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Chili pepper exports from Ghana are subject to stringent chemical residue

regulations in key export destinations. Consequently, microbial biopesticides

are urgently needed to complement current nonchemical control options for key

pests of chili pepper, particularly the phytosanitary insect, False Codling Moth

(FCM). Thus, the search for native entomopathogenic fungi in Ghanaian farms

was initiated in 2023. Seven Metarhizium isolates (UGSUHCI, UGJKCS9,

UGJKCS10, UGAFMF8, UGAFM F12, UGNAKC1 and UGKAP1), obtained from

agricultural soils in Ghana, showed high virulence against the soil-dwelling

stages of FCM under laboratory conditions. To facilitate the selection of these

virulent isolates for development into a mycoinsecticide for FCM, the UV

sensitivity and virulence following UV exposure were investigated for all seven

isolates in this study. All isolates exhibited extreme susceptibility to UV radiation in

comparison to similar research. Exposure to simulated full-spectrum solar

radiation at 0.6 W/m2 for 30 min reduced relative conidial germination by 28–

40% 48 h following exposure, while 60 min exposure killed all isolates. High

insect mortalities were recorded for four isolates, regardless of UV radiation. The

findings suggest that an effective UV-protectant formulation could be required

for success in the field against fruit and foliar pests of chili pepper, including those

of FCM.
KEYWORDS

chili pepper, entomopathogenic fungi, False Codling Moth,Metarhizium spp., simulated
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1 Introduction

Chili pepper (Capsicum annuum L.) is a key ingredient in daily

diets of Ghanaians, making it the fourth most planted crop in the

country, with a current annual average of 140,000 MT (GSS, 2014;

MoFa-IFPRI, 2020). Besides the high local demand, this crop is one

of Ghana’s top export vegetables to the lucrative European Union

(EU) market, which increases annually, especially for the Legon 18

variety, known for its exceptional taste and long shelf life (GEPA,

2021). Chili pepper is therefore cultivated year-round in all 16

regions in Ghana, with the Volta, Eastern and Northern regions of

Ghana being the highest producers (GEPA, 2018).

False Codling Moth (FCM) (Thaumatotibia leucotretaMeyrick,

Lepidoptera: Tortricidae) is the major impediment to export, as this

pest is strictly regulated as a phytosanitary organism in the EU

(EPPO, 2013), Ghana’s main chili pepper export market. Local

production is significantly constrained by this pest, whose larvae

develop within fruits, resulting in immature fruit ripening,

dropping of fruits and fruit decay, which lead to yield losses

(Adom et al. , 2023; Adom et al., 2024). The frequent

interceptions of this pest resulted in the EU banning the import

of chili peppers from Ghana between 2015 and 2017. This, together

with the prohibition of two other vegetables (gourd and eggplant),

cost the nation an estimated export revenue loss of USD 30 million

(EUROPHYT, 2014; Fening et al., 2017). This has resulted in a

drastic reduction in chili pepper exports in Ghana, as demonstrated

by decreasing export volumes and values between 2010 to 2014

(984,374–1,079,882 kg with corresponding earnings of USD

350,442–1,184,964 (GEPA, 2021) compared to 2018 to 2021

(USD 351,000–87,000) (GEPA, 2018; GIRSAL, 2025).

The use of synthetic pesticides, which remains the main control

method for FCM in Ghana, has not been sufficient, partly due to the

narrow window for controlling the inconspicuous eggs and

neonates of FCM on fruits. Apart from unsatisfactory control

with conventional pesticides, they are also stringently regulated by

the key export markets and have adverse effects on the

environment, non-target organisms, and human health (Cech

et al., 2023; Wan et al., 2025). Therefore, effective and sustainable
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nonchemical control options are needed to control this pest in

Ghana. Although commercially available Bacillus thuringiensis (Bt)-

based products in Ghana have been proven useful in the control of

the above-ground life stages of FCM (Adom et al., 2023), additional

control agents for the non-feeding soil-dwelling life stages of the

pest are needed, leading to the search for native entomopathogenic

fungi (EPF).

