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In assignment models, a key role is played by the path choice simulation that evaluates the
path chosen by users in relation to the perceived paths and relative costs. This study deals
with the effects of the implementation of some most adopted path choice models (Logit,
Weibit, Probit, and Gammit) within a Stochastic User Equilibrium assignment procedure.
Some considerations on parameters needed to make results comparable and the method
used to estimate them are also suggested some extensions based on Weibit model are
proposed. Results obtained both on a test network and on a real one are reported.
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1 INTRODUCTION

In this study, the simulation of the users’ path choice behavior is evaluated by considering different
random utility models (RUM).

Path choice is simulated once the origin and destination of the travel, the departure time, and the
transport mode have been defined. It is a component of assignment models that can be formulated as
a combination of a demand model and a supply model that, in the search for equilibrium between
demand and supply, leads to a fixed-point problem (Cantarella, 1997). It is generally assumed that
users perceive trip time or cost in a random form. Different authors have considered the statistical
distributions of the perceived trip times as belonging to different families.

Starting from the generalized extreme value (GEV) class of models, proposed by McFadden
(1978), many models for path choice have been formulated, such as multinomial Logit, C-Logit,
path-size Logit, nested Logit, cross-nested Logit, and link-nested models (Manski and McFadden,
1981; Ben-Akiva and Lerman, 1985; Cascetta et al., 1996; Ben-Akiva and Bierlaire, 1999), where
Gumbel-distributed random costs are considered. The main advantage of assuming the GEV
distributions is that these models are closed under maximization, which means a simple and
tractable choice function. Castillo et al. (2008) introduced a closed-form expression for the choice
probabilities in the case of independent Weibull-distributed random costs.

By introducing a more general structure of the covariance matrix of the joint distribution of the
random residuals (and of the utilities), Daganzo and Sheffi (1977), Sheffi (1985), Rosa and Maher
(2002), Yai et al. (1997), and Sheffi and Powell (1982) analyzed the probit model that assumes a
normal distribution. Cantarella and Binetti (2002) analyzed the gammit model that assumes a
gamma distribution in order to avoid positive perceived utility values, as allowed by a normal
distribution. Recently, considering the lack of information on one or more alternatives, other classes
of path choice models have been proposed, such as quantum utility models (QUM) (Vitetta, 2016; Di
Gangi and Vitetta, 2018) and fuzzy utility models (De Maio and Vitetta, 2015).

Aim of this study is to analyze the effects of the practical implementation of different path choice
models based on random utility theory (Logit, Weibit, Probit, and Gammit) within a stochastic user
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equilibrium (SUE) assignment procedure. Particular attention
was paid to the parameters needed to make results from different
models comparable. The path choice models are crucial for the
assignment models, both for private vehicles (Cantarella and
Fiori, 2022; Wang et al., 2019; Di Gangi et al., forthcoming)
and transit (Nuzzolo and Comi, 2016; Nuzzolo and Comi, 2018).
There are two main approaches: explicit path enumeration or
implicit path enumeration (Quattrone and Vitetta, 2011). In
implicit field can be cited (Russo and Vitetta, 2003; Antonisse
et al., 1989) while in explicit field can be cited (Fosgerau et al.,
2013; Mai et al., 2015; Comi and Polimeni, 2022). A review on
path choice models is reported in (Prashker and Bekhor, 2004)
and (Prato, 2009).

The main original contributions of this study are as follows:

• extensions of a stochastic loading procedure based on path
costs following a Weibull distribution with the
implementation of a weibit loading procedure that does
not require explicit path enumeration;

• some considerations on how to define model parameters in
order to make results comparable;

• a comparison of the performances of the considered models
obtained both on a test and on a real network.

The advantage in using a Weibull distribution is twofold: 1)
the choice probability can be calculated in a closed form, and 2)
the dependence of the variance on the path cost allows having
different variance values for different o/d pairs, overcoming the
issue of Logit models where the variance is the same for all
o/d pairs.

Considering the structure of this article, in Section 2, after the
description of some requirements for path choice models (2.1), a
short summary of the considered RUM (2.2) and some
operational considerations regarding the implementation of
the considered path choice models (2.3) are described. In
Section 3, which concerns stochastic network assignment, an
extension based on the weibit model is reported, particularly a
loading procedure that does not require explicit path
enumeration. In Section 4, some results obtained by carrying
out tests both on a simple network (4.1) and on a real network
(4.2) are presented. In this last case, results are compared by
considering the performances obtained on a real system. Finally,
Section 5 contains a summary of the obtained results and some
indications for further developments.

2 MODELING PATH CHOICE BEHAVIOR

2.1 Requirements for Path Choice Models
Following (Cantarella et al., 2020), some requirements useful in
classifying path choice models are, for the convenience of the
reader, summarized in the following, where the classification of
the requirements is carried out both from a mathematical and
modeling point of view. It is worth noting that these requirements
hold whatever is the theory behind the path choice models. In this
paper, path choice models derived from the theory of random
utilities will be considered.

2.1.1 Mathematical Requirements
Under the assumptions of linear utility functions, mathematical
requirements allow effectively modeling any choice behavior.
Considering, in particular, a path choice model, the main
requirements are the continuity and monotonicity of the
utility function. Then, the model can be specified by a
function if the values and random residuals of the perceived
utility are assumed distributed as continuous random variables
with a nonsingular covariance matrix. In order to guarantee that
small changes of path costs induce small changes of choice
probabilities, the continuity of the path choice model must be
assured (note that if the model is also differentiable, the Jacobian
is continuous). This feature, assured by commonly used joint
probability density functions, guarantees the continuity of the
resulting arc flow function. Thus, it is useful to state the existence
of SUE. The assurance that an increase in cost of a path
corresponds to a decrease of its choice is given by the
monotonicity of the path choice function. More generally, the
path choice function should be nonincreasing monotone with
respect to path costs. This feature guarantees the monotonicity of
the resulting arc flow function. Thus, it is useful to state the
uniqueness of the solution of SUE. If any change of the scale of the
utility does not affect the model, the choice model has the
independence from linear transformations of utility property.

