
A Tutorial on Moving Target Defense
Approaches Within Automotive
Cyber-Physical Systems
Bradley Potteiger1*, Zhenkai Zhang2, Long Cheng2 and Xenofon Koutsoukos3

1Johns Hopkins Applied Physics Laboratory, Laurel, MD, United States, 2Clemson University, Clemson, SC, United States,
3Vanderbilt University, Nashville, TN, United States

Moving Target Defenses (MTD) have become a popular and emerging defense strategy for
the protection of traditional information technology systems. By their very nature, MTD
strategies are designed to protect against adversary reconnaissance efforts on static
platforms, essentially sitting back and having unlimited time to identify, craft, execute, and
scale an exploit. With the rapid adoption of distributed automotive Cyber-Physical Systems
(CPS) ranging from self driving cars, to connected transportation infrastructure, it is
becoming more apparent that third party supply chains, increased remote
communication interfaces, and legacy software stacks are making the traditionally
designed standalone systems become more susceptible to safety-critical cyber-
attacks. MTD strategies within the automotive CPS domain have to delicately balance
the tradeoff between security and real time predictability, maintaining the safety constraints
of the systems. In this paper, we explore the various MTD strategies presented within the
literature while discussing potential applicability and strategies sufficient for the automotive
CPS domain.

Keywords: moving target defense, cyber-physical systems, automotive, cybersecurity, resilience

INTRODUCTION

Over the past decade, increasing numbers of electronic control units (ECUs) that communicate via
different types of communication buses like controller area network (CAN), FlexRay, and
automotive Ethernet have been assembled inside automobiles to provide intelligent services and
safety to users (Shane et al., 2015; Wu et al., 2020). The automotive industry is shifting towards
autonomous and connected vehicles. With increasing automotive intelligence, connectivity and
complexity, security and privacy have become pressing concerns (Seshia et al., 2017). Researchers
have shown that various vehicle systems can be hacked to enable a remote takeover of the vehicle
(Stephen et al., 2011; Petit and Shladover, 2015). Miller et al. used a Wi-Fi open port to hack the
multimedia system of a Jeep Cherokee and reprogram the firmware of ECUs. They were able to
control a wide range of automotive functions (e.g., cutting brakes, shutting down engines, and
driving off roads), triggering a recall of 1.4 million hackable vehicles. A typical automotive CPS
heavily relies on various sensors to make navigation and other control decisions, which are
vulnerable to sensor faults and attacks (Loukas et al., 2019). Physical faults and malicious
attacks can result in an incorrect perception of the environment, which can in turn lead to task
failure or even accidents. Misbehaving cars can further affect other connected cars and networks in
the connected environment. Therefore, securing automotive CPS against malicious attacks is
important in the prevention of potential damages to vehicles and transportation systems.

Edited by:
Lipika Deka,

De Montfort University,
United Kingdom

Reviewed by:
Ranwa Al Mallah,

Ryerson University, Canada
Manuel Urueña,

Universidad Internacional De La Rioja,
Spain

*Correspondence:
Bradley Potteiger

brad.potteiger@jhuapl.edu

Specialty section:
This article was submitted to

Connected Mobility and Automation,
a section of the journal

Frontiers in Future Transportation

Received: 10 October 2021
Accepted: 31 December 2021
Published: 07 February 2022

Citation:
Potteiger B, Zhang Z, Cheng L and
Koutsoukos X (2022) A Tutorial on

Moving Target Defense Approaches
Within Automotive Cyber-

Physical Systems.
Front. Future Transp. 2:792573.
doi: 10.3389/ffutr.2021.792573

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 7925731

REVIEW
published: 07 February 2022

doi: 10.3389/ffutr.2021.792573

http://crossmark.crossref.org/dialog/?doi=10.3389/ffutr.2021.792573&domain=pdf&date_stamp=2022-02-07
https://www.frontiersin.org/articles/10.3389/ffutr.2021.792573/full
https://www.frontiersin.org/articles/10.3389/ffutr.2021.792573/full
https://www.frontiersin.org/articles/10.3389/ffutr.2021.792573/full
http://creativecommons.org/licenses/by/4.0/
mailto:brad.potteiger@jhuapl.edu
https://doi.org/10.3389/ffutr.2021.792573
https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://doi.org/10.3389/ffutr.2021.792573

Memory corruption vulnerabilities are one of the most
common attack vectors used to compromise software systems.
Automotive software is not immune to such vulnerabilities.
Stephen et al. (2011) identified multiple memory corruption
vulnerabilities in a car’s telematics unit and media player.
Security researchers at Cisco revealed a memory corruption
vulnerability in GNU libc for ARMv7 (which can be used for
autonomous applications in smart cars) that enables attackers to
perform remote code execution and gain remote control over
smart cars. Tradiontial defense mechanisms, such as intrusion/
anomaly detection systems, protect automotive systems in a
passive manner. However, defenses are often way behind
advanced attacks in taking appropriate actions to thwart
potential attackers (Cho et al., 2020). Moving target defense
(MTD) plays a important role in improving the security of
automotive CPS in a proactive fashion.

MTD adds uncertainty and complexity into the system to
make it difficult for attackers to identify vulnerable components
and exploit vulnerabilities. In this paper, we conduct a review of
the existing MTD mechanisms which are applicable for
protecting automotive CPS from memory corruption attacks.
Our contributions are as follows.

• We present a comprehensive overview of the automotive
CPS domain, including the architectures, security
challenges, and potential opportunities.

• We discuss several classes of MTD strategies that can be
complementary to existing automotive CPS security
techniques.

• We discuss key design decisions and tradeoffs that will make
MTD strategies effective for key real time constraints,
performance metrics, and safety assurances.

THREATS TO AUTOMOTIVE
APPLICATIONS

With the increasing use of CPS in modern society, the properties
of safety and security are becoming more interwined, when in the
past they have been traditionally treated as two independent
issues dealt with by two separate communities (Wolf and

Serpanos, 2018). The tightly coupled nature of CPS between
the cyber and physical domains means that it is not only enough
to lock down the internal data of the system, but it is equally as
important to ensure proper physical dynamics of the system. As
such, measuring security in CPS is heavily focused on the
continuous physics dynamics, compared to the traditional
discrete nature of information security. Therefore, evaluation
is often conducted with complex, model based simulation
environments (KoutsouKos et al., 2018).

In traditional information technology systems one of the
primary goals of an adversary is usually to obtain a piece of
information. This has been displayed in three recent cyber attacks
including a 2016 hack on the democratic national committee
(Inkster, 2016), a 2016 electronic records compromise of a large
hospital chain (Mukherjee, 2016), and a 2009 compromise of
sensitive employee information within the Office of Personnel
Management and Budget (OPM) (Rosenzweig, 2012). CPS
systems on the other hand have unique aspects that make
both attack vectors and impact different from information
technology systems. CPS have the additional requirement of
fully complying with a respective specification of properties.
Any failure to meet these requirements will result in a failure
of the system. As such, an adversary can successfully compromise
a system by disturbing the timing of real time operations, or
injecting false data to lead to wrong actuation decisions. The most
popular example of a CPS cyber attack is STUXNET in which
hackers were able to create a worm that gained access to and
altered programmable logic controllers (PLCs) to overheat
centrifuges in Iranian nuclear enrichment facilities (James,
2011). At this point, it became clear that to successfully
protect CPS, a proper design needs to factor in system
integrity from the security community, as well as system
availability, and reliability from the safety community.

Compared to information technology systems, CPS systems
often have a higher level of physical accessibility. Attackers can
utilize physical attack vectors such as planting explosive devices
and sabotaging railway tracks or positive train control systems
(Riley, 2004; Ortiz et al., 2008; Sanchez, 2016) to disrupt the
operability of CPS components. As such, it is just as critical to
implement physical defense mechanisms in CPS, compared to
cyber mitigations.

FIGURE 1 | Attack surface of an automotive CPS.

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 7925732

Potteiger et al. MTD for Automotive CPS

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

Another critical difference between CPS systems and
information technology systems is that patching and frequent
updates are not well suited for CPS systems due to the
requirement of constant and safe operation (Cardenas et al.,
2009). As such, devices are often left in the field for years without
updating software. Due to this fact, CPS systems often have
outdated code and security measures making them vulnerable
to attack (Teso, 2013; Cerrudo, 2014; Ghena et al., 2014).
Therefore, CPS security has to be designed to withstand
adversary attack attempts over long periods of time without
any intervention. Finally, CPS designs have to be built in a
resilient fashion, under the presumption that whenever an
exploit is developed defeating previously established defense
mechanisms, the system will still be able to operate
sufficiently, and safely.

