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The global outbreak of the SARS-COVID-19 pandemic has changed our lives, driving an
unprecedented transformation of our habits. In response, the authorities have enforced
several measures, including social distancing and travel restrictions that lead to the
temporary closure of activities centered around schools, companies, local businesses
to those pertaining to the recreation category. As such, with a mobility reduction, the life of
our cities during the outbreak changed significantly. In this paper, we aim at drawing
attention to this problem and perform an analysis for multiple cities through crowdsensed
information available from datasets such as Apple Maps, to shed light on the changes
undergone during both the outbreak and the recovery. Specifically, we exploit data
characterizing many mobility modes like driving, walking, and transit. With the use of
Gaussian Processes and clustering techniques, we uncover patterns of similarity between
the major European cities. Further, we perform a prediction analysis that permits
forecasting the trend of the recovery process and exposes the deviation of each city
from the trend of the cluster. Our results unveil that clusters are not typically formed by
cities with geographical ties, but rather on the spread of the infection, lockdown measures,
and citizens’ reactions.
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1 INTRODUCTION

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) (Boni et al., 2020) was
declared as a global emergency by the World Health Organisation (WHO) as of January 30, 2020.
The global outbreak of the pandemic uncovered the unpreparedness of the vast majority of
healthcare systems (Simsek and Kantarci, 2020) and led worldwide public institutions to take
containing measures such as social distancing, cancellation of public events, and closure of businesses,
education, and recreational activities. As a result, business and education systems moved to remote
working and teaching, which stressed the limits of fixed and mobile networks (Ericsson Research,
2020; Favale et al., 2020; Feldmann et al., 2020).

The pandemic outbreak caused an unprecedented change to daily habits, including the way we
move. Reducing and controlling humanmovement has been of the utmost importance to contain the
pandemic spread and track infections. For example, by employing the DELPHI Epidemiological
Model developed at M.I.T. (Bertsimas et al., 2020) toManila’s metro transportation system, the study
of (Egwolf and Austriaco, 2020) unveiled that the confinement measurements adopted by the
authorities successfully prevented the rapid spread of infection.
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In this paper, we aim at drawing attention to two aspects. First,
we aim to gain insight into how has mobility changed in urban
environments during the first pandemic wave. Second, we study
how such changes - driven by a mix of confinement policies and
self-isolation measures - have impacted daily activities and, in
turn, have contributed to limit the spread of the virus. Our
objective is to perform an analysis encompassing several cities
from different European countries and with different properties,
to shed light on commonalities between the contrasting mobility
reactions to the pandemic. These patterns can help cities to
understand how they reacted to this first pandemic wave in
terms of mobility and can be useful to detect similar cities
helping to predict what will happen for future waves. The
insights coming from this work are very important for the
concerned stakeholders, e.g., government bodies, decision-
makers, and city planners to re-think the existing urban
landscape and drive more sustainable city planning. For
instance, transportation authorities may monitor cities that
reveal similar mobility patterns, and eventually apply policies
that were demonstrated effective in those cities. For such a study,
we rely on crowdsensed data that providers such as Apple make
available. Specifically, we analyze the Apple Maps data that
provide aggregated and anonymized information about the
variation of popularity in using different transportation
systems. Employing Gaussian Processes and clustering
techniques, we combine the crowdsensed dataset with
information about the number of daily infections. This
approach allows identifying patterns of similarity between the
cities considered and performing a prediction analysis to forecast
the trend of the recovery process. In the remainder of the
manuscript, Section 3 illustrates the data employed in the
analysis, which is described in Section 4. Finally, Section 5
concludes the work and highlights the final remarks.

2 RELATED WORKS

The studies that investigate the relation between Covid data and
Mobility can be divided into three main categories. The first
category includes the works analyzing the impacts of mobility on
Covid trends, the authors of (Bryant and Elofsson, 2020)
investigate the importance of governmental policies and
human mobility in the mitigation of the virus spread, their
study draws attention to the correlation between the variations
of mobility and the pandemic burden (measured in terms of
deaths). The second category includes studies that given the
mobility data try to forecast the pandemic evolution, this
subject has been approached through different methodologies.
In (Kapoor et al., 2020) the authors exploited graph neural
networks techniques, while for (Wang and Yamamoto, 2020)
has been developed a partial differential equation model. Finally,
the last group of studies deals with the influence of the pandemic
severity on mobility, the authors of (Zhang et al., 2020) created an
impact analysis platform able to compute the effects of SARS-
COVID-19 metrics on human mobility and social distancing.