2.1.2 Modeling Requirements
Modeling requirements are also useful to effectively simulate path
choice behavior. Considering the similarity of perception of
partially overlapping paths allows us to avoid counter-intuitive
results. In the case of two partially overlapping paths, a positive
covariance between them can simulate their similarity because
they are likely not perceived as two totally separated paths. This
covariance can be specific to the distribution (e.g., Probit and
Gammit) or can be induced through modifications of utilities
(e.g., C-Logit, path-size Logit, and C-Weibit; the latter is
introduced later in this article).

Considering the network model, if an arc can be divided
into subarcs, redefining arc costs so that path costs are not
affected, this does not affect the perceived utility or random
residual distribution of paths and, consequently, choice
probabilities. Because this requirement makes reference to
the features of the distribution of the sum of random
variables, two approaches can be identified to specify
perceived utility distribution: 1) direct formulations of
probabilistic path choice models, where the distribution of
path-perceived utility or random residuals is explicitly
specified, and 2) indirect formulations, where path-
perceived utility or random residual distribution is specified
as a linear combination of arc-perceived utilities (specifying
their distribution), even though the analysis of path choice
behavior is still carried out at the path level. The independence
from arc segmentation mainly requires the use of reproductive
random variables. For instance, the sum of several
independently distributed normal random variables is still a
normal random variable, with the mean given by the sum of the
means and variance by the sum of the variances. This feature is
also shown by independently distributed gamma random
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variables with the same variance-to-mean ratio. In both cases,
if the arcs in a path are further segmented, provided that the
mean path cost and the variance are not affected by
segmentation, the resulting path-perceived utility
distribution (and then the choice probability) is not affected
by segmentation. Generally, the arc flow function with any arc-
formulated choice model can be easily computed, if arc-
perceived utilities are assumed independently distributed,
through Monte Carlo techniques (introduced by Burrel,
1968; see also Sheffi, 1985). Traveling along a path, users
perceive a cost that is usually considered a negative utility.
The negativity of perceived utility assures that no user perceives
a positive utility to travel along any path. This feature can be
assured by assuming lower bounded random distributions (for
instance log-normal or gamma). If this feature is not presented,
it means that a nonelementary path may be a better choice than
the elementary path within it, possibly leading to unrealistic
situations (a part from some algorithmic drawbacks).

2.1.3 Notations
For the convenience of the reader, Table 1 reports the symbols
(grouped by type) used throughout the article (in any case, the
meaning of each symbol is recalled each time it is used).

2.2 Random Utility Path Choice Models
Given an origin/destination (o/d) pair j, the analyst evaluates the
probability pk,j of choosing path k belonging to the perceived
choice set of paths Kj. Disutility Gk,j can be expressed as follows:

Gk,j � gk,j + ϵk (1)
where gk,j = E [Gk,j] is the expected value of the disutility (cost) of
path k and ϵk is the random residual.

Possible models for the evaluation of probabilities (deriving
from the hypotheses on random variable Gk,j distribution) are
described in the following. Even if they can be classified on the
basis of the requirements described in Section 2.1, for the sake of
simplicity, description is here conducted on the basis of the
existence (or not) of a closed form to define choice probabilities.

2.2.1 Closed-Form Probability Formulation
Multinomial Logit and Weibit model assumptions entail that the
covariance matrix of the joint distribution of the random
residuals (and of the utilities) is a diagonal matrix with
nonzero entries. From a mathematical point of view,
Multinomial Logit and Weibit models satisfy the continuity
and monotonicity requirements, but independence from linear
transformations of utility requirements are not satisfied. From a
modelistic point of view, the requirements regarding the
similarity of perception of partially overlapping paths are not
satisfied because of the general structure of the covariance
matrix. In addition, independence from arc segmentation is not
assured, and perceived utility distribution is specified in path. The
negativity of perceived utility requirement is formally satisfied by
multinomial weibit but not by multinomial logit because random
residuals, following a Gumbel distribution, can assume negative
values (that is a positive disutility), which implies a decrease in
path cost.

2.2.1.1 Multinomial Logit
In the Multinomial Logit model, it is assumed that the path costs
Gk,j are identical and independently distributed as a Gumbel
random variable.

In particular, utility can be expressed as Gk,j = −(gk,j + ϵk),
where − gk,j = E [Gk,j] is the expected value of the utility (cost) of
path k, and random residuals -ϵk are independently and
identically distributed (i.i.d.) as a Gumbel random variable of
zero mean and scale parameter θ (Ben-Akiva and Lerman, 1985;
Domencich and McFadden, 1975).

The marginal probability distribution function of each
random residual can be written as follows Cascetta (2009):

TABLE 1 | Symbols.

