theplant’s capability touptakeand immobiliseheavymetals

within their tissues (Begum et al., 2019; Boorboori and Zhang, 2022).

These fungi establish a mycorrhizal network that extends the root

system and acts as an efficient conduit formetal translocation from the

soil to the plant’s above-ground parts. This mechanism can

substantially decrease metal concentrations in the soil, thereby

reducing its toxicity and aiding in ecosystem restoration (Smith

et al., 2011; Bücking and Kafle, 2015). Additionally, the

accumulation of heavy metals within plant biomass is of interest for

phytoremediation, a strategy utilising hyperaccumulating plants to

extract metals from polluted soils for subsequent harvesting and

processing (Yan et al., 2020; Nedjimi, 2021; Kafle et al., 2022).
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Glomus intraradices have shown promise in facilitating the

sequestration of heavy metals within plant tissues, thereby aiding in

the remediation of contaminated soils (Boorboori and Zhang, 2022).
5.5 Biocontrol

Beneficial fungi, like Trichoderma species, are widely employed in

biocontrol strategies against plant pathogens. Serving as natural

antagonists, these biocontrol agents actively suppress the growth of

harmful fungi, safeguarding plants from diseases and reducing reliance

on chemical pesticides (Sun et al., 2023). Trichoderma, renowned for

its mycoparasitic activity, parasitises various plant pathogens by

producing enzymes and secondary metabolites that inhibit their

growth and infection processes (Hermosa et al., 2012). By harnessing

these natural antagonists, farmers can minimise agriculture’s

environmental footprint, decrease pesticide residues in food, and

promote the health and sustainability of agricultural ecosystems.

Understanding the fungi-plant interaction has led to practical

applications with broad implications. From bioremediation to

biocontrol, these applications demonstrate how insights into

fungal-plant interactions can address crucial challenges in

environmental restoration, agriculture, and sustainable land

management. As we continue to explore and unlock the potential

of these interactions, we pave the way for more efficient, eco-

friendly, and sustainable solutions to pressing planetary issues.
5.6 Climate change impact

The fungi-plant interface faces significant challenges amidst the

accelerating pace of global climate change. Escalating temperatures,

shifting precipitation patterns, and heightened atmospheric carbon

dioxide levels have the potential to disrupt established mutualistic

and antagonistic interactions (Bennett and Classen, 2020; Duarte and

Maherali, 2022). Such disruptions can affect fungal distribution, the

virulence of pathogens, and the adaptability of mycorrhizal fungi to

changing conditions. For instance, beneficial fungi like Trichoderma

harzianum, known for its biocontrol properties, may encounter

difficulties in suppressing plant pathogens due to these climatic

shifts. Similarly, Rhizophagus irregularis and Glomus intraradices,

both arbuscular mycorrhizal fungi that significantly enhance nutrient

uptake in plants, are sensitive to temperature and moisture changes,

potentially affecting their efficiency and the health of the plants they

associate with (Ghorbanpour et al., 2018; Tyśkiewicz et al., 2022). On

the pathogenic side, fungi such as Fusarium oxysporum could become

more virulent under changing climate conditions, posing greater

threats to crop health and agricultural productivity (Chakrapani et al.,

2023; Ekwomadu and Mwanza, 2023). Addressing these challenges

requires a deeper understanding of how environmental changes

influence these intricate interactions and the development
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ofstrategies to enhance ecosystem resilience, ensuring the

sustainability of both agricultural and natural ecosystems.
5.7 Emerging pathogens

The emergence of new fungal pathogens poses a continuous

threat to agricultural and natural ecosystems, leading to disease

outbreaks and economic losses. Effective mitigation requires

identifying these pathogens, understanding their biology and host

interactions, and integrating pathogen surveillance into disease

management strategies for early detection and response. Notable

examples of harmful fungi includeMagnaporthe oryzae, which causes

rice blast disease; Phytophthora infestans, responsible for late blight in

potatoes and tomatoes; Puccinia graminis sp. tritici, which causes

wheat stem rust; and Batrachochytrium dendrobatidis, which affects

amphibians. These examples highlight the broader ecological threats

posed by fungal diseases (Zhou et al., 2019; Ristaino et al., 2021).

