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In 2022, a new sea lock at IJmuiden is expected to open, permitting an increase in
marine traffic of larger ships from the sea to the port. In the interest of facilitating
operations, we evaluate the impact of the current first-come, first-served (FCFS)
admittance policy in the context of berth allocation for a wet bulk terminal in the
port. Four model types are constructed: optimal FCFS; no FCFS with fixed arrival times;
48-h arrival time relaxation; and complete arrival time relaxation. Comparison of the
model types is done by means of a rolling time window: of each day within the time
frame, a schedule was created for the following 2 weeks, after which the objective value
was calculated. When comparing the average of all objective values, it was found that
the optimal FCFS model already shows an improvement compared to the historical
situation. Between the FCFS and the no FCFS model, there are no considerable
differences, because the vessels are constrained to be scheduled on/after their arrival
time at the port. When relaxation is allowed, a considerable efficiency gain is possible,
especially if larger ships arrive at the port.

Keywords: berth allocation problem, wet bulk terminal, parallel machine scheduling, “first come first served”, lock
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1 INTRODUCTION

In 2022, a new sea lock at IJmuiden is expected to open (Port of Amsterdam, 2018). Upon
completion, this lock will have the title for being the world’s largest sea lock, permitting an increase in
marine traffic of larger ships from the sea to the port. In the interest of facilitating operations, we
evaluate the impact of the current first-come, first-served (FCFS) admittance policy in the context of
berth allocation for a wet bulk terminal in the port.

For marine traffic management and channel security reasons, sea vessels are only admitted to the
port when a berth at a terminal is available. Berth allocation in research is known as the Berth
Allocation Problem (BAP), which involves assigning available berths to incoming ships subject to the
given time and berth layout constraints. There are usually two objective functions: to reduce the
overall waiting time of ships at the port, and to minimise the probability that an incoming ship’s
docking request will be refused. According to (Imai et al., 2003), the BAP can have a decisive impact
on the efficiency of port operations. However, there are many side constraints involved in BAP,
which can hamper the process of allocation.
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A special aspect of this case is that the Port of Amsterdam
largely serves bulk cargo, rather than containers. Berth allocation
for container terminals has been widely studied, but, research on
bulk ports is relatively scarce. In this paper we evaluate
alternatives to the current berth allocation strategy which done
on a first-come, first-served basis. Additionally, since larger
vessels need to be able to moor, the current layout of the
terminals has to be considered besides the temporal aspect of
the scheduling, taking into account that the ships need enough
space to maneuver in and out of a berth. Consequently, the BAP
for the Port of Amsterdam involves both the spatial and the
temporal constraints.

The aim of this research is to investigate if there are other ways
for berth allocation that optimise the total berth usage. This is
done by first addressing three subproblems: deriving the duration
of stay from historical Automatic Identification System (AIS)
signals, using this data to predict time windows for how long
arriving ships will stay, and determining the berth occupancy in
the terminal based on AIS data. Then, four types of models are
used to assign berths to arriving ships: an optimal first-come,
first-served model, a model where only the arrival times are fixed,
a model with arrival time relaxation, and lastly a model with
complete arrival time relaxation, meaning a vessel can be
scheduled anytime before their estimated arrival time. The
outcomes of these models can be used to test if changing the
first-come, first-served approach would be beneficial for a wet
bulk terminal in the port. The study on this terminal can serve as
an example case for other terminals in the port: it can show that
further efficiency can be achieved by scheduling in advance and
can be used as incentive for other terminals to become more
inventive.

This paper first gives background information on the Berth
Allocation Problem, then discusses the different data sources that
were made available. After this, the methods used to address the
BAP are discussed, split up into first deriving the duration of stay,
then some information about scheduling and the berth allocation
problem, and finally the problem formulation of the BAP of this
case. The arrival of larger ships is simulated by considering a
series of increasing percentages of the historical ships enlarged to
the maximum size permitted by the geometrical constraints of the
terminal, and updating their time window for duration of stay
accordingly. After presenting the results for the scenarios with
current sized ships and larger ships, we discuss how our analytical
berth allocation model can be applied for real-time operations.
We conclude giving recommendations for further research and
application.

2 BACKGROUND

This paper studies the Berth Allocation Problem (BAP) from the
perspective of port-scheduling literature. Bierwirth and Meisel
(2015) counted 79 new models for berth allocation after 2009,
indicating a rising demand for such algorithms. The same authors
classified such models in previous research (Bierwirth andMeisel,
2010) based on four features: spatial attribute, temporal attribute,
handling time attribute, and the performance measure. The

spatial attribute describes the layout of the berths, which can
be discrete (BAP-D: one boat can dock at a single berth at a time)
(Brown et al., 1994), continuous (BAP-C: boats can moor at
random places within the boundaries of the dock as long as they
do not overlap with other vessels’ positions) (Lim, 1998), or
hybrid (one boat is allowed to occupy more than one berth at a
time). All these were proven to be NP-hard problems (Garey and
Johnson, 1979).

