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Connected automated vehicles (CAVs) hold promise to replace current traffic detection
systems in the near future. However, traffic state estimation, particularly flow rate, poses a
major challenge at low CAV penetration rates without other supporting infrastructure of
sensors. This paper proposes flow rate estimation methods using headway data from
CAVs. Specifically, Bayesian inference and deep learning based methods are developed
and compared with a naïve method based on a simple arithmetic mean of observed
headways. The proposed methods are investigated via numerical experiments to evaluate
their performance with respect to the CAV penetration rate, traffic demand, and availability
of historical data. The methods are further validated with real data. The results show that
the Bayesian inference based method, which estimates the flow rate distribution by
integrating current (real-time) data and previous knowledge, can perform well even at
low penetration rates with good prior information. However, in high CAV penetration, its
relative advantage to the other methods diminishes because the prior information always
influences the flow rate estimation. The deep learning basedmethod can be effective with a
large amount of data to train the model; however, in low CAV penetration, it tends to
converge to the mean of target output values regardless of the observed data. At last, in
relatively high CAV penetration, the relative advantage of the advanced methods is
negligible and in fact, the naïve method is preferred in terms of accuracy as well as
efficiency.
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INTRODUCTION

Traffic data collected by various detector systems is fundamental to traffic operations. Conventional
detectors, such as inductive loop detectors, typically provide vehicle speed, flow rate, and occupancy
at fixed locations, and traffic states can be estimated using these data. On the other hand, connected-
automated vehicles (CAVs) are expected to be on our roads in the near future and fundamentally
change how we sense and control traffic. CAVs can collect detailed and accurate data about
themselves and the surrounding vehicles through advanced sensing, and they can share these high-
resolution data in real time through V2V (vehicle-to-vehicle) or V2I (vehicle-to-infrastructure)
communication. Since CAVs can collect and provide traffic data, they can replace the current
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infrastructure-based detector systems which are costly to install
and maintain. Recognizing this potential, a number of advanced
concepts of traffic control using CAVs have emerged in recent
years (Hegyi et al., 2013; Roncoli et al., 2015; Han et al., 2017; Han
and Ahn, 2018).

In early stages of CAV adoption, traffic data may be obtained
from both traditional detectors and CAVs. However, with the
high cost of detector maintenance, there may be desire for
agencies to phase out traditional detectors quickly if CAV data
alone can provide sufficient information. Furthermore, in many
areas, detector coverage is not sufficient enough to estimate traffic
states with reasonable accuracy. Thus, deriving traffic
information mainly using CAV data could reduce reliance on
traditional sensors and extend the data collection coverage. The
initial low penetration rate of CAVs, however, is a significant
obstacle to obtain reliable traffic information. To overcome this,
various methods to estimate traffic states using limited data from
CAVs, connected vehicles (CVs), or probe vehicles have been
widely developed in the literature (Seo et al., 2017). For example,
Bekiaris-Liberis et al. (2016) presented a macroscopic model-
based approach to estimate density and flow rates in mixed traffic
of conventional and connected vehicles. They used data of the
average speed of CVs, assuming that it is similar to the average
speed of the entire traffic flow, and a total flow rate from
conventional detectors. The proposed method was validated
via microscopic simulation considering a low penetration rate
of CVs (Fountoulakis et al., 2017). Later, Bekiaris-Liberis et al.
(2017) also developed a traffic state (per-lane density, on-ramp
and off-ramp flows) estimation method using CV data with total
flow from fixed detectors. This method was evaluated in
microscopic simulation with NGSIM data (Papadopoulou
et al., 2018). While these previous studies demonstrate
satisfactory estimation of traffic states in low penetration of
CVs, they still require conventional detectors, particularly for
flow rate, albeit fewer than what the current detecting system
requires.

On the other hand, Seo et al. (2015) developed a flow and
density estimation method based on the Edie’s generalized
definitions (Edie, 1963) only using data from probe vehicles
that have ability to detect spacing with its leading vehicle.
They performed a field experiment with 20 probe vehicles and
verified that the proposed method could effectively capture
important traffic dynamics such as queue propagation, even at
a very low penetration rate of probe vehicles. Similarly, Seo and
Kusakabe (2015) developed a method to estimate traffic states
from probe vehicle data using the flow conservation law. They
estimated the number of vehicles between two neighboring probe
vehicles based on their average headways (over distance) with
their respective leaders (non-probe vehicles) and the average time
(over distance) interval between the probe vehicles. These
methods clearly present the possibility of using CAV-only data
to estimate traffic states, and the simple conservation law
enhances the accuracy without any exogenous assumptions
such as a fundamental diagram. However, they assumed that
the relationship between a probe vehicle and its leading vehicle
represents the traffic state at large, and therefore, significant error
is expected when the headway deviation among vehicles is large,

particularly in free-flow traffic. Thus, reliable estimation of traffic
states, particularly flow rate, only using CAVs remains a major
challenge.

