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The application of microorganisms as bio-control agents against arthropod

populations is a need in many countries, especially in tropical, subtropical, and

neotropical endemic areas. Several arthropod species became agricultural pests

of paramount economic significance, and many methods have been developed

for field and urban applications to prevent their, the most common being the

application of chemical insecticides. However, the indiscriminate treatment

based upon those substances acted as a selective pressure for upcoming

resistant phenotype populations. As alternative tools, microorganisms have

been prospected as complementary tools for pest and vectorial control, once

they act in a more specific pattern against target organisms than chemicals. They

are considered environmentally friendly since they have considerably less off-

target effects. Entomopathogenic fungi are organisms capable of exerting

pathogenesis in many vector species, thus becoming potential tools for

biological management. The entomopathogenic fungi Metarhizium sp. have

been investigated as a microbiological agent for the control of populations of

insects in tropical regions. However, the development of entomopathogenic

fungi as control tools depends on physiological studies regarding aspects such as

mechanisms of pathogenicity, secreted enzymes, viability, and host-pathogen

aspects. The following review briefly narrates current aspects of

entomopathogenic fungi, such as physiology, cellular characteristics, host-

pathogen interactions, and its previous applications against different insect

orders with medical and economic importance. Approaches integrating new

isolation, prospection, characterization, delivery strategies, formulations, and

molecular and genetic tools will be decisive to elucidate the molecular

mechanisms of EPFs and to develop more sustainable alternative pesticides.
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Introduction

Metarhizium sp. is a filamentous fungus belonging to the order

Hypocreales. It is known for its diverse ecological roles and

significant applications in agriculture and biotechnology. This

entomopathogenic fungus has garnered considerable attention

due to its ability to parasitize a wide range of arthropod hosts,

making it a promising candidate for biological pest control

strategies (Skinner et al., 2014).

Initially discovered and described by Sorokin in 1883 (Ann et al.,

1995), M. anisopliae has since been extensively studied for its

pathogenic mechanisms and genetic diversity. The fungus exhibits a

complex life cycle involving spore germination, insect cuticle

penetration and subsequent colonization and growth within the host

hemocoel (Bihal et al., 2023). This pathogenicity is facilitated by a range

of bioactive compounds and enzymes the fungus produces, which aid

in host tissue degradation and nutrient acquisition (Butt et al., 2016).

Beyond its role as a pathogen,M. anisopliae has shown potential

in various biotechnological applications, including biocontrol of

agricultural pests (as it is applied mainly as a mycoinsecticide for

certain crops) and vectors of human and animal diseases (Iwanicki

et al., 2019; Vivekanandhan et al., 2022; Faria et al., 2023). Its

environmental adaptability and ability to thrive in diverse habitats

underscore its potential as a sustainable alternative to chemical

pesticides (Verma et al., 2023). Furthermore, ongoing research into

its genomic structure and molecular biology promises insights into

its evolution and adaptation strategies.

In this review, we explore the ecological significance of general

fungi, specially Entomopathogenic Fungi (EPFs), with a focus on

Metarhizium anisopliae.We detail it’s biological characteristics, host-

pathogen interaction, and discuss the practical applications of M.

anisopliae, highlighting its potential contributions to pest

management and biotechnological innovations. We aim to provide

a comprehensive overview of this intriguing fungus and its impact on

sustainable agriculture and environmental management by

synthesizing current knowledge and research trends.

The reviewed articles are summarized in Supplementary Table 1

(see Supplementary Material), which includes details on fungus

lineage, target arthropod, target insect arthropod order, main results

obtained from Metarhizium anisopliae, and bibliographic references.
General aspects of fungi

Fungi are a taxonomical group possessing profuse biodiversity,

containing approximately 2.2 to 3.8 million species (Hawksworth

and Lücking, 2017). Fungi are eukaryotic and heterotrophic

organisms, single cell (like yeasts) or multicellular macroscopic

fungi (like mushrooms). However, they have varied nutritional

habits, being able to absorb organic matter from dead organisms

(saprophytic) or infect living hosts using specialized propagules of

mild duriform or sporiform shape (Mora et al., 2018).

In some reproductive cycles of filamentous fungi (conidia,

zoospores, ascospores, basidia, or chlamydospores), specialized
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structures known as sporophores cleave themselves to form asexual

propagules known as conidia with chitinized cell walls. The

composition of a conidium wall may include the presence of

mannans, galactans, glycans, and chitosan as constituents. After

enough nutrient acquisition, the conidium develops in hyphae, which

can generate the conidiophores and, sequentially, the sporophores for

another cycle (Samson et al., 1988; Blackwell, 2010). In fungal sexual

reproduction (found in teleomorphic fungi), the occurrence of

plasmogamy and karyogamy of sexual gametes play the main role in

genetic diversification and maintenance of the fungal life cycle by the

generation of reproductive mycelium. Thereunto, both gametes need

sexual complementarity, expressed by the existence of different mating

types: mating type +/- or a/a, which varies widely across the taxonomic

groups (Zimmermann, 2007; Wallen and Perlin, 2018). It is essential to

mention that teleomorphic fungi and anamorphic fungi (fungi that

reproduce only asexually) are capable of infecting arthropod hosts

(Mora et al., 2018). From this perspective, this review aims to compile

the physiological processes of host-pathogen interaction and its

historical and applied aspects.
Entomopathogenic fungi (EPFs)

As previously mentioned, M. anisopliae is a highly prospected

microorganism for integrated management of pests and vectors.

Particularities in its biology are responsible for optimal

maintenance of several important features, such as virulence,

resistance to abiotic factors (such as desiccation, radiation, and

temperature), suppression of other microorganisms with the

synthesis of allelopathic molecules, and the ability to evade the

host’s immune system once successfully infected (Sevim et al., 2012;

Barelli et al., 2016; Donzelli and Krasnoff, 2016; Wang et al., 2016).

Mostly in nature, EPFs are essentially terrestrial beings, capable

of infecting their host with the propagation of their conidia via

passive horizontal dissemination or auto-disseminating

mechanisms, which occurs by direct contact with the corpse of

the sporulated host (Juarez et al., 2011; Araújo and Hughes, 2016).

The species status of the Metarhizium taxa has undergone

phylogenetic reformulations and revisions over time, being

promoted to a complex of species and variations, according to

Bischoff et al (Bischoff et al., 2009). In this study, the authors

redefine the cladistic relationships between species of the genus

from quasi-total sequencing of the Genes EF-1a (Elongating

Factor), RPB1 (major subunit of RNA polymerase II), b-tubulin
and IGS (ribosomal nuclear intergenic spacing region), concurrent

with macro and micromorphological aspects, such as size and shape

of propagules (classified as conidia, blastospores and “swollen

conidia”), size of hyphas, fialidis and conidiophores from 57 isolates.

Derived from this work, the relocation of 6 species was

concluded: M. anisopliae (formerly a complex permeated by

variations), M. guizhouense, M. pingshaense, M. acridum, M.

lepidiotae, and M. majus. Receiving the status of a new species,

they promoted: M. globosum, M. robertsii, and M. brunneum, the

last being used as synonymy for M. anisopliae by several authors.
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Physiological aspects and
host-pathogen interaction

a) Physiological/molecular changes in pathogen
Fungi interact with different living beings, establishing

symbiosis, commensalism, or pathogenicity relationships.

Entomopathogenic fungi (EPF) are fungi capable of infecting and

developing in arthropod hosts, disposing of a plethora of physical,

biochemical, and biological mechanisms (Samson et al., 1988).

Although the interactions between fungi and arthropods might be

diverse, the classical interface involves adherence of propagules to

the host’s cuticle (Butt et al., 2016; Mora et al., 2018). Once in

contact with the insect, the conidia (a form derived from the asexual

reproduction of the fungus) adheres to the cuticle through physical

and biochemical interactions, whose main mechanisms involve

hydrophobic interactions promoted by hydrophobins. Such

surface proteins are coded in M. anisopliae by the HYD1/ssgA

and HYD3 genes, producing class I hydrophobins and HYD 2,

producing class II hydrophobins (Sevim et al., 2012). The mutation

or knockout of these genes affects sporulation capacity,

pigmentation, and macromorphological aspects of the fungus,

causing a marked decrease in virulence since this impairs the

initial mechanism of conidia-cuticle interaction (Sevim et al.,

2012; Wang et al., 2016).

Adhesin-like proteins also constitute the machinery of adhesion on

the insect´s cuticular surface by M. anisopliae. Proteins encoded by

MAD I genes (adhesine-like I - able to promote adhesion on the

surface of arthropod hosts) andMAD II (adhesine-like 2 - promoter of

adhesive interaction on plant surfaces) assist in active adhesion and

signaling for the budding of the appressorium, followed by penetration

into the host organism and further colonization. In the case of

hydrophobins, once the propagule adheres, the protein is degraded

and removed from the propagule wall (Wösten, 2001; Wang and St.