Our analysis falls into the third category, whereas most of these
works focus on determining the factors that influenced mobility, we

decided to examine the similarities and the differences between
citizens mobility for distinct urban areas. To perform our analysis,
we exploit a crowdsourced dataset. Mobile CrowdSensing (MCS) has
become a popular paradigm to perform sensing campaigns using
sensors embedded inmobile devices like smartphones (Capponi et al.,
2019). To combat the epidemic, many applications have been
developed to monitor and establish contact tracing systems
(Kendall et al., 2020; Reelfs et al., 2020; Whitelaw et al., 2020).
Corona-Warn-App, Immuni, and Radar COVID are examples
respectively adopted by Germany, Italy, and Spain, and
subscribers of the latter helped identify that loss of smell and taste
could indicate the presence of the infection (Menni et al., 2020). This
approach falls in the category of participatory MCS that requires
some efforts from the participants’ side. With these applications, the
users have to manually register and possibly declare themselves
infected. Then the system takes care of controlling whether the
level of exposure is high with the risk of contacting infected
people. At the other extreme of the MCS landscape is the
opportunistic paradigm: here, participants make no effort and the
application takes care of sharing relevant information from the
mobile device to the system. The crowdsourced dataset exploited
for this study belongs to the opportunistic paradigm, many recent
works used a similar dataset for mobility analysis. In (Engle et al.,
2020), the authors combined GPS data and SARS-COVID-19 case
data to understand how pandemic and restrictions affected the
citizens’ mobility in the United States. In (Rahman et al., 2020),
the authors exploited crowdsourced data from Google to analyze the
different impacts of the pandemic in 88 countries. Recent studies
exploited the popularity of Point of interest (POIs) to quantify the
mobility patterns of a city, the information on POIs can be extracted
from different sources, the authors of (Mahajan et al., 2021) used data
from Google popular times, while in (Roy and Kar, 2020) the dataset
of POIs is taken from SafeGraph Places data. While these studies
analyzed the general mobility of citizens our approach aims at
investigating more in deep the different modes of transport. Other
studies focused on the mobility of a specific country, the authors of
(Pullano et al., 2020) investigated how mobility in France changed
before and during lockdown using mobile phone data, while in
(Dahlberg et al., 2020) the authors analyzed the reactions of citizens
under mild policies in Sweden. Another important characteristic of
our work is the focus on the European situation, in the closest to our
work (Sannigrahi et al., 2020) the authors perform a socio-
demographic analysis nationwide in Europe. By contrast, we work
at a resolution of single cities.

3 DATASET

This Section explains the dataset we employ for the analysis.
Specifically, we highlight the cities for which we obtain real data
from different sources, i.e., Apple Maps1 and Joint Research
Centre (JRC)2. Besides illustrating the types of data considered
for mobility and SARS-COVID-19 cases, we also delve into

1https://www.apple.com/covid19/mobility
2https://covid-statistics.jrc.ec.europa.eu/
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analyzing the morphology of the cities, population, and other
metrics on the urban fabric. In such a way, the reader is provided
with all the details necessary to understand the analysis of
Section 4.

3.1 The Apple Maps Data
Mobile users have at their disposal several ways to share data such as
location-based social networks (LBSN) (e.g., Facebook, Foursquare,
and Twitter), and crowdsourced applications (e.g., OpenStreetMap,
Waze) (Capponi et al., 2019). Such contributions havemade available
large datasets that enable an analysis of citizens’ mobility, travel
behaviors, and accessibility of urban areas.AppleMaps data provides
information on transportation modalities worldwide with zero
privacy leakage, i.e., data is anonymized, and no information
about the single users is disclosed. This is in line with what other
popular crowdsensed providers like Google do [e.g., with Google
Popular Times (Capponi et al., 2019)]. Rather, the data comes in a
way that shows the aggregate requests for directions in Apple Maps
for a given transportation mode, e.g., driving, walking, or site, e.g.,
transit, stations. Further, the data is provided as a relative increase or
decrease with respect to average past request, i.e. following pre-SARS-
COVID-19 outbreak values, starting from January 13th, 2020. Our
study analyzes the Apple dataset from February 23rd, 2020, when the
first lockdown measures were applied in Europe.

3.2 SARS-COVID-19 Cases
The JRC collects the numbers of contagious individuals and deaths at
sub-national levels (admin level 1) for all the European countries. The
data are imported directly from the National Authorities sources
(National monitoring websites, when available). Since our analysis is
at the city level, we considered the trend of the corresponding region.
We extracted the evolution of the cumulative number of contagions
normalized by the total number of contagions for each area.

3.3 The Considered Cities
After having described the type of data that will be employed for
the analysis, we now describe the cities that have been selected.
We began to collect data for Milan first, being one of the earliest
cities hit by the SARS-COVID-19 outbreak and, for comparison,
Luxembourg City that during the same period was not in the
same situation. We started to pay attention to the possible
dynamics of the virus diffusion, and this led to the monitoring
of Valencia, where duringMarch 10th, 2020 a Champions League
football match took place with an Italian team from Bergamo,
Lombardia (shortly reported as one of the worst-hit areas in
Italy). The study then was extended to consider multiple cities
within Europe.