The temporal attribute concerns the arrival of the boats, and
can be static (SBAP: vessels arrived already and can moor at any
time as long as there is a berth available) (Imai et al., 1997),
dynamic (DBAP: allows ships to arrive at individual and
deterministic times, while work is in progress) (Imai et al.,
2001), cyclic (vessels return to the berth repeatedly after a
fixed time), or stochastic (arrival times are defined by
stochastic parameters). When it comes to the handling time of
the vessels there are five categories: fixed handling times,
dependency on the berthing position, dependency on the
number of cranes, dependency on the work schedules of the
assigned cranes, and combinations of last three (Kovac, 2017).
The performance measure concerns the objective functions,
which most of the time relate to minimising the time spent by
vessels within the port. In terms of the complexity of BAP,
heuristic methods are generally used (Clements et al., 1997;
Lim et al., 2004; Smith and Pyle, 2004).

Accordingly, it was determined that this case can be classified
as discrete, dynamic, with fixed handling times, minimising on
one hand the sum of all the departure times summed together, for
the client benefit, and on the other the departure time of the last
vessel, towards the terminal advantage. Additionally, the terminal
on which the analysis is performed is a liquid bulk terminal that
handles clean petroleum products. One paper that investigated
the BAP within bulk port terminals is (Umang et al., 2013), which
also considered dynamic arrivals. However, the spatial aspect was
hybrid, which differs from the present research. Moreover,
(Umang et al., 2013), addressed the BAP with a different
objective, namely minimising the total service completion
time, taking into account the cargo types, the conveyors and
the pipelines.

3 DATA

This paper uses three main sources of data: historical AIS data,
the terminal operational spatial constraints, and the operations
data provided by terminal.

3.1 Historical AIS Data
The Automatic Identification System (AIS) is a marine tracking
system that is widely used by vessels to avoid collisions and by
port authorities to coordinate the traffic within harbours. A vessel
informs the harbour about its speed, orientation, and navigational
status. Besides the dynamic information, the quay keeps track of
other static variables, such as the ID, the name, the type, and the
size of each ship.

The AIS data contains every AIS signal received in
geographical bounding box around the entire port area from
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May 2017 to May 2020, where every row represents one signal
instance. This data is split per day and has nineteen features,
including the exact timestamp when the signal took place.
Nevertheless, several entries are missing or are filled in with a
default value when they are not available. For instance, when the
draught value is unknown, a 0 is assigned to the respective entry.
This affects the quality of the data and requires careful
manipulation.

3.2 Terminal Operational Space Constraints
The Terminal Operational Space Constraints (in Dutch: Besluit
Aanwijzing Operationele Ruimte) is a matrix that defines the
spatial constraints of the terminal. This matrix exists because large
vessels can cause manoeuvring problems for other vessels entering or
leaving the terminal. For example, as can be seen in Figure 1, if a ship
placed at berth 3 is too large in width, other ships are not able to leave
or reach berths 1 and 2. The TOSC describes which combinations of
ship widths of berths 1, 2, and 3 are feasible, based on previously
conducted simulations.

The TOSC is essential in the spatial aspect of the problem,
where themaximumwidth of 106 for the ships docked at berths 1,
2, and 3 is used in the mathematical model conducted in Section
4.3. A maximum width of 106 is chosen, as the TOSC specifies
that as long as the sum of the total width of the constrained berths
is smaller than or equal to 106, there are no restrictions.

3.3 Terminal Operations Data
A wet bulk terminal has provided operations data over the period
of December 2019–April 2020 that includes more detailed
information on the operation, such as the type and quantity of
cargo, the pump start and end times, and also the time that the
Notice Of Readiness (NOR) was tendered. The latter is given off
by a vessel once it has arrived to the waiting area and it is ready to
enter the lock. The terminal operations data can be matched up
with the AIS data to get a more in-depth view of the entire
process.

4 METHODS

In this section, it is first described how the duration of stay is
derived from AIS data. After that, some information on
scheduling and the berth allocation problem, as well as the
problem formulation itself are given. This section also explains
the different model types created during the study.