CPS have unique features and requirements that present
challenges to security professionals to adapt from traditional
information technology practices. The ability of CPS to interact
with the environment through actuation allows for attack impact to
translate from data loss to physical damage potentially resulting in
fatalities. Additionally, the ability to receive information through
sensors allows attackers to adjust control operation through the
manipulation of sensor data. CPS provides the potential for
attackers to maximize damage to their target.

Automotive CPS Components
In contrast to the analog structure of early car models, modern
vehicles consist of complex systems of systems. Cars today are
made up of hundreds of electronic digital components
communicating through a mesh of interconnected networks
with varying degrees of speeds, and protocols. This is backed
up by Charette (2009) which states that a modern car runs
approximately 100 million lines of code on 50 to 70 electronic
control units (ECUs). This makes a modern car essentially a
“computer on wheels”, presenting a vulnerability to traditional
hacking methods once thought of as only applicable to computers
and information technology systems.

Automotive CPS threat actors include script kiddies, political
activists, insiders, white hat hackers, black hat hackers, and cyber
terrorists (Meyers et al., 2009). The biggest threat comes from
both cyber terrorists, and black hat hackers as these adversaries
often have the most malicious intentions in causing bodily harm,
and damage. Additionally, these groups of adversaries are often
state sponsored so they are very sophisticated and resourceful in
their strategies. Researchers have to protect against this adversary
group first as it is no longer hard to picture an attempted
assassination attempt or terrorist attack through hijacking a
car. However, with increased academic research comes more
open source tools, and documentation. Therefore, lower skill
adversaries such as hobbyists, and coders are gaining the potential
to experiment and develop software for vehicle infrastructure. As
such, these groups also have to be taken into account in the future
when developing cybersecurity design for vehicle infrastructure.

Common vehicle systems include the electronic control units
(ECUs), telematics control units (TCU), keyless entry system (KES)
system, radio system, and airbag control units (Stephen et al., 2011).

The architecture of a car is grouped into three categories, all of
which contain their own vulnerabilities. These categories include:

• Electronic Control Units—The embedded computer devices
that control the various internal functions of a car.

• External Interfaces—The method of external entities
interacting with the car.

• Internal Network—The network that the internal electronic
control units communicate on

A high level threat model of these interfaces is illustrated in
Figure 1.

An ECU is an “embedded system that controls one or more
electrical systems or subsystems in a vehicle”.

These devices serve as the brains behind the modern car,
taking in data from onboard sensors, performing calculations,
and distributing instructions to the various in vehicle electronic
systems to maintain proper and efficient driving and operational
performance. ECUs govern practically every aspect of vehicle
functions from small tasks such as activating brake lights or
opening windows to critical functions such as autonomous brake
systems. Each ECU typically works independently operating its
own firmware, but complex tasks may require cooperation among
multiple ECUs (Zhang and Delgrossi, 2012).

External interfaces are means from which outside actors can
communicate to the vehicle. From Figure 1, the most common
external interfaces to the car include cellular, wireless (wifi),
bluetooth, tire pressure monitoring system (TPMS), and keyless
entry system (KES). Cellular communication channels are utilized
for telematics system operations. Telematics services are widely
utilized for remote vehicle monitoring especially in the case of
routing emergency response, or predicting future maintenance
needs. The most common services are OnStar (2017) and Lojack
(2017). OnStar is a remote monitoring company that provides
customers a line of assistance in the case of emergency. To
accomplish this task, OnStar requries several sensor values such
as speed, collision detection, and GPS coordinates among others.
Therefore, in the case of an accident, the OnStar monitoring center
can automatically detect an emergency and alert the authorities of
your exact location to respond to Lojack is a device that tracks the
GPS coordinates of your car in the case that it becomes stolen.
Furthermore, the device utilizes a cellular network to communicate
its precise location in real time to the police. Many newer model
cars have wireless interfaces that allow mobile phones, tablets, and
computers to control specific features. These features range from
controlling windows, and door locking, to controlling the
infotainment center, to seat control. This wireless feature
further serves as a wifi hotspot, for each passenger to have the
capability to utilize the internet from inside the car. Bluetooth is
most commonly utilized in cars as a short range communication
protocol for mobile phones to connect to the infotainment center.
This connection is used for transferring audio such as music or
phone calls between the vehicle interface and phone. The tire
pressure monitoring system uses four sensors on each respective
tire to record the real time tire pressure while indicating a warning
signal in the case that one of the readings is below a threshold. Each
external tire pressrue sensor communicates to a central vehicle

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 7925733

Potteiger et al. MTD for Automotive CPS

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

ECU through a short range Bluetooth communication protocol.
Finally, a vehicle key fob is actually an active RFID device that is
validated from the car through a short range RF communication
channel.

The final category is the internal interface. These are devices
that connect directly into the internal vehicle network. Examples
include the infotainment console, USB devices, and the OBD-II
connectors. The attack surface of these devices requires physical
access to the inside of the car. However, this category of devices
serves as the most critical threat to the security of the vehicle, as
once these devices are compromised, there are very limited
precautions that prevent them from controlling critical ECUs of
the car. Newer model vehicles consist of USB ports designed for
charging mobile phones, and media players, while serving as a
direct interface to the infotainment media player. Due to this direct
connection, malware injected on the USB drive can infect the
infotainment center and lead to a compromised state of the
network. The next critical internal interface is the infotainment
center. The infotainment center serves as the central entertainment
hub of the car. These devices include a radio interface, phone call
interface, music player interface, GPS interface, and other
applications. These applications communicate with ECUs
through the internal network as well as external entities through
short and long communication protocols. Therefore, an obvious
path to compromising these devices is through the external
communication interfaces. However, it is important to note that
third party applications can also be installed on these devices. As
such, a new emerging threat is infecting the infotainment center
through the use of third party applications. The infotainment
center is the most vulnerable remote attack avenue for the
vehicle due to the vast connections it has with the external
environment. The final internal interface to mention is the
OBD-II port. The OBD-II port is an input port located under
the steering wheel key slot that serves as a direct connection for
maintenance personnel to interact with the internal vehicle
network. Usually, when a car is serviced from a dealership,
personnel connect to the OBD-II port to gather diagnostic
information such as emissions, engine temperature, average
speed, and other details. This direct connection allows for the
injection of packets directly onto the internal network, versus
through intermediary paths such as with the infotainment and
USB interfaces. Therefore, by compromising a maintenance
person, or obtaining physical access to the car, adversaries can
directly inject malware onto the internal network and consequently
infect the connected ECUs.

The internal automotive networks consist of a series of multiple
communication buses with varying protocols. The most common
communication buses utilized are the Controller Area Network
(CAN) Bus, the Local Interconnect Network (LIN) Bus, the FlexRay
Bus, and the Media Oriented System Transport (MOST) Bus
(Studnia et al., 2013). These buses are described below:

• CANBus—Themost common communication bus. A serial
bus designed from two twisted wires transmitting a high and
low voltage respectfully. Data rate peaks at 1 Mb/s. CAN is
responsible for many systems such as vehicle control, safety,
and electrical systems. It operates like a broadcast network

in which packets are conveyed to all nodes on the network
and it is the responsibility of the nodes to determine whether
or not to process them. Each CAN packet has an
identification (ID) field to help determine which nodes
will process it.

• LIN Bus—A single wire subnetwork for lower bandwidth,
low cost, and low end multiplexed communication in
automotive networks. LIN uses a master-slave model,
where a master node and up to 16 slave nodes share a
bus. The master sends out messages to all slaves, and the
slave can only send a message if requested by the master.
The communication rate can peak at 20 kb/s. Since this
protocol is used for low cost, low criticality elements, it is
used for controlling comfort elements such as electronic
window lifts or windshield wipers.

• FLEX Ray Bus—The successor to the CAN protocol offering
speeds up to 10 Mb/s. The high speed and reliability enable
the use of X-by-Wire technologies such as the electronic
control of currently mechanical control systems such as
steering and braking. This bus is widely used for vehicle
safety systems, but due to its high cost, is limited in its
widespread use in the internal network.

• MOST Bus—A synchronous network used to transmit
multimedia data through the car via optical fiber. Multiple
data channels are offered as well as a control channel.
Synchronous communications are used to transfer
streaming data such as audio or video signals, while
asynchronous communications are used for scenarios such
as retrieving data from the internet. Speeds can reach up to
24Mb/s. The MOST bus is used for the infotainment center
and entertainment applications in the vehicle.

In a 2014 Audi A8 vehicle most of the networks consist of
varying CAN buses including the drivetrain, distance control,
gateway, and convenience systems (Miller and Valasek, 2014).
Additionally, some convenience systems such as the keyless entry,
power windows, and windshield wipers use the LIN Bus due to the
lower bandwidth requirements. Finally, the MOST bus connects
the infotainment system of the car to the rest of the network.