Symbol Explanation

Paths
pk, j Probability of choosing path k
Kj Perceived choice set related to od pair j
Nk Choice set cardinality
Gk, j Disutility of path k in the od pair j
Gi Path-perceived utility vector for users of class i
gk, j Expected value of Gk, j
ϵk Random residual
V Systematic utility vector
U Perceived utility vector
hi Path flow vector for user class i
vi Path systematic utility for user class i
pi Path choice probability vector for user class i
Hr Path elongation ratio
Δ Path cost multiplier
Arcs
σ2a Variance of the cost on arc a
�ca Reference cost of arc a
ca Arc a cost
wa Arc a disutility
M Expected value of arc cost
Σ Standard deviation of arc cost
c0a Free flow arc cost
F Arc flow vector
f* Equilibrium arc flow vector
c* Equilibrium arc cost vector
Sf Feasible arc flow set
Ωuv Binary variable (equal to 1 if arc uv belongs to a reasonable path; 0,

otherwise)
W(a) Arc a weight
Nodes
Lr Ordered list of nodes
FS(u) Forward star of node u
BS(u) Backward star of node u
Others
Θ Gumbel scale parameter
Φ Euler’s constant
αjk Weibull scale parameter
βj Weibull shape parameter
ξj Weibull location parameter
Γ(.) Gamma function
ξ0j Estimated value of parameter ξj
ξ̂ j Estimated value of parameter ξj
Σg Covariance matrix
Cv Variation coefficient
G (N, A) Graph
N Set of nodes
A Set of arcs
di Demand flow for user class i
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Fϵk x( ) � exp −exp −θx − Φ( )[ ] (2)
where Φ is the Euler’s constant. For multinomial logit, it is
assumed that the mean and variance of the Gumbel
distribution are, respectively, as follows:

E ϵk[ ] � 0 ; Var ϵk[ ] � π2

6 · θ2 ∀j (3)

The specification of probability for Multinomial Logit is as
follows:

pk,j �
exp −θj · gk,j( )

Σh∈Kj exp −θj · gh,j( ) (4)

where θj is the distribution parameter related to the choice set Kj.

2.2.1.2 Multinomial Weibit
The Weibit model assumes that the path costs Gk,j are
independently distributed as a Weibull(ξj, αjk, βj) random
variable, and its probability density function is as follows:

f x( ) � βj

αj
k

x − ξj

αj
k

( ) βj−1( )
· exp − x − ξj

αjk
( ) βj( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

where

• αjk is a scale parameter;
• βj is a shape parameter;
• ξj is a location parameter.

The mean and variance are, respectively, as follows:

E Gk,j[ ] � ξj + αjk · Γ 1 + 1
βj

⎛⎝ ⎞⎠ � gk,j (6)

Var Gk,j[ ] � αj
k( )2 Γ 1 + 2

βj
⎛⎝ ⎞⎠ − Γ2 1 + 1

βj
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ (7)

where Γ(.) is the gamma function.
The specification of probability for Multinomial Weibit is

(Castillo et al., 2008) as follows:

pk,j �
gk,j − ξ0j( )−βj

Σh∈Kj gh,j − ξ0j( )−βj gk,j ≥ ξ0j ∀k ∈ Kj (8)

where ξ0j is an estimated value of parameter ξj.

2.2.2 Not Closed-Form Probability Formulation
From a mathematical point of view, Probit and Gammit models
satisfy the continuity,monotonicity, and independence from linear
transformations of utility requirements. From a modelistic point
of view, the requirements regarding the similarity of perception of
partially overlapping paths are satisfied because they allow for the
general structure of the covariance matrix. In addition,
independence from arc segmentation is assured, and perceived
utility distribution is specified in arc. Because a closed form is not
available for the choice behavior model, an unbiased estimate of

arc flows can be computed through a Monte Carlo technique by
successively averaging several loading to the shortest paths
(Sheffi, 1985; Burrel, 1968). The Monte Carlo technique is
used as a numerical tool to compute the path choice
probabilities or to enhance the corresponding arc flows. To
apply this approach, by virtue of independence from arc
segmentation, the path-perceived utility distribution is derived
from independently distributed arc random costs. For practical
purposes, to apply the Probit or the Gammit model, path-
perceived utilities Gi can be specified through arc utilities g,
whose expected values are the opposite of arc costs, E [g] = −c,
say: Gi � BT

i g, where Bi is the arc-path incidence matrix for user
class i. If the arc-perceived utilities are independently Normal or
Gamma distributed with diagonal covariance matrix Σg, the
resulting path-perceived utilities are still Normal or Gamma
distributed with covariance matrix Σ � BT

i ΣgBi with nonnull
covariance for each pair of partially overlapping paths.
Negativity of perceived utility is assured only for gammit
because, for probit, random residuals, following a normal
distribution, can assume negative values (that is a positive
disutility), which implies a decrease in path cost.

2.2.2.1 Probit
The Probit model or multinomial probit model (MNP) results when
the random residuals in Eq. 1 are assumed to be multivariate
normally distributed with zero mean and arbitrary covariance
matrix (Daganzo, 1983). The utility vector U (index of o/d pair is
omitted to simplify notation) of dimension Nk is thereforeMVN(V,
Σ), and its probability density function is therefore the following:

f V,Σ( ) � 2π( )Nk · Σ| |[ ]−1
2 exp −1

2
U − V( )TΣ−1 U − V( )[ ] (9)

where V is the systematic utility vector.
With the MNP model, the choice probability of path k

belonging to the perceived choice set of paths Kj of cardinality
Nk is expressed by the following:

pk,j � ∫
U1 <Uk

. . .∫∞

Uk�−∞
. . .