Seven native EPF obtained from agricultural soils in Ghana

(Table 1) have shown promise as control agents for the soil-

dwelling stages of FCM under laboratory conditions, inducing

over 80% pupal mortality of FCM (Acheampong M.A.

Unpublished data). However, abiotic environmental constraints,

particularly ultraviolet (UV) radiation, are well documented to be

among the key efficacy impeding factors of EPF in the field and

must be factored into the isolate selection process (Braga et al.,

2001a; Posadas et al., 2012; Kaiser et al., 2019; Acheampong

et al., 2020a).

Among the UV radiation emitted from sunlight, UV-B is the

most damaging to entomopathogens (Rangel and Roberts, 2018),

inhibiting replication and inducing mutations and cellular mortality

(Rangel et al., 2006; Nascimento et al., 2010; Wang et al., 2019),

whereas UV-A exposure stimulates the generation of detrimental

radicals, which deactivate propagules (Rangel et al., 2006).

Nevertheless, the susceptibility of EPF to UV radiation is isolate

and species dependent (Fernandes et al., 2007; Posadas et al., 2012;

Fernandes et al., 2015; Acheampong et al., 2020a; Licona-Juárez

et al., 2023; Rangel et al., 2023). Consequently, identifying UV-

resilient EPF strains and formulating them with appropriate UV

protectants can enhance their persistence in UV-exposed

environments, resulting in greater efficacy against pests (Posadas

et al., 2012; Fernandes et al., 2015; Kaiser et al., 2019). While UV-

radiation may not be the most inimical abiotic factor for the EPF

when applied to control the soil-dwelling stages, the biopesticide

product developed will ultimately be used to also target above-

ground stages of FCM and other foliar pests of pepper. Thus, this

research investigated the UV tolerance of all seven promising native

EPF isolates to select the most suitable for the chili

pepper environment.
TABLE 1 Origin and molecular analyses of seven soil-derived Ghanaian Metarhizium spp. used in the study.

Isolate Geographical origin Farm type1 Date of isolation GenBank accession number2

UGJKCS9 5.265305 N 1.340426 W Cocoa 16/02/2024 *

UGJKCS10 5.265125 N 1.339959 W Cocoa 16/02/2024 PQ778821

UGSUHC1 6.05856 N 0.40275 W Cocoa 03/12/2023 PQ800172- PQ800173

UGNAKC1 6.076370 N 0.374230 W Cocoa 03/12/2023 PQ781266

UGKAP1 6.5885008 N 0.8282585 W Chili pepper 07/12/2023 PQ805341-PQ805342

UGAFMF8 5.7824166 N 0.608745 E Maize 05/05/2024 PQ778958

UGAFM12 5.783545 N 0.610471 E Maize 05/05/2024 *
1All isolates were baited with Galleria mellonella.
2Molecular analyses based on the ITS1 and ITS4 regions.
*Metarhizium anisopliae sensu lato.
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2 Materials and methods

2.1 Source of insects, fungal isolates and
culture conditions

All seven native Metarhizium isolates were obtained from the

Entomopathology Laboratory of the African Regional Postgraduate

Programme in Insect Science (ARPPIS), University of Ghana,

where conidia had been stored on Sabouraud dextrose agar

(SDA) slants at 4°C. These EPF were isolated from soils from

chili pepper, maize and cocoa farms in the Central, Eastern and

Greater Accra regions of Ghana using Galleria mellonella

(Lepidoptera: Pyralidae) (Goble et al., 2010) (Table 1). All isolates

were passed through FCM fifth instar larvae once before use,

following the protocol of Acheampong et al. (2020a). Cadaver

cultures were maintained on SDA medium supplemented with 50

mg/L chloramphenicol (SDAC) and kept at 4°C, serving as stock

cultures for the UV assays. The FCM final (fifth) instar larvae used

in this study were obtained from the Centre for Biological Control,

Rhodes University, Makhanda, South Africa, where a continuous

rearing culture of this insect is held using an artificial larval diet

(Moore et al., 2014).
2.2 Simulated solar radiation device

Irradiation tests were carried out in a Q-SUN® Xe-3-HC (Q-

Lab Corporation, Westlake, OH, USA) solar radiation simulator.

