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What makes you hold on to that old car? While the vast majority of household vehicles are
still powered by conventional internal combustion engines, the progress of adopting
emerging vehicle technologies will critically depend on how soon the existing vehicles are
transacted out of the household fleet. Leveraging a nationally representative longitudinal
data set, the Panel Study of Income Dynamics, this study examines how household
decisions to dispose of or replace a given vehicle are: 1) influenced by the vehicle’s
attributes, 2) mediated by households’ concurrent socio-demographic and economic
attributes, and 3) triggered by key life cycle events. Coupled with a newly developed
machine learning interpretation tool, TreeExplainer, we demonstrate an innovative use of
machine learning models to augment traditional logit modeling to both generate behavioral
insights and improve model performance. We find the two gradient-boosting-based
methods, CatBoost and LightGBM, are the best performing machine learning models
for this problem. The multinomial logistic model can achieve similar performance levels
after its model specification is informed by TreeExplainer. Both machine learning and
multinomial logit models suggest that while older vehicles are more likely to be disposed of
or replaced than newer ones, such probability decreases as the vehicles serve the family
longer. Pickup trucks and sport utility vehicles are less likely to be disposed of or replaced
than cars, and leased vehicles are more likely to be transacted than owned vehicles. We
find that married families, families with higher education levels, homeowners, and older
families tend to keep their vehicles longer. Life events such as childbirth, residential
relocation, and change of household composition and income are found to increase
vehicle disposal and/or replacement.We provide additional insights on the timing of vehicle
replacement or disposal, in particular, the presence of children and childbirth events are
more strongly associated with vehicle replacement among younger parents.
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1 INTRODUCTION

Previous studies have shown that the choice of whether or not to
own a vehicle, and, if so, what type(s), is a medium-term decision
that is shaped by life contexts. For example, vehicle ownership is
influenced by household socio-demographic (household size)
and economic (income) characteristics, proximity of home
location to work and other locations, and life-stage transitions,
such as the birth of a child (Oakil et al., 2016) and changes in the
number of adults in the household (Yamamoto, 2008). Vehicle
transaction decisions (add, replace, or dispose of vehicles) take
place at different stages along a household’s life-course and co-
evolve with changes in residential and workplace location
(Rashidi et al., 2011).

Due to the paucity of longitudinal data on vehicle transactions,
most existing literature relies on cross-sectional data and provides
only a static snapshot of vehicle ownership as reviewed in (de
Jong and Kitamura, 2009), (Anowar et al., 2014) However,
research on mobility biography and life-oriented approaches
(Oakil et al., 2016), (Zhang et al., 2014; Rau and Manton,
2016; Beige and Axhausen, 2017; Zhang and Van Acker, 2017)
has long recognized the interdependence of choices across
various life-stages and recommends integrating intertemporal
dynamics into the analyses of long-term mobility in a
comprehensive way. An increasing number of studies have
followed the mobility biography approach to understand
vehicle ownership evolution dynamics over a given
household’s lifetime (Yamamoto, 2008), (Zhang et al., 2014),
(Oakil et al., 2016), (Klein and Smart, 2019).

Vehicle transaction dynamics investigated by previous studies
include changes in the vehicle holdings [e.g., (Prillwitz et al.,
2006) (Klein and Smart, 2019)] and vehicle transaction decisions
(Mohammadian and Miller, 2003), (Yamamoto, 2008), (Fatmi
and Habib, 2016), (Gu et al., 2020). However, changes in the
vehicle holdings cannot uncover the incidence of vehicle
replacement, as it does not alter the level of vehicle holdings.
At the same time, most of the dynamic vehicle ownership studies
focus on household-level decisions without including vehicle
attributes nor further determining which vehicle will be
disposed or replaced. This omission limits the applicability of
these vehicle ownership models, as vehicle-level transaction
decisions are needed for forecasting fleet dynamics over a 10-
to 20-years horizon, such as is needed in microsimulations to
project fleet evolution in the case of transportation
decarbonization policies. While the vast majority of light-duty
vehicles are still powered by internal combustion engines (ICEs)
(U. S. Energy Information Administration (EIA), 2020), adoption
of emerging vehicle technologies, such as those with electric
drivetrains, will depend on how quickly ICE vehicles are
transacted out of household fleets.

When it comes to prediction methods, logit models have long
been the gold standard in choice modeling for transportation
behavior [see reviews (Anowar et al., 2014), (Van Cranenburgh
et al., 2021), (Choudhury et al., 2018)]. These choice models are
based on random utility maximization theory, and the estimated
coefficients can be readily interpreted as changes in odds ratios.
Unlike statistical models that impose a predetermined structure,

machine learning (ML) models rely on data-driven heuristics to
arrive at their solutions. In recent years, ML methods have been
adopted for travel behavior studies, including mode choice
(Hensher and Ton, 2000; Vythoulkas and Koutsopoulos, 2003;
Zhang and Xie, 2008), (Lazar et al., 2019) route choice
(Yamamoto et al., 2002), (Sun and Park, 2017) activity type
choice (Hafezi et al., 2017) (Hafezi et al., 2019) and joint
decisions such as departure time and mode choice (Golshani
et al., 2018), (Zhu et al., 2018).