. . .∫
UNk

<Uk

exp −1
2
U − V( )TΣ−1 U − V( )[ ]
2π( )Nk · Σ| |[ ]1/2 dU1 . . . dUNk

(10)

2.2.2.2 Gammit
The Gammit model is obtained by assuming that perceived
disutilities are jointly distributed as a nonnegative “shifted”
multivariate gamma, with the mean equal to the path costs gk,j
and path covariance matrix Σ. Path formulations of the gammit
model may be undetermined because the covariance matrix alone
does not completely define the joint probability density function
of a multivariate gamma random variable. The adopted
formulation was proposed by Cantarella and Binetti (2002). It
is an arc formulation that overcomes this drawback and, at the
same time, assures independence of arc segmentation and rule
out positive perceived utilities for any paths. As in Cantarella and
Binetti (2002), let �ca be the (strictly positive) reference cost on arc
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a. It is assumed that 0< �ca ≤ ca, with ca being the arc cost. The
perceived disutility of arc a (−wa) is assumed distributed as a non-
negative shifted gamma variable with the mean given by the arc
cost, ca, variance by σ2a � θ�ca, proportional to reference arc costs
�ca > 0, and shifting factor obtained as the difference between the
arc cost and reference cost, (ca − �ca):

−wa ~ ca − �ca( ) + Gamma αa � �ca
θ
, β � θ( ) (11)

where αa and β are, respectively, the shape parameter and the rate
parameter of the gamma function.

This means that the arc-perceived disutility is the sum of a
nonnegative deterministic term that can depend on arc flows and a
nonnegative stochastic term independent from arc flows. The
assumption on arc reference costs yields that the corresponding
reference cost �gk on path k is strictly positive and not greater than
the path cost, 0< �gk ≤gk. Finally, the perceived disutility on path k is
marginally distributed as a nonnegative shifted gamma variable:

−uk,j ~ gk,j − �gk,j( ) + Gamma αk,j �
�gk,j

θ
, β � θ( ) (12)

2.3 Implementation of Path Choice Models
This section focuses on some operational considerations
regarding the implementation of the considered path choice
models. At the end, an application to a simple test network is
conducted in order to compare the performances of the
considered models. The parameters used to perform the
application depend on the considered model. Then, in this
section, the parameters needed to implement each model are
identified.

2.3.1 Logit
Logit models are based on the Gumbel distribution and,
considering Section 2.2.1.1, are characterized only by the
parameter θ, which is estimated starting from the variance of
path costs Gk as in Eq. 3. In particular, if Sdev [Gk] is the standard
deviation of path cost, a variation coefficientCv can be introduced
as follows:

Cv � Sdev Gk[ ]
E Gk[ ] (13)

It is possible to define the parameter of the Gumbel distribution
from Eq. 3 as follows:

Var Gk[ ] � Cv · E Gk[ ]( )2 0θ � π�
6

√ · Cv · E Gk[ ] (14)

Thus, for the implementation of a logit model, the
independent variable to be assumed is Cv.

2.3.2 Weibit
Weibit models are based on a Weibull distribution characterized
by three parameters ξj, α

j
k, βj (see Section 2.2.1.2).

An estimate of the parameter ξj (ξ̂j), suggested in Castillo et al.
(2008), is the minimum possible travel time ξ0j associated with the
o/d pair j, that is, ξ̂j � ξ0j .

Starting from Eq. 6, parameter αjk can be written as follows:

αjk �
gk,j − ξ̂j

Γ 1 + 1
βj

( ) (15)

and replacing Eq. 15 in Eq. 7 yields the following:

Var Gk[ ] � gk,j − ξ̂j

Γ 1 + 1
βj

( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠2

Γ 1 + 2
βj

⎛⎝ ⎞⎠ − Γ2 1 + 1
βj

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ (16)

Once the value of variance is assumed, the value of βj can be
calculated from Eq. 16. Once βj is known, replacing its value in
Eq. 15, it is possible to compute the value of αjk. One example of
the procedure for the estimation of the value of βj is shown in
Algorithm 1, where the secant method, which does not require
the calculation of derivatives, is used.

Referring to Algorithm 1, the initialization involves to set:
1) the variables b0 and b1, 2) the threshold value ι to stop the
algorithm, and 3) the initial value of objective function Fn. The
procedure is iterated while the objective function Fn is less than
ι. At each iteration, a value of βj is obtained, is calculated the
variance corresponding to such a value and when the
difference with assumed variance is less than ι the
procedure is stopped.

Algorithm 1. Procedure for the estimation of the Weibull
distribution parameters.

For a practical purpose, owing to a numerical problem that can
occur if the difference (gk,j − ξ0j) is equal to zero, that is, k is the
minimum path, a fraction of the minimum cost is considered by
means of a multiplier δ < 1, so that:

ξ̂j � min gi,j( ) · δ ∀i ∈ odj (17)
Because weibit variance depends, by means of parameter αjk,

on the value of path cost, in order to estimate a value of βj
common for all paths making up the choice set of o/d pair j, the
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arithmetic average of the costs of the paths belonging to the
choice set has been considered an estimate of expected value E
[Gk], so that:

Var Gk[ ] � Cv · 1
|Kj| ∑k∈Kj

gk,j
⎛⎝ ⎞⎠2

(18)

where Kj is the choice set related to the o-d pair j.
Thus, for the implementation of a weibit model, the

independent variables to be assumed are Cv and δ.

2.3.3 Probit
As discussed in 2.2.2, the path-perceived utility distribution is
derived from independently distributed arc random costs that,
for the Probit model, follow a normal distribution
characterized by the two parameters μ and σ. For a specific
case, the expected value and standard deviation can be
expressed as follows:

μ � ca ; σ � Cv · c0a (19)
where

ca is the arc cost;
c0a is the free flow arc cost;
Cv is the variation coefficient.

As discussed above, the Monte Carlo technique is
implemented by successive averaging several loading to the
shortest paths, so a Nit number of samples have to be carried
out. Thus, for the implementation of a probit model, the
independent variables to be assumed are Cv and Nit.

