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Fungal pathogens continue to devastate global agriculture, causing significant

crop losses, compromising food security, and posing emerging threats to public

health. This paper critically examines the revolutionary role of nanotechnology-

driven innovations in combating fungal diseases in crops, offering an integrative

framework that bridges plant health, environmental sustainability, and human

well-being. We synthesize recent advancements in agricultural nanomaterials,

including silver, zinc oxide, and copper oxide nanoparticles, as well as green-

synthesized nanoformulations. We examine their antifungal mechanisms,

including membrane disruption, induction of oxidative stress, targeted delivery,

and inhibition of spore germination. The review highlights how nanosensors can

facilitate early detection of pathogens, while nano-enabled packaging and

innovative delivery systems prevent post-harvest contamination and extend

shelf life. Crucially, we underscore the public health benefits of reduced

chemical pesticide use, lowered mycotoxin exposure, and the potential for

mitigating antimicrobial resistance. The paper advances the discourse on

environmentally responsible, high-precision disease control strategies in

agriculture by linking nanotechnology to broader sustainability goals.

Furthermore, we identify key challenges, including regulatory ambiguity,

ecotoxicological concerns, and barriers to equitable adoption, especially

among smallholder farmers in the Global South. This paper contributes a

forward-looking agenda for integrating nanotechnology into holistic pest

management systems through inclusive policies, interdisciplinary research, and

stakeholder-driven implementation pathways. Overall, this review positions

nanotechnology as a transformative tool in reengineering crop protection

paradigms that align innovation with sustainability, resilience, and public health

imperatives in the face of escalating global challenges.
KEYWORDS

fungal pathogens, sustainable agriculture, crop protection, nanopesticides, food
security, antimicrobial resistance, public health
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1 Introduction

The advent of nanotechnology represents a revolutionary shift

in agricultural practices, particularly in managing fungal pathogens

that threaten crop yield and quality. Nanotechnology may be

defined as manipulating matter on an atomic, molecular, and

supramolecular scale to offer promising innovations for

sustainable agriculture (Ray et al., 2023). The applications of

nanotechnology in agriculture encompass enhanced disease

management, precision farming, and advanced delivery systems

for agrochemicals, which are essential components for improving

crop resilience to pathogens (Kumar et al., 2023; Shahid et al., 2023).

As the global agricultural landscape increasingly confronts

challenges posed by climate change and pest resistance, the role

of nanotechnology in fostering sustainable farming practices gains

significance (Das et al., 2021; Vijayreddy et al., 2023).

Emerging threats from plant fungal pathogens have escalated

concerns regarding food security, given their capacity to decimate

crops and reduce overall agricultural productivity (Bebber and Gurr,

2015; Kang et al., 2021). The estimated annual losses due to fungal

diseases can reach approximately 20% of agricultural yield, impacting

global food supply chains and increasing food prices (Godfray et al.,

2016; Almeida et al., 2019; Ogwu et al., 2024). Additionally, the rising

incidence of pathogen resistance to conventional fungicides

exacerbates the challenges faced by farmers, necessitating

innovative solutions that nanotechnology can provide (Azevedo

et al., 2015; Ogwu and Izah, 2023). These solutions could redefine

conventional disease management approaches by integrating

bioactive nanomaterials that can disrupt fungal growth

mechanisms (Ogwu and Osawaru, 2022; Shahid et al., 2023).

Fungal diseases significantly hinder agriculture, prompting

economists, agronomists, and public health officials to assess their

broader implications beyond crop losses (Suryani et al., 2023). The

global impact of plant fungal pathogens, as evidenced by the

proliferation of diseases such as rust, blight, and mildew,

underlines the urgency for effective management strategies

(Bebber and Gurr, 2015). Pathogens like Aspergillus fumigatus

threaten crops and have also been implicated in the emergence of

antifungal resistance within human pathogens, creating a nexus

between agricultural practices and public health (Kang et al., 2021).

The occurrence of pathogenic strains resistant to azole fungicides

poses significant challenges for both crop management and clinical

treatment (Azevedo et al., 2015; Shen et al., 2022). The conventional

reliance on synthetic fungicides has been insufficient, primarily due

to fungicide resistance and the detrimental impact of chemical

residues on soil health and microbial diversity (Dutta et al., 2023;

Hamid and Saleem, 2022). Researchers highlight that nitrogen and

phosphorus fertilization practices have unintentionally favored

pathogenic fungi, illustrating the complex interactions within

agricultural ecosystems that can lead to increased disease severity

(Lekberg et al., 2021). Therefore, advancements in nanotechnology

that target these specific pathways promise more effective and

sustainable disease control methods, which can be integrated into

current agricultural frameworks (Vijayreddy et al., 2023; Ogwu

et al., 2024; 2025).
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The interrelationship between plant health, crop diseases, and

public health is multifaceted. Effective management of crop diseases

is vital for food security and has broader implications for

environmental and human health (Bratovčić et al., 2023). The

circulatory impact of agricultural practices on public health is

evident in the context of zoonotic diseases and the frequent

human exposure to harmful pesticides, commonly used in

tradit ional farming methods. The transit ion towards

nanotechnology applications in agriculture could mitigate these

risks by offering targeted delivery systems that minimize chemical

usage while maximizing pest and pathogen control (Sharma et al.,

2024). The environmental repercussions of conventional agriculture

also heighten public health concerns. Pesticide residues frequently

contaminate soil and water, posing significant threats to both

terrestrial and aquatic ecosystems (Dutta et al., 2023; Hamid and

Saleem, 2022). Agriculture can utilize nanotechnology to enhance

the efficacy of biocontrol agents and reduce chemical inputs by

leveraging the unique properties of nanomaterials, such as their

high surface-area-to-volume ratio (Shahid et al., 2023). This change

helps maintain ecosystem health, which is essential for long-term

agricultural output and, in turn, for public health outcomes, as well

as for disease control. Therefore, embracing nanotechnology can

reduce reliance on harmful synthetic chemicals, aligning

agricultural practices with the Sustainable Development Goals

(Ogwu et al. 2024). Nanotechnology has the potential to enhance

food safety by reducing post-harvest losses and increasing disease

resistance, leading to higher-quality produce and improved public

health outcomes (Bratovčić et al., 2023).

This review offers a critical and integrative examination of the

emerging role of nanotechnology in controlling fungal pathogens that

affect crop systems, with a particular focus on its implications for

sustainable agriculture, food safety, and public health. Unlike existing

reviews that predominantly address the synthesis and application of

nanomaterials in crop protection (Chhipa, 2017; Worrall et al., 2018),

our work offers a transdisciplinary perspective that situates

nanotechnological innovations within a broader context of global

health and environmental sustainability. It uniquely emphasizes the

dual relevance of fungal disease management and public health,

especially in low- and middle-income countries where the burden

of foodborne mycotoxins and antimicrobial resistance remains high.

The review synthesizes cutting-edge developments in the design and

deployment of nanomaterials, including metallic nanoparticles,

nanoemulsions, and stimuli-responsive delivery systems for

effective and targeted fungal control. It elucidates their underlying

antifungal mechanisms, such as cell membrane disruption, oxidative

stress induction, and enzymatic inhibition, while also evaluating

their capacity to overcome conventional resistance pathways.

Furthermore, we explore nanotechnology-enabled strategies for

early pathogen detection, post-harvest disease mitigation, and

intelligent food packaging that collectively enhance food quality

and shelf life. Crucially, the review addresses key issues related to

equity, ecology, and regulations that are crucial to the responsible

application of nanotechnologies. This review provides a thorough

synthesis that connects nanoscience, plant pathology, and public

health, advancing a novel framework for the inclusive and
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sustainable integration of nanotechnology into international crop

protection efforts.
2 Nanotechnology approaches for
managing fungal pathogens

The burgeoning field of nanotechnology has been increasingly

recognized for its role in managing fungal pathogens, particularly

through the use of various nanomaterials (Figure 1). Figure 1

illustrates the dual role of nanoparticles in agriculture as both

protectants and carriers. As protectants, nanoparticles such as

silver, copper, gold, titanium dioxide, and chitosan directly inhibit

plant pathogens, including bacteria, viruses, fungi, and insect pests.

As carriers, various nanomaterials, including chitosan, silica, solid

lipid nanoparticles, and layered double hydroxides, enhance the

delivery and efficacy of active agents such as insecticides, fungicides,

herbicides, and RNA-interference molecules (Worrall et al., 2018).