Leger, 2007; Wyrebek and Bidochka, 2013; Yang et al., 2023).

According to Wang and Leger (Wang and St. Leger, 2007), the

imbalance in MAD I expression promoted delays in germination,

low differentiation in blastospores, and high reduction in virulence

to Manduca sexta caterpillars. At the same time, the impairment of

Mad II expression did not compromise pathogenicity in the animal

host (Wang and St. Leger, 2007).

Similar to adherence, recognition is essential for the infective

capacity of the fungus. The enzyme glyceraldehyde-3-phosphate

dehydrogenase is another wall constituent of M. anisopliae that is

also responsible for molecular adhesion mechanisms. This enzyme

acts as an adhesine-like protein. It is differentially synthesized after

exposure to different carbon sources, also composing the enzymatic

machinery that will promote the lysis of the host cuticle (Broetto

et al., 2010). After recognition and adhesion, cascades of

biochemical signs, such as those of protein class kinases A,

promote a change in the composition of the fungal cell wall. This

change allows the increase of turgor, favoring the budding and

emergence of the appressorium (Fang et al., 2009; Butt et al., 2016).

During differentiation, the fungus utilizes energy reserves

stocked up as carbon sources like lipids, trehalose, glycogen, and

erythritol (Hallsworth and Magan, 1996). Perilipin-like proteins are

evolutionarily conserved in various organisms, such as fungi, frogs,
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and mammals, and are responsible for triacylglycerol breakdown

(Miura et al., 2002; Bickel et al., 2010). In the genus Metarhizium,

perilipin-like proteins are encoded by the Mpl 1 gene. They can

convert these sources of carbon from lipid droplets, which will be

consumed mainly during the differentiation of fungal apressorium

at the time of penetration into the host cuticle (Wang and St. Leger,

2006; Bickel et al., 2010; Butt et al., 2016).

The key enzymes that promote penetration of the appressorium

are chitinases and proteases (Butt et al., 2016). The Pr1 serine

endopeptidases are the main proteases in Metarhzium sp and

consist of 11 isoforms distributed throughout the genus,

subdivided into two classes and three subfamilies (Andreis et al.,

2019). In synergism, such different isoforms of Protease Pr1

together with lipases, N-acetylglycosaminidases, and chitinases,

will aid in cuticular degradation, allowing the invasion of the

arthropod hemocele and consequently trigger immunological

responses (Small and Bidochka, 2005).

In the context of later stages of infection, EPF propagules

developed adaptations to avoid the humoral and cellular

components of the host, as they stimulate the host’s immune

system. According to Verma et al (Wang and St. Leger, 2006).

one of the most notorious examples of avoidance mechanisms is

performed by the MCL1 gene inM. anisopliae. This gene encodes a

hydrophilic trimeric protein containing an N-terminal region with

14 cysteine residues, negatively charged with tandem regions, and a

C-terminal region. The C-terminal contains an attachment site to

the cell wall, dependent on glycosylphosphatidylinositol, which,

simultaneously with other physiological aspects, provides the

fungus with anti-adhesive capacity, making it difficult to adhere

to plasmatocytes and other phagocytic hemocytes.

Along with the immunological pressures exerted on the

propagules of EPFs, the fungus needs adaptation to the osmotic

pressures of the host’s hemolymph. InM. anisopliae, the Mos1 gene

encodes the transmembrane protein Mos1, structurally similar to

the osmotic regulators found in yeasts such as Candida albicans and

Saccharomyces cerevisae, the specific SHO1 and SLN1 receptors,

that are positive regulators of the map kinase pathway controlling

the cell cycle (Alonso Monge et al., 2006; Tatebayashi et al., 2007).

Widely distributed in Fungi, these osmoregulatory proteinscan in

M. anisopliae can preserve the integrity of the cell wall when

exposed to oxidative stress. It was observed that its silencing

reduced the viability of the fungus in the hemocoel, further

compromising the regulation of genes related to growth factors

and differentiation in the hemolymph during host colonization

(Wang et al., 2008).

Furthermore, in yeasts of the species Saccharomyces cerevisae,

PacC/Rim101 transcription factors regulate gene expression in an

alkaline environment, repressing it when in a very acidic one (Peñalva

et al., 2008). However, in Metarhizium robertsii, another generalist

EPF, this same gene family is essential for evading the immunological

components of the host; besides being responsible for survival in an

osmotically stressful environment, penetration of the cuticle,

colonization of hemolymph in the host, and other aspects that

characterize virulence (Huang et al., 2015; Xie et al., 2019).

Other fungal molecular and cellular mechanisms for evading

the host immune system remain unknown and require further
frontiersin.org

https://doi.org/10.3389/ffunb.2024.1456964
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org


de Miranda et al. 10.3389/ffunb.2024.1456964
studies since such interaction interfaces present complexities not

only at physiological but also at the evolutionary-adaptive level.

After overcoming the physiological barriers of the insect, conidia

differentiate into blastospores, which propagate inside the

hemocoel. After successful colonization of the host, the fungus

emerges by lytic activity mediated by proteases, chitinases, lipases,

acetylglycosaminidases, and secondary metabolites of the most

varied molecular classes, breaking the cuticle from the inside to

assume the filamentous form in the exterior of the host carcass.

Then, sporulation and dispersion of propagules take place (Barelli

et al., 2016; Butt et al., 2016).
b) Molecular level perspective in the host after
host-pathogen interaction

After the invasion of the insect’s celomatic cavity, the immune

system is activated through recognition by receptors associated with

molecular patterns (Lu et al., 2014) to counteract the presence of a

pathogenic foreign microorganism. This invasion is illustrated in

Figure 1, which depicts the different stages of Metarhizium sp.

infection (labeled 1 to 6) in an aphid, along with the detailed

immune system response of the insect at stage 4.

During the infection, one of the first components of the host’s

humoral immune response to be activated is the phenoloxidase

(PO) cascade. The PO cascade consists of the sequential activation

of several serine proteases, which will cleave the prophenoloxidase

zymogen (pre-proPO) into its second form, prophenoloxidase

(proPO). Other serine proteases of unknown nature cleave the

second zymogen for the activation of proPO into PO. Then, the

active PO catalyzes the oxidation of phenols in quinones, which are

components of the polymerization of melanin, a molecule that will

control the propagation of the pathogen (Cerenius and Söderhäll,

2004; Binggeli et al., 2014; Lu et al., 2014).
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As a result of the recognition of molecular patterns associated

with pathogenic microorganisms, the synthesis of antimicrobial

peptides (AMP) is essential to combat a variety of infections. These

AMPs are small molecules with, on average, less than 10 kDa

(equivalent to peptides between 12 and 50 amino acids). The fat

body is the main site of expression and synthesis of these peptides.

This organ comes ontologically from the mesoderm and is the host

organism’s largest source of immunological responses (cellular and

systemic) (Lemaitre and Hoffmann, 2007). About 20

immunologically induced AMPs have been described, with great

antimicrobial specificity, depending on the invasive pathogen. For

example, attacins have a more significant effect on gram-negative

bacteria, defensins on gram-positive bacteria, and drosomycins and

cecropins have higher antifungal activity (Lemaitre and Hoffmann,

2007; Cohen et al., 2020).

Most of these AMPs occur throughout the Hexapoda class and

can be divided into three groups: (i) peptides rich in proline and

glycine residues, (ii) defensins with three to four disulfide bridges

between conserved cysteine residues, and (iii) cecropins, linear

peptides that are rich in alpha-helix (Wu et al., 2018).

As mentioned above, drosomycins and cecropins, among other

antimicrobial peptides, have antifungal capabilities for controlling a

possible EPF infection. The signaling cascade responsible for this

particular response is the Toll pathway, which is highly conserved in

mammals. In most insects, this pathway encompasses recognizing

specific fungal molecules such as chitosan and beta-1,3-glucans, for

example (De Lima Batista et al., 2018).

