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The article presents a review of recent literature on the performance metrics of Automated
Driving Systems (ADS). More specifically, performance indicators of environment
perception and motion planning modules are reviewed as they are the most
complicated ADS modules. The need for the incorporation of the level of threat an
obstacle poses in the performance metrics is described. A methodology to quantify
the level of threat of an obstacle is presented in this regard. The approach involves
simultaneously considering multiple stimulus parameters (that elicit responses from
drivers), thereby not ignoring multivariate interactions. Human-likeness of ADS is a
desirable characteristic as ADS share road infrastructure with humans. The described
method can be used to develop human-like perception and motion planning modules of
ADS. In this regard, performance metrics capable of quantifying human-likeness of ADS
are also presented. A comparison of different performance metrics is then summarized.
ADS operators have an obligation to report any incident (crash/disengagement) to safety
regulating authorities. However, precrash events/states are not being reported. The need
for the collection of the precrash scenario is described. A desirable modification to the data
reporting/collecting is suggested as a framework. The framework describes the precrash
sequences to be reported along with the possible ways of utilizing such a valuable dataset
(by the safety regulating authorities) to comprehensively assess (and consequently
improve) the safety of ADS. The framework proposes to collect and maintain a
repository of precrash sequences. Such a repository can be used to 1)
comprehensively learn and model the precrash scenarios, 2) learn the characteristics
of precrash scenarios and eventually anticipate them, 3) assess the appropriateness of the
different performance metrics in precrash scenarios, 4) synthesize a diverse dataset of
precrash scenarios, 5) identify the ideal configuration of sensors and algorithms to enhance
safety, and 6) monitor the performance of perception and motion planning modules.

Keywords: safety metrics of ADS, human-like perception, human-like driving behavior, ADS safety regulation,
obstacle threat level

1 INTRODUCTION

About 90% of road accident fatalities are attributed to human errors such as distraction, fatigue,
violation of traffic rules, and poor judgements (Treat et al., 1979; Katrakazas, 2017; Collet and
Musicant, 2019; Wood et al., 2019). Automation of the driving task offers an excellent opportunity to
reduce such errors and consequently improve road safety, accident costs, productivity, mobility, and
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convenience. Automated Driving Systems (ADS) are rigorously
being developed across the globe, realizing these tremendous
potentials. ADS (SAE level 3, 4, or 5) can simultaneously handle
lateral and longitudinal motions of the vehicles (SAE, 2018).

Well-conceived performance metrics shall be practicable and
ideally not involve subjective terms (e.g., thresholds). As safety is
being quantified, supporting evidence from field evaluations and
simulations are necessary. According to National Highway
Traffic Safety Authority (NHTSA), it is premature to regulate
the safety standard for ADS (NHTSA, 2020). There is no clear
consensus about the performance metrics among the researchers
or ADS developers. Ill-conceived (as opposed to well-conceived)
performance metrics may deter the development or progression
of ADS, or worse, provide a false sense of security/performance.
Hence, NHTSA is presently seeking inputs from researchers,
regulators, and ADS developers to formulate the safety standards
for ADS. Its European Union counterpart, the World Forum for
Harmonization of Vehicle Regulations, is also actively working
on this matter. This emphasizes the need for a literature review of
the available performance metrics to gauge the performance
of ADS.

However, ADS have safety-of-life critical applications. This
characteristic necessitates appropriate guidelines, rules, and
regulations to ensure technological advancement without
compromising road safety. Performance requirements to
ensure the safety of ADS are therefore to be standardized and
regulated. The performance metrics used for such a task shall be
practicable and objective, meaning that the metrics shall be
computed based on scientific measurements (not opinion-
based) and be consistent.

Nevertheless, in the absence of standards/regulations, some
ADS developers have resorted to voluntary assessment (self-
assessment) of safety aspects of ADS. Self-developed
performance metrics are being employed to improve the ADS,
using data from limited field deployments. Several other research
studies related to the safety of ADS are already published (e.g., Al-
khoury, 2017; Every et al., 2017; Fraade-blanar et al., 2018; Nistér
et al., 2019; Wood et al., 2019; Berk et al., 2020; Riedmaier et al.,
2020; Weng et al., 2020; Wishart et al., 2020; Bansal et al., 2021;
Elli et al., 2021; Huang and Kurniawati, 2021; Luiten et al., 2021;

Wang et al., 2021). Researchers across the globe are making a
considerable effort to quantify the safety of ADS and
consequently improve it.

The development of performance metrics demands the
understanding of driving tasks. Successful execution of driving
tasks by human drivers depends on 1) knowing the current state
of self (such as location, speed, acceleration, and steering angle),
2) perceiving the states of surrounding obstacles, 3) planning the
future course of action ensuring safety, and 4) controlling the
vehicle using steering wheel, throttle, and brakes. Analogously,
ADS can be considered to have four primary modules (Figure 1):
1) localization, 2) perception, 3) motion planning, and 4) vehicle
control. ADS can also have an additional module dedicated to
wireless communications.

Ego vehicle (EV) localization involves measuring the state of
EV like position, velocity, and acceleration. Global Navigation
Satellite Systems (GNSS) such as GPS, Galileo, GLONASS,
BeiDou or regional navigation satellite systems (RNSS) such as
IRNSS or QZSS can be used for rough state estimation.
Localization accuracy of such standalone systems is generally
not suitable for safety-of-life-critical applications. Integration of
GNSS/RNSS positioning information with GIS road maps and
other sensors such as accelerometers and gyroscopes can enhance
the localization accuracy (e.g., Yeh et al., 2016; Li et al., 2017;
Sharath et al., 2019; Wang et al., 2019). However, GNSS/RNSS
availability diminishes in tunnels and under forest cover.
Urbanization introduces multi-path errors, which may
deteriorate the quality of localization. Lane-level localization
using visual cues such as lane markings or other road signs is
also possible (e.g., Li et al., 2010; Alkhorshid et al., 2015; Gaoya;
Kamijo et al., 2015; Qu et al., 2015; Cao et al., 2016; Kim et al.,
2017). But such systems can suffer inaccuracies due to occlusion.

Environment perception involves abstracting information
from the surrounding. It involves measuring the states (e.g.,
position, velocity, acceleration, and type/class) of surrounding
obstacles. A combination of RADARs, LiDARs, and cameras is
used to detect, classify, and track the surrounding obstacles (Zhu
et al., 2017). Computer vision is a popular approach due to the
low cost of cameras and the ability to classify the obstacles
accurately (e.g., Mohamed et al., 2018; Janai et al., 2020).

FIGURE 1 | Primary modules in an ADS.
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Machine learning approaches for environment abstraction are on
the rise and appear promising (e.g., Yang et al., 2019; Fayyad et al.,
2020; Sligar, 2020).

Information about the surroundings is used to plan the EV’s
future actions to safely navigate in a dynamic environment.
Motion planning (trajectory planning to be more precise) of
autonomous vehicles is another very challenging task. Extreme
care is to be exercised to ensure safety. The process involves
deciding the EV’s future states (position, velocity, acceleration) in
the dynamic traffic environment. Humans make such decisions
based on multiple parameters (see Human-likeness and ADS).
Multivariate interactions are to be considered in the human-like
motion planning of autonomous vehicles.

The final task is to execute the planned motion. The vehicle
control module performs this action. Wireless communication
between every entity on the road can substantially simplify the
devious task of the environment perception module. However,
such a situation could occur only when all the vehicles plying on
the road are equipped with a wireless communication module.