There are several vulnerabilities with the CAN Bus packet
structure and protocol dealing with confidentiality, integrity,
availability, authenticity, and non-repudiation (Studnia et al.,
2013). From a confidentiality standpoint, every message sent
on the CAN Bus is broadcast to every other node connected
to the bus. Due to this behavior, if an attacker were to
compromise one connected ECU device, they could eavesdrop
on the rest of the communications on the CAN bus, and also
spoof messages to any connected ECU. Therefore, this type of
communication is truly only as strong as the weakest link as once
one node is compromised, the whole network is subject to being
compromised. In regards to vulnerabilities with integrity, the
cyclic redundancy check (CRC) in the CAN packet exists to check
if a message has been modified. However, it is easy to forge a
correct CRC so this is not sufficient for preventing an attacker
from creating false messages or modifying existing messages. In
regards to availability, since every packet has a user defined
priority bit, an attacker can spoof numerous high priority

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 7925734

Potteiger et al. MTD for Automotive CPS

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

packets to flood the CAN bus and prevent proper communication
between the ECUs. In regards to authenticity, the packet structure
of CAN does not include a field for authenticating the sender of
the message. This makes it very easy to spoof messages on the
network. Finally, from a non-repudiation standpoint there is no
method in the protocol for a node to prove that it has not sent or
received a given message.

By exploiting these vulnerabilities, several types of attacks can be
executed on the network. Paul et al. (2015) describes five types of
potential attacks including data stealing, control overriding, vehicle
degradation, data falsification, and external sensor attacks. Data
stealing deals with an attacker connecting to the CANnetwork, and
eavesdropping on the rest of the ECU communications. Control
overriding deals with an attacker taking advantage of the
susceptibility of CAN networks for denial of service attacks by
injecting high priority messages on the bus which would always be
executed over the normal control messages. As such, an attacker
could use this to take control and hijack vehicle operations. Vehicle
degradation deals with an attacker spoofing messages about the
current condition of the vehicle to trick the system into running
inefficiently or becoming damaged by overheating, running out of
gas, or having a flat tire. Data falsification deals with relaying false
information to the driver to directly or indirectly cause unsafe
behaviors such as disabling an airbag warning light when the airbag
system is dysfunctional.

Putting these concepts into practice, researchers in (Miller and
Valasek, 2013) have shown the ability to effect the behavior of
vehicles through attacks on the CAN bus. The research was built
on the assumption that adversaries could gain access to the CAN
bus through external means, but once access is gained atacks
could be executed to turn the horn on, shut the engine off,
shutting off the brakes, disabling steering, spoofing the speed on
the speedometer, and increasing the amount of distance shown
on the odometer. Additionally, the same researchers were able to
reverse engineer and exploit a modern Jeep Cherokee in (Miller
and Valasek, 2015). Even though this research was conducted in
the purely academic context, it is not hard to imagine the
applications that a malicious adversary could use these
concepts for. As such, it is critically important to increase the
amount of security mechanisms in these systems, and bring
cybersecurity strategies into the earliest stages of vehicle design.

Previous vehicle security efforts have focused on hardening
internal ECU communication, implementing anomaly and
intrusion detection systems, and securing external
communication interfaces. For securing the internal vehicle
communication, a majority of research is focused on the CAN
bus protocol due to being the most widely utilized protocol in
vehicles (Lin and Sangiovanni-Vincentelli, 2012). The CAN
protocol at the basic level is vulnerable to masquerade, and
replay attacks due to the lack of authentication. There has been
progress in authentication, such as a Message Authentication Code
(MAC) technique in Tesla vehicle models (Adrian et al., 2000), as
well as a time triggered implementation proposed by Szilagy and
Koopman (2008) for establishing global time. However, the biggest
challenge is developing authentication mechanisms with low
enough overhead to be feasible in deployment environments due
to low bandwidth of the CAN protocol. The second area of security

research focuses on securing the underlying processes and
computations operating within the vehicle. Wolf et al. (2007)
proposed to introduce symmetric encryption techniques to
secure the integrity of ECU computational processes, while
hashing techniques can be utilized to secure data. Additionally,
secure software engineering practices have gainedmore attention, to
minimize the amount of attack vectors available in ECU’s based on
bad coding practices (Paul et al., 2004). Furthermore, to address
attack detection and reaction, research has applied traditional
information security techniques such as honeypots, and intrusion
detection systems to the vehicle domain (Kleberger et al., 2011). By
leveraging artificial intelligence, and machine learning, these
techniques can be optimized to minimize the amount of time,
and accuracy of detecting an adversary event. The final area of
research focuses on securing the internal vehicle network from
external devices (Han et al., 2014). By monitoring third party apps,
connected phones and media players, approaches have focused on
implementing firewall techniques within the vehicle gateway
interface. As such, by designing only one path of entry through
the gateway components, these techniques have been proven
effective to block malicious entities from gaining access to the
internal, more safety-critical vehicle components. When
analyzing the related research in vehicle security, a lot of the
approaches focus on locking down the system from external
threats. For example, authentication ensures that attackers can’t
spoof internal communications, while firewalls serve as an outer
layer of protection, blocking malicious entities from gaining access
into the internal network. Additionally, to appropriately optimize
these types of defense mechanisms, the designer must have full
knowledge of the potential vulnerabilities, as well as every location
an adversary can potentially infiltrate. However, it has been
commonly shown that researchers and adversaries can find ways
around defense mechanisms in place, whether due to lack of
sufficient protections due to designer ignorance, or by
introducing zero day exploits not previously known in public
(Miller and Valasek, 2015). As such, it is not feasible to only rely
on locking down systems based on previously known vulnerabilities.
A defense in depth approach is the best option for optimizing the
security of a system, due to implementing multiple layers of
protections. MTD along with control reconfiguration enables a
backup defense protection mechanism that can stop attacks such as
code injection, code reuse, and data tampering, in the event that an
adversary has defeated outer defense protections. Additionally, by
introducing control reconfiguration capabilities, resilience can be
designed into systems to maintain availability during attack
sequences, when in regular defense mechanism implementations,
an attack would either result in system hijacking or crashing.

Buffer Overflow Vulnerabilities
One of the most popular vulnerabilities within vehicle software
are buffer overflows, which have been regarded as the most
commonly used exploit over the last several years (Cowan
et al., 2000). Buffer overflow attacks are widely publicized in
the traditional information technology domain for the purpose of
network penetration and pivoting. However, these vulnerabilities
become more interesting in the CPS domain, where they are
commonly utilized to exploit memory allocation functions in low

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 7925735

Potteiger et al. MTD for Automotive CPS

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

level programming languages such as C and C++. In addition to
providing the capability for gaining remote access and exfiltrating
stored data, attackers can also alter the control flow through non
bounded input to execute malicious code on the embedded
controllers. With previous reconnaissance on the control API,
attackers can reverse engineer controller instructions to spoof
new instructions to alter the physical behavior of the embedded
device. One possible result of a buffer overflow vulnerability is a
code injection attack. As such, the attacker can divert the program
control flow to inputted malicious code, which will consequently
be allowed to run unchecked on the system. The buffer overflow
vulnerability and code injection attacks are described below.

For the first type of attack, the user can set the return address
of a locally called function to be another location in the program
code. This is referred to as a code reuse attack. In code reuse
attacks, attackers edit the program control flow to return to a
sequence of already existing code in the program. Code reuse
attacks are useful in cases where the stack is non-executable,
preventing an attacker from running instructions from input on
the stack. Code reuse attacks have been successful for privilege
escalation in the Android operating system, creating rootkits, and
injecting code into Harvard architectures (Habibi et al., 2015).

For the second option, a code injection attack can be used. In
this case, an attacker can push arbitrary code onto the stack
through a buffer overflow. Then the attacker can subsequently
overwrite the stack return address to redirect control back to the
injected attacker code (Habibi et al., 2015). Code injection attacks
are used in cases where the stack has executable permissions. For
code injection attacks, the process first involves inputting the
respective code into the target process. This part of the input is
called the payload, which is the code that will be executed. The
end of the input string will be crafted to overwrite the function
return address to be the beginning of the payload section of the

input. As such, after the input is inserted into the program,
control flow will return from the current function to the
beginning of the attackers payload code. After this point, the
payload code will be executed. Normally, due to restrictions on
the size of an input string and consequently the size of the
payload, the injected code needs to be small in size. It is
common for attackers to inject the system function binary
code as a payload to be executed, consequently opening a
command shell for further commands to be executed on the
system. The goal of using the code reuse and code injection
attacks is not to insert all of the desired instructions into the
exploit, but to use these avenues for establishing a foothold into
the system for further command execution.