Table 1 shows the list of considered cities. For each of them,
we include the population (as of 2018 from Eurostat database3),
its morphological properties and whether Apple data have also
been recorded. Concerning the morphological properties, we take
into consideration properties that define the urban network.
Specifically, we resort to OpenStreetMaps (OSM), which
defines the street network with a graph GOSM � (V , E), where

V is the set of vertices or nodes and E the set of edges. Each node is
characterized by a unique identifier called OSMID, the latitude
(y), the longitude (x). Further, each edge comes with a set of
attributes: access, bridge, highway, lanes, maximum speed, name,
oneway, osmid, service, tunnel, width, and the OSMIDs of the
adjacent nodes of an edge.

Given that OSM is based on voluntary contributions, different
cities might have a different precision level. For a fair comparison,
we provide in the table the information given by the Augment-
OSM Precision algorithm (AOP) (Vitello et al., 2018).
Specifically, AOP augments the graph that OSM provides by
adding through additional interpolation edges so that the
resulting street graph contains nodes with a fixed distance,
e.g., 1 m. A high density of nodes defines cities with an
extensive mobility network, e.g., streets and squares. Further to
this information, we also include the number of edges graph and
the average edge length in the city. In this case, we prune the street
graph so that only two nodes define a street. As a result, we get
knowledge about the degree of connectivity and regularity of the
urban fabric.

4 ANALYSIS

This Section presents the analysis of the dataset illustrated in
Section 3. Specifically, in Section 4.1, we show for Luxembourg
City the trends of infected individuals and fatalities, in relation to

TABLE 1 | Comparison of population, number of edges, average initial edge
length of each edge, and nodes for different cities.

City Population Nodes G Edges G Avg_Len Edges (M)

London 9, 126, 366 127, 005 298, 959 97
Berlin 3, 748, 148 28, 073 73, 187 146
Madrid 3, 223, 334 30, 632 61, 588 99
Rome 2, 844, 750 42, 864 89, 709 125
Paris 2, 140, 526 10, 025 19, 535 96
Bucharest 2, 106, 144 16, 536 40, 343 100
Vienna 1, 911, 191 16, 083 36, 105 126
Hamburg 1, 899, 160 21, 490 51, 949 145
Warsaw 1, 790, 658 18, 823 43, 370 137
Budapest 1, 768, 073 23, 460 61, 959 128
Milan 1, 404, 239 13, 351 26, 468 97
Prague 1, 324, 277 20, 856 48, 449 119
Stockholm 974,073 12, 752 29, 678 114
Amsterdam 873,555 11, 520 26, 580 98
Marseille 862,211 13, 206 27, 575 98
Copenhagen 794,128 6, 990 17, 649 102
Valencia 791,413 7, 899 14, 635 95
Krakow 779,115 8, 925 19, 859 152
Athens 664,046 8, 822 18, 302 64
Rotterdam 651,870 11, 238 25, 377 95
Helsinki 648,042 9, 618 20, 870 122
Glasgow 610,271 15, 957 37, 617 97
Dublin 554,554 11, 193 26, 030 95
Antwerp 525,935 7, 990 17, 913 120
Lisbon 506,654 9, 769 20, 571 91
Malmö 344,166 5, 391 12, 878 118
Graz 294,630 16, 083 36, 105 126
Brussels 176,545 1, 437 2, 719 87
Luxembourg City 122,326 2, 146 5, 000 126

3https://ec.europa.eu/eurostat/web/cities/data/database
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the lockdown measurements taken by the country, and the
impact of such measures on the cities’ mobility patterns
(driving, walking, transit). In Section 4.2, we show the
methodology employed to verify the similarity trends observed
in the mobility categories, group together those cities with similar
patterns, and derive a prediction method to forecasts future
mobility trends per category. In Section 4.3, we show the
results for clustering and forecasting. Finally, in Section 4.4,
we analyze the correlation between mobility and the trend of
SARS-COVID-19 infected cases. Practically, we verify whether
the mobility-based clusters of cities identified in Section 4.2 are
still applicable when looking at the evolution of the number of
SARS-COVID-19 infected cases.

4.1 A Primer
Figure 1 shows in a comprehensive graph for Luxembourg City,
from bottom to top, the evolution over time of infected cases and
fatalities, the lockdown measurements taken by the government,

the percentage increase or decrease of mobility modes usage, and
the presence in activities. The time evolution spans from February
23rd to July 3rd, and during such a time frame we have data for
both Apple Maps and SARS-COVID-19 trends.