The most challenging tasks are assigned to the perception and
motion planning modules. Proprioceptive sensors (such as
speedometer, accelerometer, and gyroscope) and exteroceptive
sensors (such as cameras, LiDARs, and RADARs) fetch data from
the surroundings. Understanding/abstracting the surroundings
by processing data received from such sensors is the perception
module’s primary task. The perception module deals with the
detection, classification, and tracking of obstacles. It also
anticipates the future states of the obstacles. This forms the
basis for planning the future motion of the EV. The EV’s safe
and efficient movement in the dynamic traffic is made possible by
the motion planning module using the current and future states
of surrounding obstacles. Motion planning involves making high-
level decisions (such as overtaking, lane changing, turning, and
following) and low-level decisions (such as deciding
instantaneous speed, acceleration, braking, and steering).
Errors in any of these tasks may get cascaded and eventually
result in an unsafe situation.

The safety of the ADS thus depends on the performance of
these primary modules. The environment perception sensors
used by different ADS are different. Some developers use
cameras as primary sensors, while others make use of LiDARs.
As such, the perceived environment will inherently depend upon
the configuration of sensors used. The software (algorithms and
sensor fusion) used for processing/analysis of data perceived by
sensors has a pivotal role in determining the performance of ADS.
Furthermore, human drivers and ADS coexist for the next several
decades. The driving behavior of ADS shall be similar to that of
human drivers to ascertain public acceptance. These aspects
present a unique challenge to the regulatory authority. The
performance metrics shall be able to incorporate all the points
mentioned above.

This article attempts to review the metrics used to quantify the
performance of perception and motion planning modules (two of
the most complicated modules). Introduction and need for the
current work are presented in Section 1 and Section 2. Section 3
provides the performance metrics for environment perception
and motion planning modules. Furthermore, the need for metrics

to quantify human-like perception and driving behavior is
elaborated in Section 4. The advantages and limitations of the
existing performance metrics are summarized in Section 5.
Lastly, a framework for safety regulating authorities to collect
information regarding scenarios resulting in an incident is
presented in Section 6. The regulatory authorities may use
this repository of benchmark scenarios/datasets to compare
different ADS objectively. More specifically, a repository of
edge cases (critical scenarios) where the ADS tend (or
observed) to perform poorly may be used for selecting/
formulating the performance metrics and eventually specifying
the performance requirements. The work is summarized in
Section 7.

2 RESEARCH CONTRIBUTIONS

This article makes the following contributions:

1) A literature review on the safety-quantifying metrics of
environment perception and motion planning algorithms
are presented.

2) Obstacles posing a high-level risk to the safety of the subject
vehicle need to be accurately perceived and proper action
taken. On the contrary, erroneous perception of an obstacle
that poses no threat may be acceptable. The need for the
inclusion of threat levels of obstacles in the performance
metric is identified. A novel multivariate cumulative
distribution approach to assess (human-like) threat levels is
presented. A similar approach can be used for human-like
motion planning.

3) A suggestion to the safety regulating authority in the form of a
framework is presented. The framework focuses on collecting
the states of subject vehicles and the obstacles resulting in
incidents. Such a repository can be used for quantifying,
monitoring, and evaluating the safety of different ADS.

3 ENVIRONMENT PERCEPTION, MOTION
PLANNING, AND THEIR PERFORMANCE
METRICS
The performance of an ADS can be considered to depend on the
following four components: 1) Hardware, 2) Software, 3) State of
subject vehicle (also called ego vehicle), and 4) State of obstacles.
The hardware component involves the sensors used to perceive
the environment (e.g., cameras, LiDARs, RADARs, and wireless
communication modules), proprioceptive sensors (e.g., GNSS
receiver, odometer, odometer, gyroscope, and accelerometer),
and actuators used for vehicle control (Winner et al., 2014).
On the other hand, the software component deals with the fusion
of multiple sensors, analysis of data received from various
sensors, and motion planning of the EV based on such an
analysis. The most complicated component of an ADS would
be the software component, which includes understanding the
data received from various sensors (detection, classification, and
tracking of other traffic entities, and future state prediction of the
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obstacles). Based on such understandings, the future states of the
EV would be determined to ensure safety. The states of the EV
(e.g., speed, acceleration, position) and that of other traffic entities
dictate the performance of the ADS. ADS may drive the EV into a
precarious situation due to inappropriate hardware and/or
software implementation. The threat to safety can also arise
purely from external sources (other traffic entities).

Several manufacturers/organizations are independently
developing ADS. The hardware and software components
influencing performance thus significantly vary between
different ADS developers. As such, a unified metric to
quantify the performance of an ADS may not be possible.
Furthermore, SAE level 3 vehicles require human drivers’
intervention in case of a fallback. As humans are in the loop,
performance metrics should include human factors as well. These
aspects further complicate the task of setting up safety standards
by regulatory authorities.

The performance of an ADS depends on that of the EV
localization, perception, motion planning, and vehicle control
module (Berk et al., 2020). Perception and motion planning
modules are the most complicated and influencing parts of an
ADS. Hence, the performance metrics or indicators for these two
modules are reviewed in this article.

3.1 Performance Metrics for Environment
Perception
Environment perception involves understanding/measuring the
state of surrounding (dynamic) obstacles. State includes position,

velocity, acceleration, and class/type. Cameras are generally used
for object (obstacle) detection and tracking in ADS. Data from
other sensors (e.g. point cloud data from LiDARs) can also be
used for object detection and tracking. A comparison of the three
major sensors used for environment perception is provided in
Table 1, which is compiled by reviewing multiple sources (Hasch
et al., 2012; Murad et al., 2013; Patole et al., 2017; Will et al., 2017;
Campbell et al., 2018; Lin and Zhang, 2020; Lu et al., 2020; Wang
et al., 2020; Zaarane et al., 2020; Yeong et al., 2021).

Cameras are the ubiquitous sensors in ADS. Monocular
cameras tend to have a longer range compared to stereo
cameras. Thermal/infrared cameras are also used to detect
objects in low-lighting conditions (e.g., Korthals et al., 2018;
John and Mita, 2021). The field of view depends on the focal
length of the lens used. Multi-input multi-output RADARs are
being extensively used in ADS due to their high angular
resolution and smaller size (Sun et al., 2020). Cameras and
LiDARs complement each other in adverse weather
conditions. LiDARs are accurate sensors with a few caveats.
They are very expensive, computationally challenging and
cannot perceive visual cues. Cameras and LiDARs are both
active sensors (emit electromagnetic radiation and analyze the
scattered/reflected signals) and hence could suffer from
interference when multiple such sensors are placed in close
proximity. GNSS receivers are used to locate the vehicle on a
road map through a process called map-matching (e.g., Quddus,
2006, 2013; Velaga et al., 2009; Sharath et al., 2019). The
positioning accuracy of GNSS receivers is approximately
5–20 m, and GNSS availability may be compromised under

TABLE 1 | Comparison of sensors used for environment perception.