APPROACHES

With attackers becoming increasingly sophisticated, cybersecurity
is becoming less focused on completely locking down systems and
more focused on decreasing the risk of attacks to the system. If
attackers have the motivation, time, knowledge, and resources to
attack a system, eventually they will be successful in gaining entry.
As such, attack risk is lowered by decreasing attacker motivation
and the knowledge of the system. MTD is a good tool for
decreasing attacker knowledge by constantly changing various
system properties while preserving essential semantics, executing
a security through diversity strategy (Evans et al., 2011).

Therefore, even if an attacker were to obtain knowledge of
system vulnerabilities at one point in time, these vulnerabilities
wouldn’t necessarily be true during future time periods. MTD has
long been applied to the traditional information technology
domain, specifically with examples such as software defined
networking, but however are fairly new to the CPS domain.

FIGURE 2 | Moving target defense categories (Okhravi et al., 2014).

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 7925736

Potteiger et al. MTD for Automotive CPS

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

MTD can be characterized into five sections: dynamic runtime
environment, dynamic software, dynamic data, dynamic platform,
and dynamic networks (Okhravi et al., 2013). These categories can
be characterized in regards to their place in the execution stack and
are described below as well as in Figure 2 and 3.

Dynamic runtime environment techniques focus on changing
the environment present by the operating system during execution.
These techniques aim on preventing attackers from exploiting
software vulnerabilities to compromise a system. Two techniques
associated with this category consist of instruction set
randomization (ISR), and address space randomization (ASR).
Instruction set randomization involves changing the format of the
actual program instruction opcodes dynamically during execution.
This prevents the attacker from predicting and injecting code
payloads into the system. The second technique, address space
randomization, involves changing the virtual memory layout of the
program. This prevents the attacker from rerouting the program to
run code at certain locations in memory, and to assume adjacent
variables to overwrite in the event of a buffer overflow attack.

Dynamic software involves changing the application code
such that the attacker can no longer guess the internal behavior of
the program based on fuzzing inputs. The most common
technique for this category is diversification. Diversification
involves rewriting program code in different formats such as
with different instruction sequences, reordering functions and
instructions, and reordering the internal data structures in such a
way to accomplish the same functionality with a different process.
The most common use of these techniques is to prevent side
channel and fuzzing attacks on the program.

Dynamic data involves changing the representation of
application data such that unauthorized use is hindered but the
program semantic use remains the same. The most common
technique in this category is data encryption and obfuscation.
Data encryption and obfuscation seeks to guarantee that even if
attackers were to access data from a program, they would not have
the means to figure out the true context of that data.

Dynamic platform involves changing the properties of the
computing platform in an effort to disrupt attacks that rely on
specific platform characteristics. Some platform characteristics
include operating system, processor, and communication means.
It is most common for this technique to involve migrating
applications between different machines to prevent attackers
from targeting a specific platform or vulnerability of the system.

Dynamic networks focuses on continuously modifying
network properties to lower the probability of success for
network born attacks. This category often involves changing
IP addresses and network ports through software defined
networking means, but also includes changing communication
protocols, and changing the topology of the network.

Each of the MTD techniques described above is designed to
disrupt a specific phase of the attack sequence. To understand this
further, the stages of the attack sequence are described below:

• Reconnaissance—Attackers find and collect basic
information on their target. Examples include spear
phishing or determing a target host’s IP address using
network scanning.

• Access—Attackers take actions to collect detailed
information on their target. Examples include probing
against a server to determine its architecture, operating
system, and configuration. This stage detects the
vulnerabilities that attackers can leverage to access the
target.

• Development—Attackers research and develop an attack
that can exploit a vulnerability on the target.

• Launch—Attackers deliver the attack payload to
compromise the target. The payload can be delivered
through a variety of means including the network,
infected media, or malicious executable code.

• Persistence—Attackers insert a backdoor on the target to
ensure future access.

For this paper, the dynamic runtime environment category
will be looked at extensively focusing on applications of
instruction set randomization, address space randomization,
and data space randomization in CPS. Several attacks that
MTD address include data leakage attacks, resource attacks,
injection attacks such as code injection and control injection,
spoofing attacks, exploitation of authentication, exploitation of
privilege and trust, and supply chain or physical security attacks
(Okhravi et al., 2013). In regards to instruction set
randomization, address space randomization, and data space
randomization, this paper looks specifically at preventing code
injection, code reuse and various Weird Machine based attacks.

Instruction Set Randomization
Many techniques have been proposed to defuse code injection
attacks including stackguards, memory management unit access
control lists, control flow integrity, and masking code pointers
(Alnabulsi et al., 2015). Additionally, a syntactic checker has been
proposed for SQL based applications (Ray and Ligatti, 2012).
However, instruction set randomization is the most widely
accepted technique for preventing these types of attacks.
Normally, code injection attacks utilize buffer overflow
vulnerabilities for input processing in low level languages such
as C, and C++ to insert malicious code into the program and
divert control to execute that code. However, it has been
demonstrated that other scripting languages such as Web CGI,
bash, and SQL have been vulnerable to attacks (Boyd et al., 2010).
For code injection attacks to be successful, the adversary has to
rely on knowing the native architecture of the running program
code on the target machine. However, ISR prevents this
knowledge by changing the code architecture to a custom,
randomized version that is not publicly known. For the code
injection attack to now be successful, the attacker now needs to
know the randomization key.

CPU instructions for common architectures such as ARM, and
x86 have two parts, the opcode and the operand. The opcode
defines the operation to be performed while the operands define
the arguments to the function. It is important to remember that
these instructions are at the binary level so the combination of
opcode and operand will become a respective binary sequence.
During ISR implementations, we can create new instruction
binary sequences by using cryptographic algorithms to create

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 7925737

Potteiger et al. MTD for Automotive CPS

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

new mappings between functions and opcode and operand
combinations. The most common algorithm used in the
literature is using a XOR command to change the binary
sequence with a randomization key. For example, for the
attacker to now guess the randomization key for an
instruction that is 32 bits, it will take up to 232 attempts
respectively with a brute force approach. Attempts have been
made in the literature to guess the ISR randomization key using
various techniques such as side channel attacks, plain text key
communication, and exhaustive key guessing (An et al., 2005;
Weiss and Barrantes, 2006). However, other more advanced
encryption algorithms such as the advanced encryption
standard (AES) can be used as an alternative.

ISR implementations can either be hardware or software
based. For hardware based implementations, a customized
processor or FPGA needs to be used to insert
derandomization functionality into the processor pipeline.
Researchers have successfully used the OpenSPARC FPGA
processor to create a hardware based ISR prototype
(Papadogiannakis et al., 2013; Sinha et al., 2014). For early
stage implementations of software based ISR, emulators such
as the Bochs x86 emulator were used for the purposes of
processing customized instruction architectures (Kc et al.,
2003; Portokalidis and Keromytis, 2010). However, for more
recent versions of ISR software implementations, there is a
push for the use of dynamic binary translators which can be
used to create a virtual layer between the execution program and
processor pipeline. Several software implementations exist based
off of DBTs including PIN (Luk et al., 2005), and STRATA (Scott
and Davidson, 2001) for x86 processors along with MAMBO
(Gorgovan et al., 2016) for ARM based processors. With the
recent boom of ARM based embedded devices in the automotive
embedded applications, MAMBO will become more relevant in
the future. Figure 4 illustrates an examplar architecture of an
Instruction Set Randomization Framework utilizing the Mambo
dynamic binary translation tool.

Address Space Randomization
An overwhelming amount of security advisories from US Cert
have described memory corruption attacks as the top major
risk, enabling attackers to execute remote code on critical
systems (Li et al., 2006). In a majority of these cases,

especially for executing code reuse attacks, the attacker needs
to have knowledge of a specific address location for the target
code to be run. Address space randomization (ASR) attempts to
leverage this necessary piece of information by introducing
artificial diversity into various segments of a program and
system. This can be implemented in multiple degrees of
granualarity ranging from randomizing the starting base
addresses of shared libraries and program segments to fine
tuned randomization of individual lines of code in a program
(Snow et al., 2013). By changing the location of various program
segments, external memory access becomes unpredictable, and
the attack will result in an invalid memory address being
accessed. ASR can be implemented by randomizing a subset
or all of a program’s parameters such as the base address of the
stack, base address of the heap, order of static variables
addresses of function call targets, base addresses of shared
libraries, and the order of functions in a shared library
(Wang et al., 2011).

There have been developed ASR implementations in the
literature on Linux (Bhatkar et al., 2003), Windows (Li et al.,
2006), Macintosh (Bojinov et al., 2011), and mobile platforms
(Bojinov et al., 2011). On the Windows ASR implementation, it is
noted that there are a couple of limiting factors to randomization
such as insufficient ranges of randomization, incomplete memory
randomization, and limited documentation about existing
randomization algorithms. The Linux versions of ASR referred
to as address space layout randomization (ASLR) seem to be
further along with more open documentation, as well as more
user access to randomization customization parameters in the
kernel. However, it is noted that on 32 bit Linux systems there is
only 16 bits of randomization and on 64 bit Linux systems there
are 32 bits of randomization (Shacham et al., 2004). ASR is
implemented inMacintosh computers starting at the OSX release.
However, these versions seem somewhat limited with only
providing the ability to randomize the base addresses of
shared libraries. It was noted that in the process of
implementing ASR on mobile platforms there have been
discovered problems such as the default shared library
prelinking of the Android operating system, and the read only
access of the file system. However, researchers were able to create
a workaround called retouching to randomize prelinking libraries
without needing to modify the kernel.