The figure shows how the government started imposing hard
lockdownmeasures as fromMarch 15th, aligning with what other
EU countries did despite a relatively low number of identified
cases. However, in terms of mobility, it is possible to notice that
the population started to reduce moving earlier, indicating an
anticipation of actions following the announced restrictive
measures or self-adaptation of the population to the
emergency conditions. For example, were driving activities
reduced already in a notable way from March 10th to March
11th while the other categories from March 11th to March 12th.
The rate of decrease is comparable for all categories, revealing a
pattern for all of them, reaching the lowest rate after a week from
the start of the lockdown. Then during the lockdown the rate
slowly increased, further increasing after the lockdown policy was

FIGURE 1 | Comprehensive timeline with SARS-COVID-19 cases, lockdown measures, impact on mobility, and cities’ activities.
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stopped on May 11th. Transit experienced a substantial decrease,
it started from 120% of users before the Lockdown, and after
March 15th, it reached the lowest values (less than 20%)
compared to Driving and Walking. Interestingly, during the
first phase of the lockdown (March 15th–April 20th) Walking
category experienced the highest values. This was due to good
weather, which prompted people to take the opportunity to enjoy
being outdoors while this was allowed. After lockdown, both
walking and driving were observed to restore to normal
conditions and even exceeded the expected rates, whereas
transit did not. From this data there is clear evidence of a
reduction in Transit ridership and an increase for driving and
walking mode, the reasons behind this change could be different.
A possible explanation could be a potential mode shift from
public transport to walking and driving as using public transport
was perceived as a more risky alternative in terms of potential
contacts with infected people. On the other hand, another
explanation for transit reduction can be found on the working
from home policy that caused a drastic decrease in transit
commuters. The case of Luxembourg City exemplifies the
evident correlations between the three collected data sets,
namely the mobility patterns via the Apple data, the lockdown
policies, and the COVID-19 data. Similar correlations were
observed in the collected cities. The aim of this study is to
identify commonalities in how mobility trends changed across
Europe as a consequence of the epidemic spread and the imposed
restrictive measures. Capturing these commonalities may help in
understanding how specific reductions in mobility have
contributed to limit the spread of the virus, to better predict
the evolution of future waves and suggest which policies may be
more indicated.

4.2 City-Level Analysis: Clustering and
Forecasting Methodology
The objective of this subsection is to identify similarity trends
observed in the mobility categories of Apple data for the cities
considered (see Table 1). For this, we resort to clustering
techniques. The proposed methodology consists of three
interconnected components:

• Regression with Gaussian processes.
• Clustering with unsupervised machine learning models.
• Prediction with again Gaussian processes.

We start from the raw Apple dataset at a city level, exploiting
the full dataset (February 23rd–July 3rd). In this phase
(regression), we want to obtain a mean function for each city
that characterizes each category well (namely, Driving, Walking,
Transit). The scope of this function is to find the general trend of
the original data, avoiding outliers and peaks that could influence
the clustering process. We noted that the interpolation could be
affected by outliers due to data changes occurring in the presence
of specific events (e.g., the Catholic and Orthodox Easter days).
To obtain the mean function, we employ the Gaussian Processes
(GPs) models that are one of the most commonly employed
stochastic processes for application to datasets with data evolving

over space and time (time series are a good example). When
selecting the methodology to use, we explored both GPs and
neural networks (NNs) like Multi-layer Perceptron and General
Regression NNs. Unlike GPs, neural networks appear to be more
suitable for larger and more complex datasets than the one at our
disposal. Furthermore, GPs can be optimized exactly, i.e., there is
no need for complex training procedures to tune the hyper-
parameters. The main characteristic of GPs is that they are
entirely determined by the mean and the covariance. This
aspect helps the model fitting because only the first- and
second-order moments should be specified. The covariance of
the GPs is described by a Kernel (covariance function), in this
work we use a kernel based on the combination by addition of a
Matèrn component, an amplitude factor, and observation noise.
The hyperparameters of the GP model are optimized by the
limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm
(LM-BFGS) (Liu and Nocedal, 1989). To prevent the possibility of
finding a local maximum in the marginal likelihood, we run the
optimization algorithm three times, using randomly-chosen
starting coordinates. Once we obtained the mean functions,
they are used to represent the city behavior for a specific category.

In the second phase, we first determine for each city a
reference day that represents the arrival in town of the SARS-
COVID-19 pandemic. Since the virus was observed to start
spreading at different time periods in Europe, and in order to
align the data seeking for comparability, we defined a reference
point as the moment in which the city (or the region containing
it) reached 1% of total SARS-COVID-19 cases. Next, starting
from these reference dates, we create windows of time with a fixed
duration given in the number of days (e.g., 80 days). These
windows are common in all cities. Once all the time windows
are defined, we extract the corresponding intervals of the mean
function obtained from the Apple Maps dataset for each city.