After recognizing such fungal wall components, the Toll

pathway is activated by the binding of one of the cleaved forms of

the Spätzle cytokine, which is still immature. After successive

cleavages of the cytokine, it binds as a dimer in the Toll receptor,

promoting intracellular recruitment of three proteins containing

Death domains (molecular subunits that constitute adapters in
FIGURE 1

Process of infection of entomopathogenic fungi Metarhizium sp. in an insect host. Recognition and adherence are depicted in infection phases 1
and 2. Appressorium formation is stimulated shortly after adherence (3), and enzymatic secretion along with penetration force results in the invasion
of fungi in the host celome (4). The host’s immune reaction resulting from the infection may manifest by humoral and cellular responses, as follows:
melanization from phenoloxidase cascade (4a), which surrounds and encapsulates the fungal propagules with circulating cascade precursors.
Simultaneously, cellular encapsulation mitigates the infection by recruiting other immune cells (4b). As fungi differentiate from hyphal structures to
blastospores in the celome (4c), phagocytosis by plasmatocytes and granular cells (4d), deposition of melanin by oenocytes (4e) and formation of
nodules around propagules by recruited immune cells (4f, 4g) are common immunological responses to fungal infection. After evasion from the
host’s immune system, the pathogen spreads (5) and finishes its cycle, producing spores across the cuticle (6).
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receptors responsible for the transfer of chemical groups (kinases in

Drosophila and other Diptera, for example) or, in mammals, by

activation of the procaspase pathways 8 and 10 (Kaufmann and

Hengartner, 2001; Cooper et al., 2009; Walderdorff et al., 2019).

Proteins as MyD88, Tube, and Pelle will act in the

negative regulation of other systemic immunological pathways

(more precisely, IMD and Cactus) by the ubiquitination of

immunological components that are posteriorly directed to the

proteasome. In the cells of the fat body, the transcription factors

positively regulated (Dif and Dorsal) by the action of these three

proteins act on specific genes of cecropins, drosocins,

metchnikowins, and other AMP genes (Ligoxygakis et al., 2002;

Tauszig-Delamasure et al., 2002; Lemaitre and Hoffmann, 2007).

Another immune response against EPF infections in insects is

the cellular response, related to hemocytes activated after

recognition of Pathogen Associated Molecular Patterns (PAMPs).

There are different types of hemocytes in the insect hemolymph,

each with a specific activity. Prohemocytes are pluripotent

immature cellular populations, capable of differentiating mainly

in lamelocytes (these occurring mostly in larvae of holometabolous

individuals), granulocytes, and plasmatocytes (Pondeville et al.,

2020). Plasmatocytes in different insect species are capable of

phagocyte invading microorganisms (Ratcliffe and Gagen, 1977;

Lackie, 1988; Walderdorff et al., 2019). Granulocytes, in synergism

with plasmatocytes, can encapsulate and promote the nodulation of

foreign agents, whether cells or parasitic/parasitoid organisms.

Oenocytoids and crystal cells play an essential role in the PO

cascade. The inactive PPO is stored in these cells, and after

recognition of PAMPs, they degranulate, releasing the enzyme

into the hemolymph (Lu et al., 2014). The hemocyte types vary

according to the insect species; some cells such as spherocytes and

coagulocytes have unknown functions. However, they may play

physiological roles related to the cellular and humoral immune

systems (Lemaitre and Hoffmann, 2007; Hernandez et al., 2010;

Cho and Cho, 2019; Ross et al., 2020).
Historical aspects of
arthropods’ control

Taking together the environmental benefits, mechanisms of

action, and practical aspects of EPF biopesticides, several studies

have been carried out on M. anisoplae and its activity in different

orders of Insecta. These studies aim to prospect the potential for

large-scale employment against the most diverse pests and vectors.

In this context, it is relevant to consider the most important facts

related to insecticide evolution for arthropod pests and vectors and

when the EPF’s biopesticides started to be developed.

Along with the ascension of civilization and agriculture

populations of insect pests and vectors gradually began to adapt

to human environments in a coevolutionary process. This led to the

prospection of measures to restrict these organisms’ population size,

aiming at reducing their impact on health and economy. As the

most well-known measures used in the current scenario, chemical

insecticides are broadly utilized as populational deterrents.

According to the World Health Organization (WHO), the most
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common chemical insecticides are currently represented by

molecular classes such as pyrethroids, organochlorides, and

organophosphates, which act in the target organisms as

neurological disruptors (Nicolopoulou-Stamati et al., 2016;

Wilson et al., 2020).

The modern advent of chemical pesticides as a major

population control measure for pests and vectors began in the

1940s, using the insecticide dichlorodiphenyltrichloroethane

(DDT) to control Anopheles mosquitoes that transmit the

etiologic agent of malaria, the Plasmodium parasite. Other

chemical classes gradually replaced this insecticide due to its high

toxicity and residuality. New active substances against insects were

discovered with several modes of action and properties, such as

acetylcholinesterase (AChE) inhibitors, gaba-gated chlorine

channel blockers, sodium channel modulators, and nicotinic

acetylcholine receptor (nAChR) competitive modulators.

However, all these compounds target the same insect’s

physiological system, the nervous, providing fast action (Casida

and Quistad, 1998; Bate, 2007; Oberemok et al., 2015;

Nicolopoulou-Stamati et al., 2016; Isman, 2020; IRAC, 2023).

Although they have been and necessary for insect control, these

chemical compounds have triggered detrimental effects, similar to

DDT, such as poisoning of non-target beneficial species as well as

mammals. However, current chemical classes, such as pyrethroids,

present low toxicity to humans. In addition, the residual

accumulation of these substances in various trophic chains poses

a significant threat to ecosystems. Besides that, inappropriate use of

chemical insecticides may lead to the selection of resistant

populations with physiological changes for the individual, such as

increased cuticle thickness, increased synthesis of detoxifying

enzymes (e.g., cytochrome p450 class proteins), behavioral

changes culminating in the avoidance of the control measures,

and other adaptations (Hemingway and Ranson, 2000; Puinean

et al., 2010; Kasai et al., 2014; Nicolopoulou-Stamati et al., 2016;

Zalucki and Furlong, 2017).

The investigation of alternative ways to contour the obstacles

linked to the use of chemical pesticides led to the prospection of new

classes of products, for example, plant-based insecticides, which can

act as hormonal analogs or antagonists, such as neem. Also,

microorganism-based pesticides can infect the insects, leading to

their death. It exerts negative ecological pressure on target

organisms, being more selective and causing less residual and

harmful effects to the environment, being more sustainable to

pests/vectors populational management (Carvalho, 2017; Senthil-

Nathan, 2020).

The plant-based insecticides (derived from secondary plant

metabolites or phytochemicals) are highly prospected products

for pest/vector management, acting by different mechanisms over

its physiological system, whether in the cellular, tissue, or systemic

levels. For example, bruchelin and podofilotoxin, two molecules

belonging to the class of neolignans, were able to alter the excretion

system of the blood-feeding triatomine Rhodnius prolixus

(Hemiptera, Reduviidae), an important vector in the transmission

of Trypanosoma cruzi, the etiological agent of Chagas disease. These

compounds reduce diuretic hormones in the hemolymph and

Malpighian tubules (Garcia et al., 2000). It was also seen that
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gonadulin, an insulin-like peptide, is highly expressed in the calyx of

the R. prolixus females’ reproductive system. This peptide is

associated with the modulation of ovulation and oviposition,

implying that the insulin cascade is essential for egg production

and is, therefore, a possible target for populational control of this

insect (Leyria et al., 2023).

In Aedes aegypti (Diptera, Culicidae, a mosquito of great

sanitary relevance for its’ competence as a vector of several viral

diseases like yellow fever, dengue, Zika, Mayaro, and chikungunya),

phytochemicals have a broad spectrum with systemic action. Such

substances are effective in promoting changes in the cuticle (tissue

level) and membrane components (such as the lipid bilayer),

different proteins, such as enzymes, transmembrane receptors,

cellular messengers, and transmembrane ionic channels, and may

also affect the insect at the genetic level (DNA and RNA) (Senthil-

Nathan, 2020). For example, Workman et al. (2020) observed the

larvicidal potential of orange essential oil encapsulated in the

Saccharomyces cerevisae yeast. The compound is formed mainly

by limonene (89.6%), having as secondary constituents myrcene

(2.4%), g-terpinene (1.6%), and 8.2% of other molecules, causing

lethality in 90% of larvae treated at the concentration of 18.9 mg/L

(or 18.9 ppm). Besides that, the encapsulation process promoted the

dispersion in the water, as well as the ingestion of the product by the

insects, optimizing its insecticide effect (Workman et al., 2020).

Biopesticides from microorganisms or their metabolites are

used to control different species of arthropods with medical and

economic relevance, being considered, as well as phytochemicals,

substitutes for conventional chemical insecticides. The formulation

and constitution of biological pesticides can vary greatly, from

virulent molecules isolated from fungi, active in the interior of the

target, to infective microorganisms, predators, or parasitic/

parasitoid macroorganisms, in addition to possible combinations

between both (Chandler et al., 2011; Balog et al., 2017). For

example, in the case of the bacteria Bacillus thuringiensis var.

israelensis (Bti) and Lysinibacillus sphaericus , both the

microorganism itself and its insecticidal crystalline inclusions

(ICPs) can be marketed for field and semi-field application, with

its formulations focused both on aquatic environments or on

terrestrial environments with varying moisture rates (FAO and

WHO, 2017; Thakur et al., 2020).