Sensor Range
(m)

Field of view Advantages Limitations

Camera — ∼ 200 Azimuth: ∼ 45°
to ∼ 90°

• Inexpensive • Sensitive to weather

— Elevation: ∼ 40°
to ∼ 70°

• Colors and contrast can be perceived • Sensitive to lighting

— — • Ideal for object detection • Not suitable for precise range estimation and
tracking

— — • Passive sensing and hence no issue of
interference

• Requires sophisticated data processing

— — • Road markings and visual traffic signals can
be perceived

—

RADAR Short range 0.15–30 Azimuth±80° • Less sensitivity to weather • Not suitable for object classification
Elevation±10° • Good at detection of metallic objects and

tracking
• Active sensor and hence suffers interference from

other RADARs
Medium
range

1–100 Azimuth±40° • Works in the dark • Visual cues cannot be perceived
Elevation±5° • Distance resolution ≤0.5 m —

Long range 10–250 Azimuth±15° • Distance error ≤0.1 m —

Elevation±5° • Velocity resolution≤0.6 m/s —

— • Velocity error≤ 0.1 m/s —

— • Angular error≤1° —

LiDAR — ∼ 200 m ∼ 40° for solid state
LiDARs

• Less sensitivity to weather • Expensive

— 360° for spinning
LiDARs

• Suitable for object detection, classification,
and tracking

• Requires sophisticated data processing

— • Works in the dark • Active sensor and hence suffers interference from
other LiDARs

— • Very good angular resolution • Visual cues cannot be perceived
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forest cover and in tunnels. Integration of the inertial sensors
such as accelerometers and gyroscopes with GNSS receivers can
mitigate the issue of unavailability and poor positioning accuracy
to some extent. Visual cues such as road markings perceived from
cameras can also be used to localize the EV. Multiple sensors are
to be fused/integrated to achieve sufficient redundancy in safety-
of-life-critical applications.

Object detection involves estimating the states of the vehicles
at a time step based on data received from sensors. Figure 2
depicts one such instance where the black bounding box is the
estimated position. Tracking (also called association) is the
process of detecting multiple obstacles and associating a
unique identifier to the corresponding obstacles in different
time steps (Figure 3.

In the figure, Class indicates the type of the obstacle (e.g., bike,
car, truck, and pedestrian). Cameras are popularly used for
obstacle classification.

X and Y represent the true coordinates of the vehicle in the
global Cartesian plane. It can be used to determine the lateral
and longitudinal positions of a vehicle in a local coordinate
system;
X̂ and Ŷ provide the estimated position of an obstacle;
V and V̂ are the true and estimated velocities of an obstacle;
τ is the time step with step size Δt.

Data from multiple perception sensors such as LiDARs and
RADARs can be used to estimate X̂, Ŷ, and V̂.

Environment perception happens using multiple sensors such
as cameras, LiDARs, RADARs, SONARs, and microphones.
Cameras are prevalent because of their low cost. Visual cues
such as lane markings and traffic signs can be perceived using
cameras (Pollard et al., 2011; Yogamani et al., 2019). However,
range measurements are less precise. Cameras are susceptible to
weather conditions, and their ability drastically drops in
inclement weather. Multiple cameras are generally used to

perceive the environment in all directions. Thermal infrared
cameras may also be used to sense the environment in the
dark (Miethig et al., 2019; Dai et al., 2021).

LiDARs, though expensive, are suitable for precise range
measurements. They are less susceptible to weather conditions.
Hence, they are ideal for classification and tracking (Wang et al.,
2017; Gao et al., 2018). RADARs can accurately detect and track
metallic objects. They are less sensitive to weather conditions. Short-
rangeRADARs can be used to detect vulnerable road users (pedestrian
and bicyclists) by analyzing micro-Doppler signatures (Steinhauser
et al., 2021). However, micro-Doppler effects are not pronounced for
stationary objects, and hence theymay not be detected. Both RADARs
and LiDARs are active sensors, meaning they emit electromagnetic
radiation and perceive reflected/scattered radiation. This aspect makes
them vulnerable to interference when multiple active sensors are in
close proximity. Researchers are working to mitigate interference
(Goppelt et al., 2010; Alland et al., 2019). Ultrasonic range
measurement sensors are popular in detecting closer objects.
Microphones are necessary to respond to audio cues such as that
from emergency vehicles.

3.1.1 Traditional Metrics or Performance Indicators
Cameras serve as convenient object detection and tracking
sensor. A frame extracted from a video would have multiple
objects (obstacles) of interest. First, objects are to be detected and
segmented. Then the detected objects are to be identified/
classified. Last, an application such as ADS requires that the
objects be tracked (i.e., to understand the association of detected
objects between the successive frames). These complex tasks are
handled by computer vision algorithms. True Positive (TP), False
Positive (FP), and False Negative (FN) are the three basic
indicators traditionally used in the context of ADS (Visa et al.,
2011; Girshick et al., 2014; Flach and Kull, 2015; Yu and Dai,
2019; Powers, 2020). True positive is when an algorithm detects
an object correctly. False positive is when an algorithm detects a
nonexistent object. False negative is when an algorithmmisses the
detection of an existing object. These indicators are used to define
the following metrics:

Recall (r), also called Sensitivity: It is a ratio of true positive
instances to the actual number of positive instances. This metric is
suitable when false negatives are of high importance.

r � TP

TP + FN
(1)

FIGURE 2 | Object detection.

FIGURE 3 | Tracking or association.
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Precision (p), also called Confidence: It is described as the ratio
of true positive instances to the predicted number of positive
instances. This metric is useful when false positive instances are
important.

p � TP

TP + FP
(2)

F1 score: It is described as the harmonic mean of precision p
and recall r, and is obtained as:

F1 score � 2 × r × p

r + p
(3)

Jaccard distance (Volk et al., 2020; Luiten et al., 2021) used
both FP and FN instances and is described as:

JD � TP

TP + FN + FP
(4)

None of the above-described metrics considers the quality of
detection/classification/tracking as a binary decision is made
(based on a threshold). Tightly bound segmentation of an
object is the desired quality apart from its correct detection.
Intersection over Union (iou) metric addresses this aspect and is
given by:

IoU � |D ∩ G|
|D ∪ G| (5)

where D is the detected bounding box of an object and G is the
actual (ground truth) bounding box of the corresponding object.
The numerator considers the area of intersection of the two
bounding boxes while the denominator is their union. Figure 4
depicts the concept of IoU which serves as a similarity indicator
based on object detection (Luiten et al., 2021).

3.1.2 CLEAR Metrics for Evaluation of Object
Detection and Tracking
Traditional metrics described above place emphasis on object
detection. Tracking, which is an association of detected objects in
successive time steps, is of equal importance. Hence, metrics have
been developed to quantify the detection as well as tracking
quality (Stiefelhagen et al., 2006).

CLassification of Events, Activities and Relationships
(CLEAR) is one of the popular studies that described the
metrics for quantifying object detection and tracking accuracy

(Stiefelhagen et al., 2006; Volk et al., 2020). These metrics can be
used for the detection and tracking of obstacles such as
pedestrians and vehicles. The metrics are described below:

Multiple-Object-Tracking Accuracy (MOTA): The
numerator is constructed by an additive combination of
false negatives, false positives, and association error (e).
This metric does not indicate localization quality (ability
to segment/bound the objects).

MOTA � 1 − ∑∀t[FNt + FPt + et]∑∀tgt
(6)

Multiple-Object-Tracking Precision (MOTP): This metric
solely indicates the localization accuracy. It is a measure of
conformity between the estimated and actual segmentation of
the obstacle. The numerator can be considered to indicate the
similarity between the estimated and actual obstacle locations.
MOTP is described as the arithmetic mean of similarity scores as
follows:

MOTP � ∑∀t∑∀iIoUi,t∑∀tTPt
(7)

Multiple-Object-Detection Accuracy (MODA) and Multiple-
Object-Detection Precision (MODP): Weighted sum of false
negative and false positive instances are considered in MODA.
On the other hand, MODP considers the similarity score similar
to that used in MOTP. However, tracking/association aspect is
ignored in these metrics. Detection quality in a frame (or at a time
step) is quantified.