The methods introduced above are grounded on sound traffic
flow theory. Nevertheless, they show limitations in their
performance or applications largely due to their limited ability
to capture complex features in the traffic data. On the other hand,
state-of-the-art data-driven methods have emerged to address
feature complexity and to overcome data scarcity. Among them,
Bayesian inference is a pioneering method in Statistics to derive
results particularly when data is limited. This method estimates a
conditional distribution on the observed data by integrating prior
knowledge. In traffic engineering, Bayesian methods are widely
used to estimate capacity (Ozguven and Ozbay, 2008), travel time
(Jintanakul et al., 2009; Fei et al., 2011; Hofleitner et al., 2012), or
traffic state (Neumann et al., 2013; Kim and Wang, 2016). Since
traffic exhibits recurrent daily patterns, past traffic information
can complement limited real-time data from CAVs. Thus,
Bayesian inference is a good candidate method to estimate
traffic states in a CAV environment. Nonetheless, research in
this regard is largely missing in the current literature.

Another promising data-driven method is machine learning
algorithms, such as deep learning. Despite its inability to provide
physical insight, a notable advantage of deep learning is that it can
capture complex features of data to describe a target value even if
the relationship is nonlinear and too complex to describe by
conventional methods. In traffic engineering, deep learning is
widely used in many areas such as vehicle behavior modeling
(Wei et al., 2010; Khodayari et al., 2012; Mathew and
Ravishankar, 2012; Zheng et al., 2013; Papathanasopoulou and
Antoniou, 2015; Simonelli et al., 2015; Lefevre et al., 2016;
Motamedidehkordi et al., 2017; Zhou et al., 2017) and future
traffic state predictions (Ma et al., 2015; Fusco et al., 2016; Julio
et al., 2016; Polson and Sokolov, 2017). For example, Polson and
Sokolov (Polson and Sokolov, 2017) developed a deep learning
architecture for short-term flow prediction. The proposed model
was validated with loop-detector data in the Chicago area and
showed reliable prediction performance in capturing nonlinear
changes of flow rate. Clearly, deep learning has the huge potential
to link (sparse) CAV data to traffic states at large, but its potential
has not been fully explored, including estimation and prediction
of flow rate.

Based on the above review, we find that advanced data-driven
methods have the potential to provide better estimation and
prediction capabilities. However, a systematic investigation into
their advantages and their limitations for traffic flow estimation is
currently lacking. To this end, this paper aims to address 1)
whether promising data-driven methods can be used to estimate
traffic states, more specifically flow rates in free-flow traffic, using
sparse CAV data; 2) how these methods perform in different
traffic conditions (e.g., demand, CAV penetration rate); and 3)
how much better these methods can perform compared to the
simple average approach. Specifically, we consider three methods:
1) a naïve method that relies only on the observed CAV data as a
baseline, 2) Bayesian inference based method that integrates real
time CAV data and historical traffic data, and 3) deep learning
based method that extracts complex relations between CAV
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headways and traffic state directly from large amount of data.
This paper evaluates three methods through numerical
experiments and validates them with real data. The evaluation
results show how the performance of each model fares against
others in different traffic situations (e.g., different flow rates, CAV
penetration rates, etc.), casting light on in what situation each
method should be preferred.

Note that we focus on estimating the flow rate in free-flow
states because it is an important indicator for predicting traffic
breakdown (Elefteriadou et al., 1995; Persaud et al., 1998; Han
and Ahn, 2018). A major challenge is that in a free flow state,
vehicle headways (both conventional vehicles and CAVs) are
distributed randomly due to the randomness in vehicle arrivals
(i.e., dictated by the demand). Therefore, partial CAV headway
data may not represent the flow rate of traffic at large. On the
other hand, in a congested state, vehicle headways show less
variation as vehicles are constrained, and random arrivals are
much less likely. Thus, we expect partial CAV headways to
represent the flow rate better in congested traffic. In addition,
speed estimation from CAV data is more straightforward as the
partial CAV speed is similar to the traffic speed (Elfar et al., 2018).
However, speed does not vary significantly in free-flow traffic and
thus, is not a good indicator for predicting traffic breakdown.

The main findings of this paper are as follows. The proposed
Bayesian inference based method can show good performance
even at a low CAV penetration rate (< 20%) due to its reliance on
prior (historical) information. However, as the CAV penetration
or demand increases, its relative advantage to the other methods
(a deep learning based method and even a simple average) wanes
since the prior information will always influence the flow rate
estimation. Particularly, in high CAV penetration, where real-
time CAV information alone suffices for accurate flow estimation,
inclusion of prior information can actually hinder the accuracy.
The narrower the prior distribution is, the stronger the influence
of prior information would be for flow estimation. In contrast, the
deep learning based method is effective for estimating the flow
rate using only CAV data when the CAV penetration rate is
moderate to high (>20%). However, when the data is sparse (in
light traffic or low penetration), the method produces an estimate
close to the mean of the training data regardless the observed real-
time data. Finally, at a relatively high CAV penetration rate
(>70%), the relative advantage of the advanced methods is
negligible, and in fact, the naïve method is preferred in terms
of accuracy as well as efficiency.