2.3.4 Gammit
As discussed in 2.2.2, the path-perceived utility distribution is
derived from independently distributed arc random costs that, for
the Gammit model, follow a gamma distribution. Following the
formulation adopted in 2.2.2.2, a gamma distribution is based on
two parameters, which are the following: α > 0 (shape parameter)
and β > 0 (rate parameter), and the expected value and variance
can be expressed as follows:

E X[ ] � α/β ; Var X[ ] � α/β2 (20)
For a specific case, the expected value and variance can be

expressed as follows:

E X[ ] � ca ; Var X[ ] � Cv · c0a( )2 (21)
where

ca is the arc cost;
c0a is the free flow arc cost;
Cv is the variation coefficient.

Thus, the distribution parameters can be estimated as
follows:

α � ca( )2
Cv · c0a( )2 ; β � ca

Cv · c0a( )2 (22)

In addition, in this case, the Monte Carlo technique is
implemented by successive averaging several loading to the
shortest paths, so a Nit number of samples have to be carried
out. Thus, for the implementation of a gammit model, the
independent variables to be assumed are Cv and Nit.

3 STOCHASTIC NETWORK ASSIGNMENT

Transportation supply models express how user behavior affects
network performances. They are usually based on congested
network models, that is, a graph G (N, A) with a transportation
cost ca and a flow fa associated to each arc a in setA. LetBi be the arc-
path incidence matrix for user class i with entries bak = 1 if arc a
belongs to path k, bak= 0 otherwise; di≥ 0 be the demand flow for user
class i; hi≥ 0 be the path flow vector for user class i, with entries hk, k ∈
Ki; f ≥ 0 be the arc flow vector, with entries fa, a ∈ A; c be the arc cost
vector, assumed belowwith nonnegative entries ca, a ∈A; gi ≥ 0 be the
path cost vector for user class i, with entries wk, k ∈ Ki; the following
three equations completely describe the transportation supply:

f � ΣiBihi (23)
c � c f( ) (24)

gi � BT
i c ∀i (25)

The function in Equation 24 is defined as the arc cost function.
Path choice behavior can be simulated by assuming that users’
perception of path costs, for each user class, can be expressed by the
perceived utility vectorUimodeled as a random variable given by the
sum of the expected value, or systematic utility, vi and a random
residual following the random utility theory. The cost attributes
associated to a path allow specifying the path systematic utility:

vi � −gi (26)
The probability of choosing path k for user class i is given by the

probability of path j being the maximum perceived utility one.
Hence, the choice probability vector pi depends on the systematic
utility (and the parameters of the random residual distribution):

pi � pi vi( ) (27)
Path flows are thus:

hi � dipi (28)
A probabilistic choice model, derived from the random utility

theory, specifies Equation 27. Thus, relation pi (vi) is a function.
Combining the above equations yields the path-flow model:

hi � dipi gi( ) (29)
Under mild assumptions, utility distribution parameters (apart

the mean) do not depend on systematic utility values (invariant or
additive choice models), and this function can be proved monotone
increasing with symmetric positive semidefinite Jacobian with
respect to path systematic utilities (Cantarella, 1997).
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All usually adopted probabilistic choice functions give strictly
positive probabilities and are continuous and continuously
differentiable with respect to systematic utility. Moreover, if the
parameters of the perceived utility pdf do not depend on systematic
utility values, the resulting choice function, called invariant, is
monotone increasing with respect to systematic utility with
symmetric (semidefinite positive) Jacobian (Cantarella (1997);
Cascetta (2009)) and choice probabilities depend on differences
between systematic utility values only. The (stochastic) arc flow
function with a constant demand is obtained by combining supply
model (23) and (25) with the path-flow model (29):

f � ΣidiBipi BT
i c( ) (30)

that gets values in the feasible arc flow set Sf that is nonempty (if the
network is connected), compact (since closed and bounded, if only
elementary paths are considered), and convex. The arc flow function
(30) is a general model of stochastic assignment to uncongested
networks, or SUN for short, and the solution of the SUN depends on
the considered choice model. In the case of the logit and weibit
family of choice models, either path choice set should be explicitly
defined (path enumeration), or for a logit family of path choice
model, an implicit procedure such as Dial’s algorithm (Dial, 1971)
can be adopted. In general, considering the probit or gammit family
of choice models, the computation of the arc flow function (30)
requires the well-knownMonte Carlo algorithm (Cascetta, 2009). In
the following of the paper, some original extensions of the SUN
procedure based on path costs following a Weibull distribution are
described. Explicit path enumeration can be avoided by considering
existing algorithms. Dial’s algorithm (Dial, 1971) is one of the most
effective and popular procedures for a logit-type stochastic traffic
assignment because it does not require path enumeration over a
network. Leaving out the problem associated to the definition of
“efficient paths”, which sometimes produces unrealisticflowpatterns
(Bell, 1995; Leurent, 2005; Si et al., 2010), the attention is here
focused on a way to compute the weight associate to each arc
considering path costs following a Weibull distribution.

As stated in Castillo et al. (2008), assuming that the costs are
independent Weibull, the variance for different costs is different. The
variance is, however, functionally dependent on the location parameter
so that higher mean cost results in higher variance of the cost. This
property may seem quite natural in many applications. But because of
the functional dependence, it is not possible to choose the variance
independent of the mean for the different choice alternatives. So by
representing the costs in a suitable logarithmic form in a logit model or
in linear form in aWeibull model lead to the same choice probabilities.