4.1 Deriving Duration of Stay
A few steps have to be taken to get from the raw AIS data to the
duration of stay of a particular ship. The first step in the first approach
is to reduce the dataset to only contain the ships located in the
terminal, and to only contain the ship types relevant for this study:
larger, seagoing vessels. The next step is to group all signals sent out by
one vessel (when it is at a certain berth). After this, the fivemost recent
AIS signals of each ship are taken, after which it is checked if the
centroid of these locations is at a berth in the terminal. This method
seems to perform well, as the vast majority of entries can be found
within a 1.5 h margin (this means, if a ship arrival or departure is
recorded by the terminal at a certain time, the calculated arrival based
on AIS is no more than 1.5 h earlier or later). The entries that do not
match up, are mostly entries that do not fall in the 1.5 h margin or do
notmeet the search criteria; for this approach to record an entry, a ship
has to send out an AIS signal repeatedly and the centroid of the last
five points has to be within a berth. This means that if an AIS signal
sent by a ship does not come from a berth repeatedly, no entry is
recorded. Unfortunately, after saving the results it became clear that in
many cases, several separate entries are recorded for a vessel instead of
one that spans across the entire stay. Therefore, if there are several
entries recorded for one vessel, yet the difference between the end of
the last stay and the beginning of a new one is smaller than or equal to
the threshold (in this case set to 2 h), the two entries are merged into
one. An important assumption made is that the vessels that are taken
into account in this data (mainly tankers and oil tankers) do not return
to the terminal within 2 hours of their departure.

FIGURE 1 | Berth layout of the EVOS Terminal.
FIGURE 2 | Average duration of stay per ship type.
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Once the duration of stay is calculated, the average duration of
stay per ship type can be made, as shown in Figure 2. Figure 3
shows the corresponding box plots per ship type. Figure 4 shows
two distribution plots of the generated duration of stay, where
Figure 4B is a zoomed in version of Figure 4A. It can be noted
that ship types “Oil Tanker” and “Tanker” have many entries
around 0, which could be due to the “supporting” vessels that are
only present at a berth to support other (larger) vessels. The stays
of these vessels are also registered in the duration of stay when
deriving it from AIS data.

4.2 Predicting Duration of Stay
During the modeling phase, four Machine Learning models were
developed to predict the duration of stay: Linear Regression,
Random Forest, Gradient Boosting, and Neural Network. The
initial judgment behind building four models was to compare
them and determine which one generates the most accurate
predictions or, in other words, which has the lowest root-
mean-square error (RMSE).

Firstly, the Duration of Stay dataset from AIS was randomly
split in 80% training and 20% test set, such that the precision of
the models could be justly assessed. Unfortunately, during this
phase it was discovered that the size of around 1,200 instances is
extremely small for a Machine Learning method to learn the
underlying patterns from the training data and have enough
records left to test the model, considering that it is recommended
that the test data has at least 500 records. Accordingly, the goal
shifted towards providing a ranking of the four models given
multiple samplings, as well as offering insights into the way their
prediction power can be improved. In other words, for each
sampling of training and test data, the four models were built and
their RMSE was compared to see if there is a model that performs
generally better.

The first model built was Linear Regression. In order to select
the explanatory features, the Backward Elimination technique,

also known as the Step-down method, was used. This method
works as follows: it first computes the Linear Regression
considering all the variables, testing each in a t-test. If the
largest p-value of a feature is greater than the significance level
(0.05), then the variable is removed. The entire algorithm is
performed repeatedly until this is no longer the case.
Consequently, this method is executed during the training
phase to select the best features for the Linear Regression method.

The second model is the Random Forest. First, the model was
performed given 1,000 trees in the forest as the only
hyperparameter. Afterward, the following six hyperparameters
were tuned using the Random Search method: the number of
trees, the number of features considered for the best split, the
minimal size of the terminal nodes, the minimum number of

FIGURE 3 | Boxplot of duration of stay per ship type.

FIGURE 4 | Density of duration of stay. (A) Regular, (B) Zoomed-in.
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samples required to split an internal node, and the possibility to
bootstrap samples when building a tree. The Random Search
method works by randomly selecting one element from the given
options for each hyperparameter. Next, it splits the training data
into five parts and consecutively trains the Random Forest with
the given parameters on four parts of the data, while validating
the performance on the fifth part. Finally, the five scorings are
averaged and stored as a result of a single iteration. After all the 20
iterations are computed, the Random Search method returns the
hyperparameters of the model that performed best.

The next Machine Learning model built was the Gradient
Boosting. In a similar fashion as the Random Forest, the model
was first tested on three default parameters, the number of boosted
trees (1,000), the number of leaves (1,000), and the learning rate
(0.05). Afterward, the Random Search tuning method was used
again to check the best performing hyperparameters on the
validation data. The parameters tuned this time were the learning
rate of themodel, the number of leaves for base learners, the number
of boosted trees, and the maximum tree depth.

The last model is a Neural Network with four layers, including the
input and the output ones. The first three layers have 32 neurons each
and “relu” activation. The model has “adam” activation and mean-
square error loss. Before the Neural Network was fed with the train
data, this data was first normalised to change the values to a general
scale, keeping the ranges between values. Without this technique
applied to the data, the learning would have oscillated as a result of
the varying gradients. After the creation of this model with a batch size
of 10 and 100 epochs, the Grid Search method was used to tune these
two hyperparameters. The tuning method works in a similar fashion
with the Random Search, however, the first scheme tries all the
combinations of the given finite set of hyperparameters, validating
their prediction power using five-fold cross-validation.