This paper consists of five sections. Methods describes the
proposed methods, and Numerical Experiment describes the
numerical experiments to investigate the features of each
method in various traffic conditions. In Validation With Real
Data, the methods are validated with real data, and conclusion
and discussion are provided in Section Conclusion and
Discussion.

METHODS

This section presents methods that estimate a flow rate using
CAV data. Firstly, we assume a CAV will share its own state (e.g.,

location, speed) with roadside infrastructure and also measure
surrounding vehicles (e.g., spacing, relative speed) through its
sensors. In this context, we consider that the following data are
available over time from CAVs, as illustrated in Figure 1.

• Location, l, and Speed, v, of CAV.
• Spacing between CAV and its leading vehicle, s.1

For simplicity, we also assume the data from CAVs have
negligible error. Using these data, we can easily estimate (time)
headway between a CAV and its leading vehicle, h (� s/v). And,
using headway data in a certain time interval, T , a flow rate will be
estimated through the proposed methods in the following
subsections2. We assume that CAV data can be collected
continuously over time and location, and thus, the flow rate
can be estimated in the entire time-space domain.

Method 1: Naïve Method (Baseline)
The first method is the simplest but naïve method that relies only
on observed CAV data. Other traffic information is assumed
unavailable. This method will serve as the baseline to evaluate the
performance of the more advanced methods, methods 2 and 3. In
this method, the arithmetic mean of headways is used to estimate
a flow rate, q̂, expressed as:

q̂ � E(h)− 1 � (∑N
i�1hi
N

)− 1
(1)

FIGURE 1 | Illustration of available data from CAVs over time.

1CAV might measure the spacing of following vehicle as well. However, in this
paper, we only consider data related leading vehicle since the detected rear range is
typically shorter than front range. If the behind data is available, however, proposed
method can be operated with more data, and the framework and features of
proposed methods are same.
2Density can be derived using spacing data of CAV through the same framework in
following sections. But, for the Bayesian inference (in Bayesian Inference), enough
prior knowledge and likelihood function of spacing for given density would be
required.
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where hi is the headway between ith CAV and its leading vehicle,
and N is the number of CAVs in the time interval, T . Then, the
standard error of E(h), σE(h), is

σE(h) � δ��
N

√ (2)

where δ is the standard deviation of headway for all vehicles,
including CAVs and conventional vehicles. Equation 2 shows
that this method is affected by 1) traffic state, 2) penetration rate
of CAVs, and 3) time interval, T : the estimated flow rate would
not be precise when δ is large (e.g., in a free flow state) or N is
small (e.g., a low CAV penetration rate or small T).

Method 2: Bayesian Inference
In many instances, some historical traffic data can be available
(from multiple days to years). This historical data could provide
some sense of traffic state for certain time and location. Alone, it
is obviously not adequate for traffic state estimation due to daily
variations, but when combined with real-time data, it can
improve the accuracy of traffic state estimation. In Statistics,
Bayesian inference has been developed to systematically integrate
a (limited) real time data and (related) other information. In a
similar context, we develop a Bayesian inference based method to
estimate flow rates using real time CAV data and distribution of
flow rate from historical data set.

Specifically, this method derives a posterior probability
distribution of flow rate with respect to the observed
headways, p(q|h), with a prior probability of flow rate, p(q),
and a likelihood function of flow rate and headway, p(h∣∣∣∣q), using
Bayes’ theorem:

p(q|h) � p(q) × p(h∣∣∣∣q)
p(h) � p(q) ×∏N

i�1p(hi∣∣∣∣q)∫ p(q) ×∏N
i�1p(hi∣∣∣∣q) dq (3)

Note that the denominator is a normalizing factor to ensure
that the sum of the posterior distribution equals to one. Thus, for
simplicity, p(q|h) can be written as,

p(q|h)∝ p(q) × p(h∣∣∣∣q) � p(q) ×∏N

i�1p(hi∣∣∣∣q) (4)

Notably, to estimate p(q|h) by Bayesian inference, more
information of p(q) and p(h∣∣∣∣q) are required. Firstly, p(q)
represents a prior distribution of flow rate before collecting
current headway data. As stated earlier, the flow rate is
expected to fluctuate over time but exhibit similar daily
patterns (e.g., typical AM or PM rush hour). Thus historical
flow rate data for the same time of the day (and the same day of
the week) would be the most reasonable choice for prior
information. Note that for the prior data (and training data
for Method 3), getting historical data could be a main
constraint for adopting these methods. Data from existing
detectors can be used if available, but additional surveying
would be required if no existing data or detectors are
available. Historic estimation results based on previous CAV
data can be used, though there will be some transition period until
sufficient data become available. Nevertheless, using CAV data
with the proposed methods could reduce the efforts to collect

traffic data and could estimate traffic states even in the areas
without any detectors. A likelihood function represents the
headway distribution with respect to flow rate. Field
observations can be used to estimate this function, though this
has been widely studied in the literature [see (Li and Chen, 2017)
for a recent review].