Nanodelivery systems offer multiple agronomic benefits, including

increased shelf life, targeted delivery, enhanced solubility, and

reduced toxicity and environmental leaching, thereby contributing

to sustainable and precise pest management strategies in modern

agriculture (Figure 1; Worrall et al., 2018).

These materials differ in composition, structure, and functional

mechanisms, offering a wide range of benefits from enhanced efficacy

to environmental sustainability. Table 1 categorizes key types of

antifungal nanomaterials, highlighting their representative examples,

modes of action, application methods, advantages, and corresponding

references. This classification provides a foundational understanding of

how nanotechnology can be strategically leveraged to combat fungal

pathogens in crops while reducing chemical inputs, improving delivery

precision, and supporting sustainable disease management practices.

Among these materials, nanoparticles such as silver, zinc oxide, and

copper oxide have been shown to exhibit antifungal properties.
Frontiers in Fungal Biology 03
Silver nanoparticles (AgNPs) are among the most extensively

studied nanomaterials due to their broad-spectrum biological

activities and unique physicochemical characteristics (Figure 2).

Chemically, AgNPs exhibit potent antifungal, antiviral,

antibacterial, anticancer, and anti-inflammatory activities, making

them valuable in medicine, agriculture, and environmental

management. Physically, nanoscale size, surface charge, shape

variability, optical behavior, and superior conductivity contribute to

their versatility and effectiveness (Figure 2). These traits make AgNPs

promising candidates for next-generation solutions across disciplines,

including plant pathology, healthcare, and nanotechnology-enabled

diagnostics. AgNPs are particularly noted for their broad-spectrum

antimicrobial activities, including efficacy against diverse fungal

strains such as Candida and Aspergillus species (Santos et al., 2021;

Wahab et al., 2023). Research reveals that these nanoparticles can

disrupt the cell membranes of fungi, which is pivotal in inhibiting

growth and inducing cell death via apoptosis (Pachaiappan et al.,

2021; Mohsen et al., 2022). This phenomenon is primarily attributed

to their ability to release silver ions, which interact with cellular

components, leading to oxidative stress and functional impairment of

pathogenic cells (Mohammed et al., 2018; Ikhajiagbe et al., 2020;

Wahab et al., 2023).

Zinc oxide nanoparticles (ZnO NPs), another promising class of

nanomaterials, have been extensively researched for their antifungal

capabilities. Their efficacy can be attributed to their unique physical

and chemical properties, which allow them to generate reactive

oxygen species (ROS) that damage fungal cells (Sun et al., 2018;

Cruz-Luna et al., 2021). ZnO NPs have been shown to interfere with

enzyme activities associated with cellular metabolism, resulting in

inhibited growth and spore formation of pathogenic fungi (Sun

et al., 2018; Pachaiappan et al., 2021). The contact of fungal cells

with these nanoparticles typically leads to membrane damage, thus

crippling their functional integrity and viability (Cruz-Luna

et al., 2021). Moreover, novel synthesis techniques such as those
FIGURE 1

Nanoparticles as smart tools for crop pest protection and agrochemical delivery. Source: Worrall et al. (2018), reproduced under CC BY 4.0 license.
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involving plant extracts have been explored, which enhance the

biocompatibility of ZnO NPs and reduce environmental impact,

further appealing to eco-aware agricultural practices (Adebayo

et al., 2021; Cruz-Luna et al., 2023). For instance, synthesized

through hydrothermal methods involving zinc ions (Zn+) and

hydroxide (OH−), followed by encapsulation with silica (TEOS)

and a surfactant (CTAB), the ZnO@SiO2 nanostructures are

designed to inhibit microbial contamination in stored maize

(Zhou et al., 2023). Upon mixing with maize seeds, these

nanoparticles protect against fungal and bacterial pathogens,

improving seed viability and extending storage life (Figure 3;

Zhou et al., 2023).

Equally significant are copper oxide nanoparticles (CuO NPs),

which have demonstrated efficient antifungal effects, particularly

against resistant strains (Zhao et al., 2020; Wahab et al., 2023). Their

action revolves around generating oxidative stress within the target

cells, which ultimately induces apoptosis (Zhao et al., 2020; Wahab

et al., 2023). Numerous studies have corroborated the use of CuO

NPs in agricultural settings, where they provide an alternative to

synthetic fungicides, minimizing the environmental footprint and

enhancing sustainable practices in fungal management (Sun et al.,

2018; Pachaiappan et al., 2021). The potential utilization of these

metallic nanoparticles in agroecosystems signifies a considerable

shift toward more sustainable pest management strategies. Figure 4

presents the green synthesis of copper oxide nanoparticles

(CuONPs) using fungal biomass and extracts, followed by their

application in inhibiting fungal pathogens, specifically Candida

species (Garcia-Marin et al., 2022). The process begins with the

extraction of bioactive compounds from fungal cultures, which are

then used to synthesize CuONPs, as indicated by the color change

in solution. The resulting nanoparticles exhibit strong antifungal

effects, as demonstrated by the inhibition zones on agar plates and
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the ultrastructural damage to Candida cells observed under electron

microscopy (Garcia-Marin et al., 2022; Figure 4). This eco-friendly

nanobiotechnology approach holds promise for sustainable

antifungal strategies in agriculture and clinical settings, offering a

safer alternative to conventional chemical fungicides.

Nanocarriers and controlled release systems have also emerged

as innovative approaches to enhancing the delivery of antifungal

agents. Some examples of nanocarriers include liposomes, solid

lipid nanoparticles, gold and iron oxide nanoparticles, polymeric

micelles, and carbon nanotubes (Figure 5). Nanocarriers are

engineered nanoscale materials designed for the targeted delivery

of active compounds, including agrochemicals, pharmaceuticals,

and nutrients. Their high surface-area-to-volume ratio, tunable

physicochemical properties, and ability to carry functional

payloads make them highly versatile (Hani et al., 2024). By

encapsulating antifungal agents within nanostructured carriers,

the stability and bioavailability of these compounds can be

enhanced, potentially improving their therapeutic efficacy and

reducing systemic toxicity. While the concept of targeted delivery

to fungal cells is promising, current scientific evidence supporting

precise, pathogen-specific targeting remains limited and largely

exploratory (Adebayo et al., 2021; Cruz-Luna et al., 2023).

However, polymer-based nanocarriers have shown potential for

controlled and sustained release of antifungal agents, helping to

maintain localized drug concentrations over extended periods

(Madkour, 2017; Alghuthaymi et al., 2015). This sustained release

may reduce dosing frequency and side effects associated with

conventional treatments, thereby improving therapeutic outcomes

and patient compliance.

Nanostructured materials, including nanotubes and nanowires,

provide additional avenues for inhibiting fungal pathogens. Figure 6

presents the multi-dimensional framework for classifying
TABLE 1 Nanotechnology approaches for managing fungal pathogens in agriculture.

Nanomaterial
type

Examples
Mechanism
of action

Application mode Advantages References

Metallic
Nanoparticles

Silver (Ag), Zinc Oxide
(ZnO), Copper Oxide
(CuO)

Disrupt cell walls/
membranes, induce ROS
(reactive oxygen species),
and inhibit enzymatic activity

Foliar sprays, seed
coatings, soil amendments

Broad-spectrum antifungal
activity, low resistance
development

Girma (2023)

Nanocarriers
for Fungicides

Lipid-based NPs,
polymeric NPs, silica NPs

Controlled release of active
ingredients, targeted delivery
to infection sites

Encapsulated fungicide
sprays, root zone delivery

Reduced dosage, sustained
release, minimized
non-target effects

Kutawa et al. (2021);
Kumar et al. (2022)

Nanostructured
Materials

Carbon nanotubes
(CNTs), nanofibers, and
quantum dots

Physical interaction with
fungal spores, blockage of
nutrient uptake

Coatings on surfaces,
plant-based carriers

Mechanical inhibition,
enhanced stability

Patel et al. (2020);
Safdar et al. (2022)

Green
Synthesized
Nanoparticles

Plant-mediated AgNPs,
fungal/myco-nanoparticles

Bio-compatible antifungal
action via phytochemicals
and metallic ions

Eco-friendly foliar and
soil application

Environmentally
sustainable,
reduced toxicity

Borehalli Mayegowda
et al. (2023); Singh
et al. (2023)

Nanoemulsions
Essential oils +
surfactant nanoemulsions

Membrane disruption,
inhibition of spore
germination

Spray or dip application
Natural, biodegradable,
and synergistic with other
biocontrol agents

Chang et al. (2022);
Mosa et al. (2023)

Magnetic
Nanoparticles

Fe₃O₄ NPs, iron
oxide NPs

Magnetic targeting, potential
for pathogen trapping

Combined with
magnetically guided
delivery systems

Precise targeting, potential
for recycling

Shen et al. (2018)
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nanostructured materials based on five key criteria according to

Harish et al. (2022):
Fron
• Composition: Nanoparticles may be organic, inorganic,

carbonaceous (e.g., fullerenes), or composites combining

multiple materials.