The Q-SUN® reproduces full-spectrum solar radiation from 295 to

780 nm, using three 1800 W Xenon arc lamps and a Daylight-Q

filter, which excludes radiation below 295 nm (Dias et al., 2018).

The uniform spectral distribution on irradiation surfaces produced

by Q-SUN® lamps, enhanced by mirrored walls, facilitates

reproducible results. The strong correlation of these lamps to

sunlight is well established (https://www.q-lab.com) and recently

validated in assessing UV tolerances of EPF (Luo et al., 2017; Dias

et al., 2018; Acheampong et al., 2020a).

The Q-SUN® was calibrated to 0.6 W/m2 irradiance at a

temperature of 23.2 ± 0.66°C and relative humidity (RH) of 63 ±

10.4% RH. This irradiance set point is less than the average annual

daily solar radiation in Ghana of 4–6 kWh/m2 (Edjekumhene and

Brew-Hammond, 2001; Aboagye et al., 2021). The Quaite-weighted

(biologically effective UV dosage capable of DNA damage in some

fungi including EPF) (Quaite et al., 1992; Braga et al., 2001b)

irradiance in the Q-SUN® at 0.6 W/m2 is 1335 mW/m2, which

also approximates noon irradiance during summer in Sao Jose dos

Campos (Luo et al., 2017; Dias et al., 2018), South-Eastern Brazil

(Dias et al., 2018), with a similar climate to Southern Ghana. Thus,

the irradiance used could be lower than the Quaite-weighted noon

irradiance in Ghana’s chili pepper producing regions. In a previous

study, 3 h of exposure to simulated full-spectrum solar radiation in

the Q-SUN® at 0.6 W/m2 killed over 90% of conidia of 11 tested

EPF isolates (ARSEF collections of Aschersonia aleyrodis (Brazil);

Beauveria bassiana, Isaria fumosorosea, Metarhizium robertsii and

Tolypocladium inflatum from USA; Lecanicillium aphanocladii
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from Brazil; Marianneae pruinose from China, M. anisopliae s.l.

from Mexico, M. brunneum from New Zealand, Simplicillium

lanosoniveum from French Guiana, and T. cylindrosporum from

Nepal) after 48 h of exposure, whilst germination in their non-

irradiated controls exceeded 95% after 24 h (Dias et al., 2018). This

result demonstrated that the selected irradiance set point and a

maximum exposure duration of 2 h were appropriate for

determining the tolerance of these EPF.
2.3 Effect of simulated solar radiation on
conidial germination of the isolates

Conidial viability of suspensions to be applied was determined

by plating aliquots of conidial suspension [50 mL of 105 conidia/mL

from 14-d-old cultures suspended in Tween 20 (0.01% v/v)] onto

SDA medium in three replicate Petri plates (Polystyrene, 60 × 15

mm). Plates were incubated at 26 ± 1°C for 12 h, after which the

germinated and non-germinated conidia per plate, out of 300

conidia, were evaluated. Germination was assessed at 400×

magnification; conidia were considered germinated when the

germ tube was longer than the diameter of the conidium (Rangel

et al., 2005).