These model features suggest that the estimation results will
depend on the prior information. Specifically, the estimation
results would suffer when the prior information provides little
information (e.g., a very wide prior distribution), constrains too
much (e.g., a very narrow prior distribution), or differs from the
true value significantly (e.g., distinct flow rate from prior
distribution). In Sections Numerical Experiment and
Validation With Real Data, we will verify these features more
systematically through numerical experiments and validation
with real data, and provide some insight when we should
expect the Bayesian inference based model to perform well
or poor.

Method 3: Deep-Learning Based Method
With advancement of data processing techniques, more data-
driven methods such as deep learning have been widely
developed. Unlike the Bayesian approach, which requires both
fundamental knowledge of traffic flow (for the likelihood
function) and existing data (for the prior distribution), deep
learning aims to extract outcomes (e.g., traffic flow) directly
from data without relying on a physical model. Deep learning
has been applied in a wide variety of disciplines due to its high
accuracy when it is trained by a large amount of data, though it
does not provide physical insights. Therefore, in this study, we
propose a deep learning based method to estimate the flow rate
directly from CAV data. Note that, in a free flow state, especially
in a low CAV penetration rate, the relationship between the
observed CAV data and flow rate cannot be easily described by a
physical model due to the randomness in vehicle arrivals. Thus, a
data-driven method, such as the one proposed in this paper, may
be more effective in capturing the complex relationship.

Figure 2 presents the architecture of the proposed deep
learning based method with two hidden layers (with ten
nodes) and one output layer (with one node). Note that we
use two hidden layers as we found during a numerical experiment
that the model performance does not improve significantly with
more hidden layers. Nonetheless, the architecture can be
modified based on the data properties without changing the
proposed framework. To train the model, initially, the input
data of CAV headways, h � (h1, h2, . . . , hN ), are connected to
each node in the first hidden layer through the weight matrix of
W1 � {w1

1,1, . . . ,w
1
10,N } . Each node generates net input n1, with

bias b1, and n1 will be transformed to output vector a1 through
activation function f 1, as presented in the figure. Then a1

becomes the input vector to the second hidden layer, and
same process is repeated to generate a2. The output layer has
only one node that generates n3, which will be transformed to a
final output vector for estimated flow rates, q̂, via activation
function f 3. The activation functions in the two hidden layers, f 1

and f 2, are rectified linear unit (ReLU) functions and the
activation function in the output layer, f 3, is a linear function
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for scaling. The output vector of q̂ � (q̂1, . . . , q̂M), where M
represents the number of datasets for training, will be compared
with the target vector of q, the ground-truth, to tune the weights
and biases through backpropagation algorithm (Rumelhart et al.,
1986) that aims to minimize the objective function of mean
square error (MSE), expressed as:

MSE � ∑M
m�1(qm − q̂m)2

M
(5)

After training, this model can estimate flow rates with a new
set of headway data. Notably, the deep learning based model does
not require any assumptions for traffic flow properties such as the
likelihood function in the Bayesian approach. However, as we will
show later, its accuracy is close to and sometimes better than the
accuracy of the Bayesian approach. Note that for the proposed
deep learning based method, we used a simple “vanilla” neural

network with the assumption that there is no specific
relationship between the order of headways and the flow
rate since CAVs are randomly distributed in traffic flow. If
the headway sequence is deemed significant, though unlikely
in most foreseeable conditions, Recurrent Neural Network
(RNN) or Long Short Term Memory (LSTM) Networks
would be more suitable to estimate the flow rate. More
discussion on deep learning application will be provided in
the conclusion.

In the following sections, we will investigate the features of
deep learning based method in detail and verify that this method
can be effective for estimating the flow rate using only observed
CAV data. However, when the relationship between the flow rate
and CAV data are too weak (e.g., light traffic or a low CAV
penetration rate), this method fails to provide meaningful results
as it only aims to minimize the objective function (Eq. 5). The
detailed results and insights will be presented later.

FIGURE 2 | Architecture of the proposed Deep-learning method [Reconstructed from (Beale et al., 2015) and (Jun et al., 2017)].

FIGURE 3 | Examples of flow rate histogram (A) actual flow rate; (B) flow rate from prior distribution.
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NUMERICAL EXPERIMENT

Numerical Experiment Set-Up
To investigate the features of proposed methods, we conduct a
numerical experiment in this section. For the headway data, we
generate 1,000 data sets that include 100 headways for each, and
each headway is randomly generated from an exponential
distribution with a mean of 1.8 s (equivalent to a flow rate of
2,000 veh/hr). The cases for light and heavy traffic demand are
also investigated in Section Effects of Traffic Demand on Flow Rate
Estimation. Note that, we use an exponential distribution to
generate random vehicle arrivals in a free flow state, but it can
be changed to any distribution. The actual flow rate for each data
set can be derived as a reciprocal of the mean of the 100 headways,

and the 1,000 data sets represent a wide range of flow rates as
illustrated in Figure 3A. Note that by the central limit theorem,
the mean of the 100 headways will be approximately normally
distributed with the mean of 1.8 s (the population mean) and the
standard error of 0.18(� 1.8/

���
100

√ ) s. Among the 100 headway
data in each data set, we randomly select headways according to
the assumed penetration rate of CAVs. For example, if the
penetration rate is 30%, 30 headways are used in each data set
to estimate a flow rate.