MODAt � 1 − (w × FNt) + ((1 − w) × FPt)
gt

(8)

MODPt � ∑Nt
i�1 IoUi,t

Nt
(9)

where

IoUi,t is the IoU for obstacle i at time t;
TPt (True Positive) is the number of correctly identified/
tracked objects in the frame at time t;
FNt is the number of missed detections (False Negative) at
time t;
et is the number of objects erroneously tracked/associated at
time t;
FPt is the number of false positives at time t;

FIGURE 4 | IoU indicator for quantifying the performance of perception module.
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gt is the number of objects actually present in the frame at time
t (ground truth);
Nt is the number of detections at time t;
w and (1 − w) are the weights to respectively dictate the
relative importance of FNt and FPt.

3.1.3 Higher Order Tracking Accuracy (HOTA) Metric
CLEAR metrics are constituted by multiple indicators, which
can be a hindrance for real-time applications (Volk et al.,
2020). Also, detection performance takes precedence over
tracking/association performance. Hence, Luiten et al. (2021)
have adapted the basic indicators to incorporate the tracking
aspect. TPA, FNA, and FPA respectively are described as
true positive, false negative, and false positive instances in
terms of association/tracking. TPA is when an object is
correctly tracked in subsequent time steps. FNA and FPA
occur when detection is correct and association between the
frames is erroneous.

Association score for object c, Ac, is computed as

Ac � TPAc

TPAc + FNAc + FPAc
(10)

Detection accuracy, DetctAα, indicates the proportion of
aligning detections and is described as

DetctAα � TP

TP + FN + FP
(11)

Association accuracy, AssocAα, is given by

AssocAα � 1
TP

∑
∀c
Ac (12)

Finally, theHOTA score at a localization threshold value of α
is computed as follows:

HOTAα �
������������∑∀cAc

TP + FN + FP

√
� ����������������

DetctAα × AssocAα

√
(13)

HOTA metric unifies detection and association metrics. Thus,
it provides a balanced emphasis on detection and association/
tracking. The metric has been thoroughly analyzed and validated
(Luiten et al., 2021).

Performance Metrics for Motion Planning
Motion planning involves deciding future states of the vehicles at
trajectory level and planning maneuvers (Katrakazas et al., 2015).
This section includes the performance metrics used at both
trajectory levels and for maneuver planning.

3.1.4 Traditional Metrics
Time-To-Collision (TTC): It is the time required to observe a
collision between an EV and an obstacle if both of them continue
to travel without changing velocities (Minderhoud and Bovy,
2001; Vogel, 2003; Forkenbrock and Snyder, 2015; Johnsson et al.,
2018; Li et al., 2021; Wang et al., 2021). It is one of the most
popular safety indicators of longitudinal motion of the EV and is
given by Hou et al. (2014):

TTCf,t � Xf,t −Xl,t − lf
_Xf,t − _Xl,t

∀ _Xf,t > _Xl,t (14)

where X is the longitudinal position and _X is the longitudinal
speed at time t. Suffix f indicates the follower, while l represents
the leader.

Time Exposed Time-to-Collision (TET): Cumulative duration
for which TTC remains lower than a specified threshold. Both
TTC and TET are suitable to quantify risks of collisions like rear-
end, turning, and weaving (Mahmud et al., 2017). Usually, a
threshold level is set to compute the duration for which a
violation occurs. TET can be computed as:

TETf � ∑
∀t
βt × Δt (15)

where Δt is the step size, T is the threshold, and

βt � { 1 if TTCf,t <T
0 otherwise

(16)

Post Encroachment Time (PET): It is the time gap between the
arrival of two vehicles in the area of potential conflict. PET can be
used to quantify the safety risk at intersections, weaving, and
merging sections (Wishart et al., 2020). Figure 5 1) depicts the
time instant t1 when a vehicle exits the area of potential conflict
while Figure 5 2) shows the time instant t2 at which another
vehicle enters the same area of potential conflict. PET is
computed as (Razmpa, 2016):

PET � t2 − t1 (17)

These traditional metrics primarily consider the one-
dimensional motion (longitudinal) of the EV. However, in the
real world, multiple obstacles can simultaneously interact with
the EV (pose a threat to the safety of the EV). As such, the EV’s
two-dimensional (lateral and longitudinal) motion is to be
considered in quantifying the safety.

There are other relatively less popular safety indicators such as
Time Integrated Time-to-Collision, J-value, standard deviation of
lateral position, time-to-intersection, time-to-obstacle (Mahmud
et al., 2017).

3.1.5 Responsibility-Sensitive Safety (RSS) Metrics
Specific popular metrics used for indicating/improving the safety
of ADS such as 1) miles driven, 2) total number of near-collision
incidents/disengagements, 3) simulation, and 4) scenario-based
approaches have severe drawbacks (Shalev-Shwartz et al., 2017).
To address the drawbacks, Shalev-Shwartz et al. (2017) have
described several metrics or indicators to ascertain the safety of an
ADS. They are 1) safe longitudinal distance, 2) safe lateral
distance, 3) longitudinal danger threshold, and 4) lateral
danger threshold. Safe longitudinal distance is the longitudinal
separation necessary between an EV and an obstacle to stop the
EV without collisions. Safe longitudinal distance is described for
the case of 1) EV following another vehicle (traveling in the same
direction) and 2) when EV and obstacle are moving toward each
other (traveling in opposite directions). Safe lateral distance is the
lateral separation necessary to ascertain no lateral collision.When
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the prevailing separation between the EV and an obstacle is
smaller than the safe distance, the situation is considered
dangerous. The time instant at which lateral safety is
compromised is called lateral danger threshold (similar is the
case for longitudinal danger threshold). Using these metrics,
proper responses in lateral and longitudinal directions are
described in terms of permissible lateral and longitudinal
accelerations to ensure safety. Proper responses for routes of
different geometry and operational domains are also explained.
The three distance measures used are (Shalev-Shwartz et al., 2017;
Volk et al., 2020):

dlong, same
min � max⎛⎝0, ⎡⎢⎢⎢⎢⎣vrt + 0.5 × alongAccMax × t2

+ (vr + alongAccMax × t)2
2alongDecMin

− v2f

2alongDecMax

⎤⎥⎥⎥⎥⎦⎞⎠ (18)

dlong, opp
min � t(2vlong1 + alongAccMax × t)

2
+ (vlong1 + alongAccMax × t)2

2aDecMin,correct

+ t(2∣∣∣∣∣vlong2

∣∣∣∣∣ + alongAccMax × t)
2

+ (vlong2 + aAccMax × t)2
2aDecMin

(19)

dlat
min � μ + t(2vlat1 + alatAccMax × t)

2
+ (vlat1 + alatAccMax × t)2

2alatDecMin

− t(2∣∣∣∣vlat2

∣∣∣∣ + alatAccMax × t)
2

+ (vlat2 + alatAccMax × t)2
2alatDecMin

(20)

where

dlong, same
min is the safe longitudinal distance between the EV and

an obstacle when they are traveling in the same direction;
dlong, oppmin is the safe longitudinal distance between the EV and
an obstacle when they are traveling in opposite directions;
dlatmin is the safe lateral distance between the EV and an obstacle;

vr and vf are the longitudinal velocities of rear and front
vehicles, respectively;
vi is the speed of vehicle i;
aAccMaxindicates the maximum acceleration;
aDecMax and aDecMin respectively indicate the maximum and
minimum deceleration;
Superscripts long and lat indicate the longitudinal and lateral
directions, respectively;
t is the step size;

Proper responses for different scenarios are described.
However, there are some limitations as the scenario
description cannot be exhaustive. Koopman et al. (2019) have
identified edge cases or scenarios that cannot be addressed by the
RSS approach presented by Shalev-Shwartz et al. (2017). For
example, as per dlong, same

min , the following vehicle with a better
braking efficiency can be “ahead” of the leader. Parameters such
as slope of the road, road curvature, and contact friction that
affect the minimum separation are spatio-dynamic and not
comprehensively considered (Koopman et al., 2019). One of
the major limitations of scenario-based approaches is the
assumption of deterministic motion of the other traffic
entities. When human drivers are involved, their responses
and the consequent motions would be stochastic (Phillips
et al., 2017; Xin et al., 2018; Berntorp et al., 2019).