Only three fungal isolates and their control were irradiated on

each occasion due to the limited space in the Q-SUN®. Stock

cultures of each isolate were sub-cultured on SDAC and incubated

for 12–15 days at 27°C, 60% RH, on a 12 h photoperiod. Conidia

produced were then harvested from colonies, suspended in sterile

distilled water supplemented with 0.01% Tween 20, and adjusted to

1 × 105 conidia/mL. For each isolate, a 50 µL suspension was spread

across a 60 mm SDA Petri plate in four replicates for four exposure

periods, including controls. Aluminum foil was used to wrap

control plates to block UV radiation (Braga et al., 2001a;

Acheampong et al., 2020a). The Petri plates were exposed to

simulated full-spectrum solar radiation in the Q-SUN® within 30

min after inoculation at 0.6 W/m2 for 15, 30, 60 and 120 min,

corresponding to total doses of 1.20, 2.40, 4.81 and 9.61 kJ/m2,

respectively. Following irradiation, plates were incubated in the

dark at 20 ± 1°C. The number of germinated (conidia with germ

tubes) and non-germinated conidia per plate, out of 300 conidia,

was assessed 24 h and 48 h following irradiation, using an optical

microscope. The entire experiment was repeated three times for

each isolate, using fresh conidial suspension.
2.4 Effect of simulated solar radiation on
the virulence of fungal isolates

For each isolate, 1.5 mL conidial suspension (106 conidia/mL

suspended in 0.01% Tween 20) in a 10 mL sterile glass vial was

exposed to the same dose and irradiance period as the UV tolerance

assay. After exposure, the vial was vortexed for 1 min, and 0.1 mL of

suspension was then pipetted and spread in a 60 mm sterile plastic

Petri plates lined with sterile filter paper at four replicates. Ten FCM

fifth instar larvae were immediately added to each Petri plate and
frontiersin.org
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incubated for 14 days at 25°C. Non-irradiated inoculated vials of

each isolate (wrapped with aluminum foil to block UV radiation)

and non-inoculated control insects (in sterile Petri plates lined with

filter paper and treated with 0.1 mL of 0.01% Tween 20) served as

controls. The number of dead and live insects was assessed daily for

14 days after treatment. Death due to mycosis was verified by

surface sterilizing cadavers in 0.5% sodium hypochlorite (3.5%

active ingredient), followed by 70% ethanol for 2 min each and

kept in Petri plates lined with filter papers, and moistened with

sterile water for seven days at 25°C. The entire experiment was

repeated twice.
2.5 Statistical analyses

The percentage of germination of all isolates relative to control

plates was calculated according to Acheampong et al. (2020a). The

60- and 120-min fungal exposure data for both UV and

pathogenicity assays were excluded from the analysis as conidia

of all isolates were killed at both periods. The relative germination

data were analyzed using a generalized linear model (GLM) with

gamma error distribution (link= ‘inverse’), which produced the best

goodness of fit (lowest Akaike Information Criteria value) based on

Likelihood Ratio Test (LRT) (Acheampong et al., 2020a). A three-

way analysis of deviance (ANODEV) was applied to the model and

contrasted using the ‘emmeans’ R package (Lenth, 2024), adjusted

with Tukey’s HSD test (P ≤ 0.05). The cumulative FCM larval, pupal

and adult mortality data at each exposure over the 14-day period

were pooled and firstly fitted to a logistic regression in a GLM with

binomial error distributions to determine an interaction effect. The

mortality data for each exposure period were then subjected to

logistic regression followed by pairwise comparison of treatment

means using ‘emmeans’, adjusted with Tukey’s HSD test (P ≤ 0.05),

where statistical differences were noted. All analyses were done in R

version 4.4.2 (R Core Team, 2024).
3 Results

3.1 Effect of simulated solar radiation on
conidial germination of the isolates

The three-way ANODEV showed that only fungal isolate (LRT,

c2 = 0.38, df = 6, P < 0.001) and the exposure period (LRT, c2 =
1.67, df = 1, P < 0.001) significantly influenced conidial

germination. The incubation period (LRT, c2 = 0.01, df = 1, P =

0.182) and associated interactions [fungal isolate × incubation

(LRT, c2 = 0.01, df = 6, P = 0.967), incubation period × exposure

period (LRT, c2 = 0.00, df = 1, P = 0.586), fungal isolate × exposure

period × incubation period (LRT, c2 = 0.00, df = 6, P = 0.999)] were

not significant. However, fungal isolate × exposure period (LRT, c2

= 0.09, df = 6, P = 0.011) was significant.