Belonging to the order Rickettsiales, the endosymbiont gram-

positive a-proteobacteria of the genus Wolbachia likewise

represents a promising perspective for the control of various

vectors, including Ae. aegypti. From a specific mechanism in the

symbiont-host interaction known as cytoplasmic incompatibility,

mosquitoes may be led to the induction of reproductive alterations

such as parthenogenesis and feminization, which is acquired from

the crossing of transfected males (infected with bacterial strains like

wMel) with wild females. The mechanism may further result in a

constituent offspring of unviable eggs, infertile individuals, or

insects refractory to viral infections (Stouthamer et al., 1999;

Caragata et al., 2019; Reyes et al., 2021; Tantowijoyo et al., 2022).

The programmed releases of Ae. aegypti males transfected with the

bacterium in endemic and high-risk areas is being carried out

around the globe, with the objective of gradual replacement of the
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populations of the vector that are competent for the development of

arboviruses by modified refractory populations (Ross et al., 2020).

Similarly, EPFs constitute a group of microorganisms studied

for the development of sustainable insecticides for the control of

arthropods. The prospection of the insecticide capacity of EPFs

began with the Russian microbiologist Elie Metchnikoff, who first

described M. anisopliae in 1878 and was the father of cellular

immunology, being responsible for pointing out, in 1883, the

occurrence of macrophages involved in the immune system of

anurans (Ann et al., 1995).

In 1878, after the discovery of the infection that affected pest

beetles of the Austrian genus Anisoplia by a fungus, the pathogen

was baptized by this scientist as green muscaridine, with the

binomial nomenclature Entomopthora anisopliae. Later, in 1880,

this fungus was renamed Isaria destructor, and finally, in 1883, by

Sorokin, definitively defined as M. anisopliae (Ann et al., 1995;

Merien, 2016).

EPFs are present in various orders and clades of organisms

(COOKE et al., 1892). There are four groups of parasitic fungi with

activity against insects: Phylum Zoopagomycota - Order

Entomophtorales, Phylum Mucormycota – Order Mucorales

Phylum Oomycota – Orders Saprolegniales and Lagenidiales, and

Phylum Ascomycota (Samson et al., 1988; Spatafora et al., 2016).

More recent studies describe the occurrence of these microorganisms

in 6 different phyla (including Basidiomycota and the removed

phylum Deuteromycota) and 12 classes (Abdelghany, 2015). They

are characterized by their great complexity in the life cycle and a high

degree of infectivity over general or specific hosts. The following topic

will revise the advances on controlling main groups of arthropods

that are relevant in the economic and sanitary sphere using

Metarhizium spp.
Application of EPFs against
insect orders

Microbial pesticides currently consist of about 1.3% of the total

global pesticides used to control economically relevant insects (Um

et al., 2018). Inserted as its constituents, EPF-based pesticides are

present in 90% of the applications of new biopesticide formulations

(Hajek and St Leger, 1994). The group has between 700 and 1000

species already described (St. Leger and Wang, 2010; Mora et al.,

2018). The most studied and used EPF in the development of

formulations for biopesticides are Beauveria bassiana (Balls) Vuill

(33.9%), Lecanicilium sp. (6.4%), and M. anisopliae (Metch) sensu

lato (33.9%) (Faria and Wraight, 2007). The main orders of

arthropods targets of bioinsecticides are Lepidoptera, Coleoptera,

Diptera, Hemiptera, and Ixodida. Below, we present a review of the

fungal bioinsecticides used to control each main order

of arthropods.

Lepidoptera: In the last fifteen years, studies focused on pest

control of species of the order Lepidoptera by M. anisopliae

involved Gelechiidae and Noctuiidae.

Lepidopteran insect management consists of a solid state of art

in current biological control literature, since a diversity of
frontiersin.org
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economically important plants are highly affected. Some of the

latest advances in the prospection and utilization of Metarhizum

spp. Against Lepidopteran are summarized in Table 1.

Coleoptera: Studies on the use of M. anisopliae (and other

EPFs) in laboratory and semi-field conditions, with integrations to

other insecticides or not, against the order Coleoptera, occur mainly

using the family Curculionidae as a target

Alternatively, other Coleoptera representatives with the most

varied economic relevance are aimed for populational management,

such as the families Chrysomelidae Brentidae, Cerambicidae,

Elateridae, Scarabeidae, among others, already have a history of

investigations for single and integrated management with EPFs in

the most varied formulations (see Table 1 for details).

Diptera: In the order Diptera, an important family desired for

population control is Culicidae (Suborder Nematocera), a clade

representative of the main vector species of arboviruses and

parasitic diseases in endemic areas. Muscoid dipteras of Suborder

Brachycera, likewise, are potential targets for management.

Other families of sanitary importance, such as Ceratopogonidae

and Psychodidae, are, to a lesser extent, studied in the context of the use

ofM. anisopliae for their population control to reduce the transmission

of particular etiological agents. Ceratopogonidae is a family whose

medical and veterinary importance comes from the ability of many

species of the genus Culicoides to transmit viruses (such as the cattle

bluetongue virus: Reoviridae), nematodes of the family Filariidae,

among other pathogens (Cazorla and Campos, 2020).

Psychodidae includes important sandfly species that are vectors

of Leishmaniasis, the main ones being those of the genus Lutzomyia

(New World) and Phlebotomus (Old World). The last advances in

control of dipterans using EPFs are summarized in Table 1.

Hemiptera: The Hemiptera order contains numerous species of

agricultural importance (cochineals, cicadas, aphids, cotton

strainers), and vectors of pathogens (bed bugs and kissing bugs).

Studies involving pathogen-host interactions, formulation

development in laboratory, semi-field, field, and integrated

management were performed for various famil ies , as

Pentatomidae, Delphacidae, Pyrrochoridae. Diaspididae, and

Aphidae, among others.

Besides the research on hemipteran agricultural pests, the

prospection of EPFs has also been conducted for the biological

control of vectors, with focus on kissing bugs (Reduviidae:

subfamily Triatominae) and bed bugs (Cimicidae).

Studies also consider the control of hemipteran pests and vectors,

exploring the scope of application in different environments and

physiological and molecular aspects of the pathogen-host interaction,

providing more information regarding their management with

mycopesticides (Fancelli et al., 2013; Negrete González et al., 2018;

Moreno-Salazar et al., 2020, See Table 1).

Acarina - Ixodida: Another arthropod group of sanitary and

economic relevance that is a target for populational management in

agricultural and urban environments. Ticks are considered the

ectoparasites of cattle and wild animals that cause significant

morbidity in their hosts due to their vector capacity, responsible

for transmitting pathogens such as protozoa, viruses, and bacteria,

such as Rickettsia (Pérez de León et al., 2020). Among the most

important tick families are Ixodidae (hard ticks) and Argasidae (soft
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ticks), encompassing key genera such as Rhipicephalus, Amblioma,

Ixodes, Ornithodorus, and Otobius (Pérez de León et al., 2020).

The prospection of the alternative control of ticks using EPFs and

their formulations has been performed in recent decades (see Table 1).

The veterinary and medical relevance of ticks, as well as the problems

inherent in chemical pesticides, require more detailed investigations

and more profound questions for the future development of

sustainable pesticides for employment in agriculture.
Conclusions and perspectives

The increase in human populat ions entai ls r isks ,

responsibilities, and changes on a global scale over many habitats.

Due to the anthropic expansion, it is expected that by 2050,

approximately 300 million hectares of land will be occupied for

agricultural purposes (Schmitz et al., 2014). Besides the economic

issues, zoonotic diseases have increased as a result of the expansion

of human cities. Approximately 60% of emerging infectious diseases

in endemic countries are zoonotic, contaminating men and animals,

and about 72% of these diseases came from wildlife due to human

invasion (Jones et al., 2008; Nyhus, 2016).

Aiming at optimal pest management in the agricultural

environment, of vectors in the socio-sanitary scope, and the

avoidance of the problems inherent to the use of chemical pesticides,

the development of mycopesticides has been prospected since the end

of the 19th century, with the first description of an EPF. Since

approximately 6% of mycoinsecticides are composed of fungi of the

genera Beauveria and Metarhizium (species and variation anisopliae)

(Mesquita et al., 2023).