• Dimensionality: Classification by shape and size includes

zero-dimensional (0D, spherical), one-dimensional (1D,

rod-like), two-dimensional (2D, sheet-like), and three-

dimensional (3D, complex shapes).

• Phases: Nanoparticles can exhibit a single-phase structure

or a multiphase architecture with core-shell or

layered configurations.

• Dispersion State: Nanoparticles are categorized as dispersed

or aggregated, with further distinction between isomeric

and inhomogeneous forms in each case.
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• Origin: Their source can be natural (e.g., biological

processes), incidental (e.g., volcanic emissions), or

engineered (e.g., laboratory synthesis).
The structures of these materials can interact with fungal cell

surfaces, leading to the obstruction of essential metabolic

pathways or even physical disruption through structural

nanomechanical interactions (Dhillon et al., 2011; Rai et al.,

2021). The unique aspects of these materials facilitate enhanced

interaction at the cellular level, thereby improving their

antifungal efficacy compared to traditional bulk materials

(Cruz-Luna et al., 2023). Furthermore, the versatile nature of

nanostructured materials enables their modification and

functionalization with various antifungal agents, thereby

expanding their application scope in agricultural biotechnology

(Adebayo et al., 2021).
FIGURE 2

Multifunctional properties of silver nanoparticles: chemical and physical perspectives. Source: Duman et al. (2024), reproduced under CC BY 4.0 license.
frontiersin.org
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The mechanisms of action of these nanoscale materials also

reveal intricate pathways through which fungal pathogens can be

managed. The disruption of cell membranes by nanoparticles is a

fundamental action that can be explained through the formation of

reactive oxygen species and the interaction between nanoparticles

and various cellular targets, including proteins and nucleic acids

(Pachaiappan et al., 2021; Adebayo et al., 2021). Studies have

illustrated how AgNPs induce morphological changes in fungal
Frontiers in Fungal Biology 06
cells, contributing to their lethal effects and showcasing their

potential as viable alternatives to synthetic fungicides in

agriculture (Panchangam and Upputuri, 2019; Rai et al., 2021).

The advantages of nanotechnology over traditional fungal control

methods extend beyond enhanced efficacy. The use of nanoparticles

can significantly mitigate the environmental and health risks

typically associated with conventional fungicides. Research

indicates that lower amounts are necessary to achieve the desired
FIGURE 3

Application of ZnO@SiO₂ nanocomposites in maize protection and seed storage. Source: Zhou et al. (2023), reproduced under CC BY 4.0 license.
FIGURE 4

Fungal biosynthesis of copper nanoparticles (CuONPs) and their antifungal activity against Candida spp. Source: Garcia-Marin et al. (2022),
reproduced under CC BY 4.0 license.
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antifungal effects compared to traditional chemical agents, which

can decrease chemical runoff and residual toxicity in ecosystems,

thereby reinforcing ecological health (Wahab et al., 2023; Mohsen

et al., 2022).

Additionally, their sustained-release properties can minimize

the frequency of application and enhance treatment efficiency, even

though precise, pathogen-specific targeting remains an aspirational

goal in agricultural nanotechnology. Current formulations aim to

prolong antifungal activity and improve stability rather than

achieve selective action against individual pathogens (Cruz-Luna

et al., 2021; Alghuthaymi et al., 2015). Moreover, as nanotechnology

integrates into agricultural practices, compliance with increasingly

stringent environmental regulations is facilitated, making the

approach beneficial for crop protection and aligned with global

sustainability goals (Sun et al., 2018; Adebayo et al., 2021). The

application of nanotechnology in managing fungal pathogens is

multifaceted, involving various types of nanoparticles, nanocarriers,

and nanostructured materials that enhance efficacy and address the

limitations of traditional methods. The ongoing research into these

applications suggests a promising transformation in how we

approach fungal infections in agriculture and potentially in
Frontiers in Fungal Biology 07
clinical settings, heralding a future where nanotechnology could

significantly enhance our ability to combat microbial threats.
3 Public health impacts of
nanotechnology in agriculture

Integrating nanotechnology into agriculture is increasingly

recognized as a transformative approach to address various public

health challenges, notably through its role in reducing reliance on

harmful pesticides, enhancing food safety, mitigating antibiotic

resistance, and navigating associated environmental risks. The

versatility of nanomaterials enables precise and controlled

applications that minimize unintended human and ecological

harm while enhancing disease control efficacy. However,

alongside these benefits, potential risks associated with

nanoparticle persistence, bioaccumulation, and cross-sectoral

interactions must be carefully assessed. Table 2 outlines the key

public health domains influenced by nanotechnology in agriculture,

detailing the roles and impacts of nano-enabled innovations,

associated risks, and recommended strategies for mitigating these
FIGURE 5

Some types and examples of nanocarriers. Sources: adapted from Hani et al. (2024), reproduced under CC BY 4.0 license.
frontiersin.org
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risks. This framework supports a balanced, evidence-based

understanding of how nanotechnology can be harnessed to

promote safer, more resilient, and health-conscious food systems.
3.1 Reducing the use of harmful pesticides

Nanotechnology offers innovative solutions that can significantly

reduce dependency on traditional chemical pesticides, which are

often associated with adverse environmental and health effects.

This transition arises from the ability of nanomaterials to enhance

the efficacy of pesticides by allowing for targeted delivery and

controlled release, overcoming limitations of conventional

formulations that often lead to over-application and soil

contamination (Kim et al., 2017). For instance, nanopesticides are
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designed to maximize the effective concentration of active ingredients

while minimizing dispersal in the surrounding ecosystem, reducing

the chemical load in agricultural practices (Parveen et al., 2023; Izah

and Ogwu, 2023). Human health benefits arise from decreased

pesticide exposure, which is correlated with fewer pesticide-related

illnesses among both agricultural workers and consumers. Reducing

chemical residues in crops directly contributes to improved food

safety standards, as consumers are more likely to purchase and

consume products not laden with toxic residues. Studies indicate

that lower chemical usage can diminish the risk of chronic health

issues associated with pesticide exposure, including endocrine

disruption and neurotoxicity (Kim et al., 2017). Thus, the

technological shift towards nanopesticides is pivotal for

environmental sustainability and advancing public health concerns

related to contaminated food supplies.
FIGURE 6

Comprehensive classification of nanoparticles. Source: Harish et al. (2022), reproduced under CC BY 4.0 license.
frontiersin.org
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3.2 Food safety and nanotechnology

The promise of nanotechnology extends into food safety,

particularly through its applications in preventing fungal

contamination in crops. Mycotoxins, produced by certain fungi,

pose significant health risks as they can enter the food supply chain,

leading to various health issues, including carcinogenic effects

(Zhang et al., 2020; Nurtjahja et al., 2022). Nanotechnology offers

mechanisms to mitigate this issue, such as the development of

nanosensors that detect and monitor fungal pathogens in real-time,

enabling timely intervention (Rahim et al., 2021). In addition to

detection, nanomaterials can offer antifungal properties that inhibit

the growth of pathogenic fungi, thereby safeguarding food quality

(Parveen et al., 2023; Zhang et al., 2020). These advancements have

shown promise in field applications and post-harvest treatment,

enhancing the shelf life of agricultural produce by targeting

mycotoxin-producing strains, such as Aspergillus flavus (Nurtjahja

et al., 2022). The subsequent reduction in mycotoxin levels is

correlated with improved public health outcomes. It mitigates

foodborne illnesses and reduces associated healthcare costs,

underscoring the importance of integrating nanotechnology into

agricultural practices for enhanced food safety.
3.3 Mitigating antibiotic resistance in
agriculture

Antibiotic resistance has escalated into a global public health crisis,

extensively linked to agricultural practices that employ antibiotics for

disease prevention and growth promotion (Economou and Gousia,

2015; Checcucci et al., 2020). The transference of antibiotic-resistant

bacteria and genes through soil, water, and food systems poses severe
Frontiers in Fungal Biology 09
health risks to human populations, necessitating alternative strategies

to mitigate this threat (Ogwu and Izah, 2025). Current research

highlights the potential of nanotechnology as a non-antibiotic

solution aimed at controlling pathogens without exacerbating

antibiotic resistance (Chang et al., 2014). Nanomaterials exhibit

antimicrobial properties that can effectively reduce plant pathogenic

loads, thus potentially replacing antibiotic treatments (Kischkel et al.,

2020). Nanotechnology could minimize the selection pressures that

lead to the emergence of resistant strains in both agricultural and

human contexts. For instance, studies demonstrate that applying such

nanomaterials can suppress bacterial growth in crops, thereby reducing

the need for chemical inputs that contribute to the resistance problem

(Rahim et al., 2021). Collaborative efforts between agricultural research

and public health can ensure that advancements in nanotechnology are

effectively harnessed to combat antibiotic resistance and promote a

safer food system for consumers.