For the clustering technique, we use a hierarchical approach
with a well-known distance metric:

Distance Metric � JSD(MCity1, MCity2) (1)

where M is the mean function from apple dataset and JSD is the
Jensen-Shannon divergence function that measures the similarity
between two distributions. We choose the JSD because it
outperforms the asymmetric Kullback-Leibler divergence
(KLD) (D’Silva et al., 2018) and it always returns a finite
value. We preferred the hierarchical approach to other
clustering techniques such as K-means or Dbscan, because its
output is relatively easier to understand. The hierarchical
algorithm produces dendrograms, which represent the
similarities and the distances between the different clusters
and at the same time highlight the distances between the
objects in the same clusters. Such a hierarchical approach
creates clusters based on both information on the mobility
and evolution of SARS-COVID-19 cases. The distance between
two clusters is defined according to the complete linkage or
farthest neighbor method. The proximity between two clusters
is the proximity between their two most distant objects.

In the third step, we re-apply the same GP model applied in
the first step, but this time at the cluster level and for prediction.
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Indeed, GP can be employed not only for regression but also for
prediction, and we are now interested in this feature. Specifically,
we removed from the cluster dataset the values of the last 10 days
and use them as ground truth to evaluate the prediction results.
For the evaluation results, we compute the absolute error for each
day within the prediction interval and then average this value
with the ones obtained for the whole period. In such a way, we
determine the average prediction error.

The reason why we look at predictions for the cluster is in the
application of the method for early detection of future waves.
Some city in the cluster could be a few days earlier in the virus
spread than others, hence our analysis is of help to predict what
will happen if the city in the cluster keep the same policy in terms
of confinement policy or deviate and use that of another cluster if
this may result to be more effective.

Figure 2 shows an example of the application of the above
procedure obtained for Amsterdam and Milan, to identify the
trend from the data of the driving category. Note that Italy’s more
rigid restrictions rules reduced the variability of Milan’s weekly
patterns significantly. By contrast, in Amsterdam the recovery
started earlier and the weekly patterns exhibit an increase in
variability magnitude that becomes higher with time since
March 15th.

4.3 Results
This Section analyzes the results obtained with the methodology
explained above for both clustering and forecasting.

4.3.1 Clustering
We first start by analyzing the results obtained by the clustering
operation for each of the three categories, i.e., Driving, Walking,
and Transit. For each city, we extracted data concerning 20, 40,
60, and 80 days since when the 1% of total SARS-COVID-19 cases
were reported. We applied the clustering approach to these
different intervals to investigate the mobility evolution along

the time. Figures 3–5 plot respectively the transition from the
cluster obtained at an interval and the next one, i.e., Figure 3
shows the difference between the clusters obtained using the first
20 days, and the period between 20 and 40 days, respectively.
Clusters are rendered in the form of dendrograms that are a
natural way of showing hierarchies and exposing similarities. In
Figures 3–5, the dashed lines highlight the clusters while the
red lines between the dendrograms indicate a change of
cluster. For space reasons, we only include the plots obtained
for Driving.

We resort to using only six clusters that better balance the
number of cities per cluster for all the results. The x-axis
represents the distance between each cluster. Note that the
similarity between the two dendrograms is very high, and the
only cities changing of cluster are Bucharest and Graz. Bucharest,
originally a one-city-only cluster, becomes part of the blue cluster
(with Paris, Luxembourg, etc.) while Graz does the opposite and
transits from the purple cluster (Vienna, Rome, etc.) shift to a
one-city-only cluster. Figure 4 shows the dendrograms of the
clusters transiting from a window of 40–60 days. In such a
timeframe, we witness a more extensive transformation. For
example, the blue cluster splits into two smaller groups, one
that comprises mostly the Scandinavian cities, while the other is a
mix of different cities, including French and Eastern European
towns. The creation of a specific cluster for the Scandinavian
cities highlight the consequences of the specific public health
measures taken by these countries, which were notably different
than other European countries.

Some of the results obtained are easy to explain, others not.
Specifically, considering the 80 days dendrogram on the right of
Figure 5, the sets are as follows:

• Cluster 1 comprises most of the cities from the central-north
European region (Berlin, Hamburg, London, Glasgow,
Dublin, Vienna, Graz, Antwerp, and Brussels).

FIGURE 2 | Comparison of dendrograms obtained as result from 40 to 60 days intervals for Driving Category.
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• Cluster 2 comprises Scandinavian (Stockholm, Malmö,
Copenhagen, Helsinki) and Dutch (Amsterdam,
Rotterdam) cities, plus Budapest and Prague.