FIGURE 3 | MTD mitigation attack kill chain stages (Okhravi et al., 2014).

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 7925738

Potteiger et al. MTD for Automotive CPS

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

There have been several demonstrated attacks against ASR
implementations. One of these attacks includes a timing attack
that can exploit a hardware extension called the Intel
Transactional Synchronization Extension (TSX) to break
randomization in Windows, Linux, and MAC computers in
under a second with near perfect accuracy (Jang et al., 2016).
Additional attacks taking advantage of return oriented
programming and relative jumping addresses to target code
addresses (Wang et al., 2011). However, it has been noted that
advances in position independent code compilation and self
randomization algorithms have now mitigated some of these
attacks.

Data Space Randomization
After obtaining access to a program through buffer overflow
vulnerabilities, attackers can manipulate non control program
variable data in an integrity attack to alter program behavior
without altering control flow. One common technique utilized to
alter these types of attacks is data space randomization (DSR).
Data space randomization changes the internal or external
representation of an application’s data in such a way as to
ensure that the semantic content is unmodified but
unauthorized use, access, or modification is hindered (Okhravi
et al., 2014). This is accomplished by randomizing the format,
syntax, encoding, and other properties of the data. As such, DSR
acts similarly to ISR in using a key based randomization and de-
randomization process to encrypt variable data sensitive to attack.
Each variable data object is randomized before it is written to
memory and is derandomized after it is read from memory. DSR
provides a much larger range of randomization than ASR,
allowing for all 32 bits to be used on a 32 bit platform
compared to the 16 bits used on Linux ASLR
implementations. Consistent with the ISR process, the
randomization process can be accomplished by using an XOR
operation with a randomization key (Bhatkar and Sekar, 2008;
Cadar et al., 2008). In these implementations the overhead is non-
minimal with an average performance overhead of around 15%
(Szekeres et al., 2014). Additionally, there is the possibility of
using other symmetric encryption algorithms such as those in the

AES family to add further security to the application, but
subsequently increase the overhead percentage. DSR provides
both the ability to use a common shared randomization key, but
for enhanced security, each variable should be mapped to a
unique randomization key. Implementations of DSR started
with a software toolkit called PointGuard (Cowan et al., 2003).
Pointguard randomized the stored pointer addresses to prevent
attackers from gaining reconnaissance knowledge about pointer
data. However, current DSR implementations now not only
randomize pointer addresses but also the stored variable data.
Some attacks against DSR listed in the literature include data
leakage attacks, brute force and guessing attacks, and partial
pointer overwrites (Bhatkar and Sekar, 2008). However, with
strategic derandomization and high randomization entropy these
types of attacks are deterred.

Network Randomization
For attackers to identify targets and vulnerabilities through
reconnaissance, they often rely on known information about
the connected network. The static nature of current networks
makes reconnaissance easy, allowing for attackers to maintain
privileged access for a long time once a vulnerability is discovered.
This is especially significant as the internet task force has declared
a number of attacks that can be implemented with an attacker
correctly guessing a combination of transmission control
protocol (TCP) attributes including the protocol, source
address, destination address, source port, and destination port
(Larsen and Gont, 2011). Furthermore, this leaves networks open
to attacks from worms, especially hitlist worms who have
preprogrammed lists of target IP addresses and entry ports to
use for infection and spreading (Antonatos et al., 2007) However,
the concept of network randomization seeks to continuously
modify various network attributes such as addresses, ports,
protocols, and logical network topology to deter the attacker
from gaining relevant information necessary to conduct network
borne attacks (Okhravi et al., 2014). Instead of focusing on
hardening a system which is traditionally done in information
security, this technique focuses on reducing the risk of attack by
increasing the exploration space and changing the attack surface

FIGURE 4 | Randomization architecture stack, base address of the heap, order of static variables addresses of function call targets, base addresses of shared
libraries, and the order of functions in a shared library (Wang et al., 2011).

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 7925739

Potteiger et al. MTD for Automotive CPS

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

(Zhuang et al., 2013). With the advancements in software defined
technologies, these techniques are becoming easier to implement.

Network randomization implementations in the literature
consist of a combination of randomizing network ports, IP
addresses, and network paths. A software prototype
implementation has been developed combining the capabilities
of the above three randomization features (Chavez et al., 2016).
To change the assigned IP address and port, the iptables utility of
the netfilter kernel module is utilized. Additionally, software
defined networking controllers can be used to change between
various routes between network nodes, preventing attackers
concrete knowledge of communication paths. By changing
these network features, the attacker exploration space is
increased, reducing the probability of a successful attack, and
preventing an attacker from relying on previous gathered
reconnaissance information.

DISCUSSION

As the adoption of MTD strategies is increasing within the CPS
domain, especially with regards to the Network Security domain, it
is important to present a clear description of the benefits. MTD
strategies by their very nature are designed to insert dynamic and
unpredictable properties into an otherwise static system, mitigating
against the reconnaissance stage of the attacker kill chain. As an
example, think of the requirements of return-oriented
programming (ROP) attacks, or underlying Weird Machines. Its
important to note that weird machines are defined as the
occurrence of program sub-components (e.g., instructions,
gadgets, functions) that can be leveraged to perform an
operation other then for their intended purpose. These attacks
generally require prior knowledge such as the system architecture,
stack organization, control flow redirection target, and open
network ports for a potential reverse TCP shell. Under a basic
configuration, if a valid exploit was crafted for one deployed system
instance, that exploit would scale to effect every other identical
system, including systems with similar applications, network
configurations, and defense protections. By adding MTD at
various layers, each system becomes syntactically unique while
remaining semantically the same, making the location of the
various ROP gadgets different on every system. As such, even if
an attacker can identify prior knowledge about a system, that
knowledge becomes obsolete when trying to scale the attack.

Most of the application oriented MTD schemes within the
literature have either relied upon a compilation based approach
where function and address scrambling is performed statically at
compile time, or a runtime based approach where dynamic
runtime instrumentation frameworks are leveraged to adjust
memory and code throughout a programs lifetime. Within the
context of an automotive application, the latter approaches will be
more infeasable due to the high amount of overhead that they
present on the system. Furthermore, due to the added virtualized
dynamic binary instrumentation layer, operation of the
underlying program will become less predictable, potentially
resulting in disruption to real time constraints and safety
precautions. This makes the first category (compiled MTD

implementation) more of an acceptable approach, allowing for
more predictable operation during runtime. The two most
common MTD compiler implementations were noted as
Multicompiler (Larsen et al., 2013) and SelfRando (Conti
et al., 2016) can play critical roles within the embedded
software development pipeline. Multicompiler provides code
transformation passes at compile time while SelfRando inserts
stub code to perform dynamic randomization when the program
is loaded into memory. Both tools implement one time
randomization meaning that the code is not continuously
randomized throughout the programs runtime lifecycle.
However, it is important to note that Multicompiler only has
a one to one mapping per compile iteration, while SelfRando will
create a new randomized version on every program run attempt.
In our opinion, Multicompiler presents an overall better package
with the ability to insert other various LLVM passes such as
shadow stacks, segmented memory, canaries, buffer overflow
protections, and optimization passes. Additionally, no
additional load time overhead will be presented, meaning that
runtime executed programwill be as close to the original intended
program as possible.

In terms of network randomization schemes it is important to
look at the real time context in a similar fashion as the application
approaches. Traditionally, network randomization schemes have
significantly relied upon specialized software defined networking
(SDN) hardware, making the barrier to entry for generic
consumer devices relatively high. Even though it is possible for
automobile manufacturers to acquire such specialized hardware,
it would add a degree of cost to the end product, making it not as
likely to be implemented from a business perspective. However,
recent research prototypes has focused more on software
implementations of such randomization schemes leveraging
endpoint clients integrated with operating system components
such as IP Tables and routing drivers (Chavez et al., 2016). These
methods provide a lower barrier to entry and are easier to
integrate into existing automotive environments due to the
ability to still leverage existing COTS infrastructure. From an
automotive security standpoint, two different types of areas
should be protected: 1) lower criticality TCP ethernet
networks, and 2) safety-critical CAN bus networks. Newer
automobile models incorporate TCP ethernet networks for
lower criticality traffic between entertainment devices and
applications. In this case, it is recommended to incorporate a
degree of IP address randomization, and port randomization to
obfuscate and diversify the device communication patterns,
reducing the likelihood of external reconnaissance and
injection attacks. From the safety-critical network perspective,
CAN Bus networks between ECUs tend to have a one to many
transmission model meaning all ECUs can see traffic from every
other ECU. In this case, it is recommended to implement a CAN
message integrity check, and message packet format
randomization (Brown et al., 2020). Additionally, for an added
layer of security, ECU identifier randomization can be
implemented to reduce the likelihood of successful ECU
spoofing attacks.