Unlike conventional fungicides, which often act through single,

specific biochemical pathways, making them prone to resistance

development, nanomaterials exert their antifungal effects through

multiple simultaneous mechanisms (Rai et al., 2009; Lemire et al.,

2013). These include physical interactions, such as membrane

disruption, the generation of reactive oxygen species, and

interference with intracellular components, including DNA and

enzymes (Khan and Rizvi, 2014; Lemire et al., 2013). This mode of

action makes it more difficult for fungal pathogens to adapt through

mutation or selection of resistant strains. Additionally, the nanoscale

size of these materials enables closer and more prolonged interaction

with target cells, enhancing their fungicidal potency while reducing

the likelihood of metabolic or efflux-based resistance. However,

ongoing monitoring is essential, as overuse or improper application

of nanomaterials could eventually select for tolerance mechanisms,

especially under field conditions.
TABLE 2 Public health impacts of nanotechnology in agriculture.

Public health
area

Nanotechnology’s
role

Impacts/Benefits Potential risks
Mitigation
strategies

References

Pesticide
Reduction

Nanopesticides, controlled-
release systems

Reduced human exposure to
toxic chemicals; less
environmental contamination

Accumulation of
nanomaterials in soil/water;
unknown long-term effects

Regulatory oversight, dose
optimization, and
ecotoxicological studies

Chaud et al. (2021)

Food Safety
Nano-enabled antifungal
coatings and packaging

Prevention of mycotoxin
contamination; extended
shelf-life of produce

Ingestion of residual
nanoparticles through food

Development of safe
packaging materials,
residue monitoring

Evivie et al. (2020);
Oladeji et al. (2024)

Antimicrobial
Resistance (AMR)

Alternative to antibiotics in
crop protection

Reduced antibiotic use in
agriculture; slower spread of
AMR genes

Possible resistance
development to nanoparticles

Rotation of nanoparticle
types, integrated pest
management (IPM)

Salam et al. (2023)

Zoonotic Disease
Prevention

Improved crop health and
food hygiene

Reduced fungal reservoirs
that could transfer to
animals/humans

Unknown cross-species
interactions
with nanomaterials

One Health–oriented
research, cross-sector
risk assessment

Ogwu and
Izah (2023)

Occupational
Health

Safer formulations and
delivery methods

Reduced inhalation/dermal
exposure for farmers
and workers

Exposure to airborne
nanoparticles
during application

Use of personal protective
equipment (PPE),
safety training

Ogwu and
Izah (2025)

Environmental
Health

Lower pesticide runoff and
targeted applications

Protection of water bodies,
pollinators, and non-
target organisms

Persistence of nanoparticles
in ecosystems

Lifecycle assessment,
biodegradable
nanomaterials

Ogwu (2025)
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3.4 Environmental and human health risks
of nanomaterials

As with any emerging technology, the deployment of

nanotechnology in agriculture raises concerns regarding

environmental and human health risks. The potential for exposure to

nanomaterials through food, water, and soil necessitates rigorous

assessment protocols to understand their biological interactions and

possible toxicological effects (Yang et al., 2019; Kristanti et al., 2021;

Izah and Ogwu, 2025). Current literature suggests that nanomaterials

can enhance agricultural productivity and sustainability; however, their

release into ecosystems poses unintended risks, encompassing both

ecological and health dimensions (Ikhajiagbe et al., 2020; Zahid et al.,

2022). Establishing safety protocols and regulatory frameworks that

govern the use of nanomaterials in agriculture is imperative to mitigate

these risks. Continuous research is essential to evaluate the long-term

impacts of nanomaterial exposure on human health and the

environment, ensuring that public health is prioritized in the

integration of these technologies (Kim et al., 2017; Alazaiza et al.,

2021). Collaboration among scientists, regulatory agencies, and

policymakers will play a critical role in establishing robust

frameworks that explore benefits while addressing potential hazards

associated with nanotechnology in agriculture.

The intersection of nanotechnology and agriculture presents

transformative opportunities for advancing public health through

innovative, science-driven practices. By reducing reliance on

conventional chemical pesticides, nanotechnology minimizes

harmful environmental exposures and enhances food safety and

quality. Moreover, the targeted and efficient delivery systems offered

by nanoscale materials hold great promise in addressing the

growing global challenge of antibiotic resistance by providing

alternative mechanisms for disease control. These advancements

also offer tools to mitigate post-harvest losses and extend food shelf

life, further contributing to nutritional security. However, deploying

nanotechnologies in agricultural systems must be cautiously

approached. Comprehensive risk assessments, transparent

regulatory frameworks, and ongoing interdisciplinary research are

crucial to mitigating unintended ecological and health

consequences. Ultimately, responsible innovation in agricultural

nanotechnology can be a powerful lever for achieving more

resilient, equitable, and sustainable food systems while protecting

human and environmental health.
4 Nanotechnology in fungal disease
prevention and control

Nanotechnology is increasingly recognized as a pivotal tool in

revolutionizing fungal disease management across agricultural

systems, through the early detection of fungal pathogens, the

prevention of cross-contamination in food systems, and its role

within integrated pest management (IPM) frameworks. These

innovations provide enhanced precision in monitoring and

controlling fungal threats, aligning with broader public health

protection, environmental sustainability, and economic resilience
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goals. By enabling rapid diagnostics, reducing the reliance on

chemical pesticides, and enhancing crop resistance, nanotechnology

establishes itself as a transformative force in developing next-

generation agricultural disease prevention strategies.
4.1 Early detection of fungal pathogens
using nanotechnology

Nanotechnology represents a groundbreaking advancement in

agricultural practices, particularly concerning the early detection of

fungal pathogens that jeopardize crop yield and food safety. The

development of nanosensors allows for the rapid identification of

fungal pathogens, facilitating timely intervention and management

of potential outbreaks (Ray et al., 2023; Parveen et al., 2023).

Traditional disease detection methods often involve lengthy

processes that delay necessary treatments, whereas nanosensors

provide a swift and efficient alternative, enabling farmers to act

promptly to mitigate losses (Singh, 2023; Jali et al., 2024). For

instance, nanoscale biosensors can detect the presence of pathogens

in crops through colorimetric or electrical conductivity changes,

significantly reducing the conventional constraints associated with

pathogen diagnostics (Nainnwal, 2025). The impact of early

detection systems extends beyond immediate crop health; they

contribute significantly to preventing the spread of diseases

through meticulous monitoring of environmental conditions

conducive to pathogen proliferation. Continuous monitoring of

soil health and climate variables is made possible by incorporating

nanotechnology into precision agricultural techniques. This

continuous vigilance not only aids in the early identification of

threat pathogens but also fosters improved crop resilience by

enabling farmers to implement targeted pest and disease

management strategies (Singh, 2023; Rani et al., 2024).

Consequently, integrating these technologies enhances food

security and ensures that agricultural outputs remain safe for

consumption. The economic implications of employing such

innovative detection systems are critical. Crop losses attributed to

fungal infections can range between 20% and 40%, severely

impacting agricultural sustainability and economic viability (Khan

et al., 2021; Ajaz et al., 2024). By promoting rapid detection

methodologies facilitated by nanotechnology, agricultural

stakeholders can substantially enhance crop yields while reducing

their dependency on harmful chemical treatments often used for

disease control (Sundararajan et al., 2023; Ajaz et al., 2024). This

shift to environmentally friendly practices fosters a more

sustainable agricultural landscape and addresses growing public

health concerns regarding chemical residues in food products.
4.2 Prevention of cross-contamination in
food systems

In addition to early detection, nanotechnology plays a

significant role in preventing cross-contamination in food systems

throughout storage and transportation processes. The application of
frontiersin.org

https://doi.org/10.3389/ffunb.2025.1653214
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org


Ogwu and Izah 10.3389/ffunb.2025.1653214
nanomaterials in food safety demonstrates promising capabilities in

controlling the transmission of fungal diseases, which can severely

compromise food quality and safety from farm to table (Scortichini,

2022; Jagadeeshkumar, 2025). Nanoparticles can be utilized in

packaging materials to enhance their antimicrobial properties,

thereby reducing the risk of pathogen growth during storage

(Srivastava et al., 2024; Singh et al., 2025). For example,

incorporating nanosilver into packaging materials has exhibited

effective and practical activities, thereby mitigating the risks of

cross-contamination during food transit (Mohanty et al., 2024;

Mohammad et al., 2022).