For the Bayesian inference method, additional information on
the prior distribution, p(q), should be defined. We consider that
historical flow rates are described by a bell-shaped gamma
distribution with the mean of 2,000 veh/hr and the standard
deviation of 500 veh/hr to represent typical traffic features

FIGURE 4 | Results of numerical experiment: (A) Naïve method; (B) Bayesian inference; (C) Deep-learning; (D) RMSE vs. CAV penetration rate for each method.
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recurrent daily patterns. We assume a relatively large deviation
for the initial experiment to represent a less optimistic scenario of
limited prior information, but a sensitivity analysis for smaller
and larger standard deviations is also conducted in Section Effects
of Prior Distribution on Flow Rate Estimation. The example of 50
flow rates from the assumed prior distribution is illustrated in
Figure 3B. The figure shows that the historical flow rates are
more concentrated near the true mean of 2,000 veh/hr, but the
range is quite large (e.g., 1,200–3,500 veh/hr), which makes it
unsuitable for real-time flow rate estimation. Instead, in the
Bayesian inference based method, this prior distribution will
be updated with real-time CAV data for more accurate flow
rate estimation. The likelihood function of headway for given
flow rate, p(h∣∣∣∣q), is assumed as exponential distribution to
characterize random vehicle arrivals in a free flow traffic.

For the deep learning based method, we divide 1,000 data sets
into three groups: 70% for training, 15% for validation, and 15%
for test.3 The validation data set is used as an extension of training
to avoid overfitting and improve generalization (Piotrowski and
Napiorkowski, 2013). After training, the test data set is used to
estimate flow rates. Note that 150 estimated flow rates are
compared against the ‘‘ground truth’’ for deep learning based
method, while 1,000 flow rates are estimated and evaluated for
other methods.

Overall Results and Findings
Figures 4A–C present scatter plots of ground-truth (x-axis) vs.
estimated (y-axis) flow rates by each method with different CAV
penetration rates (10–70%), and Figure 4D shows the root mean
square error (RMSE) for each case. Note that we present RMSE

instead MSE to get a better sense of error in flow rate estimation.
When the penetration rate of CAV is relatively high (>70%), all
three methods perform well, but at a low penetration rate (10%),
each method shows different features.

The baseline, naïve method, as expected, shows dispersive
results in low CAV penetration as presented in the left side of
Figure 4A: the estimated flow rate exhibits a wide range of
1,000–4,000 veh/hr although the actual flow rate is within
1,500–2,500 veh/hr. This is due to the fact that the headways
from CAVs at a low penetration rate have a large deviation,
leading to estimate with low accuracy and precision as evidenced
by a large RMSE value in Figure 4D.

The methods based on the Bayesian inference (Figure 4B) and
deep learning (Figure 4C) present different features. Compared
to the naïve method, the results from the Bayesian inference show
the tendency, though scattered, to follow the reference line even at
a low CAV penetration rate. This feature can be explained by the
process of Bayesian inference, which reflects the information
from both observed data (through the likelihood function) and
distribution of historical ground truth (through the prior
distribution): the probability of flow rate is initially
determined by the prior distribution but gets updated with
observed headways. Figure 5 presents an example to better
illustrate the process. In this example, the actual flow rate
(from 100 headways) is 2,375 veh/hr as marked by the left
(red) dashed vertical line, and ten headways are available (10%
penetration), with a mean of 1.06 s. Before updating with CAV
data, we initially have a prior distribution, as represented by the
left-most (black) curve. Note that, as assumed above, the prior
distribution is a gamma distribution with a mean of 2,000 veh/hr
and the deviation of 500 veh/hr. With CAV headways, we can
derive a likelihood function as represented by the right-most
(blue) curve. Notably, the likelihood function only contains the
information from CAV data, and its mode (3,399 veh/hr) is same
as the estimation by the naïve method. In the Bayesian process,
we derive a posterior distribution for flow rate by incorporating
the prior distribution and the likelihood function using Eq. 4: see
the middle (orange) curve in Figure 5. In this example, the
posterior mean is 2,467 veh/hr, and the mode is 2,376 veh/hr,
both of which are closer to the actual flow rate than the prior
information or observed data (naïve method).

In contrast, at a low CAV penetration rate (10%), the deep
learning based method generates estimated flow rates around
2,000 veh/hr (the mean of the ground-truth) regardless the
observed data (see the left-most in Figure 4C). This feature is
inherent to the deep learning process as presented in Figure 2.
Deep learning seeks to determine the weights and biases in the
hidden layers that minimize the objective function. When the
relationship between the input data (observed headways) and the
target value (flow rate) is weak due to a large variation in the input
data, the learning process decides that the weights are close to
zero but selects the biases close to the mean of the target values in
an effort to minimize the objective function. As a result, the
estimated results converge to near 2000 veh/hr, the mean of the
training data, even though the estimated results are unrealistic.
With increasing penetration rates, however, the learning process
finds stronger relations between observed headways and the

FIGURE 5 | Example of Bayesian inference process.