Although EPFs are promising options for developing large-scale

insecticides for crop pests and vectorial control, many innate

limitations must be considered for the successful establishment of

such products.

Difficulties for isolation and characterization of endophytic

fungal species comprise a central problem that compromises

advances in EPF prospection. Since many species and strains

exhibit specific conditions for reproduction, growth, sporulation,

and pathogenicity, identification and standardization of tests for

efficacy screening may offer obstacles in a first moment.

Fortunately, there are media-based, biochemical, and molecular

methods capable of promoting a reliable characterization and

specification for successive assays using in vitro and in vivo

techniques (Tsui et al., 2011; Bamisile et al., 2021).

Natural abiotic conditions associated with geographical locations

are also determinants for fungal pathogenicity, virulence, and

dispersion potential. Climatic conditions, environmental

fragmentation, soil type, mesophilic conditions, and solar incidence

were shown to interfere with the physiology of fungal entomopathogens

since many clades develop and disperse under average conditions of

temperature, radiation, osmolarity, and humidity. According to reports,

the probability of discovering new strains of fungal entomopathogens is

greater in regions classified as remote and less affected by human

activities, with few exceptions explored, in which the tropical conditions

for EPF development might be preserved (Zimmermann, 2007; Dong

et al., 2016; Bamisile et al., 2021).
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TABLE 1 Summary of the studies on the application Metarhizum sp. for controlling pests and vectors of different orders of arthropods.

Ref.
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(El-Katatny, 2010; Rivero-Borja et al.,
2018; Han et al., 2023)

, 58,78%, and 46% after 13
ethal concentrations of 1.68×
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(Şahin and Yanar, 2021)
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such circumstances.

(França et al., 2006)
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(Mkiga et al., 2020)
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et al., 2022)

Ref.

nd 85-100% (5.2 and 7.3x109

t in semi-field conditions.
(Koppenhöfer et al., 2020)
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Order Lepidoptera

Family Species Economic Relevance EPFs tested Effect

Gelechiidae

Tuta absoluta Tomato pest Metarhizium anisopliae (ESALQ9, PL43, PI47,
URPE6 URPE19), Beauveria bassiana (ESALQ447,
ESALQ900, CG001, CPATC053, CPATC057) plus
insecticides chlorfenapyr, spinosad, indoxacarb,
abamectin, and neem

M. ansipliae URPE6
pathogenic to eggs a
Furthermore, the fir
compatible to an ave
chlorfenapyr, while
abamectin for optim

Phthorimaea
operculella

Potato pest M. anispliae (unidentified strain) Suspensions at conc
formulated for mort
heterogeneous, with
concentrations of 10
resulting in mortalit
to 52.3%.

Noctuiidae

Spodoptera frugiperda Cotton, soy, corn M. anisopliae/B. bassiana plus
chlorpyriphos/spinosad

High mortality

Spodoptera littoralis Cotton, avocado, pea beans,
sugar cane

M. brunneum ORP-27, ORP-13, and ORM-40 Mortalities of 49,79%
days post-infection,
107, 2.10× 107, and 2

Alabama argillaceae Cotton worm M. anisoplae and B. baussiana with predator bedbug EPF extinguished th
synergistic effects fo

Plutellidae

P. xylostela Cabbage, broccoli and other
cruciferous
plants

Metarhizum brunneum ESALQ E9, IPA-207,
ESALQ 860, IPA-204, UFPE 3027

High lethality for lar
conidia/mL.

Tortricidae Thaumatotibia
leucotreta

Orange, macadamia,cotton pest M. brunneum (ICIPE 30, ICIPE 18, ICIPE 78, ICIPE
62, ICIPE 69, ICIPE 63, ICIPE 20, ICIPE 7, ICIPE
74, ICIPE 656, ICIPE 68, ICIPE 40, ICIPE 315,
ICIPE 31, ICIPE 22, ICIPE 725, ICIPE 676), and B.
bassiana (ICIPE 720, ICIPE 283, ICIPE 273, ICIPE
279, ICIPE 647)

12 strains with mort
and horizontal trans
sporulating corpses.

Lyonetiidae Leucoptera coffeella Coffee pest M. brunneum (RD-20.120) and M. robertsii
(RD-20.114)

Lethal and feeding i

Order Coleoptera

Family Species Economic Relevance EPFs tested Effect

Curculionidae

Listronotus
maculicollis

Poaceae pest M. anisopliae Mortalities 67-89% a
granules/g). Inefficie

Hylobius abietis Conifers pest
n
s
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TABLE 1 Continued

Ref.

mmunity (PO, glycosidases,
)

(Ansari and Butt, 2012; Namara
et al., 2018)

% (106 and 108 propagules/
Lethal time of 1.66 days (108

(Sun et al., 2016)

ty with Recommended Field
FAR) 1.2 x 107 conidia/mL
107 conidia/mL (RFAR 50)

(Nussenbaum and Lecuona, 2012)

al suspension (108 conidia/
G 210 and CG 321 caused
80 to 100% within7 days,

n CG 156 e CG 213 caused
period.

(Teixeira and Franco, 2007)

S155 caused over 80%
lts and over 70% repellence to
arison to Low virulence strain
d 29.3% repellence.

(Dotaona et al., 2017)

n 22 and 24 days after
).

(Clifton et al., 2020)

ependent. (Ensafi et al., 2018)

uivalent to 1,9 x 107 was
ca and granules plus
quivalent of 5,9 x 107 was
a

(Behle and Goett, 2016)

uivalent to 7,1 x 106 was
ga and granules +
quivalent of 5,1 x 107 was
ga

(Behle and Goett, 2016)

ty (105, 107, and 109 (Chuquibala-Checan et al., 2023)

Ref.

ce through feeding and
cells.

(Butt et al., 2013)

oil. (Gomes et al., 2015)

(Continued)

d
e
M
iran

d
a
e
t
al.

10
.3
3
8
9
/ffu

n
b
.2
0
2
4
.14

5
6
9
6
4

Fro
n
tie

rs
in

Fu
n
g
al

B
io
lo
g
y

fro
n
tie

rsin
.o
rg

0
9

Order Coleoptera

Family Species Economic Relevance EPFs tested Effect

M. brunneum, B. bassiana, B. caledonica, and
Candida albicans

Modulation of insect
antimicrobial peptide

Rhynchophorus
ferrugineus

Palm beetle Metarhizium sp. ZJ-1 Mortality 60% and 10
mL) after 10 days. 50
propagules/mL)

Anthonomus grandis Cotton pest M. anisopliae, 28 different strains High integrated lethal
Application Ranges (R
(RFAR 20) and 1.13 x

Chrysomelidae Cerotoma arcuata Legumes pest B. bassiana, M. anisopliae (multiple strains) and
Bacillus thuringiensis

Treatment with conid
mL) of M. anisopliae
mortality ranging from
while B. bassiana stra
100% mortality in the

Brentidae Cylas formicarius Sweet potato M. anisopliae strain QS155 and QS002-3 High virulence strain
repellence to male ad
female adults in comp
QS002-3, which cause

Cerambicidae Anoplophora
glabripennis

Rose bushes, apple
trees, mulberry

M. brunneum High mortality betwe
treatment (108 conidi

Elateridae Limonius californicus Sugar beet, potato M. brunneum High mortality dose d

Scarabeidae

Popillia japonica Grapes, corn, peas,
peaches, plum

M. brunneum Pure granules LC50 e
observed for P. japon
microesclerotia LC50
detected for P. japoni

Phyllophaga sp Soy, wheat, coffee M. brunneum Pure granules LC50 e
observed for Phylloph
microesclerotia LC50
detected for Phyllopha

Curculionidae Hypothenemus hampei Coffee Metarhizium sp. MMR-M1 No significant mortal
conidia/mL).

Order Diptera

Family Species Economic Relevance EPFs tested Effect

Culicidae

Aedes aegypti Arbovirus vector M. brunneum strain ARSEFF 4556 Mechanism of virulen
apoptosis of intestina

Aedes aegypti Arbovirus vector M. anisopliae strain ESALQ818 Synergism with Neem
i
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TABLE 1 Continued

Ref.

es with vegetable or mineral oil,
earth.

(Rodrigues et al., 2019)

enyl thiourea. (Prado et al., 2020)

contact with tissues impregnated (Paula et al., 2013)

e were more tolerant to the three
liae in both formulations (wet

(Greenfield et al., 2015)

was more virulent in
other two strains, with LT (lethal
om 0.3 to 1.1 days. Culex
d Anopheles staphensi were more
des aegypti to this strain. No
e was observed between
aquous/wet).