Finally, an up and coming attack vector within the industry is
the side channel attack. From a processor standpoint, timing

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 79257310

Potteiger et al. MTD for Automotive CPS

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

based attacks such as Spectre (Paul et al., 2019) and Meltdown
(Lipp et al., 2018) have been shown to be able to reverse engineer
“black box”memory through the use of control flow optimization
knowledge within the processor. However, at a higher level of
abstraction, the ability to leverage exhaustive vehicle request-
response message to reverse engineer authentication keys
(Kulandaivel et al., 2019; Kulandaivel et al., 2021). This is of
greater importance to consider due to the proven ability to
actually gain administrative access to safety-critical ECU
commands on real world vehicles. To combat these types of
attacks, control flow randomization for processor based timing
attacks, as well as authentication key randomization for request-
response attacks are low hanging mitigations to consider.

Benefits
Even though there are various benefits to leveraging dynamic
approaches, a couple of challenges arise, as noted from the above
section. The first challenge arises with the increased performance
overhead on systems. A significant portion of MTD strategies
depend on dynamic instrumentation to manipulate processes at
runtime. As such, even though the performance overhead is
getting to be more manageable, the average performance
overhead for many of the recent approaches is still well above
30%, making integration into resource constrained systems often
infeasible. The second challenge revolves around predictability of
real time systems. With the introduction of dynamic
instrumentation, preconfigured systems will lose their design
time certifications, making it difficult to integrate into hard
real time systems. To satisfy these challenges, there are often
tradeoffs that can be made that can leverage performance efficient
and low invasiveness techniques to provide a degree of protection
while minimizing impact on the system.

However, it is also important to note that numerous benefits
from such approaches. First of all is the reduction of “generic”
reconnaissance and exploitation techniques. The most
devastating attacks are often a form of a supply chain exploit,
meaning that a vulnerability in one software library dependency
can be scaled to effect every other deployment of that software
application around the world. It has actually been shown that
there is up to a 60% overlap between proprietary automotive
firmware and open source router dependencies (Bradley et al.,
2020), meaning that generic vulnerabilities can be leveraged to
inflict more damage than originally thought. By diversifying code
and runtime environments, original assumptions leveraged for
exploit development will not be true for the randomized case.
This means that randomized applications and operating systems
will not be vulnerable to the same vulnerabilities and exploits as
the rest of the effected vehicle models. In the same vein of
diversity, network based randomization approaches often
make reconnaissance efforts infeasible due to the continuous
movement of IP addresses and ports. Reconnaissance knowledge
of an open service or port will not necessarily be true during a
period in the future. Finally, MTD approaches within the data
domain can mitigate against data exfiltration even if an exploit
can get through outer layer protections. New techniques such as
homomorphic encryption (Sniatala et al., 2021) have made it
possible to perform operations on encrypted data without the

need to decrypt during any stage of the process. Furthermore,
scattering data around the filesystem will create an incoherent
environment from the attacker’s standpoint, disrupting their
ability to identify and extract key intelligence information.

Research Direction
To satisfy the above challenges, while maximizing the benefits of
MTD strategies, we propose the following three research
directions to prioritize over the next decade. The first research
direction focuses on optimizing the performance overhead
presented to systems while providing real time guarantees.
This direction can be applied to both application/process
based manipulations (ASR), as well as communication based
techniques (CAN Bus message randomization). Specifically to the
automotive domain, it is critical to maintain real time constraints
and as such, formal methods further need to be applied to ensure
that alterations to the existing systems will maintain semantic
equivalence and satisfy the real time constraints of the system.
The second critical research direction focuses on a higher level of
abstraction, looking at dynamic configurations in multi-vehicle
platoons. As such, research can focus on areas such as resilience
of platoons, collaborative data fusion, and control
reconfiguration to maximize protection against physical and
cyber attacks. The final research direction focuses on
investigating the role of MTD techniques within the AI
domain. Various techniques such as ensemble learning have
been becoming more popular, and inserting a degree of
diversity into models can increase resilience and endurance
against adversarial attacks. Diversifying sensor inputs and
model sub-components also has the potential to increase the
reliability and assurance of safety-critical AI systems such as self
driving vehicles within the abundance of differing environments
that they face.

CONCLUSION

MTD techniques have been established to be effective in the
traditional information technology domain as a protection
measure against ever emerging sophisticated cyber-attacks.
Several techniques such as software defined networking,
software defined radio, and ASR have proved effective against
scalable reconaissance efforts by adversaries. Furthermore, there
have beenmultiple recent surveys onMTD strategies in general to
establish the most effective techniques within the data,
application, and network domains. However, within the
automotive CPS domain, several additional requirements are
presented on systems, most notably the presence of real time
constrains and the necessity for predictability versus high
performance computing. As such, in this paper, we have
explored various MTD strategies both from the general sense
as well as other strategies specific to automotive architectures
such as platoon reconfigurations. By strategically leveragingMTD
strategies within automotive CPS environments, designers can
optimally create a dynamic and unpredictable defense from the
attacker standpoint, while maintaining all of the safety and
security requirements for the vehicle to operate sufficiently.

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 79257311

Potteiger et al. MTD for Automotive CPS

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

AUTHOR CONTRIBUTIONS

The authors confirm contribution to the paper as follows: MTD
idealization and substantial design input: XK and ZZ; Literary
review: BP and LC; Content creation for Section 1 and Figure
creation: LC; Content creation for Sections 2–5: BP; Draft
manuscript preparation: BP and LC; and substantial editing
and review: ZZ and XK. All authors reviewed the results and
approved the final version of the manuscript.

FUNDING

This work is funded in part by the National Security Agency
(H98230-18-D-0010), the National Science Foundation (CNS-
1739328), and by the National Institute of Standards and
Technology (70NANB17H266). Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
NSA, NSF, or NIST.

REFERENCES

Adrian, P., Ran, C., Tygar, J. D., and Song, D. (2000). “Efficient Authentication and
Signing of Multicast Streams over Lossy Channels,” in Proceeding 2000 IEEE
Symposium on Security and Privacy. S&P 2000 (Berkeley, CA,USA: IEEE), 56–73.

Alnabulsi, H., Mamun, Q., Islam, R., and Morshed, U. (2015). “Chowdhury. Defence
against Code Injection Attacks,” in Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST.

An, S., Evans, D., and Paul, N. (2005). “Where’s the FEEB? the Effectiveness of
Instruction Set Randomization,” in 14th USENIX Security Symposium.

Antonatos, S., Akritidis, P., Markatos, E. P., and Anagnostakis, K. G. (2007).
Defending against Hitlist Worms Using Network Address Space
Randomization. Computer Networks.

Bhatkar, S., DuVarney, D. C., and Sekar, R. (2003). Address Obfuscation: An
Efficient Approach to Combat a Broad Range of Memory Error Exploits.
USENIX Security Symp. 12, 291–301.

Bhatkar, S., and Sekar, R. (2008). “Data Space Randomization,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics).

Bojinov, H., Boneh, D., Cannings, R., and Malchev, I. (2011). “Address Space
Randomization for mobile Devices,” in Proceedings of the fourth ACM
conference onWireless network security -WiSec ’11. doi:10.1145/1998412.1998434

Boyd, S. W., Kc, G. S., Locasto, M. E., Keromytis, A. D., and Prevelakis, V. (2010).
“On the General Applicability of Instruction-Set Randomization,” in IEEE
Transactions on Dependable and Secure Computing.

Bradley, P., Mills, J., Cohen, D., and Paul, V. (2020). “Ruckus: a Cybersecurity
Engine for Performing Autonomous Cyber-Physical System Vulnerability
Discovery at Scale,” in Proceedings of the 7th Symposium on Hot Topics in
the Science of Security, 1–10.

Brown, R., Marti, A., Jenkins, C., and Shannigrahi, S. (2020). “Dynamic Address
Validation Array (Dava) a Moving Target Defense Protocol for Can Bus,” in
Proceedings of the 7th ACM Workshop on Moving Target Defense, 11–19.

Cadar, C., Akritidis, P., Costa, M., Martin, J-P., and Castro, M. (2008). Data
Randomization. Technical Report, Technical Report TR-2008-120. Redmond,
Washington, USA: Microsoft Research. Cited on, 2008.