Table 1 presents the RMSE of each model over the test dataset
given a different sampling when splitting the data in the training
and test sets. From this table, it can be seen that there is no clear
pattern with regards to which model performs generally better.
Moreover, the model with the tuned hyperparameters performed
worse than the basic one multiple times. This can be explained by
the bad choice of options or their bad sampling. One possible
solution to this issue is switching the tuning method to Grid
Search, which tries all the combinations, unlike the Random
Search, which randomly selects cases. Moreover, several options
per hyperparameter can be tried such that the quality of the
hyperparameters is ensured.

The most important conclusion to be drawn from this analysis is
that the lack of data does not allow a stable training and testing
environment for a prediction model. Hence, acquiring more data,
either by using the algorithm which extracts the duration of stay from
the AIS data for terminals other than EVOS, or by using other sources,
is the first step that needs to be taken towards building an accurate
prediction model. Moreover, adding weather data has the potential to
improve the prediction, since it was often noted by the Port of
Amsterdam and EVOS employees that weather affects the duration
of stay.When it comes to the technical part of themodels, better tuning
of hyperparameters is recommended, especially for the Neural
Network, which only considers the batch size and the number of
epochs. Accordingly, the number of layers, the number of neurons per
layer, their activation, and the model optimiser can also be tuned.

This prediction model could be implemented in a realtime
application, as there, the ETA of vessels is unknown. Note that in
section 4.3, this prediction model is not used as the ETA of the
historically arrived vessels is known. Therefore, predicting the
ETA was unnecessary.

4.3 The Berth Allocation Problem
4.3.1 Scheduling
Generally, scheduling problems are described with a machine that can
process jobs (j), where an optimal schedule is to be found for a given
objective function. These problems can be written in the form α|β|c,
where α, β and c represent the characteristics of the machine(s), job(s)
and objective function respectively. Characteristics of the machines
include howmanymachines there are and if they are identical or not. If
machines are identical, the processing of jobs takes the same amount of
time on each machine (parallel machines, P), whereas if machines are
not similar, the processing time for a job on one machine differs from
the processing time on another machine (unrelated machines R).
Regarding jobs, these sometimes have restrictions, for example
when they have to be completed before their due date (d), or when
they can only be processed after their release date (r). There are also
different objective functions, such as minimising the sum of the
completion time of each job (Cj), or minimising the maximum
completion time, where the completion time is the starting time of
a job (sj) + the processing time of a job (pj).

Using the theory as described above, the berth allocation
problem can be formulated as a parallel machine scheduling
problem. It is defined as P|rj|∑Cj. P indicates that there are
parallel machines; rj indicates the release dates of the jobs; ∑Cj

is the objective function that aims to minimise the sum of the

TABLE 1 | RMSE of each prediction model of the test set.

Algorithms data
sampling

Random state 1 Random state 2 Random state 3 Random state 4 Random state 5

Linear regression with feature selection 62.68 346.42 311.81 60.15 58.85
Random forest (MMSI) 80.95 329.05 329.04 192.85 80.18
Random forest (MMSI) with hyperparameter tuning 59.88 341.06 316.57 68.25 58.93
Random forest (/MMSI) 72.11 329.39 325.37 199.72 50.52
Random forest (/MMSI) with hyperparameter tuning 59.55 340.55 315.71 67.16 56.01
Gradient boosting 126.05 321.28 346.83 244.31 116.43
Gradient boosting with hyperparameter tuning 82.7 322.68 322.44 149.27 66.83
Neural network 136.56 343.83 321.91 118.46 88.95
Neural network with hyperparameter tuning 61.35 344.89 312.61 68.09 54.29
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completion times of the jobs. In this scenario, themachines can be
thought of as the berths, with four parallel machines representing
the four berths at the wet bulk terminal. The jobs are then the
ships, where their duration of stay is their processing time pj. This
model also takes into account the (estimated) arrival times as the
berth allocation is dynamically processed: a ship is only ready to
dock once it has arrived. Thus the Estimated Time of Arrival
(ETA) of a ship can be seen as the release date (rj) of a ship.

In addition, since the terminal has a more sophisticated spatial
restriction −namely the triangular layout of three of the four
berths−, the allocation model stays discrete. This means only one
vessel is allowed to dock at one berth at a time. Furthermore,
whenever the service of a vessel begins (i.e., whenever it is
docked), it cannot be disrupted. To therefore efficiently use
the dock, the main aim is to optimise the berths usage rate,
which is equivalent to minimising the total completion time of all
jobs, or minimising the last completion time over all jobs.