Considering Leurent (2005), in a similar way, it is possible to
define the impedance A(a) to be associated to arc a = {u, v} from
the expression of probability (8) as follows:

A a( ) � gk,j − ξ0j( )−βj (31)
To evaluate arc impedance, it is necessary to define a path

containing the arc a = {u, v} in order to estimate the values of
parameters β and α; a path is chosen including arc a = {u, v}
between the shortest path connecting origin r with the tail node u

and shortest path connecting the head node v with destination s.
Thus, the value of the path cost to be considered in computing
impedance is given by gk,j = Cr(u) + cuv + Cs(v), where Cr(u) is the
cost of the shortest path fromorigin r to node u, cuv is the cost of arc
a = {u, v}, and Cs(v) is the cost of the shortest path from node v to
destination s. Considering the procedure introduced in point 2.3.2,
introducing a variation coefficient Cv = σ/μ, the variance can be
estimated as σ2 � (Cv · gk,j)2 and ξ0 is estimated as a fraction of
the cost of the shortest path connecting o/d pair rs. Once the
variance is known, it is possible to estimate β and α, as seen in 2.3.2,
and to calculate arc impedance A(a) following Equation 31. Thus,
once the shortest paths from origin node r to all nodes n, yielding
the reference access costs Cr(n), and the shortest paths from
destination node s to all nodes n, yielding the reference access
costs Cs(n) (based on the reference arc travel costs cuv), are
computed, the adaptation of the steps of the loading procedure
(Dial, 1971; Leurent, 2005), referred to o/d pair rs, can be expressed
as shown in Algorithm 2, where Hr is the elongation ratio (a cost
multiplier) andΩuv is a binary variable (equal to 1 if arc uv belongs to
a reasonable path; 0, otherwise), introduced in order to obtain
efficient paths in network loading (Leurent, 2005).

The weibit network loading summarized in Algorithm 2 allows
obtaining the arc flow without the explicit path enumeration. In step
0, after the variable initialization and established an origin r and a
destination s, the impedance of each arc a is evaluated.Moreover, the
belonging of the arc to a reasonable path is evaluated. Step 1 consists
of a forward pass where the weight of each arc is calculated. Finally,
step 2 consists of a backward pass allowing the calculation of the flow
on each arc.

Algorithm 2. Implicit weibit loading procedure.
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The path choice models here considered are also used tomodel
congested situations taking into account the variability of costs as
described in the following.

SUE assignment can effectively be expressed by fixed-point
models given by the arc flow function (30) and the arc cost
function Eq. 24:

fp � f cp, d( ) ∈ Sf (32)
cp � c fp( ) ∈ c Sf( ) (33)

where Sf is the feasible arc flow set.
Algorithms based on the method of successive averages

(MSA) (Cantarella, 1997) and (Cascetta, 2009) are the most
used ones to solve fixed-point models for SUE assignment
because they can accommodate any choice model based on
random utility theory and are suitable for large-scale
applications.

Their basic iteration requires the computation of the cost
function Eq. 24 to get arc costs from arc flows and the

computation of the arc flow function Eq. 30 to get arc flows
from arc costs.

Applying the MSA leads to the MSA-FA solution algorithm
based on the following recursive equation:

fk � fk−1 + α f(c fk−1( ) − fk−1( ). (34)
Convergence may be proved if the Jacobian of the arc cost

function is symmetric (Cantarella, 1997).

4 EXPERIMENTS

4.1 Application to a Test Network
The first experiment on a test network was carried out with the
aim to compare the performance of the considered models in
terms of path choice probabilities in a SUN context. The
considered network was a 4 × 4 square network, and in
order to simplify the interpretation of the results, only one
o/d pair was considered. It is depicted in Figure 1, and the
characteristics of the arcs are shown in Table 2. Paths for the
o/d pair 1001–2016 were considered, and the list of paths is
shown in Table 3, where the first six paths in terms of cost are
considered. The choice of the number of considered paths
derives from considerations on the number of paths
potentially used by the users in order to maximize the
coverage between the generated and used paths. From
literature (e.g., Cascetta et al., 1996), the number of paths
was less than 8. Moreover, the analyses reported in (Cascetta
et al., 1996) highlight that the use of the first six paths is a
reasonable compromise.

Tests were carried out by considering a set of values for the
independent variables above defined for each considered
model. Considered values of independent variables are
shown in Table 4.

It is worth noting that Cv is used to compute the variance of:
path costs → logit and weibit; arc costs → probit and gammit.

4.1.1 Models With Explicit Path Enumeration
The path set considered in this application is obtained with an explicit
path enumeration and a selective approach. Then, among all available
paths, the first k ones with respect to the path cost are considered. In
this application, we set k = 6. Reported results are at first a comparison
among choice probabilities obtained for the shortest path for each of

FIGURE 1 | Considered test network.

TABLE 2 | Characteristics of the arcs of the test network.

Length Speed Arc Length Speed Arc Length Speed

Arc [M] [m/s] [M] [m/s] [M] [m/s]

1–2 100 2 6–7 125 2 11–12 100 2
1–5 105 2 6–10 125 2 11–15 105 2
2–3 100 2 7–8 100 2 12–16 100 2
2–6 120 2 7–11 125 2 13–14 105 2
3–4 100 2 8–12 100 2 14–15 105 2
3–7 120 2 9–10 115 2 15–16 105 2
4–8 100 2 9–13 105 2 1,001–1 100 5
5–6 115 2 10–11 125 2 16–2016 100 5
5–9 105 2 10–14 105 2
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the considered models. Then, the probabilities obtained for each one
of the six paths are compared. The explanation of the notation
adopted in the figures for the considered model is the following:

- Logit → Logit model.
- WMinyyy→Weibit model where, to estimate β, variance is
computed considering the minimum value of path costs and
yyy indicates the value of δ (0.995, 0.975, 0.925, and 0.900).