Despite the broad application of ML in travel behavior
modeling, limited attention has been paid to using ML
methods in vehicle transaction modeling. Predicting the
dynamics of vehicle transactions requires longitudinal data
that are difficult to collect from the life courses of individual
households. Current data collection is mostly reliant on cross-
sectional surveys with small sample sizes that limit the application
of data-driven ML models. Furthermore, while ML has
advantages with respect to handling large datasets efficiently,
limitations in interpretability of ML results constrains their
applicability to behavioral research use cases in which the goal
is to better understand and design transportation policies
(Choudhury et al., 2018).

Rather than treating the gold standard and ML models as
competitors, opportunities exist to marry the two. Recent
advances in “Explainable AI” (Lundberg et al., 2020) have
improved the interpretability of tree-based ML models
exploring high-dimensional feature spaces. Behavioral insights
from ML models, such as individual feature importance,
directional influences, and feature interactions, have been
incorporated into the logistic model building process to
improve model specification and prediction performance
(Zhao et al., 2019), (Levy and O’Malley, 2020). Travel
behavior insights jointly determined from ML and logistic
models can also improve the robustness of derived conclusions.

This study seeks to fill two research gaps in the literature: 1)
the need for capturing fleet dynamics accurately by addressing
vehicle-level disposal and replacement decisions; and 2)
inadequate application of both choice modeling and ML
methods to vehicle transaction dynamics due to limited
longitudinal data collected over time. Leveraging a nationally
representative panel data set, the Panel Study of Income
Dynamics (PSID), we examine how the likelihood of disposing
or replacing a vehicle is: 1) influenced by vehicle attributes, 2)
mediated by concurrent family socio-demographic and economic
status, and 3) triggered by key life cycle events. While past studies
have separately investigated one or two of the above dimensions,
this paper is the first to relate all three simultaneously to vehicle-
level disposal and replacement decisions. Additionally, we
advance the empirical analysis methodology by coupling
machine learning models with a recently developed
TreeExplainer (Lundberg et al., 2020) as an additional
interpretation tool to both generate behavioral insights and
improve the model specification for choice modeling.

Our contributions to travel behavior research include the
following: 1) ours is the first study to model vehicle-level
transactions using revealed choices in a national panel survey
in the United States; 2) our approach seeks to simultaneously
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investigate the effects of vehicle attributes and household
concurrent and life event attributes on vehicle level transaction
decisions; and 3) we demonstrate an innovative use of ML
methods to inform the model building process for choice
modeling and to jointly generate behavioral insights and
improve model performance. The effects of various predictor
attributes derived from both ML and logit modeling are
compared qualitatively to improve the robustness of our
results. Policy insights are also discussed in relation to our
findings.

2 MATERIALS AND METHODS

2.1 Data Source Preprocessing and
Description
To understand vehicle transaction dynamics, time varying
attributes are needed from longitudinal data, including
vehicle attributes, household characteristics, and life-stage
events. We employ nine biennial waves, 2003 through 2019,
from the publicly available version of the Panel Study of Income
Dynamics (PSID) (Panel Study of Income Dynamics, 2021), the
longest-running national-level longitudinal panel survey of
American families. Since 1968, PSID collected data from a
sample of United States families over time primarily focused
on questions pertaining to family expenditures and income.
PSID also has a wealth of information on the social, economic,
and demographic characteristics of individuals and families.
Due to its panel structure and long history, PSID data has
become an important data source for life course research (Klein
and Smart, 2019), (Klein and Smart, 2017; Sastry et al., 2018;
Lazar et al., 2019). PSID initially collected limited vehicle
ownership information, such as the number of vehicles
included in each family. Since 1999, PSID has collected
individual vehicle information for up to three vehicles in
each family, that together covers 95% of the total number of
vehicles reported by the families. The captured vehicle
information includes body type, model year, whether the
vehicle is owned or leased, acquisition year, manufacturer,
and make. We limit our study to the PSID survey waves
from 2003 to 2017, because they include consistent questions
about vehicle information, and life event variables can be
consistently derived between survey waves. Due to the
biennial nature of the survey, the exact timing of life events
and vehicle transactions are subject to some uncertainties.

2.1.1 Preprocessing Transaction Outcomes of Existing
Vehicles
The outcome variable of interest in this study is the transaction
decision for individual vehicles in the family’s existing fleet.
That is, for any given vehicle of the current survey wave, we
predict whether it is disposed of without replacement
(“disposed” hereafter), disposed of with replacement
(“replaced” hereafter), or kept in the family (“kept”
hereafter) by the next survey wave. In contrast from most
existing literature, where vehicle transaction decisions were
readily reported in stated-preference or retrospective surveys

(Mohammadian and Miller, 2003), (Yamamoto, 2008), (Oakil
et al., 2014), this outcome variable needs to be generated by
tracking the revealed vehicle information from one wave to the
next in the PSID.

Vehicles reported in the PSID do not include unique
identifiers, and hence it is not straightforward to determine
the presence or absence of a given vehicle in consecutive waves.
We first create a unique identifier for each vehicle (vehicle id)
reported in each wave using a combination of the unique
person id of the head-of-household, vehicle model year,
manufacturer, make, and vehicle body type. These derived
identifiers uniquely identify 99.8% of the vehicles in PSID
survey waves used in this study. The presence of the same
vehicle ids from wave to wave represents a given vehicle’s life
trajectory in a household (as defined by the household head)
over time. From the life trajectory of individual vehicles, we
then determine the timing when a that vehicle is added to the
household fleet and when it is removed from the fleet. Finally,
the transaction outcome ∈{disposed, replaced, kept}of an
existing vehicle in a given wave can be determined by its
presence or absence in the next wave, in conjunction with
whether vehicle acquisition is observed. Specifically, in the case
when a vehicle was removed from the household in the next
wave, its outcome is coded as “replaced” when the family
concurrently adds another vehicle to their fleet during the
two-year window; whereas in the case of no vehicle
acquisition observed, the outcome of the removed vehicle is
coded as “disposed of” with no replacement.