4.3.2 Problem Formulation
The whole berth allocation problem can be denoted as a general
P|rj|∑Cj (or P|rj|Cmax) scheduling problem. To solve the problem,
it is treated as a linear programming problem and is formulated as
follows (Xu et al., 2012; Umang et al., 2013):

Minimise ∑
n

j�1
Cj (1)

OrMinimise Cmax (2)

s.t. ∑
4

i�1
xij � 1 (j � 1, 2, . . . , n) (3)

sj ≥ aj (j � 1, 2, . . . , n) (4)

sj′ ≥ sj (5)

(j, j′ � 1, 2, . . . , n s.t. aj ≤ aj′ )
sj ≥ aj − ej (j � 1, 2, . . . , n) (6)

Cmax ≥ sj + pj (j � 1, 2, . . . , n) (7)

sj ≥ (ri + B)xij (j � 1, 2, . . . , n; i � 1, 2, 3, 4)
(8)

sj′ ≥ sj + pj −M(1 − Iijj′ ) (9)

(j, j′ � 1, 2, . . . , n s.t. j≠ j′; i � 1, 2, 3, 4)
Iijj′ + Iij′ j ≤

1
2
(xij + xij′ ) (10)

(j, j′ � 1, 2, . . . , n s.t. j< j′; i � 1, 2, 3, 4)
Iijj′ + Iij′ j ≥ xij + xij′ − 1 (11)

j, j′ � 1, 2, . . . n s.t. j< j′; i � 1, 2, 3, 4(

djx1j + dj′x2j′ + dj″x3j″ ≤ 106 (j, j′, j″ � 1, 2, . . . , n)
(12)

xij ∈ {0, 1} (j � 1, 2, . . . , n; i � 1, 2, 3, 4)
(13)

Iijj′ ∈ {0, 1} (j, j′ � 1, 2, . . . , n s.t. j≠ j′; i � 1, 2, 3, 4)
(14)

With variables:
n vessels (i.e. vessels 1, 2, . . . , n).

4 berths (i.e., berths 1, 2, 3, 4), where berth 4 is not part of the
triangular berth layout.
xij ∈{0, 1}: binary variable equal to 1 if vessel j ∈ n is scheduled at
berth i ∈{1, 2, 3, 4}, 0 otherwise.
Iijj’ ∈{0, 1}: binary variable equal to 1 if vessels j, j′, j ≠ j′ are both
scheduled at berth i ∈{1, 2, 3, 4}, and vessel j is scheduled before
vessel j′, 0 otherwise
sj: the starting processing time of vessel j, sj ≥ 0.
pj: the given processing time of vessel j (duration of stay of vessel j),
pj > 0.
aj: the arrival time of vessel j (ETA of j), aj ≥ 0.Cj: the completion time
of vessel j, Cj > 0.
Cmax: the last completion time among all vessels, Cmax > 0.
dj: the width of vessel j, dj > 0.
ej: the earlier arrival margin of vessel j in hours, 0 ≤ ej ≤ 48.
ri: the remaining docking time of the currently docked vessel at berth
i, ri ≥ 0.
B: the constant buffer time between each two vessels’ berthing, B > 0
(in this case 2 h).
M: a big constant number (in this case 10000).

The objective functions:
1) Minimise the sum of completion times over all ships
2) Minimise the maximum completion time among all ships

With constraints:
3) Requires each vessel to be assigned to one berth
4) Requires that each vessel can start its processing only after it

has arrived at the terminal
5) Requires vessel j′ to be scheduled after j given that aj ≤ aj’

(only active when the model enforces a FCFS strategy)
6) Applies arrival relaxation, meaning vessels can be scheduled

up to ej (48) hours earlier than their (aj) (only active when aj
relaxation is allowed)

7) Ensures Cmax is the last completion time among all vessels
[only active when the objective function is (2)]

8) Ensures vessels are scheduled only after the vessels that are
currently at the terminal have left

9) If vessels j, j′ are both assigned to berth i and vessel j is
processed before vessel j′ (i.e. Iijj’ � 1), then the start time of
vessel j′ must be no earlier than sj + pj

10) and 11) Ensure that one of the Iijj’ and Iij′j equals 1 if vessels j
and j′ are both assigned to berth i. They also ensure that Iijj’ �
Iij′j � 0 if one of vessels j and j′ is not assigned to berth i

12) Ensures the spatial constraint under the regulation of the
terminal’s triangular berth layout.

13) xij � 1 if vessel j is assigned to berth i; xij � 0 otherwise
14) Iijj’ � 1 if vessels j, j′ are both assigned to berth i and vessel j is

processed before vessel j′; Iijj’ � 0 otherwise.