• Cluster 3 comprises French (Paris and Marseille) and Polish
(Warsaw and Krakow) cities, plus Luxembourg, Lisbon, and
Bucharest.

• Cluster 4 comprises cities from the south European region
(Rome, Valencia, Athens).

• Cluster 5 comprises Madrid.
• Cluster 6 comprises Milan.

Most clusters identify cities belonging to the same
geographical region like cluster 2 and cluster 4 representing
Scandinavian and Southern European regions. These two
groups are an example of two radically different approaches to
tackle the pandemic. The public institutions of cluster 4 applied
very strong lockdown policies, while Scandinavian countries
applied soft restrictions by encouraging citizens to follow
government instructions at the same time.

Concerning clusters that include cities from different
geographical regions, the explanation for being grouped is
profound and has to be found in the pandemic spread in the
city, the specific measures taken by authorities, and the citizens’
reaction. Cluster 3 is an example of such clusters as it combines
cities from eastern Europe (e.g., Bucharest, Warsaw, Krakow) with
cities from western Europe (e.g., Luxembourg, Paris, Marseille).

Looking at all the clusters, it is interesting to note how there
is no strong correlation between the clusters and the
morphology of cities. With reference to Table 1, we can see
how cities with similar average edge lengths (i.e., cities with
roads of similar length) like Helsinki (122) and Antwerp (120)
or Milan (97) and Rotterdam (95) end up on different clusters.
Another important morphology parameter is the number of
edges that together with the population of the city provides a
measure of urban density. We can see how the clusterization is
not influenced by this parameter. An example is given by
Cluster 3 which includes Paris and Bucharest that have the
same population (2,14 and 2,10 million residents - accounting
only for the residents in the municipality and not the
neighboring areas), but while Paris has a number of edges
close to 20 thousand, Bucharest has a complete different urban
density with a number of edges that is double, i.e., more than
40 thousand.

It is also interesting to note how cities from the same country
can belong to different clusters. For example, the Italian cities
(Rome in cluster 4 and Milan in cluster 6) and Spanish cities
(Valencia in cluster 4 and Madrid in cluster 5), although they
share similar mobility trends, differ in the evolution of the
number of SARS-COVID-19 infected people. Specifically,
Madrid and Milan had the earliest outbreak of the pandemic
in their respective countries and in general in the considered set of
cities in this work.

FIGURE 3 | Comparison of dendrograms obtained as result from 20 to 40 days intervals for Driving Category.
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4.3.2 Forecasting
Next, we perform a forecasting analysis per mobility category
(Driving, Walking, and Transit) using as history the time horizon
of 80 days after the 1% of cases and we obtain forecasts for the
subsequent 10 days. Please note that the starting day from which
we count the 80 days is different for each city and that the 6
resulting clusters are different for each category. For example, for
the driving category (dendrogram on the right inside of Figure 5),
there are two one-city-only clusters for Milan and Madrid, but
this is not valid any longer for transit and walking categories. For
sake of completeness we decided to show all clusters including the
one-city-only, in this way we show the peculiarity of these cities
that justifies being clusters of their own.

We first show the prediction results, and later we show the
error made computed with the Root Mean Square Error (RMSE):

RMSE �

�����������
∑n
1�1

(yi − yi)2

n

√√
, (2)

where yi are the predicted values, yi the observed values, or
ground truth, and n is the length of these two series. Please note
that we obtain one prediction per cluster.

Driving: Figure 6 shows the results obtained for Driving. As
mentioned above, two of the six clusters are one-city-only clusters
for Madrid and Milan. In Figure 6A, these cities are included in
cluster 4 and 6 respectively. Their behavior is characterized by the
fact that the municipalities had the earliest cases of SARS-

COVID-19 in Europe. The plots show how in the first 10 days
the level of driving activities follows standard trends in both cities,
and is followed by a rapid decrease caused by the application of
the confinement policies. By contrast, cluster 1 shows cities that in
their first 10 days are already at a low level of driving activities.
The reason is that cluster 1 includes cities like Valencia and Rome
for which the citizens learned the lesson from Madrid and Milan,
and they reduced their mobility before reaching a high number of
SARS-COVID-19 cases.

Figure 6B shows that the predictions for cluster 5 are the worst
of the category (average error 18%), the highest error is attributed
toMarseille (68%). We observe a much earlier re-start for this city
than in all the other cities in the cluster. Note that Marseille never
hit the low level of driving activity possible to observe for the
other cities of this cluster (i.e., a decrease of around 20%).