Another study has formulated a “safety score” by adapting the
RSS approach (Zhao et al., 2020). They have modified the matric
to reduce the computation time. Such improvements are
necessary for real-time applications.

3.1.6 Model Predictive Instantaneous Safety Metric
(MPrISM)
Weng et al. (2020) developed a comprehensive safety metric to
quantify the safety of EV based on the work of Every et al. (2017).
Multiple independent obstacles are considered to interact with
the EV. The instantaneous safety metric (MPrISM) evaluates the
ability of an EV to evade an impending or potential collision. The

FIGURE 5 | Definition of post encroachment time.
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metric may be considered a generalized TTC indicator. The TTC
between EV and the surrounding obstacles is computed when the
EV performs an evasive maneuver and obstacles try to collide
with EV (Kamikaze approach). The motion of EV and the
surrounding vehicles is considered continuous and governed
by ordinary differential equations. The analytical solution is
available, which makes it appealing to employ in real-time
applications. Vehicle kinematic and pedestrian kinematics are
provided in detail. The performance of ADS under several traffic
scenarios such as the presence of static obstacles, dynamic
obstacles, weaving, and lane change operations is evaluated.
NHTSA recommends research and development of metrics
similar to MPrISM to assess the safety of ADS (NHTSA, 2020).

3.1.7 Other Metrics Used by ADS Developers
The concept of artificial potential fields is popularly used for
collision avoidance and motion planning (Latombe, 1991; Xiong
et al., 2016; Sharath et al., 2020). This approach is further
improved by Nistér et al. (2019) to develop the “Safety Force
Field.” Actions of the dynamic obstacles and the EV are expected
to follow specific driving policies to ensure safety. If not, the EV
could experience a safety risk. Hence, corrective measures are to
be dynamically taken to ascertain continuous safety. The
prediction of future states/actions of the dynamic obstacles
and of the EV has certain benefits. Foreseeing safety risk is the
obvious one. Another major advantage is the possibility of
learning the driving policies from the field experiments. A
metric comparing observed states and predicted states may be
formulated for such a purpose.

A consortium of eleven ADS developers/manufacturers have
compiled a document providing a framework for developing safe
ADS (Wood et al., 2019). Twelve principles governing the safety
of ADS are presented in the report. The concepts of safety by
design, verification, and validation are the foundation of the
proposed framework for ADS development. The required
properties of ADS are categorized as fail-safe capabilities and
fail-degraded capabilities. Fail-safe and fail-degraded operations
are generically described. It is argued that fail-degraded
capabilities should assume higher priority over fail-safe
capabilities while designing ADS. Fraade-blanar et al. (2018)
have developed a generic framework to quantify the safety of
ADS. The report provides desirable qualities of safety indicators/
metrics. Suitable safety indicators at the development,
demonstration, and deployment stages are mentioned.
However, the formulation of performance metrics used by
different ADS developers is not provided in either of the reports.

Concept of “Threat” in the Performance
Metrics
Obstacles can pose different magnitudes of threats to the EV
based on their state (e.g., position, velocity, acceleration, and
vehicle type). Perception errors associated with low-threat
obstacles (e.g., an obstacle that is far away) may not be as
critical as that for high-threat obstacles (Volk et al., 2020).
Therefore, performance metrics for a perception system needs
first to quantify the potential threat. Missed detection or wrong

classification of low-threat obstacles may be acceptable. On the
other hand, erroneous perception/classification of obstacles
results in erroneous predictions of future states of the
obstacles. The repercussion would be erroneous motion
planning that can be fatal in safety-of-life critical applications
(Volk et al., 2020). Therefore, there is a need to incorporate the
“threat level” of obstacles in defining the performance of a
perception system.

The metrics mentioned above do not incorporate the level of
threat an obstacle poses to the EV. Those metrics are formulated
to assess the quality of detection and association. However,
erroneous perception of objects (obstacles) that pose a very
low threat to EV safety may be permissible. On the contrary,
instances of an inaccurate perception of objects that pose a very
high risk to EV safety shall be minimized/eliminated. Such a
process requires a comprehensive and objective description of the
“threat” posed by the obstacle.

Volk et al. (2020) introduced the concept of “Collision
Relevance” to indicate the level of threat an obstacle poses.
Longitudinal and lateral separation between EV and the
obstacle and braking time under prevailing weather conditions
are used to compute Responsibility-Sensitive Safety (RSS)
distance (Shalev-Shwartz et al., 2017). RSS distance objectively
quantifies the relevance or level of threat of an obstacle. The
braking distance is computed considering prevailing road
weather conditions (coefficient of friction and maximum
deceleration), making it weather sensitive. The distance
measures are the same as that in Shalev-Shwartz et al.
(2017)(see Equations 18-20).

Quantification of the level of threat of an obstacle is a leap
forward in improving the safety of ADS. Algorithms may be
enhanced to detect and track high risk posing obstacles with
greater accuracy. Furthermore, it may also be possible to assess
the safety of the EV at any given instant. The same approach may
be employed for analyzing data from other perception sensors
such as LiDARs (Lang et al., 2019; Volk et al., 2020).

4 HUMAN-LIKENESS AND ADS

ADS and human-driven vehicles will coexist for several
decades, forming a mixed traffic environment (Litman,
2020). ADS would receive public acceptance only if they
exhibit driving behavior similar to that of humans (Guo
et al., 2018; Sharath et al., 2020). This is necessary to gain
the trust of EV occupants and other road users. Cooperation
and coordination between the vehicles in the mixed traffic are
crucial to prevent deterioration of the safety and traffic flow
parameters (Li et al., 2018).

Humans’ driving behavior may be characterized by
distributions of microscopic traffic parameters such as
headways, relative velocities, and accelerations (Zhu et al.,
2018). ADS should be developed to mimic human-like driving
behavior, resulting in human-like distributions of microscopic
traffic parameters. The performance metrics/indicators
mentioned earlier do not address this need. Hence, they do
not evaluate human-like driving behavior.
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Volk et al. (2020) use the concept of collision relevance. The
safety score developed by Shalev-Shwartz et al. (2017)
incorporates proximity, braking time, and prevailing weather
conditions. These are implicit attempts to comprehensively
model human driving behavior and can be considered positive
steps forward in developing human-like ADS. However, several
factors can elicit a reaction in human drivers (Sharath et al., 2020;
Sharath and Velaga, 2020). These stimulus parameters include 1)
velocity of EV, 2) velocity of surrounding obstacles, 3) proximity
of an obstacle to the EV, 4) θ, (0≤ θ ≤ 180) the enclosed angle
between the heading of EV and the line joining obstacle and EV (θ
represents the relative position of an obstacle with respect to the
EV), 5) relative velocity, 6) relative acceleration, 7) lane offset of
EV, 8) type of obstacle, 9) type of EV, and 10) weather conditions
(e.g., rain, snow, mud, dust, smoke, day, night etc.).

Such parameters may not independently influence driving
behavior. It is not easy to model human-like driving behavior
incorporating the interaction between multiple stimulus
parameters. However, such interactions can be learned from
observation. Human-driven trajectories (NGSIM, 2007;
Krajewski et al., 2018) can be used for such a purpose.
Multivariate cumulative distribution function(s) (CDF) can be
constructed from those trajectories. Please refer to Sharath et al.
(2020) for a detailed description and justification on using
multivariate CDF to model human response.