Moreover, effective management of food storage practices,

augmented by nanotechnology, ensures that fungi and other

pathogens are kept at bay. By optimizing packaging technologies

and integrating nanoscale solutions, the shelf life of perishable

products can be extended, reducing food waste and enhancing

public health. Soni et al., 2024). This supports the principles of

sustainability and aligns with global goals related to food security

amid increasing demand for safe food sources (Hasaneen, 2023;

Rani et al., 2024). The adaptability of nanotechnology in the

production and distribution phases of food systems makes it a

valuable asset in addressing the dual challenges of ensuring quality

and maintaining safety. The strategic application of nanotechnology

in monitoring food safety encompasses the development of

nanosensors, which provide real-time data on the condition of

food products during transportation. These sensors can track

temperature, humidity, and overall quality, swiftly addressing any

deviations that could lead to contamination (Rani et al., 2024;

Nainnwal, 2025). By employing this advanced technological

framework, it becomes increasingly feasible to implement holistic

food safety systems that encompass proactive contamination

prevention from the farm to the consumer’s plate.
4.3 Integrated pest management and
nanotechnology

Integrating nanotechnology into IPM practices offers

transformative potential for sustainable pest and disease control

measures in agriculture. Traditional pest management approaches

often rely heavily on chemical pesticides, which have numerous

adverse effects on the environment and human health. Scortichini,

2022; Parveen et al., 2023). However, nanotechnology presents a viable

alternative by allowing for the development of nanoinsecticides and

nanopesticides that are not only more effective but also require smaller

quantities for pest control (Mehta et al., 2024; Bratovčić et al., 2023).

This precision use mitigates the risks associated with chemical runoff

and the development of resistant pest populations, thus promoting

both environmental sustainability and agricultural productivity

(Bratovčić et al., 2023; Sundararajan et al., 2023). Moreover,

combining conventional IPM methods with nanotechnology enables

a comprehensive approach to pest and disease management.

Techniques such as crop rotation and biological control can be

enhanced by nanoscale interventions that optimize pest monitoring

and control. For example, nanosensors can detect pest populations and
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fungal pathogens, allowing farmers to deploy targeted biological

control agents precisely when and where they are needed (Ajaz et al.,

2024; Soni et al., 2024). This synergy between traditional practices and

innovative technologies minimizes the overall pesticide load while

maintaining effective control measures. Also, as crops face increasing

biotic stresses from evolving pathogens, the role of nanotechnology in

bolstering plant resilience cannot be overstated. Nanoparticles can

enhance nutrient uptake and improve crop vitality, making plants less

susceptible to pests and diseases (Jagadeeshkumar, 2025; Parveen et al.,

2023). Implementing these technologies in conjunction with traditional

agricultural practices creates a multi-faceted approach that

acknowledges the complexities of agricultural ecosystems and

promotes biodiversity while sustainably enhancing crop yield (Ray

et al., 2023; Scortichini, 2022).

Table 3 outlines key application areas where nano-enabled tools

are deployed to enhance plant health and food safety. Each

nanotechnological approach—from nanosensors to antimicrobial

coatings and bio-based nanoformulations—serves distinct yet

complementary functions. Collectively, they enable timely disease

interventions, extend product shelf life, reduce post-harvest losses,

and contribute to sustainable pest and disease management,

including within organic farming systems. These innovations are

not only improving the effectiveness and efficiency of disease

control strategies but also enhancing the overall effectiveness of

public health efforts. Still, they are also minimizing chemical inputs

and aligning with global goals for safer, more sustainable

agricultural practices.
5 Sustainability and innovative fungal
nanotechnology in agriculture

The incorporation of nanotechnology into sustainable

agricultural practices offers a transformative approach to

addressing the challenges faced by modern agriculture. As the

global population continues to expand and environmental

constraints intensify, it becomes increasingly imperative to

explore innovative methods that enhance crop productivity while

minimizing environmental impact. At the forefront of this

paradigm shift is the integration of nanotechnology, which has

been recognized as a critical avenue for achieving sustainable

agricultural practices. Phytonanotechnology leverages nanoscale

interventions to optimize resource efficiency, enabling farms to

produce more with fewer inputs, such as pesticides and fertilizers,

while reducing their ecological footprint (Jiang et al., 2021; Tang

et al., 2023). Nanotechnology promotes sustainability in agriculture

primarily by enhancing the efficiency of agrochemical inputs. For

instance, nanofertilizers and nanopesticides have been developed to

deliver nutrients and pest control agents more precisely and

effectively than conventional methods. These advanced

formulations mitigate drawbacks such as nutrient leaching and

pest resistance that accompany the excessive use of chemical

fertilizers and pesticides. Nanoscale innovations enable the

controlled release of these substances, ensuring that crops receive

precisely what they need, which leads to improved agricultural
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outputs while reducing harmful runoff into surrounding ecosystems

(Kumar et al., 2023; Mohanty et al., 2024).

Another pivotal aspect of nanotechnology in fostering

sustainability is its ability to minimize the environmental

footprint associated with agricultural practices. Nanomaterials can

significantly reduce chemical runoff and soil contamination, as

these innovations enable targeted applications where they are

most needed, thereby decreasing the overall volume of chemicals

applied. By enhancing the efficiency of water and nutrient usage,

nanotechnology can lower the risk of soil degradation and

ecological imbalances (Tripathi et al., 2023; El-Ramady et al.,

2023; Iavicoli et al., 2017). This shift from broad-spectrum

applications to targeted delivery represents a substantial

movement towards environmentally friendly practices that can

help maintain biodiversity and soil health.

Moreover, the efficiency gained through nanotechnology

enhances crop resilience, particularly against fungal diseases and

environmental stresses. Research indicates that nanomaterials can

help bolster plant defenses, thereby increasing their resistance to

biotic stresses, such as pathogens, and reducing the need for external

interventions, like chemical fungicides. Such advancements

contribute to agricultural sustainability by decreasing reliance on

synthetic chemicals while enhancing the natural resilience of crops

(Tyagi et al., 2023; Wang et al., 2024). This is particularly relevant in

organic farming, as nanotechnology can equip organic growers with

tools to manage pests and diseases effectively without compromising

the principles of natural farming practices (Shang et al., 2019; Tang

et al., 2023). While the potential for sustainable advancements

through nanotechnology is immense, it also brings challenges

concerning long-term sustainability. Introducing nanoparticles into

agricultural systems raises critical considerations regarding their

environmental impact, particularly their accumulation in

ecosystems. Therefore, developing guidelines for the sustainable

production and disposal of nanomaterials is vital. Addressing these

environmental concerns proactively will helpmitigate risks associated
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with their long-term use, ensuring that the benefits of

nanotechnology can be realized without detrimental effects on the

environment (Mahakham et al., 2017; Iavicoli et al., 2017).

The holistic view of how nanotechnology can revolutionize

agriculture aligns with global narratives concerning food security,

environmental health, and socio-economic development. With a

worldwide population projected to reach 9.7 billion, agriculture

must adapt to ensure sufficient food production while avoiding

overexploitation of natural resources and compromising ecosystem

integrity. Nanotechnology has offered significant advancements in

crop yield and quality, aligning with sustainable agricultural goals by

fostering environmentally responsible and economically viable

practices (Aliev et al., 2021; Kumar et al., 2023; Gelaye, 2025). The

implications of these innovations extend beyond crop enhancement;

they address critical global objectives such as poverty alleviation,

improved nutritional security, and the resilience of agricultural

livelihoods against climate change (Aliev et al., 2021; Gelaye, 2025).

The evidence supports the feasibility and utility of incorporating

nanotechnology into agriculture as a promising approach toward

meeting future agricultural demands sustainably and responsibly

(Jiang et al., 2021; Kumar et al., 2023; El-Ramady et al., 2023).