Within the cluster 2, cities of Sweden like Malmö, Stockholm
have benefited from mild lockdown restrictions, which explains
why their driving activities profile is high. The average forecasting
error for the cluster is on the average 15%. As for the remaining
cluster, Cluster 3, the predictions are reasonably accurate (the
prediction error is on average 17%). We observe the following
interesting fact. Compared to the other cities, the cities of the
United Kingdom and Ireland (e.g., London, Glasgow, and
Dublin) did not apply strong lockdown restrictions, but their
driving activities profile is the lowest of the cluster. It indicates
that citizens reduced their driving activities themselves.

Walking: Figure 7 shows the results obtained for Walking.
First of all, please note that compared to Driving, the different

FIGURE 4 | Comparison of dendrograms obtained as result from 40 to 60 days intervals for Driving Category.
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groups of cities in the clusters are different. For example, the new
Cluster 1 now includes some cities that in the Driving category
belong to Cluster 4 (e.g., Marseille and Bucharest).

The cities in Cluster 1 have in common the following
characteristic: low walking activities values during the first
40 days after having reached the 1% of SARS-COVID-19
cases and a high increase in the second 40 days. The
prediction accuracy for this cluster (see Figure 7B) is high,
except for Marseille that shows the highest re-start compared to
other cities (close to 200%) and the corresponding highest error
(77%). This confirms that the response of Marseille in tackling
the pandemic was unique as both driving and walking activities
differ significantly from those of the respective comparable
cities per-category. Low values characterize the profile of
Cluster 5 in the first half, likewise Cluster 1, but the recovery
is slower during the second half of the observation window. The
prediction error of this cluster is reasonably accurate, as it is
always under 30%.

With respect to the Driving category, Cluster 2 does not
contain anymore Amsterdam, Budapest, and Prague that
moved to Cluster 3 and 5. This cluster now contains mainly
cities from northern Europe, and the forecasting error is low
(i.e., %14). The forecasting error increases for Cluster 3, mainly
because of the presence of Hamburg that behaves differently from
the cities of the cluster (with a prediction error of 46%).

Regarding cluster 4, the only difference with respect to the
Driving category is the addition of Rome. Madrid and Rome
share a similar profile for walking activities, and the reasons for

this similarity can be found in the analogous type of reactions
enforced by the local authorities and the comparable size and
population of the two cities. Cluster 6 still includes only Milan.

Transit: Finally, Figure 8 shows the results for the Transit
category for which the Apple dataset does not provide data for 8
cities (Athens, Bucharest, Graz, Krakow, Lisbon, Milan, Vienna,
Warsaw). The reason is that not every city allows Apple Maps to
give indications on public transport, which forces users to make
use of alternative applications.

As a consequence, the clusters are very different from the ones
obtained for the other categories. It is worth noticing that 3
clusters include only a pair of cities belonging to the same
country, namely Malmö-Stockholm in Cluster 2, Paris-
Marseille in Cluster 5, and Brussels-Antwerp in Cluster 6. The
reason for this regional-based clusterization is indeed the lower
dimension of the dataset due to the missing cities, but we can
observe in Figure 8B that we obtained different forecasting
results. While the forecasting precision for the Belgian and the
Swedish clusters is high (error of 2 and 1%), the French cities
differ significantly one with the other (forecasting error of 86%
mainly because there are only two cities with Marseille being
radically different). This confirms that the response of the citizens
of Marseille has been unique in terms of mobility for all the
transportation modalities. At a lower scale, Hamburg as well has
tackled the pandemic differently from other cities of the clusters it
belongs to. In this category, the error is of 78%. It is remarkable
how the values for transit have reached lower percentages than
the other two categories and also the restart is slower. This can be

FIGURE 5 | Comparison of dendrograms obtained as result from 60 to 80 days intervals for Driving Category.
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appreciated because most of the cities never reached 100% of
transit users even after 80 days from 1% of cases. It is interesting
to notice that the restriction policies on public transport do not

have a strong influence on the composition of clusters. Cluster 4 is
a clear example, this group is composed of Madrid and Rome.We
analyzed the policies of the corresponding countries through the

FIGURE 6 | Forecasting analysis for the different clusters on Driving category.
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FIGURE 7 | Forecasting analysis for the different clusters on Walking category.
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FIGURE 8 | Forecasting analysis for the different clusters on Transit category.
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Oxford COVID-19 Government Response Tracker dataset4, we
verified that Spain and Italy adopted a different strategy for public
transport in April. While Spain only recommended citizens to not
use transit services, in Italy public authorities enforced a policy of
strict closure and reduction of capacity. These different strategies
reveal that clusters are not lead only by governmental decisions,
this is something we would like to study in deep in future
researches, in order to detect which are the factors that
influenced the most citizens behavior.