Figure 6 presents a five-dimensional CDF constructed using
human-driven trajectories obtained from NGSIM (2007). The
five dimensions are 1) θ, 2) relative velocity between EV and
obstacle, 3) proximity between EV and obstacle, 4) type of EV,
and 5) type of obstacle. CDF can be considered to indicate the
EV’s potential (or magnitude) to respond to a given situation. The
darker the color, the greater is the potential to respond. Negative
relative velocity indicates that the EV and the obstacle are moving
toward each other. A sharp gradient in color can be observed
when relative velocity turns negative, implying that humans are
sensitive to relative velocity. Smaller proximities (smaller
headways) also result in a greater response. As the θ value

increases (θ � 00, the obstacle is in front of the EV; θ � 900,
the obstacle is at a right angle to the EV; θ � 1800, the obstacle is
behind the EV), the magnitude of response decreases. All these
observations are very intuitive.

However, developing a nonlinear formulation to model
human drivers’ responses (with interacting parameters) is not
a trivial task. Multivariate CDF could be a way forward in such
cases. Note that not all the stimulus parameters mentioned above
are used in the example resented in Figure 6 as the visual
representation becomes difficult. In reality, there is no limit to
the number of stimulus parameters used to construct multivariate
CDF. But, as the number of stimulus parameters used increases,
the sample size (human-driven trajectories) needed would
exponentially increase, which is a limitation of this approach.

The following subsections present a direction to use this
multivariate CDF approach to improve human-like perception
and motion planning modules of an ADS.

Human-like Perception
Human-like threat perception is essential to model human-like
driving behavior. Human drivers may perceive threats from
surrounding obstacles based on several stimulus parameters
mentioned earlier. The objective is to detect and track the
obstacles that pose a high risk with greater accuracy. It may
be acceptable to erroneously detect/track the obstacles that pose
low or no risk to the safety of EV (might reduce computational
requirements). Except for Volk et al. (2020), none of the existing
performance metrics considers human-like threat perception.
However, the threat quantification metric used by Volk et al.
(2020) does not comprehensively consider all these stimulus
parameters. Hence, there is room to incorporate all the
stimulus parameters in quantifying the performance (human-
likeness) of the perception module of ADS.

The multivariate CDF approach seems to be feasible to
quantify threat levels of different obstacles by learning from
human-driven trajectories. Such an approach also has the
inherent ability to accommodate the interaction between

FIGURE 6 | An example of multivariate CDF (EV is Car; Obstacle is Bike).
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multiple parameters. A nonlinear relationship between the
perceived level of threat and the stimulus parameters can be
constructed from the observed human-driven trajectories. Every
detected obstacle can then be assigned a (human perceived)
human-like threat level (which is a continuous value between
0 (very low-level threat) and 1 (very high-level threat)). This
objective threat level can be used as a weighting factor in
traditional or CLEAR metrics to quantify detection and
tracking quality appropriately. Thus, false positives and false
negatives of the low-threat obstacles are imposed a lesser
penalty as compared to that of high-threat obstacles.

Multivariate CDFs are constructed from the observed data.
This implies, temporal and spatial variations in driving behaviors
and subsequent perception of threat can be dynamically adapted
by human intervention. Threat levels can also be quantified at
different operational environments and weather conditions. The
perception model (and consequent driving behavior model) can
be customized for a human driver.

Human-like Driving Behavior
A trajectory is the time series of states/actions. As mentioned
earlier, human driving behavior is characterized by several
microscopic traffic parameters. Some metrics/indicators are
available to quantify the human-likeness of a generated
trajectory. Human-driven trajectories are necessary for
comparison. The initial position of one of the human-
driven trajectories (HDT) is considered to be that of an
EV. The motion of all the surrounding obstacles is
replayed from human-driven trajectories. The movement
of EV is determined according to a policy/model, which
results in model predicted trajectory (MPT). The human-
likeliness of the generated trajectory can then be quantified
by comparing HDT and MPT. Comparison can happen for
variables such as longitudinal positions, lateral positions,
lateral speeds, longitudinal speeds, lateral accelerations,
longitudinal accelerations, headways, and lane offsets. In
general, the metric can be root-weighted squared error
(Kuefler et al., 2017):

RWSE �
��������������������
1
m

∑m
i�1

∑
∀t
(vi,tHDT − vi,tMPT)2√

(21)

where m is the number of trajectories used, and v is any of the
above-mentioned variables under consideration.

Multiple metrics may be necessary for targeted improvement
of specific parts of the ADS. The longitudinal error may be
obtained as (Ossen and Hoogendoorn, 2011; Zhang et al., 2019):

Longitudinal error �
���������������∑t(yHDT − yMPT)2√�������∑ty

2
HDT

√ + �������∑ty
2
MPT

√ + 1
2

×
���������������∑t(vHDT − vMPT)2

√������∑tv
2
HDT

√ + ������∑tv
2
MPT

√ (22)

The lateral error may be computed as (Kesting and Treiber,
2008; Zhang et al., 2019):

Mixedgap error � ∑t
(GHDT−GMPT)2

GHDT∑tGHDT
(23)

Model error, which is a combination of lateral error and
longitudinal error, can be determined as (Zhang et al., 2019):

Model error �
���������������∑t(xHDT − xMPT)2

√�������∑tx
2
HDT

√ + �������∑tx
2
MPT

√ + Longitudinal error

(24)

where x is the lateral position, y is the longitudinal position, v is
the longitudinal speed, and G indicates the gap.

5 ADVANTAGES AND DISADVANTAGES OF
PERFORMANCE METRICS

The metrics used for performance evaluation of environment
perception and motion planning are provided in this section.
Objectivity of a performance metric is a desirable quality. A
metric is said to be objective when it does not contain any
subjective term. Performance would be quantified based on
measurements/computations that are not subjective. Table 2
summarizes the advantages and disadvantages of metrics used
to quantify the performance of environment perception. Table 3
provides the summary of metrics used for the evaluation of
motion planning algorithms.

6 Framework for Safety Regulation of ADS
In June 2021, NHTSA has issued a standing general order
mandating ADS developers/operators to report incidents
(crashes) (NHTSA, 2021). The order seeks the following
information pertaining to an incident, 1) EV information (e.g.,
model, make, and mileage), 2) incident information (date, time),
3) incident scene (location, pavement characteristics, speed limit,
lighting, and weather conditions), 4) crash description (e.g.,
injury severity, precrash speed, etc.), and 5) postcrash
information. However, the scenario leading to the crash is not
being asked. Precrash information or the states of traffic
participants that resulted in crashes/collisions/incidents are
vital to identify the flaws in the existing system.

Reasons for Crashes/Incidents/
Disengagements
A crash is a result of the failure of one or more of the basic four
modules of an ADS. This paper’s scope is limited to the
examination of the perception and motion planning module
(as the likelihood of failure of other modules is much smaller).
Failure of the perception module (erroneous scene abstraction)
can result in improper motion planning. However, the erroneous
motion of an EV may not always result in collisions as the other
human-driven entities respond (react) to the actions of the EV.
But crashes can happen due to a combination of imperfect
environment perception and motion planning, as shown in
Table 4. Also, erroneous environment perception or motion
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planning for a short duration may not result in a crash. The
reaction of other traffic entities may prevent incidents.
Furthermore, the future states of the EV (and of the
surrounding traffic entities) are sensitive to the current (initial
and previous) state. This butterfly effect may either dampen or
magnify the safety risk posed by improper environment
perception and motion planning. It is a complex phenomenon
to analyze, and significant efforts must be made in this aspect to
improve ADS.