Over the nine waves, on average 10% of the vehicles in each
wave are disposed of before the next wave, 31% are replaced, and
the remaining 59% are kept (Table 1). The distribution of vehicle
outcomes is relatively stable over the years considered in the data
(Figure 1A) except that the next-wave disposal rates are slightly
higher and replacement rates are lower for vehicles observed
during the 2007–2011 waves, which may be due to the effects of
the 2008 economic recession.

2.1.2 Description of Explanatory Variables
Both vehicle-specific and the family level attributes are
considered to explain the transaction outcome for individual
vehicles.

The vehicle-specific attributes derived from the PSID
survey include vehicle model year, number of years serving
the family (i.e., years since it was first acquired by the family),
whether the vehicle is owned or leased, and vehicle body type.
Vehicles observed in each wave are on average 9.6 years old
and have served their respective households for about 6 years
(Table 1). The vintage composition experienced a shift after
the 2009 survey wave, with younger vehicles (≤5 years)
decreasing from 45% in 2007 to the lowest point of 30% in
2013, while older vehicles (≥12 years) increased from
16%–18% in 2007–2009 to 25% in 2017 (Figure 1B). This
trend is consistent with the nation-wide increase in older
vehicles in United States households revealed in NHTS
2009, and 2017 snapshots (EIA, 2018). Most of the vehicles
(54%) are of body type “car” (Table 1), though the share of
vehicles with this body type has decreased over the years (from
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58% in 2003 to 50% in 2017) (Figure 1C). In contrast, shares of
sport utility vehicles (SUVs) have increased steadily from 16%
in 2003 to 30% in 2017. While the majority of the vehicles are

owned rather than leased (Table 1), the percentage of vehicles
leased has doubled from 3%–4% before 2011 to about 8% in
2017 (Figure 1D).

TABLE 1 | Descriptive Statistics of Vehicle Specific and Family level Variables for the Full Sample and by Vehicle Outcome.

Vehicle-level summary Population mean By vehicle outcome in the next wave

Variable description (short name) Kept Disposed Replaced

Vehicle vintage (vintage) 9.55 8.95 11.63 9.98
Years in family (yrs_inFu) 6.06 6.25 6.12 5.70
Owned (ownlease) 0.95 0.97 0.95 0.91
Vehicle body type (vehtype)
Car 0.54 0.52 0.59 0.55
Pickup 0.15 0.16 0.14 0.13
Utility 0.24 0.25 0.2 0.24
Van 0.07 0.07 0.07 0.08

Vehicle outcome in the next wave
Disposed (w/o replacement) 0.1 0 1 0
Kept 0.59 1 0 0
Replaced 0.31 0 0 1

Number of observations (vehicle-year) 69,697 40,884 7,178 21,635

Family-level summary Population mean By vehicle outcome in the next wave

Variable description (short name) Kept Disposed Replaced

Current wave status
Number of vehicles (Nveh) 1.98 1.94 2.3 1.95
Age of family head or spouse (hh_age) 46.05 47.59 46.16 44.07
Number of drivers (Ndrivers) 1.94 1.99 2.18 2.05
Number of children (Nkids) 0.73 0.68 0.73 0.86
Presence of children≤4 years old (kid_4) 17% 16% 18% 21%
Presence of children 5–11 years old (kid_5_11) 24% 22% 23% 27%
Presence of children 12–15 years old (kid_12_15) 14% 14% 15% 16%
Number of employed (N_emp) 1.38 1.35 1.37 1.43

Income (inc_5bins)
< $25,000 11% 9% 17% 11%
$25,000–$50,000 21% 20% 23% 20%
$50,000–$75,000 20% 20% 19% 20%
$75,000–$150,000 34% 35% 28% 34%
≥ $150,000 15% 15% 13% 15%

Education level (edu)
Less than high school 5% 4% 9% 5%
High school 26% 24% 31% 26%
Some college 29% 28% 31% 30%
College degree 21% 22% 16% 20%
Post-graduate 19% 21% 13% 18%
Married or cohabiting (spouse) 65% 66% 58% 67%
Home owner (house_tenure) 65% 69% 56% 62%
Live in a house (house_type) 84% 85% 81% 83%

Life event and change variables from current to next wave
Change in income (in thousand) (ch_income) 1.26 1.28 −3.98 2.99
Increase edu levels (ch_Edu) 0.05 0.05 0.05 0.06
Child birth indicator (birth) 0.1 0.09 0.09 0.12
Empty nest (kid_moveout) 0.07 0.05 0.16 0.06
Family member retired indicator (retire) 0.06 0.06 0.06 0.05
Family member died indicator (death) 0.01 0.01 0.01 0.01
Change of number of employed (ch_Nemp) −0.05 −0.03 −0.23 −0.03
Change of number of drivers (ch_Ndriver) −0.02 0.01 −0.26 0.005
Family moved recently (moved) 44% 39% 50% 49%

Change of family head marriage (ch_marriage)
No change 96% 97% 91% 95%
Coupling up 2% 2% 1% 3%
De-coupling 2% 1% 7% 2%

Number of observations (family-year) 42,052 29,779 6,221 18,628
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These vehicle attributes vary across outcome categories
(Table 1 last three columns). Disposed vehicles tend to be the
oldest among all categories. On average, disposed vehicles are
1–2 years older than replaced vehicles, and 2–3 years older than
vehicles that are kept through to the next survey wave.
Distribution of body types are also different among the vehicle
transaction categories. For example, a greater proportion of
disposed vehicles belong to the “car” body type, and pickups
make up the majority category in the vehicles retained by
households. The association of vehicle attributes with observed
vehicle transaction outcomes will be determined more
quantitatively in the empirical analysis section.