In the scheduling, a buffer of 2 h is added (based on
recommendations by Port of Amsterdam). The duration of stay in
principle already includes the time for maintenance, checking,
cleaning, etc., but the buffer is necessary to allow vessels that
finish their service to depart the terminal and vessels that will
start their service to arrive to the terminal. Furthermore, in order
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to generalize this model to other terminals in the port, constraint 12)
can be omitted or replaced by another terminal-specific constraint.

4.3.3 Different Model Types
The model is created such that four types arise:

1) first come, first served (FCFS) with fixed arrival times, also
called optimal FCFS

2) No FCFS with fixed arrival times
3) No FCFS with 48 h relaxation, meaning that ships can be

scheduled up to 48 h earlier than their estimated arrival
4) No FCFS with complete relaxation, meaning that ships can

now be scheduled anytime before their estimated arrival.

These types are introduced to display the impact of adjusting the
current scheduling policy. Furthermore, two different objective
functions are used to represent the two different perspectives: the
terminal and the client perspective. The objective function ∑Cj

minimises the sum of the completion times over all vessels and
would hence fit the client perspective. Since the duration of stay is
fixed, vessels will be scheduled as early as possible, meaning the
waiting times for vessels overall are minimised. On the other hand,
the objective function Cmax minimises the maximum completion
time, which fits the terminal perspective to handle as many vessels as
possible in the same amount of time. In both cases of the objective
function, the waiting time for individual vessels could in some cases
increase significantly, even though the averagewaiting time decreases.

5 RESULTS

This section first explains how the results are obtained, then
presents the results for simulations with regular sized and larger
ships respectively.

5.1 Application of Model
The linear model as described in the section Problem Formulation is
solved using PuLP1, a linear solver package in Python. An outline of
the code is available upon request. The results are split up into two
scenarios, being the same ships as in the past arriving at the terminal,
and the potentially larger ships arriving at the terminal after the new
sea lock is used. The data used here is the derived duration of stay
data, matched up with the terminal operations data over the time
periodDecember 2019 until April 2020. Thismatching was necessary
as the duration of stay data also showed ships that supported larger
ships, for example with ship-to-ship operations. As the model should
only schedule the incoming seagoing vessels, only ships were included
that had a recorded stay in both the generated duration of stay and
the terminal operations data.

For both objective functions, the model runs for a 14-day period
as the time frame input where it could test different scheduling
possibilities. In order to best simulate the berth allocation and avoid
specificities caused by certain time frames, each day from December
2019 to April 2020 is used as an entry for the model. Both scenarios

(regular sized and larger ships) are tested with four types of model
(optimal FCFS, no FCFS, 48 h relaxation, and complete relaxation)
for two objective functions (∑Cj and Cmax).

A crucial step is applied to ensure a fair comparison with
historical data and show the results of our models are at least as
good as FCFS. Instead of simply summing up the completion
times of all ships newly scheduled within the given time frame,
only ships actually berthed during this time period according to
the historical data are again scheduled by the model within the
time frame. For example, a ship with an ETA on the last day of the
14-day period can according to the model be scheduled at this
day, yet historically this ship actually berthed a day later, outside
of our time frame. Consequently, this resulted in a substantial
deviation to the objective value. Therefore, only scheduling the
same ships that docked in the past could avoid such a problem.

Another crucial step is that for the simulation of historical schedules,
theNOR (Note of Readiness) is used as arrival time instead of the ETA,
as the ETA fromAIS data is highly unreliable. This step, in addition to
the step described previously, is essential for a fair comparison between
historical values and the optimal values according to the model.

5.2 Simulation With Regular Sized Ships
For regular sized ships, the average of summed completion times
is taken as the judging criteria of the model’s performance, which
is in a format of percentage with reference to historical AIS data.
Figure 5 shows the results over the entire time period for the two
objective functions and model type 1: the optimal FCFS model. In
these plots, a sharp decrease of ships berthed can be noted during
mid February. This is due to a server error at the collection site,
meaning there is no AIS data available for this time period
(February 16–27, 2020). In order to maintain the rolling time
window, it was decided to leave those entries in.

Comparison with historical FCFS berthing already shows an
outperformance with the new, optimal FCFS model, with 21 and
12% improvements in the mean objective value of ∑Cj and Cmax

respectively. No FCFS model has almost the same objective value
as optimal FCFS does. This is because both models have fixed
arrival times and vessels can only be docked after they have
arrived. As a result, not many new schedules could be rearranged.
In contrast, no FCFS models with 48 h and complete relaxation
could save significant time in both objective functions. This effect
can also be seen in Figure 6, where an example schedule of each
model type is displayed using the objective function ∑Cj.

Furthermore, an inspection of changes in individual waiting
times is also performed. Some vessels are scheduled earlier than
historical allocation and some are rescheduled later consequently.
In the corresponding model, the overall individual waiting time is
synergistically varied with the objective function.