Cardenas, A., Amin, S., Bruno, S., Giani, A., Adrian, P., and Sastry, S. (2009).
“Challenges for Securing Cyber Physical Systems,” in Workshop on future
directions in cyber-physical systems security, volume 5.

Cerrudo, C. (2014). “HackingUSTrafficControl Systems,” inDefcon 22, LasVegas,NV.
Charette, R. N. (2009). This Car Runs on Code. IEEE Spectr. 46 (3), 3. doi:10.1109/

mspec.2009.5340234
Chavez, A. R., Stout, W. M. S., and Peisert, S. (2016). “Techniques for the Dynamic

Randomization of Network Attributes,” in Proceedings - International
Carnahan Conference on Security Technology.

Cho, J.-H., Sharma, D. P., Alavizadeh, H., Yoon, S., Ben-Asher, N., MooreKim, T.
J. Dong. Seong., et al. (2020). Toward Proactive, Adaptive Defense: A Survey on
Moving Target Defense. IEEE Commun. Surv. Tutorials 22 (1), 709–745.
doi:10.1109/comst.2019.2963791

Conti, M., Crane, S., Frassetto, T., Homescu, A., Koppen, G., Larsen, P., et al. (2016).
Selfrando: Securing the Tor Browser against De-anonymization Exploits. Proc.
Priv. Enhancing Technol. 2016 (4), 454–469. doi:10.1515/popets-2016-0050

Cowan, C., Beattie, S., Johansen, J., and Perry, W. (2003). “Pointguard Tm:
Protecting Pointers from Buffer Overflow Vulnerabilities,” in Proceedings of
the 12th conference on USENIX Security Symposium, volume 12, 91–104.

Cowan, C., Wagle, F., Pu, C., Beattie, S., and Walpole, J. (2000). “Buffer Overflows:
Attacks and Defenses for the Vulnerability of the Decade,” in Proceedings
DARPA Information Survivability Conference and Exposition. DISCEX’00
(Hilton Head, SC, USA: IEEE), 119–129.

Evans, D., Nguyen-Tuong, A., and Knight, J. (2011). “Effectiveness of Moving
Target Defenses,” inMoving Target Defense: An Asymmetric Approach to Cyber
Security. doi:10.1007/978-1-4614-0977-9_2

Ghena, B., Beyer, W., Allen, H., Pevarnek, J., and Halderman, J. A. (2014). Green
Lights Forever: Analyzing the Security of Traffic Infrastructure.

Gorgovan, C., D’antras, A., and Luja´n, M. (2016). Mambo: a Low-Overhead
Dynamic Binary Modification Tool for Arm. ACM Trans. Architecture Code
Optimization (Taco) 13 (1), 14. doi:10.1145/2896451

Habibi, J., Panicker, A., Gupta, A., and Bertino, E. (2015). “Disarm: Mitigating
Buffer Overflow Attacks on Embedded Devices,” in International Conference
on Network and System Security (Berlin, Germany: Springer), 112–129.
doi:10.1007/978-3-319-25645-0_8

Han, K., Weimerskirch, A., and Shin, K. G. (2014). Automotive Cybersecurity for
In-Vehicle Communication. IQT Q. 6, 22–25.

Inkster, N. (2016). Information Warfare and the US Presidential Election. Survival
58 (5), 23–32. doi:10.1080/00396338.2016.1231527

James, P. (2011). Farwell and Rafal Rohozinski. Stuxnet and the Future of Cyber
War. Survival 53 (1), 23–40.

Jang, Y., Lee, S., and Kim, T. (2016). “Breaking Kernel Address Space Layout
Randomization with Intel TSX,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security - CCS’16. doi:10.1145/
2976749.2978321

Kc, G. S., Keromytis, A. D., and Prevelakis, V. (2003). “Countering Code-Injection
Attacks with Instruction-Set Randomization,” in Proceedings of the 10th ACM
conference on Computer and communications security. doi:10.1145/
948109.948146

Kleberger, P., Olovsson, T., and Jonsson, E. (2011). “Security Aspects of the In-
Vehicle Network in the Connected Car,” in Intelligent Vehicles Symposium
(IV) (Baden-Baden, Germany: IEEE), 528–533. doi:10.1109/ivs.2011.5940525

KoutsouKos, X., Karsai, G., Laszka, A., Neema, H., Potteiger, B., Volgyesi, P., et al.
(2018). SURE: A Modeling and Simulation Integration Platform for Evaluation
of Secure and Resilient Cyber-Physical Systems. Proc. IEEE 106 (1), 93–112.
doi:10.1109/jproc.2017.2731741

Kulandaivel, S., Goyal, T., Agrawal, A. K., and Sekar, V. (2019). “Canvas: Fast and
Inexpensive Automotive Network Mapping,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 389–405.

Kulandaivel, S., Jain, S., Guajardo, J., and Cannon, V. S. (2021). “Reliable and
Stealthy Remote Shutdown Attacks via Unaltered Automotive
Microcontrollers,” in 2021 IEEE Symposium on Security and Privacy (SP)
(San Francisco, CA, USA: IEEE), 195–210.

Larsen, M., and Gont, F. (2011). Recommendations for Transport-Protocol Port
Randomization. RFC 6051. doi:10.17487/rfc6056

Larsen, P., Brunthaler, S., and Franz, M. (2013). Security through Diversity: AreWe
There yet? IEEE Security & Privacy 12 (2), 28–35.

Li, L., Just, J. E., and Sekar, R. (2006). “Address-space Randomization for Windows
Systems,” in Proceedings - Annual Computer Security Applications
Conference, ACSAC. doi:10.1109/acsac.2006.10

Lin, C-W., and Sangiovanni-Vincentelli, A. (2012). “Cyber-security for the
Controller Area Network (Can) Communication Protocol,” in 2012
International Conference on Cyber Security (CyberSecurity) (Alexandria,
VA, USA: IEEE), 1–7. doi:10.1109/cybersecurity.2012.7

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 79257312

Potteiger et al. MTD for Automotive CPS

https://doi.org/10.1145/1998412.1998434
https://doi.org/10.1109/mspec.2009.5340234
https://doi.org/10.1109/mspec.2009.5340234
https://doi.org/10.1109/comst.2019.2963791
https://doi.org/10.1515/popets-2016-0050
https://doi.org/10.1007/978-1-4614-0977-9_2
https://doi.org/10.1145/2896451
https://doi.org/10.1007/978-3-319-25645-0_8
https://doi.org/10.1080/00396338.2016.1231527
https://doi.org/10.1145/2976749.2978321
https://doi.org/10.1145/2976749.2978321
https://doi.org/10.1145/948109.948146
https://doi.org/10.1145/948109.948146
https://doi.org/10.1109/ivs.2011.5940525
https://doi.org/10.1109/jproc.2017.2731741
https://doi.org/10.17487/rfc6056
https://doi.org/10.1109/acsac.2006.10
https://doi.org/10.1109/cybersecurity.2012.7
https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., et al. (2018).
Meltdown. arXiv preprint arXiv:1801.01207.

Lojack (2017). Lojack - Lojack Recovery System for Cars, Trucks, Motorcycles,
Equipment, Cargo & Laptops. Available at: http://www.lojack.com/ (Accessed
08 24, 2017).

Loukas, G., Karapistoli, E., Panaousis, E., Sarigiannidis, P., Bezemskij, A., and
Vuong, T. (2019). A Taxonomy and Survey of Cyber-Physical Intrusion
Detection Approaches for Vehicles. Ad Hoc Networks 84, 124–147.
doi:10.1016/j.adhoc.2018.10.002

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., et al. (2005). Pin,
SIGPLAN Not. Acm sigplan notices 40, 190–200. doi:10.1145/1064978.1065034

Meyers, C. A., Powers, S. S., and Faissol, D. M. (2009). Taxonomies of Cyber
Adversaries and Attacks: A Survey of Incidents and Approaches. Technical
Report. Livermore, CA: Lawrence Livermore National Laboratory (LLNL.

Miller, C., and Valasek, C. (2014). A Survey of Remote Automotive Attack Surfaces.
Isanti, Minnesota: Black Hat USA, 2014.

Miller, C., and Valasek, C. (2013). Adventures in Automotive Networks and
Control Units. Def Con 21, 260–264.

Miller, C., and Valasek, C. (2015). Remote Exploitation of an Unaltered Passenger
Vehicle. Isanti, Minnesota: Black Hat USA.

Mukherjee, S. (2016).Hackers Have Crippled Another Major Hospital Chain with a
Cyberattack.

Okhravi, H., Hobson, T., Bigelow, D., and Streilein, W. (2014). Finding Focus in the
Blur of Moving-Target Techniques. IEEE Security and Privacy.