Innovations made possible by nanotechnology closely resemble

ecological agricultural concepts and climate-resilient practices, as

they improve resource efficiency, reduce environmental pollution,

and decrease dependency on traditional agrochemicals. Table 4

presents key sustainability focus areas where nanotechnology

contributes to improved environmental outcomes and agricultural

productivity. From innovative delivery systems that limit pesticide

overuse to biodegradable nanomaterials that mitigate pollution,

these technologies present compelling solutions to some of the

most persistent challenges in modern agriculture. However,

realizing their full potential requires addressing critical issues

related to environmental safety, regulatory clarity, cost-

effectiveness, and equitable access, particularly in regions

dominated by smallholders.
TABLE 3 Applications of nanotechnology in fungal disease prevention and control in agriculture.

Application
area

Nanotechnology
tool/approach

Function Benefits
Implementation
example

References

Early Detection of
Fungal Pathogens

Nanosensors, nano-
biosensors,
quantum dots

Detect specific fungal
biomarkers or pathogens at
early stages

Timely interventions, reduced
disease spread, and improved
crop yield

Use of graphene-based sensors
for detecting Fusarium spp.
in soil

Alam et al.
(2024); Narware
et al. (2025)

Contamination
Prevention in
Food Systems

Nano-coatings, nano-
packaging,
antimicrobial films

Prevent fungal growth during
storage and transport

Enhanced food shelf-life,
reduction in post-harvest
losses, safer food products

Silver nanoparticle-infused
films to inhibit mold in
packaged grains

Rezghi Rami
et al. (2024)

Prevention of
Farm-to-Table
Cross-
Contamination

Nanomaterial-based
surface sanitizers
and coatings

Disrupt fungal spores on
surfaces, packaging, and tools

Breaks the pathogen
transmission chain, improves
hygiene in the supply chain

TiO2 nanocoatings on harvest
equipment surfaces

Rizou et al.
(2020); Nazarov
et al. (2023)

Integrated Pest and
Disease
Management (IPM)

Nanopesticides
combined with biological
and cultural methods

Deliver antifungal agents in
combination with traditional
control strategies

Reduced chemical input,
synergistic effect,
and sustainability

Chitosan nanoparticles used
with biocontrol fungi to
suppress Botrytis cinerea

Poznanski
et al. (2023)

Disease Suppression
in Organic Systems

Bio-based
nanoformulations (e.g.,
essential
oil nanoemulsions)

Use of natural substances in
nanoform to
inhibit pathogens

Complies with organic
standards, enhances the
efficacy of natural products

Clove oil nanoemulsion for
controlling powdery mildew
in vegetables

Singh
et al. (2021)
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6 Challenges and limitations of fungal
nanotechnology in agriculture

The exciting potential of fungal nanotechnology in agriculture is

matched by various challenges that must be addressed for successful

implementation. The application of nanotechnology in fungal

disease management faces a range of technical, regulatory,

environmental, and social challenges that must be systematically

addressed to ensure responsible and equitable deployment. Table 5

categorizes key limitations across these domains, highlighting issues

such as high production costs, regulatory gaps, environmental

persistence, and public skepticism. These barriers impact the

scalability and sustainability of nano-enabled solutions, raising

significant concerns about long-term safety, ecological balance,

and access equity. One of the primary technical and practical

challenges facing fungal nanotechnology is the scalability and

cost-effectiveness of nanomaterial production. Effective

deployment in agriculture requires efficient synthesis methods

that can produce high-quality nanoparticles in large quantities

without prohibitive costs. As highlighted by Kumar et al. (2023),

the practical application of nanotechnology in agriculture relies on

innovation and the development of scalable production processes

that strike a balance between quality and cost efficiency.

Furthermore, the physical and chemical stability of these

nanoparticles under various environmental conditions poses a

significant challenge. Factors such as UV radiation, temperature

extremes, and humidity can affect the efficacy of nanomaterials in

agricultural applications, creating the need for effective stabilization

techniques (Tang et al., 2023). Mohanty et al. (2024) noted that

without durability under such conditions, the anticipated benefits of

using nanomaterials to enhance agricultural productivity could

be compromised.

Consequently, the development of regulatory frameworks

surrounding fungal nanotechnology is crucial, as existing regulations

often fail to address the unique aspects of nanomaterials adequately.

The complexity and novel properties of nanoparticles necessitate the

establishment of targeted policies that incorporate comprehensive risk

assessments explicitly tailored to these materials (Abd–Elsalam, 2024).

Currently, regulatory gaps hinder the effective deployment of

nanotechnology in agriculture, particularly in terms of safety and

environmental impact assessments. There is a pressing need for

global standards that can facilitate the safe application of these

advanced technologies, which, as outlined by Abd–Elsalam (2024), is

essential for ensuring public health while maintaining agricultural

productivity and sustainability. Regulatory bodies lack a cohesive

strategy to manage the potential risks associated with introducing

nanoparticles into farming practices, creating an environment of

uncertainty among stakeholders (Prasad et al., 2017).

Furthermore, research endeavors must prioritize understanding

the fate and transport of nanomaterials in agricultural systems, as

highlighted by Vijayakumar et al. (2022), to effectively evaluate their

potential environmental impact. An interdisciplinary approach,

combining fields such as toxicology, ecology, and nanotechnology,

is crucial for addressing these complex challenges directly and
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developing strategies to mitigate associated risks (Elmeanawy

et al., 2022). This is especially critical given that emerging

technologies like fungal nanotechnology must ensure ecological

integrity and sustainability while enhancing productivity. Failure to

build public confidence may stall the integration of innovative

technologies into agricultural practices, despite their potential to

improve productivity and sustainability. Technical challenges

associated with production and stability, regulatory gaps, safety

and environmental concerns, and public perception issues

collectively form a complex barrier that must be addressed

through coordinated efforts from policymakers, researchers, and

practitioners. This multifaceted approach is crucial to ensuring that

the promise of fungal nanotechnology can be fully realized in

promoting sustainable agricultural practices.
7.0 Stakeholder engagement, equity,
and adoption pathways for
nanotechnology in crop protection

7.1 Why equity and engagement matter in
nanotechnology adoption for crop
protection

Nanotechnology presents a transformative opportunity in

agricultural science, offering innovative solutions to some of the

pressing global challenges that farmers face, particularly those in

low- and middle-income countries (LMICs). The efficacy of such

scientific innovations hinges on their technological advancements

and their ability to engage with and be inclusive of the diverse

stakeholder landscape within agricultural systems. Smallholder

farmers, disproportionately affected by adversities such as fungal

crop diseases, represent a critical demographic that must be

explicitly considered in the broader nanotechnology adoption

dialogue. Despite their pivotal role in global food security, these

farmers often lack direct access to the advancements that

nanotechnology affords, primarily due to socio-economic barriers

and entrenched inequalities (Shang et al., 2019; Khundi et al., 2025).

Integrating nanotechnology into crop protection can enhance

sustainability, resilience, and productivity in agriculture (Ogwu

and Kosoe, 2025). This claim is supported by research indicating

that nanomaterials can improve pest control and increase crop

yields by efficiently delivering nutrients and pesticides (Liu et al.,

2021; Singh and Kumar, 2024; Mohanty et al., 2024). However,

while these technologies may offer promising results on a macro

scale, they tend to perpetuate existing inequities if the most

vulnerable populations, such as smallholder farmers, are not

actively engaged in discussions surrounding their development

and implementation (Mohanty et al., 2024; Gelaye, 2025).

Moreover, the knowledge gap in the application of these

technologies can exacerbate inequitable access, leading to a

situation where only those with resources can capitalize on the

advancements of nanotechnology, leaving marginalized groups

further behind (He et al., 2019).
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7.2 Barriers to adoption

Several barriers hinder the adoption of nanotechnology in

agriculture, particularly among smallholder farmers in LMICs. One

of the most formidable obstacles is the high cost of developing and

deploying nanomaterials (Kansotia et al., 2024; ElSayed et al., 2025).

While nanotechnology can potentially reduce input costs over time,

the initial investments for smallholder farmers can be prohibitive,

particularly when the market is still predominantly driven by larger

agricultural enterprises (Khundi et al., 2025; Rathore et al., 2024).