Family-level attributes are processed to develop both static
socioeconomic characteristics of the family at the concurrent
wave of the vehicle and “change” variables that represent the
life events occurring between the current and next wave.
Current wave attributes include household fleet size,
number of eligible drivers (≥ 16 years old), number of
children and presence of children by their age bins, number
of workers, income levels, marriage/cohabitation status,
education level, and built environment characteristics such
as house type and tenure. The population means for these
attributes are presented in Table 1. Access to restricted PSID
location data at census tract or block level is required to derive

additional built environment attributes pertaining to the home
and work locations of households. Inclusion of this
information is left to future work.

Change variables are generated from family and individual
socio-demographic time varying attributes as well as life events
explicitly surveyed in the PSID, with variable selection largely
inspired by the existing mobility biography literature (Klein and
Smart, 2019), (Chatterjee and Clark, 2020). These include change
in income, increase in head or spouse’s education level, change in
number of workers and drivers, and additional life events such as
child birth, cohabitation, marriage, divorce, retirement or death
of a family member, residential relocation, and empty nesting
(i.e., all grown up children moving out of the household). The
average occurrence rates of familial events are found to be less
than 10% (Population mean column in Table 1). Residential
relocation is the most frequent of all included life events, which
happened to 45% of the families from wave to wave.

Similar to the vehicle attributes, many of the family level
attributes vary across vehicle transaction outcomes as indicated
by the descriptive statistics (Table 1 last three columns). For
example, disposed vehicles seem to be associated with families
with more than 2 vehicles (disposed vehicle included), while
replaced or kept vehicles are associated with families with less
than 2 vehicles available. In addition, disposed vehicles are

FIGURE 1 | Summary of distribution of vehicle variables by year: (A) vehicle outcome; (B) vehicle vintage; (C) vehicle body type; (D) vehicle ownership type.
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associated less with home owners, and are associated more with
low-income and low education-level families, and families with
steeper decreases in income. Replaced vehicles are more
frequently associated with presence of young children. A more
quantitative understanding of these family level mediating factors
and life-event triggers for the observed vehicle outcomes will be
described in the empirical analysis results.

2.2 Empirical Analysis and Interpretation
Approach
We employ both machine learning and multinomial choice
modeling for empirical analysis. However, unlike prior studies
that pitted the MLmodels against traditional choice models, in this
study we utilize the patterns and insights learned fromML models
to inform specifications of the choice models, such as justifying the
binning of the continuous variables and determining the
interaction terms. We show that this ML-aided model building
process improves the performance of the multinomial logit model.

The unit of analysis is household vehicles and therefore the
outcome variable is at the vehicle level: for each vehicle observed
in a given survey wave, the models predict its transaction
outcome ∈{disposed, replaced, kept}in the next wave. Input
features (i.e., independent variables) include vehicle attributes,
current fleet size, socio-demographic attributes of the family in
the current wave, and the life event change variables determined
from current to next wave.

2.2.1 Machine Learning Method and TreeExplainer
Application of machine learning to predicting vehicle
transactions is new. Existing literature has focused on travel
mode predictions [see review by (Van Cranenburgh et al.,
2021)] and there has been no documentation on both the
performance of various ML methods on predicting vehicle
transactions and their comparison to the gold standard logit
models. FourMLmethods are first evaluated by this study and the
best performing method is then coupled with TreeExplainer to
further generate behavioral insights and inform model
specification in logit modeling. The four algorithms evaluated are:

• Random Forest. This algorithm (Breiman, 2001) builds an
ensemble of decision trees, or tree predictors, which depend
on randomly and independently sampled vectors over the
same distribution. The strength, correlation and monitor
error are closely followed to track the growing features in
response to the branches splitting.

• CatBoost and LightGBM. Standard gradient boosting
methods are based on random forest, aiming to solve
over-fitting problems, but inefficiently. In an effort to
make gradient tree boosting more flexible and scalable,
Chen (Chen and Guestrin, 2016) created the scalable
Extreme Gradient Boosting (XGBoost) algorithm.
XGBoost employs a regularization technique to minimize
over-fitting. This tactic allows XGBoost to be faster and
more robust during tuning. Because the majority of input
features are categorical variables, we employ the two
gradient boosting based methods, Categorical Boosting

(CatBoost) and Light Gradient Boosting Machine
(LightGBM), that were shown to have better performance
for categorical data (Daoud 2019). Both these methods are
extensions of XGBoost. CatBoost focuses on categorical
columns using permutation techniques and target-based
statistics (Dorogush et al., 2018). LightGBM further
improves standard gradient boosting methods. Microsoft
developed LightGBM by growing the decision trees leaf-
wise, allowing it to effectively utilize Graphics Processing
Unit (GPU) for faster training time and better accuracy
(Minastireanu and Mesnita, 2019).