Addressing these emerging threats is crucial for protecting both

agricultural productivity and ecosystem health.
6 Future directions

6.1 Harnessing fungal diversity

Exploring the vast diversity of fungi holds promise for uncovering

novel beneficial species that could be utilised in agriculture and

environmental restoration. Research efforts should focus on

characterising fungal communities and their potential roles in

enhancing plant health, soil fertility, and ecosystem resilience. For

instance, Beauveria bassiana is valued for its entomopathogenic

properties, making it a powerful biocontrol agent against insect

pests. Penicillium bilaii has demonstrated the ability to solubilise

phosphate, improving soil fertility and plant nutrient availability

(Frac̨ et al., 2018; Noorjahan et al., 2022). Rhizophagus irregularis

and Glomus intraradices are notable mycorrhizal fungi that enhance

nutrient uptake and support robust plant growth (Kakabouki et al.,

2021; Roussis et al., 2022). Additionally, Trichoderma harzianum is

known for its ability to suppress plant pathogens and promote overall

plant health (Zin and Badaluddin, 2020; Yao et al., 2023). By studying

these and other fungi, we can develop innovative strategies to boost

agricultural productivity and support effective ecosystem restoration,

ensuring sustainable and resilient environments.
6.2 Restoration ecology

Restoration ecology increasingly relies on mycorrhizal fungi to

restore soil health and enhance the success of ecological restoration

projects. These fungi facilitate the establishment and growth of native

plant species in degraded and nutrient-poor soils. For example,Glomus

intraradices and Rhizophagus irregularis are commonly used to

improve plant nutrient uptake and soil structure (Boorboori and
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Zhang, 2022). Future directions in restoration ecology involve the

targeted use of mycorrhizal inoculants, such as Pisolithus tinctorius, to

accelerate ecosystem recovery and enhance resilience to environmental

stressors (Usman et al., 2021; Atala et al., 2023). Additionally, fungi like

Scleroderma citrinum are being studied for their role in establishing

mycorrhizal networks that support plant communities in challenging

environments (Rajapitamahuni et al., 2023). Understanding plant-

specific mycorrhizal associations informs tailored restoration

approaches for diverse ecosystems and habitats, ensuring more

effective and sustainable restoration outcomes.
6.3 Precision agriculture integration

Integrating fungal knowledge into precision agriculture practices

can optimise resource utilisation andminimise environmental impacts.

By leveraging insights into fungi-plant interactions, farmers can tailor

management practices to specific crop and soil conditions, enhancing

productivity while reducing inputs such as fertilisers and pesticides. For

example, Rhizophagus irregularis can improve nutrient uptake in crops,

reducing the need for chemical fertilisers (Roy and George, 2020; Iqbal

et al., 2023; Yadav et al., 2023; Ahmed et al., 2024). Trichoderma

harzianum is effective in controlling soil-borne diseases, decreasing

reliance on chemical pesticides (Yao et al., 2023). Penicillium bilaii

helps solubilise phosphate in the soil, making this essential nutrient

more available to plants and reducing the need for phosphate fertilisers

(Sánchez-Esteva et al., 2016). Additionally, Beauveria bassiana can be

used as a biocontrol agent against insect pests, providing an

environmentally friendly alternative to chemical insecticides

(Bamisile et al., 2021; Furuie et al., 2022; Islam et al., 2023). By

integrating these fungi into precision agriculture, farmers can achieve

h igher c rop y i e ld s and hea l th i e r so i l s w i th lower

environmental footprints.
6.4 Biotechnological innovations and
genomic insights

Advancements in genomics provide deep insights into the

genetic and molecular mechanisms underlying beneficial and

pathogenic interactions within the fungi-plant interface.

Understanding these genetic bases allows for the development of

targeted strategies to manage both mutualistic and antagonistic

associations (Sharma et al., 2020; Diwan et al., 2022; Müller et al.,

2023). For instance, identifying genes associated with mycorrhizal

symbiosis can inform crop breeding for enhanced compatibility

with fungi like Rhizophagus irregularis, thereby improving nutrient

uptake. Similarly, genomic insights into the virulence factors of

pathogens such as Magnaporthe oryzae, which causes rice blast

disease, can facilitate the development of disease-resistant rice

varieties. Research on Fusarium graminearum responsible for

Fusarium head blight in cereals has led to the identification of

genes involved in toxin production, aiding in the breeding of

resistant crops (Mateus et al., 2020; Guigard et al., 2023;

Priyashantha et al., 2023). Additionally, understanding the genetic
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pathways of beneficial fungi like Trichoderma harzianum has paved

the way for novel biocontrol agents that can effectively suppress

plant pathogens (Collinge et al., 2022; Yao et al., 2023). These

genomic advancements are crucial for developing innovative

solutions in agriculture and ecosystem management.