If a crash or disengagement occurs, 1) it could be solely
attributed to improper motion planning, 2) it could be solely
attributed to erroneous environment perception, or 3) it could be

the result of imperfect environment perception and imperfect
motion planning.

Framework for Collecting Precrash
Scenarios
Incident reporting is mandatory for ADS developers/operators
(NHTSA, 2021). However, precrash information is not being
collected by NHTSA. The sequence of precrash events/states may
hold valuable lessons in improving ADS. It is necessary to identify
the specific cases resulting in crashes as it helps in the targeted
development of ADS. The first step in this direction is to

TABLE 2 | Metrics for environment perception.

Metric Description Advantages Drawbacks

Traditional r (e.g., Aly et al. (2016); Powers (2020)) Proportion of true positive instances • Objective • Ignores localization
accuracy

• False positives are
ignored

• Overemphasizes
detection error

p (e.g., Aly et al. (2016); Powers (2020) Proportion of true positive instances • Objective • Ignores localization
accuracy

• False negatives are
ignored

• Overemphasizes
detection error

F1 score (e.g., Flach and Kull (2015); Powers (2020)) Harmonic mean of precision and recall • Objective • Ignores localization
accuracy

• Difficult to interpret
• Overemphasizes

detection error
JD (e.g., Powers (2020); Luiten et al. (2021)) Similar to F1 score. JD and F1 score are

related
• Objective • Ignores localization

accuracy
• Overemphasizes

detection error
IoU (e.g., Zhang et al. (2016); Volk et al. (2020)) Proportion of overlap area between the

bounding boxes (detected and ground
truth) of an object

• Objective • False negatives are not
considered

• Considers localization
accuracy

• Overemphasizes
detection error

• Easy to interpret —

• Serves as distance metric
or similarity indicator

—

CLEAR MOTP (e.g., Stiefelhagen et al. (2006); Moeslund
et al. (2011); Liem and Gavrila (2014); Volk et al.
(2020); Luiten et al. (2021))

Measure of multi-objective tracking
precision

• Objective • Overemphasizes
tracking error• Measures localization

accuracy
MOTA (e.g., Stiefelhagen et al. (2006); Volk et al.
(2020))

Measure of multi-objective tracking
accuracy

• Objective • Ignores localization
accuracy

• Overemphasizes
tracking error

MODP (e.g., Stiefelhagen et al. (2006); Moeslund
et al. (2011); Volk et al. (2020))

Measure of multiple object detection
precision

• Objective • Overemphasizes
detection error

MODA (e.g., Stiefelhagen et al. (2006); Volk et al.
(2020))

Measure of multiple object detection
accuracy

• Objective • Overemphasizes
detection error

HOTA HOTAα Luiten et al. (2021) A balanced measure of detection and
tracking

• Objective • Computationally more
complex• Considers localization

accuracy
• Balanced emphasis on

both detection and
tracking
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understand the “scenarios” culminating in an incident.
“Scenarios” are a sequence of states (e.g., position, velocity,
and acceleration) of the EV and that of the surrounding traffic
participants. Future states of the EV (and that of the other traffic
entities) are sensitive to initial states. State evolution is a complex
phenomenon and complicated to model. More specifically, the
scenarios that culminate in crashes are infrequent but critical.

Human-driving behavior under safe (“normal”) driving
conditions is extensively studied and modeled. Comprehensive
simulation models are available to model the driving behavior
under normal conditions. Such models can be calibrated and
validated with experimental/empirical data. However, modeling
human-driving behavior under “precarious” driving conditions
presents three significant challenges: 1) any attempt to model
such precarious driving conditions (and subsequent driving
behavior) cannot be justified by empirical validation, 2)
precarious driving conditions are scarce and present a
problem of “class-imbalance” (Jeong et al., 2018; Elamrani
Abou Elassad et al., 2020), and 3) behavior of multiple agents
under precarious (extreme) scenario is challenging to
hypothesize, let alone model it.

Class-imbalance exists when instances of one (or a few) class
severely outnumber that of the other classes (Vluymans, 2019). In
the present context, the two classes can be 1) normal scenario and
2) precarious scenario, where the former out represents the latter.
If the under-represented scenario is of major concern (like in the
present study), metrics shall be able to appropriately quantify the
performance. Approaches to mitigate the issue of imbalance (e.g.,
synthetic minority oversampling technique, adaptive synthetic
sampling) require the generation of precarious scenarios
(Vluymans, 2019; Elamrani Abou Elassad et al., 2020; Fujiwara
et al., 2020). Simply put, simulation environments may not mimic
precrash scenarios due to complexities in comprehending and
modeling multi-variate multi-agent interactions. Hence,
synthesizing underrepresented scenarios is extremely difficult.

Recognizing (and predicting) the transition from normal to
precarious driving scenarios is extremely important in ensuring
the safety of ADS. The vital task of comprehending (and
subsequent modeling/synthesizing) precarious scenarios can be
initiated from empirical observation. Hence, precrash scenarios
are extremely important to be collected and analyzed. Precrash
scenario simulation can be enhanced using such a dataset, and
ADS advancement would be a repercussion.

Figure 7 furnishes a framework for the safety regulatory
authority to collect precrash scenario, along with the possible
usage of the collected database.

ADS developers may be mandated to record the following
data:

Sensor Data (S): Raw data from perception sensors such as
cameras, LiDARs, and RADARs may be recorded. Recordings

TABLE 3 | Metrics for motion planning.

Metrics Description Advantages Drawbacks

Traditional TTC (e.g., Minderhoud and Bovy
(2001); Wang et al., 2021)

• Time to an impending collision • Easy to interpret • Response of the other traffic
entities is ignored

— • Instantaneous measure • Objective —

TET (e.g., Mahmud et al. (2017);
Wang et al., 2021)

• Duration for which gap maintained was
lesser than a threshold

• Easy to interpret • Response of the other traffic
entities is ignored

• Aggregate measure — • Subjective threshold is necessary
PET (e.g., Maurer et al. (2016);
Fraade-blanar et al. (2018))

• Time gap between encroachment of
same conflict area by two vehicles

• Easy to interpret • Response of the other traffic
entities is ignored

— • Instantaneous measure • Objective • Two dimensional movements are
not captured

RSS (e.g., Shalev-Shwartz et al. (2017);
Corso et al. (2019))

• Formulates multiple performance
metrics considering lateral and
longitudinal separation

• Possible to incorporate
weather conditions

• Subjective thresholds are
necessary for some metrics

• Instantaneous safety cannot be
quantified

MPrISM Weng et al. (2020) • A measure similar to TTC, but the traffic
is responsive

• Objective • Computationally more expensive

— • Response of the other
traffic entities is
considered

• Difficult to understand

Human-likeness
measures or
indicators

RWSE (e.g., Kuefler et al. (2017);
Fei et al. (2020); Sharath et al.
(2020))

• A measure of the deviation of predicted
trajectory from the observed
trajectories

• Can quantify human-
likeness

• Multiple indicators are necessary
for a comprehensive evaluation

— — — • Objective —

— Longitudinal, mixed gap, and
model error

Dimensionless measures to indicate
estimation quality

• Can quantify human-
likeness

• Difficult to interpret

— — — • Objective —

TABLE 4 | Plausible cases resulting in a crash.

case Environment perception Motion planning

1 Perfect Imperfect
2 Imperfect Perfect
3 Imperfect Imperfect
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from sensors with time stamps can be used to reconstruct the
states of the EV and that of the surrounding traffic
participants.
Perceived Environment (E): Sophisticated algorithms make
use of multisensory data and estimate the present and future
states of the EV (and that of the surrounding obstacles).
Estimated states of EV, obstacles, and environmental
conditions can be recorded.
PlannedMotion of EV (M): Future states of the EV are decided
based on the perceived environment. Lateral and longitudinal
motions of the EV are planned to ensure safety. Such planned
states of the EV may be recorded.