• Neural Network - Multilayer Perceptron.One of the simplest
multi-layered neural network architectures, the multilayer
perceptron (MLP) (Ruppert, 2004) is a hierarchical
structure of layers containing individual artificial
neurons. The power of MLPs comes from their ability to
learn patterns in the training data and to relate them to the
output. Mathematically, MLPs are considered universal
approximators, which means they are capable of learning
any mapping function. The MLP architecture consists of an
input layer, one or more hidden layers, and an output layer.
Each neuron in the hidden layer receives input from the
preceding layer and fires according to the neuron’s
activation function. During the forward pass, the output
of each layer is passed to the next layer and the output layer
consists of only one neuron. The error is calculated based on
the function to be predicted and the output of the network.
After the forward pass, the backpropagation algorithm
(Rosenblatt, 1961) is used to adjust the model’s weights
and biases. This combination of forward and backward
passes is repeated for many epochs until some stopping
criterion is satisfied. This whole process is called training.
After training, the resulting model can be used for
classification and prediction.

For application in policy and behavioral analyses, explaining
and interpreting the predictions made by these machine
learning models is critical, but not trivial. The most exciting
recent development in explaining tree-based methods is the
“TreeExplainer” by Lundberg et al. 2020. Most of the existing
machine learning studies interpret variables by their global
importance ranking [e.g., using Gini index (Sekhar and
Minal Madhu, 2016), (Zhao et al., 2019)] which may mask
their local importance when interacting with other variables.
Additionally, Gini coefficient does not provide any indication of
the direction of association, which is critical in interpreting the
results of a model for policy evaluation purposes. The
TreeExplainer fills this gap by computing the optimal local
explanations for the variables including both the sign and
magnitude of their effects.

The key quantity computed by the TreeExplainer is Shapley
Additive exPlanation (SHAP) values, which represents the
sequential impact on the model’s output of observing each
input feature, averaged over all possible subset variable orderings.

ϕjntl � ∑ S⊆N\{l}
|S|!(M − |S| − 1)!

M!
[fx(S ∪ {l}) − fx(S)] (1)
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Where ϕjntl is the SHAP value of the l-th variable on the outcome
class j for vehicle n at wave t. S represents a subset of variables that
do not include the l-th variable, |S| is the total number of variables
in the subset, and M is the total number of variables. fx is the
prediction function.

Aside from providing both local and global ranking of the
input variables based on their contribution to the classification,
the SHAP values could also be used to plot individualized
explanations for each feature and their localized effects on the
final prediction. The SHAP dependence plots provide richer
information than traditional partial dependence plots
(Lundberg et al., 2020). These plots capture both the direction
and the magnitude of impact of each variable as well as the
interaction between variables on the classification task. In
addition to the visual guide provided by SHAP dependence
plot, SHAP methodology allows for quantitative determination
of salient interactions of tree-based models by expanding the
method to include interaction terms for individual observations
(Lundberg et al., 2020). A measure of the global importance of
these interactions can be characterized by summing the
interaction effects over all of the samples to find the important
interaction terms to add as predictors to the choice modeling.

2.2.2 Multinomial Choice Modeling and Interpretation
We apply the multinomial logit (MNL) model to predict the
transaction outcome of each individual vehicle in the dataset.
MNL models are the most widely used choice models and are
based on the principle of random utility maximization derived
from econometric theory. The utility of keeping the vehicle in the
next survey wave is fixed at 0 without any loss of generality, while
the utility function from choosing alternative j, that is, to dispose
or replace, the vehicle n of wave t in family i is defined as:

Unjit � αj +Xnt
′ βj + Zit

′γj + Yeart · δj + εnjit (2)
βj is the alternative specific coefficient vector associated with the
vehicle attributes X’

nt, and γj is the alternative specific coefficient
vector associated with the family level socio-demographics
attributes Z’

it. To account for the temporal trends discussed in
Section 2.1, we include year-specific effects Yeart · δj in our
model. To account for serial correlation across time observations
within families, we cluster the standard errors of the estimates at
the level of the household.

The baseline MNL (bMNL) model is built with all the input
features entering the equation linearly. The final model
specification, referred to as improved MNL (iMNL), will be
informed by the TreeExplainer coupled with the best
performing ML model, such as decisions about binning of
continuous variables and whether and how to include
interaction terms. The baseline MNL model is intended to
establish a performance baseline, from which the improved
MNL model can be compared relative to the ML models.

Note that we did not choose a nested structure where
households first decide whether to do nothing, dispose, add, or
replace a vehicle, then in the nested layer determine which vehicle
to dispose or replace. Such nested structures are not viable owing
to the constraints presented by the PSID data where family level

decisions revealed during the two-year window are sometimes
not mutually exclusive.

The interpretation of the coefficients in MNL models is
straightforward by examining the sign and significance level of
the coefficients. For a unit change in the predictor variable, the
utility of vehicle transaction outcome j ∈{disposed, replaced}
relative to the “kept” decision is expected to change by its
respective coefficient estimate, given that the other variables in
the model are held constant. Therefore, a positive value of the
coefficient means that the vehicle is more likely to be replaced or
disposed, relative to being kept. The sign of the coefficients will be
compared with the TreeExplainer results to derive behavioral
insights more robustly.