- WMedyyy→Weibit model where, to estimate β, variance is
computed considering the mean value of path costs and yyy
indicates the value of δ (0.995, 0.975, 0.925, and 0.900).

- Probxxx→ Probit model where xxx indicates the number of
carried out samples Nit (010, 050, 100, and 500).

- Gamxxx→ Gammit model where xxx indicates the number
of carried out samples Nit (010, 050, 100, and 500).

Comparing logit with weibit models, as shown in Figure 2, the
lower the value of parameter δ is, the closer are weibit models to
logit one.

Considering probit and gammit (Figure 3), their behavior is
quite similar and a large number of iterations Nit is useful if the
variance of costs, that is, the value of Cv, increases.

In Figure 4 all models are compared considering WeibMed
model with δ = 0.995 and gammit and probit with Nit = 500.
It can be seen how probit and gammit practically coincide
and that the weibit model is quite closer to probit and
gammit ones.

This last comparison has been conducted among all
considered paths in Figure 5, and it can be seen that at the
increase of variance, differences diminish.

4.1.2 Weibit Model Without Explicit Path Enumeration
In this case, tests have been carried out by considering a value of δ
= 0.995 and the set of variation coefficient Cv = {0.05, 0.20, 0.50}.

TABLE 3 | Considered paths of the test network.

Path Cost Nodes

0 340.0 [1,001, 1, 2, 3, 4, 8, 12, 16, 2016]
1 350.0 [1,001, 1, 2, 3, 7, 8, 12, 16, 2016]
2 355.0 [1,001, 1, 5, 9, 13, 14, 15, 16, 2016]
3 360.0 [1,001, 1, 5, 9, 10, 14, 15, 16, 2016]
4 375.0 [1,001, 1, 2, 6, 7, 11, 12, 16, 2016]
5 380.0 [1,001, 1, 5, 6, 10, 11, 15, 16, 2016]

TABLE 4 | Considered values of the independent variables.

Model Variable Set of Considered Values

Common Cv [0.01, 0.05, 0.20, 0.50]
Weibit δ [0.995, 0.975, 0.925, 0.900]
Probit, Gammit Nit [50, 100, 500]

FIGURE 2 | Path choice probabilities depending on Cv for path 0: Logit vs. Weibit models.
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FIGURE 3 | Path choice probabilities depending on Cv for path 0: Logit vs. Probit and Gammit models.

FIGURE 4 | Path choice probabilities depending on Cv for path 0: Logit vs. Weibit, Probit, and Gammit best models.
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A first attempt has been conducted to define the value of the
cost multiplier H so that the algorithm considered the largest
number of arcs in the network and to make a reasonable
comparison between explicit and implicit versions of
Weibull path choice. For the considered network, a value of
H = 0.4 has been considered because, for lower values, only
50% of links result with flows greater than zero, as shown in
Figure 6.

Results are shown by means of a scatter diagram (dots are
connected by lines to improve readability) reported in

Figure 7, where for each link indicated in the horizontal
axis, the values of flows obtained for the two weibit models,
with path enumeration (explicit) and without path
enumeration (implicit).

To compare the values of flows obtained by the explicit Weibit
model (fi) with the implicit one (f̂i), the values of some statistical
indicators have been considered: mean squared deviation (MSD),
root-mean-square deviation (RMSD), normalized mean-square
deviation (NMSD), and normalized root-mean-square deviation
(NRMSD).

FIGURE 5 | Path choice probabilities depending on Cv for each path: Logit vs. Weibit, Probit, and Gammit best models.
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MSD � 1
n
Σi�1,n fi − f̂i( )2 (35) RMSD �

��������������
1
n
Σi�1,n fi − f̂i( )2√

(36)

FIGURE 6 | Link considered in the implicit loading procedure for values of H =0.30 (A) and H =0.40 (B).

FIGURE 7 | Comparison of link flows for values of (A-C) Cv = 0.05, 0.20, 0.50 explicit vs. implicit weibit models.
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NMSD � 1
n
Σi�1,n

fi − f̂i

fi
( )2

(37)

NRMSD �

��������������
1
n
Σi�1,n

fi − f̂i

fi
( )2

√√
(38)

Numerical values are reported in Table 5, where lower values
indicate less residual variance.

4.2 Application to a Real Network
This section concerns the comparison of results obtained, in a
real context, considering the above-described models applied in
a SUE framework in order to explore the capability of
reproducing counted flows. Application to a real network
allows evaluating model performance on the field by
comparing estimated flows with measured ones. Experiments
here described have been conducted by considering the road
network of Salerno, a town of about 130,000 inhabitants located
in southern Italy. The road network has been schematized by
means of a graph with 526 nodes and 1,147 arcs connecting 61
internal zones and 13 external ones. Comparisons have been
performed by considering observed flows obtained by means of
surveys conducted on 69 survey sections. In the adopted
stochastic network loading, within the MSA procedure, for
those models requiring explicit enumeration of paths, paths
have been generated using De la Barra procedure (De La Barra
et al., 1993). For each o/d pair, a maximum number of 2,000
iterations have been conducted, considering at most 10 paths
not exceeding the 25% of the shortest paths free flow time.
Reported results refer to an application considering the values of
the independent variables shown in Table 6.

In the MSA-FA algorithm, among the indicators eligible for a
stop test (Sheffi, 1985), it has been considered the maximum
percentage deviation of flows on arc i, between flow assigned at
iteration k (fk

i ) and average flow of previous iteration (�fk−1
i )

fk
i − �f

k−1
i

fk
i

(39)

To compare the values of SUE flows obtained by the models
(fi) with the measured ones (f̂i) in the n survey sections, the
values of the statistical indicators described in 4.1.2 have been
considered. The observed vs. simulated flows reported in
Figure 8 summarize the accuracy of the simulation in
relation to the type of model used. The goodness of the
forecast is represented by any point of the bisector (for
which the simulated flow is the same as the observed one).