However, it is worth noting that consumers often express hesitation

towards novel technologies perceived as risky, underscoring a need

for educational initiatives that responsibly communicate

nanotechnology’s benefits and risks (Obahiagbon and Ogwu 2023;

2024). This hesitance is often rooted in limited public understanding,

uncertainty about long-term health or environmental impacts, and

broader distrust of technological interventions in food systems.

Without proactive outreach and transparent communication, these

concerns may hinder the adoption of promising nanotechnologies,

particularly in regions where regulatory frameworks are still

in development.

Hence, despite the potential cost savings associated with

improved efficiency and reduced pesticide usage, the price tag

attached to these materials can discourage uptake, posing an

insurmountable barrier for resource-constrained farmers (Liu

et al., 2021; Kumar et al., 2023). Additionally, the limited

availability of extension services and trained professionals in rural

areas exacerbates the challenge of integrating nanotechnology in

agriculture. Many smallholder farmers rely heavily on local

extension services for information and education regarding new

agricultural practices. However, these services are often inadequate

or absent in many regions, resulting in a significant knowledge gap
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regarding nanotechnology and its potential benefits (Singh et al.,

2024; Lallawmkimi et al., 2025). This has resulted in a pervasive

distrust of novel technologies, as farmers are often uncertain about

the implications and safety of incorporating such materials into

their farming practices (Mohanty et al., 2024; Gelaye, 2025).

Moreover, regulatory frameworks around using and

disseminating nanotechnology in agricultural products can be

slow to develop, delaying the introduction of innovative solutions

and creating uncertainty among farmers (ElSayed et al., 2025;

Rathore et al., 2024). Many countries lack legislation or guidance

on registering nano-enabled agricultural products, which hampers

local adoption initiatives. In addition, issues related to gender

inequity in technology access further complicate the adoption

landscape, as women—who constitute a significant portion of the

agricultural workforce in many LMICs—often face additional

barriers to accessing training and resources (Akinhanmi

et al., 2023).
7.3 Stakeholder involvement and
participatory approaches

Engaging diverse stakeholders in the research and development

process is crucial for overcoming barriers to the adoption of

nanotechnology in crop protection. Key stakeholders include

farmers, cooperatives, extension officers, NGOs, and policymakers,

all bringing unique perspectives and expertise (Singh et al., 2024).

Initial stages of any technological development must prioritize

participatory approaches that involve farmers directly, especially in

context-sensitive regions where local knowledge and practices are

invaluable. Strategies such as participatory technology design, where

farmers actively contribute to creating and adapting new
TABLE 4 Sustainability benefits of innovative nanotechnology for managing fungal diseases in agriculture.

Sustainability
focus area

Nanotechnology
innovation

Contribution
to sustainability

Environmental and
agricultural benefits

Challenges References

Reduction in
Pesticide Use

Nano-enabled targeted
delivery systems,
nanocapsules

Minimizes the overuse of
conventional fungicides

Lower chemical runoff,
reduced health risks,
improved biodiversity

Requires formulation
optimization and scale-up

Zhang et al. (2024)

Resource Efficiency
Smart nanocarriers, nano-
fertilizer–fungicide hybrids

Increases nutrient/fungicide
uptake and reduces wastage

Improved crop yield with
fewer inputs
(water, chemicals)

Potential cost and
accessibility barriers for
smallholder farmers

Yadav et al. (2023)

Pollution Mitigation
Biodegradable or green-
synthesized nanomaterials

Replaces persistent
agrochemicals with
eco-friendly alternatives

Decreased soil and water
contamination, safer
ecosystems

Environmental degradation
pathways of some
nanomaterials remain
unknown

Silva et al. (2021)

Improved Crop
Resilience

Nano-priming and nano-
coatings for seed and
plant immunity

Enhances plant tolerance to
fungal stress

Reduced need for external
chemical interventions

Varies by crop type and
ecological context

Kundu et al. (2024)

Support for Organic
Farming

Nanoemulsions and bio-
based nanoparticles
(e.g., chitosan)

Aligns with organic
principles while improving
fungal control

Expanded options for
organic growers, reduced
post-harvest losses

Need for certification and
policy clarity on nano-use
in organics

Ruffo Roberto et al.
(2019); Poznanski
et al. (2023)

Long-Term
Ecosystem Health

Controlled-release
nanoformulations

Prevents the accumulation
of excess chemicals in
the environment

Promotes soil microbial
health and long-
term productivity

Long-term nanoparticle
fate and interactions need
more research

Iavicoli et al. (2017)
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technologies, have shown promise in ensuring that innovations cater

to actual needs rather than imposed solutions (Singh and Kumar,

2024; Tan et al., 2023). Farmer-led field trials are another effective

strategy for fostering engagement and trust. Farmers can directly

assess the advantages of nanotechnology applications by

experimenting with them in controlled environments, which helps

them make more informed decisions (Mohanty et al., 2024;

Lallawmkimi et al., 2025). This farmer-centered approach builds

capacity and encourages knowledge sharing within communities,

enhancing overall trust in the technologies being introduced.

Incorporating community feedback into product development

processes is crucial for aligning these innovations with the practical

realities farmers face. Solutions developed in close collaboration with

end-users tend to have higher rates of acceptance and efficacy

(Mohanty et al., 2024; Gelaye, 2025). Moreover, such participatory

approaches promote transparency and accountability in the adoption

of new technologies, fostering a sense of shared ownership among

local communities, which can be instrumental in achieving equitable

access to nanotechnology in agriculture (Elemike et al., 2019; Singh

et al., 2024).
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7.4 Equity in access to nanotechnology

Addressing equity in access to nanotechnology necessitates

concerted efforts to bridge the digital divide and ensure effective

technology transfer among marginalized communities. One

promising avenue to foster inclusive access is the establishment of

public-private partnerships to create subsidized programs that

support smallholder farmers in adapting to nanotechnology

(Campos et al., 2023; Singh and Kumar, 2024). These partnerships

can leverage resources and expertise from both sectors, enhancing

capacity-building efforts to empower farmers with the knowledge and

tools necessary to implement these innovations. Open-access

platforms that disseminate knowledge and resources related to

nanotechnology in agriculture can further democratize this

knowledge. These platforms can contribute to a broader

understanding of the uses and advantages of nanotechnology by

providing farmers and extension agents with readily available

information, training materials, and research findings (Mohanty

et al., 2024; Singh et al., 2024). Additionally, local manufacturing of

nanomaterials can help reduce costs and increase accessibility while
TABLE 5 Challenges and limitations of nanotechnology applications for fungal disease management in agriculture.

Challenge
category

Specific
limitation

Explanation Implications Possible solutions References

Technical
Challenges

High production
cost

Synthesis of high-purity,
stable nanoparticles is
often expensive and
energy-intensive

Limits affordability and
adoption by smallholder
farmers

Promote green synthesis and
low-cost
fabrication techniques

Singh et al. (2023);
Sundararajan et al. (2023)

Environmental
instability

Nanomaterials may degrade
or lose efficacy under field
conditions (e.g., UV light,
rain, pH)

Reduced field performance
and inconsistent disease
control

Develop formulations with
improved stability and
protective coatings

Chaud et al. (2021);
Martıńez et al. (2020)

Delivery and
targeting issues

Difficulty in achieving
uniform application and
precise targeting of pathogens

May lead to reduced efficacy
or waste of materials

Use of innovative delivery
systems and nanocarriers

Patra et al. (2018); El-
Tanani et al. (2025)

Regulatory and
Safety Concerns

Lack of standardized
regulations

Absence of clear national or
international guidelines for
nano-agriculture

Regulatory uncertainty
hinders approval and
public trust

Develop coordinated policies
through
interdisciplinary collaboration

Kosoe et al. (2023);
Kumar and Ogwu (2025)

Limited toxicological
data

Insufficient understanding of
long-term effects on humans,
soil, and ecosystems

Raises safety concerns for
users and consumers

Conduct comprehensive risk
assessments and life
cycle analyses

Sharma et al. (2022);
Ogwu et al. (2025c)

Environmental
Impact

Persistence
in ecosystems

Some nanoparticles may
accumulate in soil or water
and resist degradation

Disruption of microbial
communities and soil health

Focus on biodegradable and
eco-friendly nanomaterials

Rai et al. (2021)

Effects on non-
target organisms

Nanoparticles may
unintentionally harm
pollinators, beneficial
microbes, or aquatic species

Biodiversity loss and
ecological imbalance

Perform targeted studies on
non-target impacts and refine
application methods

Yamini et al. (2023)

Social and
Ethical Issues

Public perception
and awareness

Concerns about “nano”
technologies in food
production and the lack of
farmer training

Hesitancy to adopt and
possible market resistance

Increase public education,
transparency, and
stakeholder engagement

Bostrom and
Löfstedt (2010)

Access and equity

Technological and economic
disparities between high-
income and low-
income regions

Risk of widening global
agricultural inequality

Support equitable access and
international collaboration in
nano-agriculture research

Iavicoli et al. (2017)
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promoting sustainable practices by minimizing the environmental

footprint associated with transporting these materials across borders

(Kumar et al., 2023; Akinhanmi et al., 2023).