Note that traditional variable selection employs Least Absolute
Shrinkage and Selection Operator (LASSO) or Ridge regression
techniques to penalize the model’s complexity in the presence of a
large number of predictors. While this study does not directly
employ LASSO for variable selection, we employ it for confirming
the validity of the variable selected by ML models coupled with
the TreeExplainer.

2.2.3 Performance Evaluation Methods
Ten metrics are used to comprehensively evaluate various aspects
of the performance of both ML and MNL models for predicting
multi-class vehicle transaction outcomes.

The outcome class-specific metrics such as Accuracy, Recall,
F1, and Specificity are first computed from the confusion
matrices. Then the following multi-class overall performance
metrics are derived:

• Overall Accuracy for correct classification, which indicates
the fraction of instances that are correctly classified.

• Average Accuracy, which is based on the sum of the one-vs-
all matrices, and represents a binary classification task
where one class is considered the positive class and the
combination of all the other classes make up the
negative class.

• Macro-averaged metrics, which include Macro-precision
and Macro-F1, also known as sensitivity or the true
positive rate, is calculated by taking the means of per-
class precision, recall and F1, respectively.

• Micro-averaged metrics, which are from the sum of the one-
vs-all matrices for each class, and the sum of these matrices
will always be a symmetric matrix, so micro-precision,
-recall and -F1 will be the same.

Three additional overall performance metrics that do not rely
on the class-specific metrics are also computed including:

• Cohen’s Kappa, which can be interpreted as a comparison of
the overall accuracy to the expected random chance
accuracy with higher value indicating a better classifier
compared relative to a random chance classifier.

• Cross-entropy, which measures the difference between two
probability distributions from the idea of entropy in
information theory to quantify the number of bits
required to transmit an average event from one
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FIGURE 2 | Performance comparison for four machine learning models.

FIGURE 3 | Local explanation summary, i.e., variables’ impact on the outcome class (A) kept, (B) disposed, and (C) replaced. The 25most important input variables are shown for each outcome class and variables
are ranked (from top to bottom) by their global importance measured by the average absolute SHAP value. See Table 1 for description of variable names.
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FIGURE 4 | SHAP dependence plots to illustrate effects of individual variables and their interactions on the transaction outcomes: effects of vehicle vintage and its
interaction with the ownership type (owned or leased) on the likelihood of (A) “kept” outcome, and (B) “replaced” outcome; effects of change of income and its interaction
with the income levels on the likelihood of (C) “disposed” outcome, and (D) “replaced” outcome; effects of vintage and its interaction with the household fleet size on the
likelihood of (E) “replaced” outcome, and (F) “disposed” outcome; effects of household head or spouse age and its interaction with (G) presence of children of
age≤4 years, and (H) presence of children of age 5–11 years, on “replaced” outcome.
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distribution to another distribution. Lower cross-entropy
indicates better model performances.

• Multi-class Log Loss, which penalizes the model for
uncertainty in correct predictions, and heavily penalizes
the model for making an incorrect prediction, with lower
multi-class log loss as better model performances.

3 RESULTS

3.1 Machine Learning Model Performances
and Behavioral Interpretation
As the application of ML methods to predicting vehicle
transactions is new, we first compare the performance among
the four aforementioned ML models. Figure 2 summarizes the
overall performance evaluation on three well-known performance
measures: overall accuracy, multi-class log loss and F1. Each point
on the plot represents the average performance of a particular
model over 5-fold cross-validation. For each ML method, models
were generated based on several sets of features and therefore
summarized with a boxplot. All the experiments were run using the
Automated Machine Learning (MLJAR) framework (Plonska and
Plonski, 2020). Results indicate that the two gradient boosting-
based methods, CatBoost and LightGBM, are the best performing
ML models. From the figure it can be seen that the CatBoost
algorithm has smaller and tighter performance metric values than
any other model tested here. Therefore, the CatBoost method is
selected to further generate behavior interpretations.

We use the local explanations (i.e., SHAP values) of individual
input variables computed by the TreeExplainer to interpret effects
of input variables on predicting the transaction outcome class ∈
{disposed, replaced, kept} for CatBoost predictions. SHAP values
are computed for each observation of a vehicle’s transaction

outcome, with positive values indicating an increase in the
outcome’s log odds. The SHAP values are summarized with a
set of beeswarm plots, where each dot corresponds to an
observation in the dataset (Figure 3). Each dot’s position on
the x-axis shows the impact a given variable has on the CatBoost
model prediction for the vehicle’s transaction outcome.When the
multiple dots share the same effects (i.e., same x position), they
are depicted as a swarm to indicate density.

Note that the dots are color coded by a variable’s value from
low (blue) to high (red) for the binary, ordinal, and continuous
variables. Non-ordinal categorical variables such as vehicle type
and race are colored in grey. The color spectrum reveals the
direction (or lack thereof) of effects. For example, in Figure 3A,
vintage is shown to have a negative association with a vehicle
being “kept” in the household’s fleet, which means that older
vehicles (red dots corresponding to the vintage variable) are less
likely to be kept in the next wave compared to younger ones.
Similarly, vintage is somewhat positively correlated with being
disposed or replaced i.e., older vehicles have a higher probability
of being disposed or replaced compared to younger ones.