(Greenfield et al., 2015)

was more virulent in
other two strains, with LT (lethal
om 0.3 to 1.1 days. Culex
d Anopheles staphensi were more
des aegypti to this strain.

(Greenfield et al., 2015)

s in dry formulations of (Paula et al., 2018)

s in dry formulations of (Paula et al., 2018)

s in dry formulations of (Paula et al., 2018)

t on enzymatic activities of
nt strain.

(Ismail et al., 2020)

ffects and populational control. (Shoukat et al., 2019)

ge on treatment outcome. (Mnyone et al., 2011)

ortality (72.5 and 88.75% for
; 57.5% and 48.75% for Ma4 and
0 days of exposition to cement or
7 propagules/mL. Higher larval

(Renuka et al., 2023)
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Order Diptera

Family Species Economic Relevance EPFs tested Effect

Aedes aegypti Arbovirus vector M. anisopliae strain IP46 Action of propagu
and diatomaceous

Aedes aegypti Arbovirus vector M. anisopliae/brunneum strains ARSEF V275
and 4556

Synergism with Ph

Aedes aegypti Arbovirus vector M. anisopliae Contamination by
with conidia.

Aedes aegypti Arbovirus vector M. anisopliae strains ARSEF V275, 4556 and 3297 Aedes aegypti larva
strains of M. aniso
and dry conidia)

Culex quinquefasciatus Filariasis and Arbovirus vector M. anisopliae 3 strains ARSEF V275, 4556 and 3297 Strain ARSEF 4556
comparison to the
time) 50 ranging f
quinquefasciatus a
susceptible than A
significant differen
formulation (dry o

Anopheles stephensi Malaria vector M. anisopliae 3 strains ARSEF V275, 4556 and 3297 Strain ARSEF 4556
comparison to the
time) 50 ranging f
quinquefasciatus a
susceptible than A

Culex quinquefasciatus Filariasis and Arbovirus vector M. anisopliae and B. bassiana Synthetic attractan
EPF conidia.

Aedes albopictus Arbovirus vector M. anisopliae and B. bassiana Synthetic attractan
EPF conidia.

Anopheles sp. Malaria vector M. anisopliae and B. bassiana Synthetic attractan
EPF conidia.

Culex quinquefasciatus Filariasis and Arbovirus vector M. anisopliae Virulence and effe
chlorpyrifos-resista

Aedes albopictus Arbovirus vector M. anisopliae Transgenerational

Anopheles gambiae Malaria vector M. anisopliae Effects of diet and

Anopheles stephensi Malaria vector M. anisopliae Ma4 and Ma-NBAIR, and B. bassiana
Bb5a and Bb-NBAIR

Significant adult m
Bb5a and BbNBAI
Ma-NBAIR) after
mud panels with 1
l
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TABLE 1 Continued

Ref.

ussiana than M. anisopliae. Ma4
11 days vs 6 days in the control.

sublethal doses of ChCy with a
ion of conidia (106 propagules/
tality ranging from 62 to 72% in

(Ong et al., 2017)

in EAMa 01/58-Su showed
and was used for testing on
adults were treated with 5
108 conidia/mL) of conidia and
-B to assess virulence, viability
It was observed that such exposure
ignificantly interfere with such
me of exposure to UV-B directly
mortality exerted by the fungus
re 6 hours of exposure resulted in
4 hours in 43.3%, and 48 hours
ortality.

(Fernández-Bravo et al., 2017)

om 1.49-6.33% (MaD) to 5.82-
nd from 18.6% (MaD) to 61,1%
ays post-treatment. Pupal
(105-1010 propagules/mL). High

rom insect cadavers

(Hintènou et al., 2023)

ulated field conditions: strains,
size effects.

(Ansari et al., 2010; Nicholas and
Mccorkell, 2014; Ansari et al., 2019;
Cazorla and Campos, 2020)

on density and number (Ngumbi et al., 2011; El-Shazly et al.,
2012; Zayed et al., 2013)

Ref.

the predator (França et al., 2006)

mocele and sporulative cycle in (Toledo et al., 2010)

phosphatase in
cty

(Cosentino-Gomes et al., 2013)
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Order Diptera

Family Species Economic Relevance EPFs tested Effect

mortality for B. b
delay pupation to

Muscidae Musca domestica Mechanical vector
(several pathogens)

M. anisopliae with cypermethrin and chlorpyrifos Administration o
certain concentra
mL) caused a mo
5 days.

Tephritidae

Ceratitis capitata Fruit fly Metarhizium brunneum plus radiation M. brunneum str
tolerance to UV-B
insects. C. capitat
suspensions (104

irradiated with U
and germination.
to UV-B did not
parameters. The t
interfered with th
on the insect, wh
56.7% mortality,
resulted in 30% m

Zeudogacus cucurbitae Cucurbitaceae plants,
melon, watermelon

M. anisopliae Ma31, MaD, and B. bassiana Bb13,
Bb14, Bb337, Bb338, Bb339, and Bb353

Larval mortality f
21.70% (Bb337),
(Bb337) after 10
mortality over 50
sporulation rates
(Bb337, Bb338).

Ceratopogonidae Culicoides sp. Cattle bluetongue virus vector M. anisopliae Laboratory and si
doses, population

Psychodidae Phlebotomus
duboscqui, P. papatasi

Leishmaniasis vectors M. anisopliae Effects of populat
of generations

Order Hemiptera

Family Species Economic Relevance EPFs tested Effect

Pentatomidae Podisus nigrispinus Predatory bedbug M. anisopliae and B. bassiana EPFs extinguished

Delphacidae Peregrinus maidis Corn viruses’ vector M. anisopliae and B. bassiana Colonization of h
6 days

Pyrrochoridae Dysdercus peruvianus Cotton pest M.anisopliae Role of host’s ect
fungal pathogene
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et al., 2022)
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(Vazquez-Martinez et al., 2014)

resistance between pathogens (Rv et al., 2014; Garcia et al., 2016)
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ersion with the viability of propagules (Polar et al., 2005)

ality with fungal viability (Reis et al., 2008)
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(Hornbostel et al., 2005)
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(Bahiense et al., 2008)
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Order Hemiptera

Family Species Economic Relevance EPFs tested Effect

Diaspididae Aulacaspis tubercularis Avocado and papaya pest M. anisopliae and B. bassiana Efficacy of fo

Monophlebidae Icerya seychellarum Broad spectrum plant pest M. anisopliae and B. bassiana Efficacy of fo

Aphidae Aphis glossypii Polyphagous plant pest M. anisopliae with flonicamid, imidacloprid,
nitenpyram, dinotefuran, pymetrozine, pyriproxyfen,
spirotetramat or matrine

Mortalities fr
plus flonicam

Reduviidae

Triatoma infestans Chagas disease vector M. anisopliae, M. robertsii, M. flavoviridae, and
Isaria sp.

Higher mort
with Isaria

Triatoma infestans Chagas disease vector B. bassiana, M. anisopliae, Gliocladium virens, and
Talaromyces flavus

High efficacy
Mexican inse

Rhodnius prolixus Chagas disease vector M. anisopliae and B. bassiana plus
Trypanosoma cruzi

Colonization

Cimicidae Cimex lectularius Mechanical vector of
several pathogens

M. anisopliae Effects of mo

Order Ixodida

Family Species Economic Relevance EPFs tested Effect

Ixodidae

Riphicephalus
microplus

Cattle tick M. anisopliae with oil formulations Efficient disp

Rhipicephalus
sanguineus

Brown dog tick M. anisopliae and B. bassiana emulsified with oil
and cellulose gel

Higher mort

Ixodes scapularis Deer tick, Lyme disease vector M. anisopliae with permethrin LD50 of 10
7 (

between trea

Riphicephalus
microplus

Cattle tick M. anisopliae plus deltamethrin Low mortalit
production a

Riphicephalus
microplus

Cattle tick M. anisopliae Two subtilisi
BmSI-7 have
the EPF

Ixodes scapularis Deer tick, Lyme disease vector B. baussiana and M. anisopliae with bifentrin Higher effica
baussiana. H

R. microplus Cattle tick M. anisopliae Protection of
formulations
management
plus EPFs
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Another restriction in implementing EPFs as microbiological

agents and mycoinsecticides is the rapid decline of fungal efficacy

during the temporal window which comprises recognition,

infection and ends in colonization and sporulation. As

mentioned, insects and other arthropod hosts can generate

immunologic responses. Such physiological reactions, combined

with harmful environmental conditions and the fungal specificity of

action (as a generalist or specialist fungi), may minimize the control

potential of EPFs over a determinate target organism in short

periods, thus compromising its impact. Integrated approaches

regarding the molecular characterization and genetic engineering

of fungal strains, isolation of specialist EPF species, prospection of

propagules delivery strategies using artifacts or synthetic products,

and formulation with pesticides are viable methods for efficacy

optimization of fungal control (Paula et al., 2018; Bamisile et al.,

2021; Wang et al., 2021; Wakil et al., 2023).