4.4 Assessing Correlation of Mobility and
SARS COVID-19

This Subsection analyzes the correlation between mobility and
the evolution of the number of SARS COVID-19 cases in various
cities. To this end, we verify whether the clusters of cities
identified in Section 4.2 reflect the same similarities also in
terms of the number of infected cases. We choose the clusters
obtained from Driving category with a timeline of 80 days after
the 1% of contagious, Driving is the category with the largest
dataset and 80 days is the longest available timeline in our dataset.
To compute the SARS COVID-19 similarity between cities, we
extract the number of cases for each city for the same timelines of

Driving clusters (80 days) and then we normalize by the total
number of cases in the city. The SARS COVID-19 dataset
contains a lower subset of cities than the Apple Maps dataset.
Compared to the driving dataset, we excluded four cities,
Bucharest, Budapest, Paris, and Marseille.

Figure 9 shows the results obtained. The similarity matrix
compares the different SARS COVID-19 trends while the red
lines display the Driving clusters. The similarity is computed with
the JSD metric that is explained in Section 4.2. The cities are
sorted by driving cluster and the order inside the cluster is given
from the similarity distance between the cities for driving data.

We first observe the presence of different outliers, Malmö and
Luxembourg, because have the lowest values of similarities with
respect to other cities. As for Malmö, our mobility analysis
highlighted that the city behaves similarly to Stockholm for all
the categories while in terms of the number of infections it is
interesting to note that the cities are profoundly different. A
possible reason could be that many residents in Malmö commute
daily to Copenhagen, Denmark, hence it has in terms of potential
contacts a very distinct behaviour with respect to Sweden’s capital
city. As for Luxembourg, the difference can be justified by i) the
peculiarity of the city (in terms of population, number of workers
commuting every day from neighboring countries) and the large
scale testing applied by the government.

Next, we observe that it is possible to identify strong intra-
cluster similarity for Clusters 2, 3, and 5. For example, with regard
to Cluster 2, we can identify a sub-cluster of Amsterdam,
Rotterdam, and Helsinki. With regard to Cluster 3, we can

FIGURE 9 | Similarity Matrix of contagious trends of SARS COVID-19.

4https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-
response-tracker#data
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identify two sub-clusters: London to Vienna and Dublin to
Antwerp. Further, by performing a clustering analysis solely
based on the number of SARS COVID-19 cases, the resulting
clusters would be different. For example, Amsterdam, Rotterdam,
London, Berlin, Hamburg, and Vienna would be assigned to a
single cluster.

5 CONCLUDING REMARKS AND FUTURE
RESEARCH DIRECTIONS

In this paper, by using different crowdsensed datasets, we
perform an analysis to uncover the impact of the SARS
COVID-19 outbreak on the changes in mobility in urban
environments. Specifically, we use Gaussian Processes and
clustering techniques on the Apple Maps data to uncover
patterns of similarity between the major European cities and
perform a prediction analysis that permits forecasting the trend of
the recovery process.

We identify a range of interesting behaviors. For example, the
repetition of our clustering methods over different intervals
highlighted an evolution of the mobility trends of many cities
along the days after the outbreak. We detected a group of cities
that defined a cluster only after many days after the outbreak,
such as the Scandinavian cities that became a proper cluster only
after 60 days from the outbreak. Apart from few changes, our
methodology produced stable clusters, most of them region-wise,
from which we extracted a common trend useful to understand
the behaviors of different cities and improve the forecasting of the
next days.

Regarding the forecasting, we exploited the 80 days after the
outbreak to predict the coming 10 days, we predicted the trend of
each cluster obtaining low prediction errors, on average we
obtained prediction errors of 14% for driving category, 19%
for walking, and 24% for transit. We identified outlier cities
like Marseille and Hamburg, i.e., cities where citizens have used
transportation modes radically differently from the cities in the
respective clusters.

The results of this study are useful for municipalities and local
authorities to identify other towns with a similar reaction to the
pandemic spread in terms of mobility. The possible application of
the mobility clusters and their patterns is to help cities to perform
a critical assessment of the efficacy of confinement measures

enforced and whether might be more convenient to adopt a
different policy used by cities in other clusters.

In our future research, we plan to extend this study in different
directions. First, we would like to exploit additional
crowdsourced datasets, the Apple maps data is based on Apple
users who asked for directions while using multiple sources of
data could help on representing the true travel behaviors of all
citizens. Second, while this study aims at drawing attention to
similarities between cities’ reactions to the pandemic, our
intention is to analyze on a future work the implications of
confinement policies and self-isolation measures on urban
environments. Specifically, we want to focus on the impacts
that changes of our daily habits produced on urban mobility
and activities. The utility of such analysis is to determine which
factors influence the most urban mobility and daily activities. To
reach this goal we will use different techniques compared to this
study, the methodology will be based on Structural Equation
Modeling (SEM), which is a statistical method that can be
exploited to detect causal relationships between two or more
variables.
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