Exposure to simulated solar radiation for 15 min (1.2 kJ/m2)

had little impact on four fungal isolates, with their relative

germination exceeding 82% after 24 h of incubation (Figure 1A).
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UGAFMF8 was the most susceptible isolate at this exposure time,

with 72% relative germination 24 h following incubation.

Exposure for 30 min (2.4 kJ/m2) reduced conidial germination

of isolates by 29–44% after 24 h of incubation. There were, however,

indiscernible differences in susceptibility among six of these isolates

at this exposure period. UGAFMF12 was the most susceptible

isolate at this exposure period, only differing significantly

from UGKAP1.

For both exposure periods, the incubation of isolates for a

further 24 h increased germination only marginally. The relative

germination of isolates ranged from 74–87% and 60–72% for the

15- and 30-min exposure periods, respectively, after 48 h of

incubation (Figure 1B). Exposure to simulated solar radiation for

60 min (4.81 kJ/m2) and 120 min (9.61 kJ/m2) killed conidia of all

tested isolates.
3.2 Effect of simulated solar radiation on
the virulence of the isolates

Fungal isolate (LRT, c2 = 675.88, df = 14, P < 0.001) and

exposure period (LRT, c2 = 9.80, df = 1, P = 0.002) significantly

influenced pupal mortality. However, their interaction was not

significant (LRT, c2 = 17.82, df = 14, P = 0.215).

For each isolate, insect mortality induced by irradiated conidia for

15 (1.2 kJ/m2) and 30 (2.4 kJ/m2) min was not significantly different

from the non-irradiated control, with the exception of UGJKCS10,

whose mortality in both treatments differed at the shortest exposure

period (Figure 2). High pupal mortalities were recorded for four

isolates (UGJKCS9, UGJKCS10, UGAFMF8 and UGAFMF12)

regardless of UV radiation. Mortality induced by these isolates

ranged from 73–82% and 67–75% at 15- and 30-min exposures,

respectively. The mortality of the insects in the control, which was

neither irradiated nor inoculated, remained at 5% and was

significantly lower than all treatments in all bioassays (Figure 2).
4 Discussion

UV radiation is well established to be the most important

abiotic environmental constraint to the efficacy of biopesticides in

the field. However, the location of the targeted insect pest could help

prioritize superior UV protectants in the formulation stage of

biopesticide development. While UV radiation may not be the

most important abiotic efficacy impeding factor for EPF applied to

control the soil-dwelling stages (pre-pupating final larvae, pupae) of

FCM in this research, other fruit and foliar pests of pepper,

particularly thrips, aphids, whiteflies and fruit flies, are equally

important and would be targeted. EPF have been used to

successfully suppress thrips (Arthurs et al., 2013; Panyasiri et al.,

2022), aphids (Mantzoukas et al., 2022) and whiteflies (Avery et al.,

2020; Zulfitri et al., 2020) on chili pepper plants in other countries.

Furthermore, the above-ground stages of the targeted pest of this

research (adults, eggs and neonates) ought to be controlled, hence

the need to factor UV resilience in the strain selection.
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All indigenous isolates tested in this study exhibited extreme

sensitivity to UV radiation, which generally aligns with other EPF-

UV sensitivity studies (Braga et al., 2001a; Posadas et al., 2012;