Due to the low requirements for its effective growth and

virulence maintenance, in addition to a simple reproductive cycle

and heteroxenic capacity, M. anisopliae has been highly prospected

as a candidate for biopesticides aimed at various pests and vectors.

The genetic diversity of the species, reflected in the large number of

strains and variations, also allows for more detailed investigations,

at the molecular level, on pathogen-host interactions, which remain

largely unknown.

As previously mentioned, due to new technologies of

manipulation and genetic engineering (such as CRISPR Cas9 and

electroporation insertions), it will be possible to improve these

strains for the overexpression of factors of virulence, resistance to

radiation, temperature, and desiccation. Additionally, exogenous

genes may be inserted to express toxic proteins against various

species of economic and medical importance (Fang et al., 2012;

Zhao et al., 2016; Chen et al., 2017). This may make the application

of EPFs available in various ways for different purposes, with

significant environmental benefits.

Thus, further studies are expected over the next few years to

elucidate the molecular mechanisms of EPFs and species of interest,

to obtain alternative pesticides. For this, governmental and private

investments in research are highly desirable, as well as

collaborations between the most varied institutions of health,

agriculture, and research on a global scale.
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Bahiense, T. C., Fernandes, É. K. K., Angelo, I. D. C., Perinotto, W. M. S., and
Bittencourt, V. R. E. P. (2008). Performance of Metarhizium anisopliae and its
combination with deltamethrin against a pyrethroid-resistant strain of Boophilus
microplus in a stall test. Ann. N Y Acad. Sci. 1149, 242–245. doi: 10.1196/
nyas.2008.1149.issue-1

Balog, A., Hartel, T., Loxdale, H. D., and Wilson, K. (2017). Differences in the
progress of the biopesticide revolution between the EU and other major crop-growing
regions. Pest Manag Sci. 73, 2203–2208. doi: 10.1002/ps.2017.73.issue-11

Bamisile, B. S., Akutse, K. S., Siddiqui, J. A., and Xu, Y. (2021). Model application of
entomopathogenic fungi as alternatives to chemical pesticides: prospects, challenges,
and insights for next-generation sustainable agriculture. Front. Plant Sci. 12.
doi: 10.3389/fpls.2021.741804

Barelli, L., Moonjely, S., Behie, S. W., and Bidochka, M. J. (2016). Fungi with
multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Mol. Biol. 90, 657–
664. doi: 10.1007/s11103-015-0413-z

Bate, R. (2007). The rise, fall, rise, and imminent fall of DDT. Am. Enterp Inst Public
Policy Res. 14, 1-9. doi: 20.500.12592/d8b9wq

Behle, R. W., and Goett, E. J. (2016). Dosage response mortality of Japanese beetle,
masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to
experimental and commercially available granules containing Metarhizium brunneum.
J. Econ Entomol 109, 1109–1115. doi: 10.1093/jee/tow080

Beys-da-Silva, W. O., Rosa, R. L., Berger, M., Coutinho-Rodrigues, C. J. B., Vainstein,
M. H., Schrank, A., et al. (2020). Updating the application of Metarhizium anisopliae to
control cattle tick Rhipicephalus microplus (Acari: Ixodidae). Exp. Parasitol. 208,
107812. doi: 10.1016/j.exppara.2019.107812

Bickel, P. E., Tansey, J. T., and Welte, M. A. (2010). PAT proteins, an ancient family
of lipid droplet proteins that regulate cellular lipid stores. Biochem. Biophys. Acta 1791,
419–440. doi: 10.1016/j.bbalip.2009.04.002

Bihal, R., Al-Khayri, J. M., Banu, A. N., Kudesia, N., Ahmed, F. K., Sarkar, R., et al.
(2023). Entomopathogenic fungi: an eco-friendly synthesis of sustainable nanoparticles
and their nanopesticide properties. Microorganisms 11, 1–24. doi: 10.3390/
microorganisms11061617

Binggeli, O., Neyen, C., Poidevin, M., and Lemaitre, B. (2014). Prophenoloxidase
activation is required for survival to microbial infections in drosophila. PloS Pathog. 10,
e1004067. doi: 10.1371/journal.ppat.1004067

Bischoff, J. F., Rehner, S. A., and Humber, R. A. (2009). A multilocus phylogeny of
the Metarhizium anisopliae lineage. Mycologia 101, 512–530. doi: 10.3852/07-202

Blackwell, M. (2010). Fungal evolution and taxonomy. BioControl 55, 7–16.
doi: 10.1007/s10526-009-9243-8

Broetto, L., Da Silva, W. O. B., Bailão, A. M., De Almeida Soares, C., Vainstein, M. H.,
and Schrank, A. (2010). Glyceraldehyde-3-phosphate dehydrogenase of the
entomopathogenic fungus Metarhizium anisopliae: Cell-surface localization and role
in host adhesion. FEMS Microbiol. Lett. 312, 101–109. doi: 10.1111/j.1574-
6968.2010.02103.x

Butt, T. M., Coates, C. J., Dubovskiy, I. M., and Ratcliffe, N. A. (2016).
Entomopathogenic fungi: new insights into host-pathogen interactions. Adv. Genet.
94, 307–364. doi: 10.1016/bs.adgen.2016.01.006

Butt, T. M., Greenfield, B. P. J., Greig, C., Maffeis, T. G. G., Taylor, J. W. D., Piasecka,
J., et al. (2013). Metarhizium anisopliae pathogenesis of mosquito larvae: A verdict of
accidental death. PloS One. 8, e81686. doi: 10.1371/journal.pone.0081686

Callejas-Negrete, O. A., Torres-Guzmán, J. C., Padilla-Guerrero, I. E., Esquivel-
Naranjo, U., Padilla-Ballesteros, M. F., Garcıá-Tapia, A., et al. (2015). The Adh1 gene of
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the nitronate monooxygenase gene family from Metarhizium brunneum are induced
during the process of infection to Plutella xylostella. Appl. Microbiol. Biotechnol. 104,
2987–2997. doi: 10.1007/s00253-020-10450-0

Chandler, D., Bailey, A. S., Mark Tatchell, G., Davidson, G., Greaves, J., and Grant,
W. P. (2011). The development, regulation and use of biopesticides for integrated pest
management. Philos. Trans. R Soc. B Biol. Sci. 366, 1987–1998. doi: 10.1098/
rstb.2010.0390

Chen, J., Lai, Y., Wang, L., Zhai, S., Zou, G., Zhou, Z., et al. (2017). CRISPR/Cas9-
mediated efficient genome editing via blastospore-based transformation in
entomopathogenic fungus Beauveria bassiana. Sci. Rep. 8, 1–10. doi: 10.1038/srep45763

Cho, Y., and Cho, S. (2019). Hemocyte-hemocyte adhesion by granulocytes is
associated with cellular immunity in the cricket, Gryllus bimaculatus. Sci. Rep. 9, 1–
12. doi: 10.1038/s41598-019-54484-5

Chuquibala-Checan, B., Torres-De La Cruz, M., Leiva, S., Hernandez-Diaz, E., Rubio,
K., Goñas, M., et al. (2023). In Vitro Biological Activity of Beauveria bassiana,
Beauveria Peruviensis, and Metarhizium sp. against Hypothenemus hampei
(Coleoptera: Curculionidae). Int. J. Agron. 4982399, 9. doi: 10.1155/2023/4982399

Clifton, E. H., Jaronski, S. T., and Hajek, A. E. (2020). Virulence of commercialized
fungal entomopathogens against asian longhorned beetle (Coleoptera: cerambycidae).
J. Insect Sci. 20, 1. doi: 10.1093/jisesa/ieaa006

Cohen, L. B., Lindsay, S. A., Xu, Y., Lin, S. J. H., and Wasserman, S. A. (2020). The
daisho peptides mediate drosophila defense against a subset offilamentous fungi. Front.
Immunol. 11, 1–12. doi: 10.3389/fimmu.2020.00009

Cooper, D. M., Granville, D. J., and Lowenberger, C. (2009). The insect caspases.
Apoptosis 14, 247–256. doi: 10.1007/s10495-009-0322-1

Cosentino-Gomes, D., Rocco-MaChado, N., Santi, L., Broetto, L., Vainstein, M. H.,
Meyer-Fernandes, J. R., et al. (2013). Inhibition of ecto-phosphatase activity in conidia
reduces adhesion and virulence ofMetarhizium anisopliae on the host insect Dysdercus
Peruvianus. Curr. Microbiol. 66, 467–474. doi: 10.1007/s00284-012-0296-z