3We also conducted the same experiment with 3,000 data set splitting into three
groups of training, validation, and testing with 1,000 data set for each. The results
are similar in terms of accuracy (in RMSE) and trends in the scatter plot.
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target flow rates, and thus, estimates flow rates accurately and
reliably as presented in Figures 4C,D. The results suggest that the
deep learning based method can be an effective method only
when a sufficient amount of CAV data is available (i.e., in
moderate to high CAV penetration). For a deeper
investigation of the deep learning based method, we also
estimate flow rates using the conventional data driven method
of multiple linear regression. As presented in Figure 4D, the
results from the deep learning and regression are similar though
the deep learning based method shows a little better performance
when the penetration rate is less than 50%. This is because
headways are generated from a distribution for the
experiment, and both approaches find the best parameter

values by minimizing error. At least in this experiment, there
are no specific advantages to use the deep learning based method
to estimate the flow rate fromCAV data. However, the superiority
of the deep learning based method will become clear in a real-
world case, where we expect a more complicated relationship
between the CAV headways and flow rate. The detailed results
will be presented in Section Validation Results.

Lastly, it is notable that all methods improve in their
performance in a nearly linear fashion as the CAV penetration
rate increases; see Figure 4D. However, the naïve method
improves more significantly though its RMSE values are much
greater in low penetration. In high CAV penetration all methods
performwell and about the same around at the penetration rate of

FIGURE 6 |RMSE and RMSPE for different traffic demand; (A)RMSE for low demand; (B) RMSPE for low demand; (C)RMSE for medium demand; (D)RMSPE for
medium demand; (E) RMSE for high demand; (F) RMSPE for high demand.
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80%. Beyond 80%, however, the naïve method and deep learning
based method appear to perform better and improve faster than
the Bayesian inference based method. This result underscores the
limitation of the Bayesian process, in that prior information
continues to influence the estimation even when a sufficient
amount of real time data is available. Obviously, if the prior
distribution is significantly different from the actual flow rate, it
can actually hinder accurate estimation. We should note,
however, that the performance of the Bayesian inference based
method could vary depending on the available prior information
and model structure. In this research, the prior information is
defined as a distribution of historical flow rate, and it is applied in
the same way to estimate flow rate regardless of the CAV
penetration rate. If the penetration rate is sufficiently high,
short-term past CAV data would serve as better prior
information, or real-time CAV data could be weighted more
than prior information. More studies are needed in the future to
explore various cases in detail.

Effects of Traffic Demand on Flow Rate
Estimation
This section investigates the effects of traffic demand on estimating
the flow rate. To this end, we consider three demand scenarios and
generate headway data sets similar to Section Numerical
Experiment Set-Up. Specifically, we generated 1,000 data sets
(including 100 headways for each) from an exponential
distribution randomly with different mean of 3 s (� 1200 veh/hr
(low demand)), 2 s (� 1800 veh/hr (medium demand)), and 1.5 s
(� 2400 veh/hr (high demand)) respectively. For each scenario, the
flow rates are estimated by the three methods. For comparison, we
compute the root mean square percentage error (RMSPE) for
relative error as well as RMSE:

RMSPE(%) � 100 ×
������������������∑M

m�1((qm − q̂m)/qm)2
M

√
(6)

Figure 6 presents the RMSEs (left column) and RMSPEs (right
column) for each scenario. For the naïve method, the RMSEs
increase with the demand, but the relative values, RMSPE,
significantly decrease with the demand increasing, especially at
a low CAV penetration rate. For example, when CAV rate is 10%,
the RMSPE value decreases from 38.4% (low demand) to 22.4%
(high demand). This result is expected since headways in higher
demand have lower deviations due to less random vehicle arrivals,
and thus, a partial headway sample can represent the traffic flow
rate better. This trend is also observed in the Bayesian and deep
learning based methods. When the demand is high, the two data-
driven methods have low RMSEs (less than 100 veh/hr) and
RMSPE (less than 4.0%). The results clearly indicate that the
accuracy of flow estimation is affected significantly by the
demand level.