5.3 Simulation With Larger Ships
To simulate the arrival of larger ships, the same input is taken as
for the regular sized ships, only a portion of 25, 50, and 75% of the
ships are enlarged to the theoretical maximum sizes that the
terminal can handle (meaning dimensions of 285 × 48 × 14.05).
The duration of stay for these ships is set according to the rule of
thumb as provided by the terminal: 1,250m3/h + 1 extra hour for
each step to be loaded (in this case 2 h to have an extra margin).1https://pypi.org/project/PuLP/.
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Since larger ships will only arrive after the new sea lock has
become operational, performances (in terms of the mean
objective value) shown in Table 2 are compared with the
optimal FCFS model, which is initialised as 100%. The No
FCFS model generates similar results as optimal FCFS because
of the same reason as mentioned in section Simulation with
Regular Sized Ships. Likewise, smaller objective values are
obtained in no FCFS models with relaxations in all scenarios,
meaning abandoning the FCFS principle and allowing ships to
come earlier could shorten the overall berthing time.

6 DISCUSSION

The simulations performed in this study can also be applied in
real time. This section first explains how such a real-time model
would work, and then explains the importance of an accurate
prediction model.

6.1 A Real-Time Model
As the results have demonstrated there are theoretical improvements
that can be made when optimising berth scheduling using our
model. However, in order to show that this is also applicable in

day to day activities a real-time, more user-centric model had to be
designed. In addition, the Port of Amsterdam had expressed that the
model should not aim to replace the harbour master, but provide
valuable assistance in the decision making process. Therefore, it was
essential to firstly understand the needs and responsibilities of our
target user: the harbour master.

In order to build up this knowledge, collaboration with port
authorities during the entire development process was necessary
and provided a clear and concise list of requirements for our
model. This means that our model needs these features:

• Real-time overview of incoming ships
• Real-time overview of terminal usage
• Real-time scheduling options (Assistance in berth
allocation)

Based on these requirements a web based dashboard as
displayed in Figure 7 was designed and built using Flask2, a
micro web framework written in Python. Flask was chosen
with future development in consideration, as it is modular and

FIGURE 5 | 14-days percentage of historical values of model 1 (optimal FCFS model). (A) Objective function: ∑Cj, (B) Objective function: Cmax.

2https://flask.palletsprojects.com/en/1.1.x/.
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expandable. The dashboard provides information on
incoming ships and the current situation using tables. This
is further assisted by the use of embedded real-time maps
from Vessel Finder3 that give a geographical perspective and
live tracking for incoming ships and already docked vessels.
Moreover, the dashboard contains a widget that displays the

current width of the geometrically constrained berths in the
terminal. This widget also functions as a calculator that will
turn red when the width given as input + the current total
width of the geometrically constrained berths exceeds the
maximum width. This widget automatically resets after 3 s,
ready for new input. Lastly, our model is used to provide
different schedules based on the different model types (1–3)
discussed in section Different Model Types. Consequently,
this provides the harbour master with an overview and some

FIGURE 6 | Example schedules of the four different model types for regular sized ships for objective function ∑Cj. (A) Optimal FCFS, (B) No FCFS, (C) 48 h
relaxation, (D) Complete relaxation.

TABLE 2 | Percentual Performance of Model Types (lower is better).

Objective

Function % Of
ships enlarged

Historical AIS Optimal FCFS No FCFS 48 h relaxation Complete relaxation

∑Cj 0 100% 79% 79% 64% 39%
25 — 100 99.8 83.7 58.9
50 — 100 97.0 84.5 65.0
75 — 100 98.0 87.6 70.3

Cmax 0 100% 88% 87% 75% 42%
25 — 100 100 88.4 55.7
50 — 100 100 88.0 62.5
75 — 100 100 90.5 66.1

3https://www.vesselfinder.com/.
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recommendations that aim to help and streamline the process
of managing terminal operations.

The three schedules that are displayed are all optimal
schedules, but choosing the right schedule for the right
situation depends on the set of rules that hold. If
scheduling is only allowed under a FCFS policy, the

optimal FCFS schedule is the best. If no FCFS policy is set
and vessels cannot arrive earlier than their ETA, the No FCFS
model is optimal. Lastly, if vessels can arrive earlier than their
ETA, the 48 h relaxation model is optimal. The fourth model
(complete relaxation) is excluded from the options, as this is
the least realistic model.

FIGURE 7 | Preview of the dashboard (note that this runs locally).
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It is important to note that the dashboard only imitates a real-
time model and can thus be seen as a proof of concept. The
dashboard provides all the technical front facing functionalities,
however currently depends on historical data as a placeholder and
therefore cannot be called real-time. In order to provide a real-
time experience a significant amount of data engineering and
integration work with existing port systems would still need to be
carried out. Furthermore, in real time, the model would rely on
the prediction of duration of stay of vessels and the ETA as
communicated to the Port by the vessels.