De Lima Batista, A. C., De Souza Neto, F. E., and De Souza Paiva, W. (2018). Review
of fungal chitosan: past, present and perspectives in Brazil. Polimeros 28, 275–283.
doi: 10.1590/0104-1428.08316

Dong, T., Zhang, B., Jiang, Y., and Hu, Q. (2016). Isolation and classification of fungal
whitefly entomopathogens from soils of Qinghai-Tibet Plateau and Gansu Corridor in
China. PloS One 11, 1–12. doi: 10.1371/journal.pone.0156087

Donzelli, B. G. G., and Krasnoff, S. B. (2016). Molecular genetics of secondary
chemistry in Metarhizium fungi. Adv. Genet. 94, 365–436. doi: 10.1016/
bs.adgen.2016.01.005

Dotaona, R., Wilson, B. A. L., Ash, G. J., Holloway, J., and Stevens, M. M. (2017).
Sweetpotato weevil, Cylas formicarius (Fab.) (Coleoptera: Brentidae) avoids its host
plant when a virulent Metarhizium anisopliae isolate is present. J. Invertebr Pathol. 148,
67–72. doi: 10.1016/j.jip.2017.05.010

El-Katatny, M. H. (2010). Virulence potential of some fungal isolates and their
control-promise against the Egyptian cotton leaf worm, Spodoptera littoralis. Arch.
Phytopathol. Plant Prot 43, 332–356. doi: 10.1080/03235400701806278

El-Shazly, M. M., Soliman, M. M., and Zayed, A. (2012). Seasonal abundance,
number of annual generations, and effect of an entomopathogenic fungus on
Phlebotomus papatasi (Diptera: psychodidae). Environ. Entomol. 41, 11–19.
doi: 10.1603/EN11109

Ensafi, P., Crowder, D. W., Esser, A. D., Zhao, Z., Marshall, J. M., and Rashed, A.
(2018). Soil type mediates the effectiveness of biological control against Limonius
californicus (Coleoptera: Elateridae). J. Economic Entomology. 111, 2053–2058.
doi: 10.1093/jee/toy196

Fancelli, M., Dias, A. B., Delalibera, I. Jr, de Jesus, S. C., do Nascimento, A. S., Silva
Sde, O., et al. (2013). Beauveria bassiana strains for biological control of cosmopolites
sordidus (Germ.) (Coleoptera: Curculionidae) in plantain. BioMed. Res. Int. 2013,
184756. doi: 10.1155/2013/184756

Fang, W., Azimzadeh, P., and St. Leger, R. J. (2012). Strain improvement of fungal
insecticides for controlling insect pests and vector-borne diseases. Curr. Opin.
Microbiol. 15, 232–238. doi: 10.1016/j.mib.2011.12.012

Fang, W., Pava-ripoll, M., Wang, S., and St. Leger, R. (2009). Protein kinase A
regulates production of virulence determinants by the entomopathogenic fungus,
Metarhizium anisopliae. Fungal Genet. Biol. 46, 277–285. doi: 10.1016/j.fgb.2008.12.001

FAO and WHO (2017). International Code of Conduct on Pesticide Management.
Guidelines for the registration of microbial, botanical and semiochemical pest control
agents for plant protection and public health uses (Rome: FAO andWHO), 86. Available
online at: http://www.who.int/whopes/resources/WHO_HTM_NTD_WHOPES_2017.
05/en/

Faria, M., Mascarin, G. M., Butt, T., and Lopes, R. B. (2023). On-farm production of
microbial entomopathogens for use in agriculture: Brazil as a case study. Neotrop
Entomol. 52, 122–133. doi: 10.1007/s13744-023-01033-5
frontiersin.org

https://doi.org/10.1016/j.jip.2012.05.006
https://doi.org/10.1016/j.jip.2012.05.006
https://doi.org/10.1016/j.actatropica.2009.08.022
https://doi.org/10.1016/j.actatropica.2009.08.022
https://doi.org/10.1089/vbz.2018.2300
https://doi.org/10.1016/bs.adgen.2016.01.001
https://doi.org/10.1016/bs.adgen.2016.01.001
https://doi.org/10.1196/nyas.2008.1149.issue-1
https://doi.org/10.1196/nyas.2008.1149.issue-1
https://doi.org/10.1002/ps.2017.73.issue-11
https://doi.org/10.3389/fpls.2021.741804
https://doi.org/10.1007/s11103-015-0413-z
https://doi.org/20.500.12592/d8b9wq
https://doi.org/10.1093/jee/tow080
https://doi.org/10.1016/j.exppara.2019.107812
https://doi.org/10.1016/j.bbalip.2009.04.002
https://doi.org/10.3390/microorganisms11061617
https://doi.org/10.3390/microorganisms11061617
https://doi.org/10.1371/journal.ppat.1004067
https://doi.org/10.3852/07-202
https://doi.org/10.1007/s10526-009-9243-8
https://doi.org/10.1111/j.1574-6968.2010.02103.x
https://doi.org/10.1111/j.1574-6968.2010.02103.x
https://doi.org/10.1016/bs.adgen.2016.01.006
https://doi.org/10.1371/journal.pone.0081686
https://doi.org/10.1016/j.micres.2014.11.006
https://doi.org/10.1371/journal.pntd.0007443
https://doi.org/10.1111/j.1365-294X.2009.04190.x
https://doi.org/10.1002/fes3.2017.6.issue-2
https://doi.org/10.1146/ento.1998.43.issue-1
https://doi.org/10.1007/s13744-020-00768-9
https://doi.org/10.1111/j.0105-2896.2004.00116.x
https://doi.org/10.1007/s00253-020-10450-0
https://doi.org/10.1098/rstb.2010.0390
https://doi.org/10.1098/rstb.2010.0390
https://doi.org/10.1038/srep45763
https://doi.org/10.1038/s41598-019-54484-5
https://doi.org/10.1155/2023/4982399
https://doi.org/10.1093/jisesa/ieaa006
https://doi.org/10.3389/fimmu.2020.00009
https://doi.org/10.1007/s10495-009-0322-1
https://doi.org/10.1007/s00284-012-0296-z
https://doi.org/10.1590/0104-1428.08316
https://doi.org/10.1371/journal.pone.0156087
https://doi.org/10.1016/bs.adgen.2016.01.005
https://doi.org/10.1016/bs.adgen.2016.01.005
https://doi.org/10.1016/j.jip.2017.05.010
https://doi.org/10.1080/03235400701806278
https://doi.org/10.1603/EN11109
https://doi.org/10.1093/jee/toy196
https://doi.org/10.1155/2013/184756
https://doi.org/10.1016/j.mib.2011.12.012
https://doi.org/10.1016/j.fgb.2008.12.001
http://www.who.int/whopes/resources/WHO_HTM_NTD_WHOPES_2017.05/en/
http://www.who.int/whopes/resources/WHO_HTM_NTD_WHOPES_2017.05/en/
https://doi.org/10.1007/s13744-023-01033-5
https://doi.org/10.3389/ffunb.2024.1456964
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org


de Miranda et al. 10.3389/ffunb.2024.1456964
Faria, M., and Wraight, S. P. (2007). Mycoinsecticides and Mycoacaricides: A
comprehensive list with worldwide coverage and international classification of
formulation types. Biol. Control. 43, 237–256. doi: 10.1016/j.biocontrol.2007.08.001

Fernández-Bravo, M., Flores-León, A., Calero-López, S., Gutiérrez-Sánchez, F.,
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Rodrigues, J., Borges, P. R., Fernandes, É. K. K., and Luz, C. (2019). Activity of
additives and their effect in formulations of Metarhizium anisopliae s.l. IP 46 against
Aedes aEgypti adults and on post mortem conidiogenesis. Acta Trop. 193, 192–198.
doi: 10.1016/j.actatropica.2019.03.002
Frontiers in Fungal Biology 16
Ross, P. A., Callahan, A. G., Yang, Q., Jasper, M., Arif, M. A. K., Afizah, A. N., et al.
(2020). An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aEgypti?
Ecol. Evol. 10, 1581–1591. doi: 10.1002/ece3.6012

Rv, M., Anna, S., Diaz-albiter, H., Aguiar-martins, K., Al Salem, W. S., Cavalcante, R.
R., et al. (2014). Colonisation resistance in the sand fly gut: Leishmania protects
Lutzomyia longipalpis from bacterial infection. Parasit Vectors 7, 10. doi: 10.1186/1756-
3305-7-329
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