Moreover, targeted policies focusing on gender equity in access

to technological advancements are essential for ensuring that all

farmers, regardless of gender, can benefit from nanotechnology.

Interventions such as specialized training programs, mentorships,

and financial resources tailored to women farmers can empower

them to harness the benefits of these innovations and contribute to

a more equitable agricultural landscape (Gowda et al., 2024). The

potential of nanotechnology can be fully realized by addressing

these complex issues through inclusive practices and equitable

regulations, ensuring that no one is left behind in the agricultural

revolution (Kubiak et al., 2022; Rathore et al., 2024).
8 Future directions and policy
recommendations for adopting
nanotechnology solutions for
managing fungal diseases in crops

As nanotechnology continues to revolutionize the management

of plant fungal pathogens, its long-term success hinges on a

strategic and inclusive roadmap that bridges scientific innovation

with practical application. The future of fungal disease control will

require advanced nanomaterials and delivery systems, supportive

regulatory environments, robust public engagement, and cross-

sector collaboration.
8.1 Advances in nanotechnology research
for fungal disease control

The prospective integration of nanotechnology in combating

fungal pathogens reveals significant potential, particularly in the

agricultural sector, where traditional methods are proving

insufficient. Novel nanomaterials, such as gold nanoparticles

(AuNPs), have demonstrated promising antifungal properties by

inhibiting key biological processes in pathogens like Candida

albicans (Yu et al., 2016). Ongoing investigations into the

mechanisms of action of these nanomaterials are crucial; for

instance, AuNPs inhibit the activity of H+-ATPase, a crucial

enzyme for fungal pathogenicity, demonstrating efficacy in

preventing biofilm formation and host cell invasion (Yu et al.,

2016). Further research is exploring other nanomaterial types, such

as antimony-based compounds, which exhibit antifungal activity

against resistant strains of pathogens like Cryptococcus neoformans,

underscoring a broader trend toward using metal-based

nanoparticles to combat multidrug-resistant fungal infections

(Gerasimchuk et al., 2022).

Future applications will likely focus on sustainably harnessing

these technologies for agricultural purposes. Adopting eco-friendly

nanomaterials could reduce reliance on chemical fungicides, which

negatively impact environmental health and contribute to the
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development of resistance in fungal populations (Zaki et al.,

2021). For example, the use of zinc oxide nanoparticles

synthesized through biotechnological means has demonstrated

efficacy in controlling soil-borne pathogens, offering a green

approach to disease management in crops such as cotton (Zaki

et al., 2021). As these technologies evolve, they could significantly

enhance crop resilience and yield while mitigating health risks

associated with conventional antifungal treatments. Collaborative

efforts among researchers, agricultural stakeholders, and

policymakers would be essential to facilitate the incorporation of

such innovations into standard farming practices. Public health

protection will become increasingly intertwined with advancements

in nanotechnology. The ongoing innovations in nanoparticle

therapies, particularly in combating infections caused by Candida

auris, highlight a critical need for optimized therapeutic options in

both clinical and agricultural settings (Izadi et al., 2024). These

technologies promise to revolutionize infection control by

providing effective targeted therapies against increasingly resistant

fungal strains. Therefore, continuous investment in research and

the translation of laboratory findings into real-world applications

will be vital to harnessing the full potential of nanotechnology in the

fight against fungal diseases.
8.2 Policy framework for nanotechnology
in agriculture

The rapid advancements in nanotechnology necessitate the

establishment of comprehensive regulatory frameworks to ensure

the safe integration of nanomaterials into agricultural practices. The

significant benefits that nanotechnology offers for enhancing plant

disease control must be balanced with potential risks to human

health and the environment (Fisher and Denning, 2023). Current

regulatory guidelines fail to adequately address the complexities

associated with nanotechnology, particularly concerning their

potential to interact unpredictably with biological systems.

Effective policy frameworks must emerge from collaborations

among agricultural stakeholders, health authorities, and

researchers to prioritize public health while promoting

innovation. For a successful regulatory landscape, transparent

protocols should be established to evaluate the safety and efficacy

of nanomaterials in agriculture. Priority should be given to research

on the environmental impacts, bioaccumulation, and toxicity of

nano-enabled products before they are widely deployed (Zhu

et al., 2023).

Additionally, ongoing surveillance andmonitoring practices will be

necessary to assess the effectiveness and safety of these new

technologies over time, particularly as pathogens evolve and

resistance mechanisms emerge. Thus, these combined efforts would

create a dynamic and responsive regulatory environment that could

adapt to the evolving landscape of agricultural nanotechnology.

Furthermore, international cooperation is crucial for developing

coherent policies that address the global nature of both agricultural

trade and pathogens. Global standards could facilitate the movement

and adoption of innovative nanomaterials across borders while
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maintaining consistency in safety measures and efficacy assessments.

Harmonizing these regulations can promote trust among stakeholders

and consumers alike, ensuring that the implementation of

nanotechnology in agriculture is conducted responsibly.
8.3 Public awareness and education on
nanotechnology

Public understanding of and education about nanotechnology’s

role in plant disease control are essential for the successful adoption

of these innovations. Informing farmers and agricultural workers

about the advantages and safe practices related to nanotechnology

can empower them to make informed choices in their agricultural

practices. Community engagement initiatives, encompassing

workshops and training sessions, could serve as platforms to

disseminate knowledge and foster dialogue about the benefits and

risks associated with nanotechnology (Fisher et al., 2022). Awareness

campaigns should focus on demystifying nanotechnology and

articulating its benefits in enhancing crop resilience and reducing

dependency on traditional, potentially harmful fungicides. Farmers

can be educated about specific applications, such as using biogenic

nanoparticles to enhance plant disease resistance while minimizing

environmental impacts. This will enhance farmers’ capacity to

manage fungal diseases effectively and encourage sustainable

practices that safeguard public health and environmental safety.

Moreover, the transparency of information is crucial in

enhancing public trust. Stakeholders in the agricultural sector must

engage in open discussions regarding the regulatory frameworks

governing nanotechnology, ensuring that all stakeholders have a

voice in decision-making processes. Collaborations with educators,

governmental bodies, and scientists can establish a comprehensive

information network that boosts public confidence in these emerging

technologies. Extensive educational materials and resources should be

readily available to various communities engaging with agricultural

practices to foster informed decision-making. This would aid farmers

in the immediate application and encourage young researchers to

explore the potential of nanotechnology further. As public awareness

grows, the collective acceptance and application of nanotechnology in

sustainable agriculture are likely to flourish, leading to healthier

crops, improved public health outcomes, and enhanced food security.
9 Conclusion

Nanotechnology holds transformative potential in managing plant

fungal pathogens, marking a critical shift from traditional chemical-

based approaches toward more precise, sustainable, and health-

conscious solutions. This paper outlines that various nanomaterials—

including metallic nanoparticles, nanocarriers, and green-synthesized

formulations—exhibit potent antifungal activity through membrane

disruption, oxidative stress induction, and targeted delivery. These

innovations not only enhance crop protection and yield but also reduce

the reliance on harmful pesticides, contributing directly to improved

food safety, environmental quality, and public health outcomes.
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However, the promise of nanotechnology must be tempered with

caution. Challenges such as scalability, regulatory gaps, environmental

persistence, and the potential for unintended health impacts must be

addressed through rigorous interdisciplinary research, transparent

policymaking, and the development of global safety standards. Only

through a balanced approach that embraces both innovation and

responsibility can the full benefits of agricultural nanotechnology

be realized.

In light of climate change, growing global food demands, and

new disease concerns, nanotechnology is expected to have a

significant impact on agriculture in the future. We preserve plant

health and advance more public health objectives by incorporating

nanotech solutions into eco-friendly disease prevention techniques,

early disease detection platforms, and sustainable farming systems.

Nanotechnology has the potential to significantly transform the way

we produce, preserve, and consume food as scientific understanding

and legal frameworks evolve, making the agricultural system safer,

healthier, and more resilient for everyone.
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