Variables are indicated on the y axis, ordered by themagnitude
of their average SHAP value, indicating their global importance
for predicting the respective outcome. The 25 most important
variables are shown for each transaction outcome of interest.

Figure 3A summarizes the effect of each variable on whether a
vehicle is less or more likely to be transacted out of the family
(i.e., kept or not). Figures 3B,C further show the effect of the
variables on the type of transaction (replacement or disposal).
The variable importance ranking combining all outcomes are
presented in Figure 5A, which indicates that vehicle vintage and
household fleet size are overall the most influential predictors.

Figure 3A shows that the vehicle-level attributes vintage and
number of years serving the family (yrs_inFu) are the top

FIGURE 5 | (A) SHAP Feature Importance considering all three outcomes; and interaction term scores for predicting “replaced” (B), and (C) “disposed”.
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predictors with opposite effects on whether or not a vehicle will be
kept in the family. Household head or spouse’ age (hh_age),
education level (edu) and income level (inc_5bins) are the top
sociodemographic attributes impacting vehicle transaction
outcomes. Residential relocation, change in income, and
change in number of drivers are among key life-events and
change variables impacting vehicle transactions at the
household-level.

When further differentiated by transaction types, Figures 3B,C
show different ordering of variable importance. While vintage is
the leading predictor for replacement decisions pertaining to a
vehicle, the household fleet size (Nveh) becomes the most
important one for the disposal decision. Besides the importance
ranking, the top 25 variables themselves are different in predicting
replacement and disposal. Note that the presence of young children
(kid_4 and kid_5_11) are important in predicting vehicle
replacement but not disposal.

The direction of effects on transaction types are largely consistent
for the vehicle attributes; any family attributes and life-events (e.g.,
Nveh, inc_5bins, ch_Ndriver, and ch_income) have opposite effects (if
the direction of effects can be discerned) on disposal vs. replacement.
For example, while larger fleet size (Nveh) increases the probability of
disposal, it decreases the probability of replacement. Larger fleet size
may lead to redundancy of vehicles and thus trigger vehicle disposal;
however, a bigger fleet provides more diversity to satisfy various travel
requirements and therefore could result in a lower need to replace a
vehicle to fulfill any potential change in demand. Residential relocation
increases the likelihood of disposal aswell as replacement. The longer a
vehicle has served the family (yrs_inFU), the less likely it is to be
disposed or replaced. This is in the opposite direction of vehicle
vintage, where older vehicles are more likely to be disposed or
replaced.

Besides the overall direction of effects, SHAP dependence
plots are used to examine potential nonlinearity in the
variable-to-outcome relationship for continuous variables such
as vehicle vintage and change in income. Figures 4A,B reveal that
vehicle vintage has varying impacts on the likelihood of vehicle
transaction outcomes of owned versus leased vehicles. The
probability of “keeping” a leased vehicle drops right around
two to three years (coupled with an increase in probability of
“replacing” the vehicle) which is intuitive as the typical lease term
is for 2–3 years. Starting from 11 years, vehicles, whether owned
or leased, are expected to be transacted out of the family
(i.e., SHAP value on “kept” becomes negative).

One interesting finding from the dependence plot Figures
4A,B is that, once the leased vehicles are past the 3-years lease
term period, they see a relatively “quiet” period where increasing
age (from 6–10 years) has no impact on the vehicle being
replaced. This, however, does not hold true for owned
vehicles, which see a steady or a stepped increase in the
probability of getting replaced with increasing age. A plausible
explanation for this phenomenon is households purchasing a
leased vehicle once the lease term expires, if they are fully satisfied
with the vehicle. Once the loan on the vehicle is paid off
(2–3 years after the lease term, or 5–6 years after the original
lease date), households would be reluctant to dispose or replace a
vehicle that is fully paid off. This could, however, change as the

vehicle ages (beyond 10 years), and maintenance costs and hassle
outweigh the cost of replacement or disposal.

Figures 4C,D reveal that there is generally a linear relationship
between income change and vehicle disposal or replacement and
this relationship differs for families of different income levels as
indicated by the reversed vertical dispersions of the colors
between positive and negative income changes. Such
information provides data driven insights for binning the
vintage variable and inclusion of interaction terms for the
subsequent MNL analysis.

Figures 4E,F indicate that the dependence of transaction
behaviors on vehicle vintage also differs by household fleet
sizes. Vehicles in single vehicle families are slightly less likely
to be replaced early on than those in multi-vehicle families (Nveh
>1) (Figure 4E). On the other hand, as they get older, vehicles in
single vehicle families are more likely to be replaced than those in
multi-vehicle families with extra vehicles to spare (Figure 4E). As
for the disposal decision, vehicles in single vehicle families are less
likely to be disposed as they get older (>12 years) compared to
those in families with extra vehicle(s) available.

The SHAP interaction scores are used to rank the importance
of all possible combination of variables. Using the overall SHAP
importance to select the top 20 features (Figure 5A), we further
rank their interactions using SHAP interaction scores (Figures
5B,C). We find 5 out of 7 top interactions involve Nveh
(household fleet size), indicating that the effects of other
variables on the transaction decisions differ among families
with different fleet sizes. The interaction scores also confirmed
the importance of interactions between income levels and change
in income as well as between vintage and owned versus leased, as
visually evident in Figure 4.