6.2 Prediction Model: Duration of Stay
To create a real-time berth allocation schedule, an estimation of
the duration of stay is needed for each vessel. While searching for
the most appropriate machine-learning model it became evident
that the size of the available data was too small to create a reliable
estimation. If more data would be available, the Random Forest
algorithm, which allows multi-categorical variables, would be a
feasible option.

7 RECOMMENDATIONS

During the research it became evident that the problem was more
complex than originally expected. In this section we highlight
external factors, suggestions for further research, and ideas for
extension of the graphical user interface for use in a decision
support system.

7.1 External Factors
There are several external factors that would complicate the
allocation model if taken into account. Sometimes, tugboats
might not be available, making it impossible for vessels to
follow the schedule. Also, weather can have a drastic impact
on efficiency. Furthermore, the planning of a single terminal is
highly dependent on the planning of the sea lock at IJmuiden,
which involves also other terminals. Additionally, volatile oil
prices can disrupt the berth allocation. When oil companies have
multiple ships in the queue at the sea lock waiting to enter the
port until a berth becomes available at a terminal, they can decide
to switch the order of the ships around, as well as postpone
entering the harbour altogether when oil prices are lower than
desired. Some of these factors could in the future be addressed if
more data is collected and incorporated in the allocation model.
More data would also greatly improve the quality of the
prediction model for the duration of stay.

7.2 Alternative Objective Functions
In addition to the two objective functions discussed in this paper,
other objective functions were considered and could be
investigated in the future. In particular, minimising the sum of
themaximum completion times of each berth could be interesting
to examine. Instead of only looking at the maximum completion
time of a single berth, all berths would constitute to the final
objective value. Ultimately, a combination of all three mentioned
objective functions might generate the best schedules. However,
this would require more computational power as well as add

complexity to the model, as objective values would be harder to
interpret.

7.3 Further Research
A further implementation of applying weather analysis is of great
importance as the weather condition highly affects the speed of
ships. Extreme weather like storms will extend the duration of
stay of berthed vessels, nevertheless, following windmay speed up
a ship’s journey and therefore arrive earlier than the estimated
time. Additionally, incorporating market analysis of relevant
cargo types also has significant impact. It occurs frequently
that oil tankers have arrived on time at the waiting area, yet
they decide to wait there for longer until the oil prices have a
desirable rate, which can disrupt the scheduling. Thus, taking the
market factor into consideration could contribute to a higher
quality of the simulation model.

Further research on improving the accuracy of the ETA could
result in a more robust schedule. In addition, further research on
predicting the duration of stay (accompanied with more data) is
necessary to produce more accurate predictions. The more
accurate the prediction of the ETA and duration of stay are,
the more accurate an application of the model will be in real-time
for facilitating operations.

7.4 Real-Time Application
The dashboard could be extended by several features, including
the addition of a line graph that displays the total width over time
in the Gantt charts that display the schedule. Furthermore,
instead of a current width displaying widget, the “total allowed
width” could be displayed, showing the harbour master how
much space is still available.

8 CONCLUSION

This research has shown that AIS data is a very powerful source
for spatial analysis. In this case it is first used to derive the
berthing time of vessels staying at the port, after which a
prediction model was made to predict how long the ships stay
at a certain berth. Moreover, AIS data could especially be of use
when tracking inland vessels, something that could be of great
importance for improving efficiency in terminals.

Furthermore, it has become clear that the current first-come, first-
served berth allocation strategy works, but can be improved.
Especially when larger ships arrive at the port − something
expected to happen when the new lock becomes operational−, a
more efficient way of scheduling is necessary to make more efficient
use of the terminal. The first-come, first-served model as constructed
in this case can be useful when a first come, first serve policy still
holds, but this case has also shown alternatives for when there is no
FCFS policy, or when the arrival times of ships is relaxed.

When larger ships arrive at the port, the first-come, first-
served allocation strategy will not be the most efficient berth
allocation strategy anymore. Efficiency can be gained by
abandoning the first-come, first-served policy, yet realistically
most efficiency can be gained by also allowing ships to be
scheduled before their estimated arrival time. Although it
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might seem unrealistic to let ships arrive before their estimated
arrival times, this also highlights the importance of having a
reliable ETA: the more reliable the ETA of a vessel is, the more
reliable the allocation model works. Similarly, the importance of
good prediction of duration of stay is essential to having a reliable
real-time allocation model.

The main aim of this research was to investigate if there are
other ways for berth allocation that optimise the total berth usage.
Furthermore, a main goal was to create a model that supports the
harbour master in taking berth allocation decisions. Therefore,
the created dashboard shows the different schedules generated by
the model in a way where the final decision of allocation is always
made by the harbour master.
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