Okhravi, H., Rabe, M. A., Mayberry, T. J., Leonard, W. G., Hobson, T. R., Bigelow,
D., et al. (2013). Survey of Cyber Moving Targets. Lincoln Laboratory Technical
Report.

Onstar (2017). Home — Onstar. Available at: https://www.onstar.com/us/en/
home.html (Accessed 08 24, 2017).

Ortiz, D., Weatherford, B., Greenberg, M., and Ecola, L. (2008). Improving the
Safety and Security of Freight and Passenger Rail in Pennsylvania. Technical
Report. Santa Monica, California, USA: RAND Corporation.

Papadogiannakis, A., Loutsis, L., Papaefstathiou, V., and Ioannidis, S. (2013).
“ASIST:architectural Support for Instruction Set Randomization,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security - CCS ’13.

Paul, C., Todd, R. A., Yampolskiy,M., andMcDonald, J. T. (2015). “In-vehicleNetworks:
Attacks, Vulnerabilities, and Proposed Solutions,” in Proceedings of the 10th Annual
Cyber and Information Security Research Conference (New York: ACM), 1.

Paul, K., Horn, J., Anders, F., Genkin, D., Gruss, D., Haas, W., et al. (2019). “Spectre
Attacks: Exploiting Speculative Execution,” in 2019 IEEE Symposium on
Security and Privacy (SP) (San Francisco, CA, USA: IEEE), 1–19.

Paul, K., Lee, R., McGraw, G., Raghunathan, A., and Moderator-Ravi, S. (2004).
“Security as a New Dimension in Embedded System Design,” in Proceedings of
the 41st annual Design Automation Conference (New York: ACM), 753–760.

Petit, J., and Shladover, S. E. (2015). Potential Cyberattacks on Automated
Vehicles. IEEE Trans. Intell. Transportation Syst. 16 (2), 546–556.

Portokalidis, G., and Keromytis, A. D. (2010). “Fast and Practical Instruction-Set
Randomization for Commodity Systems,” in Proceedings of the 26th Annual
Computer Security Applications Conference. doi:10.1145/1920261.1920268

Ray, D., and Ligatti, J. (2012). “Defining Code-Injection Attacks,” in Proceedings of
the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. doi:10.1145/2103656.2103678

Riley, J. (2004). Terrorism and Rail Security.
Rosenzweig, P. (2012). Alarming Trend of Cybersecurity Breaches and Failures in

the U.S. Government.
Sanchez, R. (2016).NJ Train Didn’t Have This Safety System. Could it Have Stopped

the Crash? - CNN.Com.
Scott, K., and Davidson, J. (2001). Strata: A Software Dynamic Translation

Infrastructure. IEEE Workshop on Binary Translation.
Seshia, S. A., Hu, S., Li,W., and Zhu, Q. (2017). DesignAutomation of Cyber-Physical

Systems: Challenges, Advances, and Opportunities. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 36 (9), 1421–1434. doi:10.1109/tcad.2016.2633961

Shacham, H., Page, M., Ben, P., Goh, E-J., Modadugu, N., and Boneh, D. (2004).
“On the Effectiveness of Address-Space Randomization,” in Proceedings of the
11th ACM conference on Computer and communications security - CCS ’04.
doi:10.1145/1030083.1030124

Shane, T., Glavin, M., Hughes, C., Jones, E., Trivedi, M., and Kilmartin, L. (2015).
Intra- Vehicle Networks: A Review. IEEE Trans. Intell. Transportation Syst. 16
(2), 534–545.

Sinha, K., Kemerlis, V., Pappas, V., Simha, S., and Keromytis, A. D. (2014).
Enhancing Security by Diversifying Instruction Sets.

Sniatala, P., Iyengar, S. S., and Ramani, S. K. (2021). “Industrial Involvement in the
Use of Homomorphic Encryption,” in Evolution of Smart Sensing Ecosystems
with Tamper Evident Security (Berlin, Germany: Springer), 85–88. doi:10.1007/
978-3-030-77764-7_11

Snow, K. Z., Monrose, F., Lucas, D., Dmitrienko, A., Liebchen, C., and Sadeghi,
A-R. (2013). “Just-in-time Code Reuse: On the Effectiveness of fine-grained
Address Space Layout Randomization,” in 2013 IEEE Symposium on Security
and Privacy (SP) (Berkeley, CA, USA: IEEE), 574–588. doi:10.1109/sp.2013.45

Stephen, C., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., et al.
(2011). “Comprehensive Experimental Analyses of Automotive Attack
Surfaces,” in USENIX Security Symposium, San Francisco.

Studnia, I., Vincent, N., Alata, E., Deswarte, Y., Mohamed, K., and Laarouchi, Y.
(2013). “Survey on Security Threats and protection Mechanisms in Embedded
Automotive Networks,” in 2013 43rd Annual IEEE/IFIP Conference on
Dependable Systems and Networks Workshop (DSN-W) (Budapest,
Hungary: IEEE), 1–12. doi:10.1109/dsnw.2013.6615528

Szekeres, L., Payer, M., Wei, L. T., and Sekar, R. (2014). Eternal War in Memory.
IEEE Secur. Privacy 12 (3), 45–53. doi:10.1109/msp.2014.44

Szilagy, C., and Koopman, P. (2008). A Flexible Approach to Embedded Network
Multicast Authentication.

Teso, H. (2013). Aircraft Hacking Aircraft Hacking Practical Aero Series Practical
Aero Series.

Wang, Z., Cheng, R., and Gao, D. (2011). “Revisiting Address Space
Randomization,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
doi:10.1007/978-3-642-24209-0_14

Weiss, Y., and Barrantes, E. G. (2006). “Known/Chosen Key Attacks against Software
Instruction Set Randomization,” in Proceedings - Annual Computer Security
Applications Conference, ACSAC. doi:10.1109/acsac.2006.33

Wolf, M., and Serpanos, D. (2018). Safety and Security in Cyber-Physical Systems
and Internet-Of-Things Systems. Proc. IEEE 106 (1), 9–20. doi:10.1109/
jproc.2017.2781198

Wolf, M., Weimerskirch, A., andWollinger, T. (2007). State of the Art: Embedding
Security in Vehicles. EURASIP J. Embedded Syst. 2007 (1), 074706. doi:10.1186/
1687-3963-2007-074706

Wu, W., Li, R., Xie, G., An, J., Bai, Y., Zhou, J., et al. (2020). A Survey of Intrusion
Detection for In-Vehicle Networks. IEEE Trans. Intell. Transport. Syst. 21 (3),
919–933. doi:10.1109/tits.2019.2908074

Zhang, T., and Delgrossi, L. (2012). Vehicle Safety Communications: Protocols,
Security, and Privacy, Volume 103. Hoboken, NJ, USA: John Wiley & Sons.

Zhuang, R., Zhang, S., Bardas, A., DeLoach, S. A., Ou, X., and Singhal, A. (2013).
“Investigating the Application of Moving Target Defenses to Network
Security,” in Proceedings - 2013 6th International Symposium on Resilient
Control Systems, ISRCS 2013. doi:10.1109/isrcs.2013.6623770

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Potteiger, Zhang, Cheng and Koutsoukos. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Future Transportation | www.frontiersin.org February 2022 | Volume 2 | Article 79257313

Potteiger et al. MTD for Automotive CPS

http://www.lojack.com/
https://doi.org/10.1016/j.adhoc.2018.10.002
https://doi.org/10.1145/1064978.1065034
https://www.onstar.com/us/en/home.html
https://www.onstar.com/us/en/home.html
https://doi.org/10.1145/1920261.1920268
https://doi.org/10.1145/2103656.2103678
https://doi.org/10.1109/tcad.2016.2633961
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1007/978-3-030-77764-7_11
https://doi.org/10.1007/978-3-030-77764-7_11
https://doi.org/10.1109/sp.2013.45
https://doi.org/10.1109/dsnw.2013.6615528
https://doi.org/10.1109/msp.2014.44
https://doi.org/10.1007/978-3-642-24209-0_14
https://doi.org/10.1109/acsac.2006.33
https://doi.org/10.1109/jproc.2017.2781198
https://doi.org/10.1109/jproc.2017.2781198
https://doi.org/10.1186/1687-3963-2007-074706
https://doi.org/10.1186/1687-3963-2007-074706
https://doi.org/10.1109/tits.2019.2908074
https://doi.org/10.1109/isrcs.2013.6623770
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles

	A Tutorial on Moving Target Defense Approaches Within Automotive Cyber-Physical Systems
	Introduction
	Threats to Automotive Applications
	Automotive CPS Components
	Buffer Overflow Vulnerabilities

	Approaches
	Instruction Set Randomization
	Address Space Randomization
	Data Space Randomization
	Network Randomization

	Discussion
	Benefits
	Research Direction

	Conclusion
	Author Contributions
	Funding
	References