Effects of Prior Distribution on Flow Rate
Estimation
As presented in Section Overall Results and Findings (with
Figure 5), prior information is essential for the Bayesian
inference based method. Here, we conduct an additional
experiment to examine the effect of prior distribution on the
flow rate estimation. Specifically, we consider three different
gamma distributions as prior distributions with the same
mean of 2,000 veh/hr but different deviations of 200, 500, and
800 veh/hr (referred to as small, medium, and large deviations
hereafter). Thus, the [shape, scale] for each Gamma distribution
are [100, 20], [16, 125] and [6.25, 320] respectively. Notably, the
small deviation represents the case that historical flow rates are
similar whereas the large deviation represents a wide variation in
historical flow rates. Figure 7 presents RMSEs of flow rate
estimation with different prior distributions. Note that the
(blue) line with triangular markers is the same as the one in
Figure 4D for the Bayesian inference based method. In low
penetration (<35%), RMSEs are similar for the cases of small
deviation and medium deviation. However, as the penetration
rate increases, the RMSE improves more slowly for the small
deviation case. Evidently, the prior distribution with the small
deviation has greater influence on the flow estimation and
actually hinders the estimation when there is sufficient real-
time information. One can see in Figure 5 that a narrower
prior distribution (with the same mean) would “pull” the
posterior distribution closer to the prior distribution. On the
other hand, the prior distribution with the large deviation does
not provide much information when needed to estimate the flow
rate at a low CAV penetration rate, contributing to relatively large
RMSE values. However, the accuracy of flow estimation improves
quickly as the real-time data becomes more available because the
prior distribution has weak influence on the estimation process
due to its large deviation. The results suggested that the Bayesian
inference based method should be adopted with caution,

FIGURE 7 | RMSE for different deviation of historical data.
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considering the features of prior information and availability of
real-time data (traffic demand, CAV penetration rate).

Probability Distribution of Flow Rate From
Bayesian Inference Based Method
One distinguishing feature of Bayesian inference is that it
derives a flow rate distribution rather than a value, unlike the

other methods. This means that we can use the mean or mode of
the posterior distribution as a specific estimation, but also
estimate the probability that the flow rate exceeds a certain
value. This is a nice feature as it can be used to quantify the
probability of traffic breakdown (Elefteriadou et al., 1995;
Persaud et al., 1998; Evans et al., 2001; Brilon et al., 2005;
Shiomi et al., 2011; Chen et al., 2014; Han and Ahn, 2018),
which can be used for proactive control to prevent traffic

FIGURE 8 | (A)–(J) Probability over critical flow rate through Bayesian inference; (K) Hit and False alarm rates.

FIGURE 9 | Example of distribution of historical flow rates (Detector # � 400679 on I-80, CA, July-Dec, 2004).
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breakdown. Thus, this feature is a notable advantage of the
Bayesian inference method. For example, we consider a critical
flow rate, qc, at 2,200 veh/hr and estimate the probability that
the flow rate exceeds qc at different penetration rates, as
presented in Figures 8A–J. The x-axis is the actual flow rate,
and the y-axis shows the estimated probability that q̂> qc.
Assuming 0.5 as the critical probability to determine the

accuracy of the estimation, the four quadrants (see
Figure 8A) represent different categories as: 1Q is “Hit” that
q̂> qc when q> qc, 2Q is the “False Alarm” that q̂> qc when
q< qc, 3Q is the “Correct Rejection” that q̂< qc when q< qc, and
4Q is the “Miss” hat q̂< qc when q> qc. The rates of Hit and False
Alarm are shown in Figure 8K. The Hit rate increases with the
CAV penetration rate while the False Alarm rate decreases.

FIGURE 10 | Example of validation with NGSIM data (Lane 2, I-80) with different CAV penetration rate: (A)Naïve method; (B) Bayesian inference; (C)Deep learning;
(D) RMSE by penetration rate of CAV for each method.
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VALIDATION WITH REAL DATA

Data and Assumptions
The proposed methods are validated with real data. We use the
NGSIM prototype data (NGSIM, 2006) for a section of I-80 near
the San Francisco Bay Area, CA. This freeway section is 3,000 ft
long and has six lanes, including a high-occupancy vehicle lane,
and the data was collected for a 30 min period in December 2003
at the resolution of 1/15 of a second. Note that the prototype
NGSIM data includes both free flow and congested traffic states.

We divide the time-space domain into 450 subsections that are
100 feet by 2 min. From the vehicle trajectories, we derive
headway data at the midpoint of each subsection as shown
earlier in Figure 1, and calculate the actual flow rate for each
subsection using all the headways. Then, we randomly designate
“CAVs” considering the penetration rate and estimate a flow rate
by each method using the CAV headway data. For the Deep-
learning method, 315 subsections (70%) are used for model
training, and 67 and 68 subsections (15% each) are used for
validation and test, respectively.

For the Bayesian inference method, prior information is
required; however, historical data at the NGSIM site is not
available. Instead, we investigate the flow rate near the NGSIM
site to observe its general characteristics over time. Specifically,
we analyzed the data in 2004 through the Performance
Measurement System (PeMS, 2018) at a detector location
downstream of the NGSIM site4. We found that historic flow
rates in that area are distributed in a typical bell-shaped curve, but
the distribution varies by time of day, as illustrated in Figure 9.
This feature was also observed in the NGSIM data: the flow rate
was similar throughout the site around the same time, but it
changed over time as expected. Based on this observation, we
assume that each time step (2 min in this evaluation) has a prior
distribution following a gamma distribution with a mean of the
average flow rate (over all locations) at that time step in the
NGSIM data. The deviation of the prior distribution is assumed
relatively large at 500 veh/hr to avoid the correlation between the
data and the estimated prior distribution. Note that we obtained
15 prior distributions for the study duration, and each prior
distribution applies to all locations. The likelihood function is
used as exponential distribution as the most state is free flow state
with random vehicle arrivals.