The points on the graph are slightly scattered, and this
scattering varies according to the type of model. The
goodness of fit is quite high for each model, with values
ranging from 0.65 (Logit) to 0.79 (implicit Weibit). Note
that the results obtained with probit and gammit are very
similar in value.

Moreover, Table 7 reports, for each model, the frequencies of
the bias grouped into intervals with an amplitude of 250 vehicles/
h. It emerges that most of the errors are overestimation errors. In
particular, the interval 0–500 contains most of the errors with the
implicit Weibit that has about 43% of the errors in the interval
[0–250) and the Logit that has about 44% of the errors in the
interval [250–500). Note that the Logit and the implicitWeibit are
the worst in flows underestimation. In this experiment, the worst
model in flows overestimation is the Logit model.

Another graphical analysis (Figure 9) of the obtained
results is performed using the Tukey mean-difference plot
(also known as Bland–Altman plot), which provides a visual
assessment of the shift between two different distributions of
values (in this case, between the observed and simulated flows)
(Cleveland, 1993). Referring to Figure 9, the y-axis reports the
differences (bias) between the observed and simulated flows
whereas the x-axis reports the means between such values. The
continuous line represents the average value of the bias (Δ),
whereas the two dashed lines are the boundaries of the
confidence interval. By considering a significance of 95%,
the lower limit (ll) and the upper limit (lu) are calculated as
follows:

ll � Δ − 1.96 ·σ
lu � Δ + 1.96 ·σ (40)

Considering the logit model (Figure 9A) emerges that the bias
ranges from about −1,250 vehicles/h (underestimation) to about
515 vehicles/h (overestimation), although there are errors in
under- and overestimation, as discussed above, most of the
values fall within the confidence interval (three values are less
than ll). The bias for Probit and Gammit models (Figures 9B,D)
presents some points less than ll and some ones greater than lu.
The weibit model (Figure 9C) suffers from some minor
underestimation errors, but most points are within the
confidence interval. The implicit weibit (Figure 9E) has values
less than ll and other ones greater than lu.

The results obtained in terms of NRMSD for each MSA-FA
experiment are reported in Table 8 for the considered path choice
models, where Iter indicates the number of iteration of the MSA

TABLE 5 | Comparison of flows explicit weibit vs. implicit weibit.

Cv MSD RMSD NMSD NRMSD

0.05 24,282.37 155.83 12.2641 3.5020
0.20 10,217.57 101.08 0.3079 0.5549
0.50 14,303.80 119.60 0.2711 0.5206

TABLE 6 |Considered values of the independent variables in the application to the
network of Salerno.

Model Variable Value

Common Cv 0.10
Weibit ϵ 0.995
Probit, Gammit Nit 100
Implicit Weibit H 0.40
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procedure and Time is the time in second needed to carry out the
SUE procedure.

5 CONCLUSION AND FUTURE
DEVELOPMENTS

Some short comments can be made on the basis of the obtained
results. In the Monte Carlo technique, the greater the variance is, the
more is the number of samples to be carried out. Practically, a value of
Nit = 100 gives acceptable results. Considering the weibit model, a

value of parameter δ closer to one (confirming the estimate of the
parameter ξj, suggested in Castillo et al. (2008)) provides values close
to those obtainedwithmodels that consider covariance such as probit
and gammit, especially in case of a very low variance of path costs.
The results obtained with the probit and gammit models practically
do not differ from each other considering both the test network and
the real one. Considering theminimum path (but also other paths for
which it is the same, as shown with regard to the test network in
Figure 5), choice probabilities obtained with the weibit model are
closer to those obtained with the probit/gammit models than to those
obtained with the logit models. About the real network, the best

FIGURE 8 | Comparison of link flows: observed vs. simulated. (A) Logit (B) Probit (C) Weibit (D) Gammit (E) Implicit Weibit.
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results are obtained by considering the C-weibit model by taking a
time that differs by two orders of magnitude from that taken with
probit. It is clear that the analysis conducted cannot be considered
exhaustive or definitive and that the results, although indicative,
also depend on the considered application to reality. The main
purpose of this work was to illustrate the hypotheses to be
considered for a practical application of the considered models
and to provide an example of the results that can be obtained by
indicating also an order of magnitude of the bias that can be
expected and of the necessary computing resources, in terms of
time, considering a standard situation. A study involving other

FIGURE 9 | Comparison of link flows: Bland–Altman plot.

TABLE 7 | Bias frequencies (%).

Bias
Range

Logit Probit Weibit Gammit Weibit (Implicit)

≥-1,000 and < -750 1.47 0.00 0.00 0.00 1.47
≥-750 and < -500 0.00 4.41 2.94 4.41 4.41
≥-500 and < -250 2.94 2.94 2.94 2.94 2.94
≥-250 and < 0 8.82 11.76 13.24 11.76 08.82
≥0 and < 250 30.88 33.82 32.35 33.82 42.65
≥250 and < 500 44.12 32.35 35.29 32.35 26.47
≥500 and < 750 10.29 11.76 13.24 11.76 10.29
≥750 and < 1000 1.47 2.94 0.00 2.94 2.94
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types of models, which is under development, consists of extending
a similar analysis taking into account other Logit and Weibit
derived models (i.e., path-size logit, C-Logit, mixed Logit,
Logit–Probit, and Weibit–Gammit) and QUM. An extension to
multitype vehicle assignment to consider autonomous vehicles is
also under development.
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