Continued advancements in biotechnology offer opportunities to

develop novel tools and products for managing fungal interactions in

agriculture and environmental conservation. Engineered mycorrhizal

fungi such as Glomus intraradices with enhanced nutrient uptake

capabilities can significantly boost crop yields while reducing

fertiliser dependence (Odoh et al., 2020; Afridi et al., 2022; Sun et al.,

2023). Trichoderma viride, a natural biocontrol agent, can be further

optimised to more effectively target specific plant pathogens,

minimising the need for chemical pesticides (Lahlali et al., 2022; Yao

et al., 2023).Metarhizium anisopliae, known for its entomopathogenic

properties, can be engineered to improve its efficacy against a broader

range of insect pests, providing a sustainable alternative to chemical

insecticides (St. Leger and Wang, 2020; Bamisile et al., 2021).

Additionally, Aspergillus niger can be modified to enhance its ability

to produce organic acids that aid in soil nutrient solubilisation,

ensuring better nutrient availability in soils (do Nascimento et al.,

2021). These biotechnological innovations have the potential to

revolutionise sustainable farming and ecosystem restoration

practices, leading to more resilient agricultural systems and

healthier environments.
6.5 Climate resilience strategies

Developing climate-resilient agricultural and ecological

systems requires integrating fungus- and plant-based solutions.

Research efforts should focus on identifying fungal species and

traits that confer resilience to climate change stressors, such as

drought and heat. For example, Rhizophagus irregularis is known

for its ability to enhance plant drought tolerance by improving

water uptake (Poudel et al., 2021; Verma et al., 2022). Pisolithus

tinctorius is another mycorrhizal fungus that can help plants

withstand extreme heat and poor soil conditions. Trichoderma

harzianum not only acts as a biocontrol agent but also promotes

plant growth under stressful environmental conditions (Baptista

et al., 2021; Tyśkiewicz et al., 2022). Additionally, Piriformospora

indica has been shown to increase plant resistance to both drought

and salinity (Boorboori and Zhang, 2022; Li et al., 2023).

Harnessing these fungi in breeding programmes and ecosystem

restoration initiatives can enhance the adaptability and

sustainability of agricultural and natural systems, ensuring their

resilience in the face of climate change.
6.6 Interdisciplinary collaboration

Addressing the challenges and opportunities of the fungi-plant

interface requires interdisciplinary collaboration among scientists,

policymakers, farmers, and conservationists. By working together,

we can develop comprehensive strategies to utilise fungal diversity
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for sustainable agriculture and ecosystem management, ensuring

food security and environmental sustainability. For example,

Piriformospora indica enhances plant growth and stress

tolerance under drought and salinity conditions. Serendipita

vermifera improves nutrient uptake and promotes root growth,

benefiting agricultural productivity (Jeger et al., 2021; Bouri et al.,

2023). Hirsutella thompsonii serves as a biocontrol agent against

mite pests, reducing the need for chemical treatments (Kumar,

2010; Palevsky et al., 2022).Mortierella elongata contributes to soil

health by decomposing organic matter and enhancing soil

nutrient cycling (Li et al., 2018; Zhang et al., 2020). These

examples demonstrate the potential of fungal-based solutions to

address global environmental challenges effectively through

collaborative efforts.
7 Conclusion

This review has highlighted the intricate and dynamic nature

of interactions at the fungus-plant interface, underscoring their

critical role in ecological and agricultural systems. Mutualistic

relationships, particularly mycorrhizal associations, are pivotal

for enhancing plant nutrient acquisition, stress tolerance, and

overall ecosystem productivity. These beneficial interactions are

essential for maintaining ecological balance and supporting

sustainable agricultural practices. However, pathogenic fungi pose

significant threats to plant health, leading to substantial agricultural

losses and ecosystem disruption. The competition between these

antagonistic and mutualistic interactions is profoundly influenced

by environmental constraints such as temperature, moisture level,

soil composition, competing plants, and other microorganisms.

Rising temperatures, altered precipitation patterns, and increased

atmospheric CO2 levels can disrupt established fungi-plant

relationships, potentially leading to increased pathogen virulence

and decreased efficiency of beneficial fungi. Future research should

focus on integrating genomic insights to unravel the genetic and

molecular mechanisms governing these interactions. Such knowledge

can inform the development of crops with enhanced resistance to

pathogens and improved compatibility with beneficial fungi.

Additionally, applying this understanding to restoration ecology

can enhance the success of efforts aimed at rehabilitating degraded

ecosystems by leveraging the symbiotic potential of mycorrhizal

fungi. Through interdisciplinary collaboration and innovative

research, we can develop strategies that support the health and

productivity of both natural and managed ecosystems, ultimately

contributing to global food security and environmental conservation.
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