Validation Results
Figure 10 presents an example of the flow rate estimation results
by each method with different CAV penetration rates. Similar to
the numerical experiment, the naïve method shows scattered
results at a low penetration rate and a large value of RMSE, but the
points gradually move to the reference line with smaller RMSE as
the penetration rate increases. On the other hand, the Bayesian
inference method estimates well even at low penetration rates,
and the RMSE steadily decreases with increasing penetration

rates. This could be due to the potentially close relationship
between the actual flow rates and the assumed prior distributions.
Thus, to apply the Bayesian inference, the prior information
should represent a general traffic state of the target site. When the
traffic condition changes significantly (e.g., a sudden demand
increase), the prior distribution should be redefined. Lastly, the
deep learning method shows better performance particularly at a
low penetration rate. Notably, compared to the multiple linear
regression, the deep learning based method clearly performs
better with real data, demonstrating that the deep learning
based method can better describe the relationship between the
CAV headway and the flow rate.

CONCLUSION AND DISCUSSION

This paper presented flow rate estimation methods using
headway data that can presumably be collected from CAVs.
Specifically, we developed Bayesian inference and deep
learning based methods and evaluated their performance
against a baseline, naïve method based on the simple
arithmetic mean of headways. The proposed methods were
investigated by numerical experiments and validated with real
data. The results show that the Bayesian inference based method
can be an effective algorithm to estimate flow rate distribution by
integrating current (real-time) data and previous knowledge,
such as historical data. It shows good performance (in terms
of accuracy and precision) with a proper prior distribution and a
likelihood function even at low penetration rates (<20%). Thus,
this method can be used when historical traffic information,
consistent with the current traffic condition, is readily available.
However, as the CAV penetration or demand increases, its
relative advantage to the other methods (the deep learning
based method and even the simple average) wanes because the
prior information always influences the flow rate estimation.
Particularly, in high CAV penetration, where real-time CAV
information alone suffices for accurate flow estimation,
inclusion of prior information can actually hinder the
accuracy. The deep learning based method is found to
perform reasonably well using only CAV data when the CAV
penetration rate is moderate to high (>20%). Particularly it shows
superior performance in characterizing the complicated
relationship in the real world than other methods considered
in this study. However, when the data is sparse (in light traffic,
low CAV penetration, or a small number of data), the method
produces an estimate close to the mean of the training data
regardless of real-time observations. Finally, at a relatively high
CAV penetration rate (>70%), the relative advantage of the
advanced methods is negligible and in fact, the naïve method
is preferred in terms of accuracy as well as efficiency.

To improve the proposed methods, we suggest several future
research directions. For the Bayesian inference based method, we
mainly used the exponential-gamma conjugate system for the
prior distribution and likelihood function for analytical
tractability. Though these assumptions are reasonable to
address general characteristics of free-flow traffic, more site-
specific functions with calibration would be necessary to apply

4The NGSIM prototype data was collected in December 2003. However, the quality
of the PeMS data near the NGSIM site in 2003 was not desirable according to their
data quality assessment. Therefore, we used the data in 2004 instead.
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in practice. Furthermore, probabilistic distributions of CAVs
should be considered to facilitate theoretical analysis.

For the deep learning based method, we have adopted this
approach to better capture the complicated relationship
between sampled headways and flow rate in free-flow traffic
due to randomness in vehicle arrivals. Though the deep learning
based method shows better performance than the other
methods considered, particularly in real world estimation, it
still has significant error in low CAV penetration. Its
performance may improve if other factors, such as time of
day, weather, historical traffic information, are considered as
input features. In addition, due to the limitation of NGSIM
data, the proposed deep learning based method is validated with
a small dataset, which limits the applicability of this method. An
improvement of this method may be possible with a larger
dataset and a deeper architecture. Notably the proposed deep
learning approach shows better performance than the naïve
method even though both methods use the same input data.
However, considering other available data, advanced
algorithms such as LSTM or Convolutional neural network
should be considered to reveal hidden features in a larger
dataset. In addition, this paper assumed that CAVs’ behavior
is similar to the behavior of human-driven vehicles in a free flow
state; however, CAVs’ behavior may be altered significantly in
some situations due to advanced CAV operations (e.g.,
platooning, exclusive lane policy). Alternative methods
should be developed in such cases. Finally, for the validation
with real data, we used all observed data from the NGSIM
vehicle trajectory data, some of which may be influenced by

merging or lane-changing. Systematic data filtering is desirable
in the future to further improve the model performance.
Nonetheless, this study presents some insight into how
advanced methods can be adopted to address challenges
such as the one explored in this study and provides a
building block for future studies.
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