Metrics used for performance evaluation of the environment
perception module and the motion planning module vary

between the ADS developers/operators. Appropriateness of
performance metrics in the precrash scenario is a research
question to be assessed. Reporting of precrash scenarios can
help assess the quality/appropriateness of different
performance metrics. Furthermore, scenario-specific (dynamic)
performance metrics may be conceptualized.

ADS developers may be asked to anonymize and submit S, E,
and M datasets for a short period (say, approximately 5 min)
leading to an incident. Not all ADS employ the exact
configuration of the sensors. Also, there can be a variety of
sensor fusion and environment perception algorithms. Hence,
information about the perceived environment is also necessary.
Last, the planned motion of the EV is necessary to evaluate the
correctness of the planned motion.

The responsibilities of regulatory authorities could include:

FIGURE 7 | Framework for collecting precrash sequences and its analysis.
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1) Collection and storing of precrash sequences: The pressing
need for precrash sequences (S, E, M) is described above.
Regulatory authorities should aim at collecting and storing
the same.

2) Modeling the precarious scenarios: Hypothesizing the driving
behavior of the EVs and that of the involving traffic entities in
precarious scenarios based on empirical observation is an
important task. Modeling involves both calibration and
validation using empirical sequences. Classical driving
behavior models (e.g., Treiber and Kesting, 2013; Kala,
2016) may not comprehensively address both the normal
and the precarious sequences. Two separate models may be
necessary (or different calibration parameters) to address the
two distinct sequences. Alternatively, machine learning
approaches that are gaining prominence may be employed
to learn the precarious scenario, which is a time series of states
(e.g., Kuderer et al., 2015; Gu et al., 2016; Paden et al., 2016;
Rehder et al., 2017; Mohanan and Salgoankar, 2018;
Schwarting et al., 2018; Wang et al., 2018; Zyner et al.,
2018; Zhang et al., 2019). Performance metrics suitable for
the imbalanced problem are to be used for the development of
such models.

3) Prediction of transition from normal to precarious scenario:
Once the capability to model the precarious situation is
achieved, methods to determine the state transition from
normal to precarious scenario (and eventually forecast) are
to be developed. Such forecasting could be used to prevent an
incident. One possible way to achieve this goal is by
developing metrics/indicators considering the time series
of states (of EV and that of the surrounding entities).
Such metrics would account for both spatial and temporal
variation in the states.

4) Evaluation of existing performance metrics under precarious
scenarios: The quality of existing performance metrics is to be
assessed on the dataset of precarious sequences. This is to
ascertain that the performance metrics/indicators would not
suffer from the problem of class-imbalance.

5) Generation of a comprehensive database of precarious
scenarios: Precarious scenarios are very rare, and the
reported scenarios would not be comprehensive. As such, it
is necessary to synthesize and build up a database of
precarious scenarios. Such a synthesized database is a
precious source of information toward targeted learning.
Hence, the same may be shared with the ADS developers/
operators to accelerate the development of ADS.

6) Assessment of safety performance of different ADS: The
database of synthetic precarious trajectories could be used
to assess ADS of different developers/operators.

Suitable performance metric(s) can then be used to assess the
mapping between S and E, which is an indicator of the
performance of the perception module. Furthermore, the
mapping between E and M can be analyzed to quantify the
correctness of a motion planner.

States of the obstacles can be replayed from the synthetic
dataset, and the EV can be made to navigate in precarious
scenarios. The database (and the metrics) can also be used to

evaluate the individual improvement of either the perception
module or motion planning module.

Such an approach helps targeted learning. The configuration
of sensors and the type of algorithms (perception and motion
planning) ideal for enhancing ADS safety can be determined.
Such a collaboration of ADS developers can accelerate the
development of ADS. This database of critical scenarios can be
used to identify performance metrics that give a false sense of
superior performance (a crucial aspect of a performance metric).
The quality of different performance metrics under different
critical scenarios can be analyzed, with the potential to
recognize scenario-specific performance metrics. Last, the
repository would also contain human-driving behaviors
(trajectories) leading to incidents. This information may be
used to quantify the driving performance of drivers and
further predict (and intervene) the onset of a precarious situation.

7 SUMMARY AND CONCLUSION

Automated Driving Systems (ADS) will soon become prevalent
and start sharing the road infrastructure with the human drivers
(leading to a mixed traffic environment). Safety regulatory
authorities are therefore trying to formulate suitable
performance metrics to quantify the safety of ADS. At this
juncture, it is highly appropriate to review the literature on
metrics used to quantify the performance of ADS.

The present article limits its scope to review the metrics related
to environment perception and motion planning modules of
ADS. It is recognized that the existing metrics on environment
perception are formulated to quantify the detection and tracking
performance. Usage of such metrics might result in a driving
behavior dissimilar to that of human drivers. Such scenarios are
unacceptable in a mixed environment. Human-like environment
perception and motion planning are therefore essential.

To address this issue, a method to quantify the threat an
obstacle poses to the safety of ADS is presented. This novel
approach is capable of modeling threats as perceived by human
drivers. Human-perceived threats are due to several stimulus
parameters such as 1) velocity of subject vehicle, 2) velocity of
surrounding obstacles, 3) proximity of an obstacle to the EV, 4) θ,
which represents the relative position of an obstacle with respect
to the EV, 5) relative velocity, 6) relative acceleration, 7) lane
offset of EV, 8) type of obstacle, 9) type of EV, and 10) weather
conditions (e.g., rain, snow, mud, dust, smoke, day, night etc.).
There may be complex interactions between these stimulus
parameters. Multivariate cumulative distributions of the
stimulus parameters can be appropriately used to quantify
human-like threats.

Imperfect perception of obstacles posing low-level threats may
not be a severe issue. On the other hand, it can be fatal to
erroneously perceive obstacles that pose a greater risk. The
human-like threat perception model suggested in the article
can be used to identify threat levels and, consequently, develop
a human-like environment perception algorithm. The metrics
necessary to quantify the human-likeness of the motion planning
algorithm are also presented.
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Additionally, a framework is provided to suggest desirable
changes to the incident reporting scheme. Currently, ADS
operators/developers are mandated to report postcrash
information. As thoroughly described, there is an immense
potential for utilization of precrash scenarios. It is, hence,
desirable to collect the same along with postcrash information.
The framework focuses on collecting and managing the
information regarding the scenarios that result in incidents.
The states of subject vehicles and the obstacles for a small
duration before the incident are necessary. Such a database of
edge cases, collected from all the ADS developers, can be used to
quantify and monitor the performance of environment
perception and motion planning modules. The framework also
outlines the different ways in which the repository of precrash
scenarios could be used. The repository would help in
accelerating the development of ADS.

Future research can focus on the development of human-like
perception algorithms and human-like motion planning
algorithms. A human-like threat level quantification method

provided in this article may be employed for such a purpose.
Furthermore, it is required to identify traits of the metrics that
give a false sense of superior performance. Extensive research is
necessary to appropriately model and evaluate the precrash
scenarios. Such a study would allow for prediction (and
mitigation) of crashes. Safety regulating authorities could
objectively and comprehensively assess ADS based on such
models.

Redundancy is necessary to prevent catastrophe in the event of
an individual sensor (or system) failure and integrity monitoring.
Future research can also focus on the conception of performance
metrics where system redundancy and integrity are quantified.
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