Kaiser et al., 2019; Acheampong et al., 2020a). Nonetheless, the total

inactivation after only 1 h of exposure contradicts previous findings

using the same simulated sunlight device and irradiance (Dias et al.,

2018) and others where propagules were completely killed or had a

> 50% reduction in viability only after 2–8 h of exposure using

monochromatic (Braga et al., 2001a, Braga et al., 2002; Fernandes
Frontiers in Fungal Biology 05
et al., 2007; Santos et al., 2011; Kaiser et al., 2019) and

polychromatic (Alves et al., 1998; Leland and Behle, 2005; Luo

et al., 2017) light sources, even at higher irradiances. It is also

acknowledged that isolates inherent genetic variability, and

geographical origin, in addition to methodological differences

(formulation status, culture age, conidial densities and condition

in storage and prior to irradiation, amongst others) in some of the

aforementioned studies could account for the differences in UV

sensitivities compared to the present study.
FIGURE 1

Relative percentage germination of seven Metarhizium isolates after exposure to simulated solar radiation (Xenon arc lamps from 295 to 780 nm at
0.6 W/m2, 28 ± 1°C and 46 ± 3.19% RH) for 0 (control), 15 (1.2 kJ/m2) and 30 (2.4 kJ/m2) min, and incubated for 24 (A) and 48 (B) h at 20 ± 1°C.
Error bars are the standard errors of three independent experiments with a fresh batch of conidia. All statistical comparisons were done for each
exposure period (but not between each isolate at the two exposure periods). Means within each exposure period with the same lowercase letters
are not significantly different (‘emmeans’ adjusted with Tukey’s HSD test, P > 0.05).
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Exposure to simulated solar radiation for both 15 and 30 min

had no impact on the pathogenicity of all seven EPF isolates

investigated in this study. These findings corroborate those of

Fernández-Bravo et al (2017); Fernández-Bravo et al, 2024) who

reported a negative correlation between loss of viability and

infection potential against Mediterranean fruit fly (Ceratitis

capitata) of three Beauveria bassiana (EABb 10/225-Fi, EABb 09/

20-Fi and EABb 09/28-Fil) and a Metarhizium brunneum (EAMa

01/58-Su) isolates, following exposure to UV-B radiation (1200

mW/m2) for 6 h. A similar insignificant effect of UV radiation (UV-
Frontiers in Fungal Biology 06
A and UV-B) on mortality of FCM was reported with a B. bassiana

and three Metarhizium spp. under laboratory conditions by

Rossouw et al. (2023). Likewise, 8 h of UV-A exposure (31.514

mW/m2) of Leptolegnia chapmanii zoospores did not affect its in

vitro virulence against yellow fever mosquito (Aedes aegypti) larvae

(Páramo et al., 2015). However, Rossouw et al. (2023) recorded low

persistence and mortalities in field trials with unformulated

(aqueous conidial suspension) isolates and highlighted the need

for an appropriate UV-protectant formulation to enhance field

persistence and efficacy.
FIGURE 2

Cumulative percentage mortality of larvae, pupae and adults of T. leucotreta treated with Metarhizium isolates exposed to simulated solar radiation
(Xenon arc lamps from 295 to 780 nm at 0.6 W/m2, 28 ± 1°C and 46 ± 3.19% RH) for 0 (control), 15 (A) and 30 (B) min and incubated for 14 days at
25°C. Error bars are the standard errors of three independent experiments with a fresh batch of conidia. Means within each exposure period with the
same lowercase letters are not significantly different (‘emmeans’ adjusted with Tukey’s HSD test, P > 0.05).
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Although the most UV-tolerant isolate was elucidated at 30

min, isolates may need to persist for longer than this period to

achieve success against insect pests in the phyllosphere

environment of chili pepper in Ghana. However, the

microclimate within the hypogeal environment of chili pepper

could be conducive for infection of the soil-dwelling stages of

FCM due to possible shade protection by the canopy of this

plant, as reported in other crop systems. For instance,

Betabaculovirus cryleucotreta, which is a virus of FCM, exhibited

better persistence on the southern side of the trees in Hermitage

Farm (33°32’02” S and 25°40’13” E) in the Sunday’s River Valley,

Eastern Cape, South Africa, as opposed to the northern sides (which

receives higher UV exposure) because of some protection afforded

by the trees themselves (shade) (Mwanza, 2015). In recent years,

EPF isolates occurring in the phyllosphere environment have been

sought after due to their perceived greater tolerance to UV radiation

and heat than isolates obtained from soils, with some evidence

(Vidal et al., 1997; Bidochka et al., 2001; Braga et al., 2001b;

Bidochka et al., 2002; Jaronski, 2010). However, contrary reports

exist (Fargues et al., 1996, Fargues et al., 1997; Leland and Behle,

2005; Fernandes et al., 2007; Fernández-Bravo et al., 2016;

Acheampong et al., 2020a; Acheampong et al, 2020b). This

indicates that UV tolerance could depend more on the isolate

than the geoclimatic origins or isolation habitats.

Given the high UV susceptibility of these isolates, a suitable

formulation will need to be identified if they are to be used in a

commercial setting. Greenyield Ltd (Pato Branco, Paraná, Brazil)

has developed a novel adjuvant product, Green Turbo®, for the

biopesticide industry. This product, which contains extracts of

algae, plants and essential oils, provided excellent in vitro

photoprotection of conidia of some entomopathogenic and

mycoparasitic fungi (Acheampong, M. A. Unpublished data). The

protection of propagules against UV radiation of this formulation,

although yet to be established, has been attributed to the potential

mycosporines and mycosporine-like amino acids (MAA) produced

as secondary metabolites by the algae, coupled with the oils. The

exact oils used in Green Turbo® formulation are not known;

however, several mineral and vegetable oils are well documented

to be capable of protecting propagules of EPF against UV radiation

(Leland and Behle, 2005; Posadas et al., 2012; Kaiser et al., 2019;

Acheampong et al., 2020a) and are widely utilized in the

biopesticide industry. Similarly, mycosporines and MAA are well-

known organic sunscreens produced by algae and other organisms

(Katoch et al., 2016; Chrapusta et al., 2017; Geraldes and Pinto,

2021; Punchakara et al., 2023) and are widely used in the

pharmaceutical and cosmetic industries (Chrapusta et al., 2017;

Rosic, 2019; Thiyagarasaiyar et al., 2020). Thus, the new UV-

protectant adjuvant formulation, Green Turbo®, is currently

being investigated for potential photoprotection of the EPF

isolates studied. Nonetheless, the UV sensitivity findings in this

study indicate that application of isolates at sunset could ensure

persistence on foliage and fruits for infection of nocturnal stages of

the main targeted insect pest of this research (FCM), provided

attachment of conidia to penetration of the insect host occurs

within 24 h as proposed (Jaronski, 2010) and observed in
Frontiers in Fungal Biology 07
Anastrepha fraterculus (Wiedemann; Diptera: Tephritidae)

(Bechara et al., 2011).
5 Conclusions

The manuscript highlights the potential of seven native

Metarhizium spp. isolates from Ghana as biological control agents

against FCM affecting chili pepper. The main perspective of the study

is that, despite their promising virulence against the soil-dwelling

stages of FCM, all isolates exhibited extreme sensitivity to UV

radiation, with complete conidial inactivation occurring after just

one hour of simulated solar exposure. However, the pathogenicity of

the isolates remained unaffected at lower exposure durations (15–30

min), suggesting their short-term viability in field conditions. The

study emphasizes the importance of developing UV-protectant

formulations or applying the isolates during low UV periods (e.g.,

at sunset) to potentially enhance persistence and infection success

against above-ground pests. The key limitation is the poor UV

tolerance of the isolates, which significantly hinders their potential

as stand-alone biopesticides under natural sunlight, thereby requiring

further research on formulation and application strategies to ensure

practical field application.
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Valverde-Garcıá, P., and Quesada-Moraga, E. (2017). UV-B radiation-related effects
on conidial inactivation and virulence against Ceratitis capitata (Wiedemann)
(Diptera; Teph-ritidae) of phylloplane and soil Metarhizium sp. strains. J. Invertebr.
Pathol. 148, 142–151. doi: 10.1016/j.jip.2017.06.012

Fernández-Bravo, M., Garrido-Jurado, I., Valverde-Garcıá, P., Enkerli, J., and
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