Note that the age of the family head or spouse (hh_age) is a
proxy for, and thus correlated with, many life events as well as
family demographic status (Scheiner and Holz-Rau, 2013).
Although ML models can easily handle colinear features,
collinearity issues may cause unstable estimates in logit
regressions. As a result, age was not directly included as an
independent variable in previous choice modeling [e.g., (Klein
and Smart, 2019)]. Instead, household age can be included as
interaction terms with certain family demographic features.
Here, Figures 4G,H indicate that the presence of young
children (≤ 4 years and 5–11 years) increases the vehicle
replacement probability in families of different parental age
bins (20 and 30 s), but not for later parental ages.

The feature importance ranking, as well as feature interactions,
provide valuable data driven insights for variable selection, binning
the vintage variable, and inclusion of interaction terms to improve
the MNL model specification. The top-ranking variables and
interactions identified by the SHAP importance ranking are
shown to pass the LASSO testing (see Supplementary Material
for more details) which further confirm their validity.

3.2 Multinomial Logit Model Results and
Interpretation
Informed by the SHAP values and dependence plots from the
TreeExplainer, we generate vintage bins at < 2 years, 2–4 years,

Frontiers in Future Transportation | www.frontiersin.org July 2022 | Volume 3 | Article 89465411

Jin et al. Household Vehicle Transaction

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles


TABLE 2 | MNL estimates (the reference level of vehicle outcome is “kept”).

Explanatory variables Families with 1 veh Families with >1 veh

Disposed Replaced Disposed Replaced

Constant −1.887*** −0.601* −2.894*** −0.568***
(0.463) (0.256) (0.253) (0.16)

Current fleet size
Number of vehicles in family unit 0.802*** −0.070***

(0.029) (0.02)
Vehicle attributes
Vehicle vintage (reference level is < 2 years)
2–4 years 0.098 0.354** 0.538*** 0.255***

(0.244) (0.127) (0.126) (0.064)
5–10 years 0.529* 0.725*** 1.037*** 0.548***

(0.24) (0.125) (0.126) (0.065)
≥ 11 years 1.248*** 1.416*** 1.779*** 1.093***

(0.241) (0.129) (0.129) (0.068)
Number of years serving the family −0.050*** −0.060*** −0.032*** −0.053***

(0.01) (0.006) (0.005) (0.004)
Vehicle is owned (rather than leased) −0.392** −0.408*** −0.445*** −0.517***

(0.138) (0.093) (0.127) (0.079)
Leased * Vintage in 2–4 years 0.702** 0.885*** 0.766*** 1.260***

(0.241) (0.144) (0.176) (0.102)
Body type (reference is car body type)
Pickup −0.386** −0.152* −0.229*** −0.242***

(0.136) (0.077) (0.049) (0.03)
Utility −0.238** −0.159*** −0.141** −0.106***

(0.081) (0.046) (0.043) (0.026)
Van −0.055 0.083 −0.018 0.106**

(0.124) (0.078) (0.066) (0.04)
Concurrent family attributes

Married or cohabiting −0.051 0.019 −0.862*** −0.083*
(0.098) (0.06) (0.051) (0.039)

Income levels (reference level is $50,000–$75,000)
< $25,000 0.560*** −0.278*** 0.341*** −0.048

(0.122) (0.066) (0.099) (0.081)
$25,000–$50,000 0.257* −0.08 0.146* −0.133**

(0.109) (0.053) (0.065) (0.048)
$75,000 − $150,000 −0.125 0.088 −0.118* 0.086**

(0.171) (0.062) (0.051) (0.031)
≥ $150,000 0.406 0.113 0.055 0.210***

(0.245) (0.099) (0.065) (0.04)
Race (reference is asian)
White −0.008 −0.016 −0.291* 0.181*

(0.331) (0.177) (0.141) (0.09)
Other race categories not significant and not shown
Education level (reference is less than high school)
Post graduate −1.081*** −0.220* −0.356*** −0.302***

(0.166) (0.094) (0.098) (0.071)
College −0.922*** −0.271** −0.192* −0.248***

(0.141) (0.088) (0.096) (0.069)
Some college −0.489*** −0.053 −0.174 −0.138*

(0.104) (0.078) (0.09) (0.066)
High school −0.332*** −0.043 −0.052 −0.051

(0.098) (0.078) (0.088) (0.066)
Number of eligible drivers 0.324*** 0.115** 0.019 0.072***

(0.062) (0.04) (0.034) (0.021)
Number of workers −0.619*** 0.015 −0.208*** 0.087***

(0.071) (0.042) (0.032) (0.021)
Head or spouse age >60 years old −0.194* −0.311*** −0.043 −0.104**

(0.097) (0.062) (0.055) (0.036)
Number of children (<16 years) 0.058 0.022 0.061 0.066**

(0.078) (0.05) (0.044) (0.024)
Presence of children≤4 years old for
Parents <27 years old 0.315 0.455*** −0.103 0.16

(0.173) (0.125) (0.148) (0.1)
(Continued on following page)
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5–10 years, and ≥11 years to capture varying vehicle transaction
propensities with vehicle vintage. We also include the interaction
term of leased vehicles with vintage bin 2–4 years to further
quantify the ownership type effects. Effects of income changes are
interacted with income levels. We do not directly include the head
of household age as a continuous independent variable; instead,
we only include indicator variable of hh_age >60 to capture

vehicle transactions due to driving cessation as household
members get older (Klein and Smart, 2019). Furthermore,
informed by interactions between parental age with presence
of children revealed by the TreeExplainer, we include parental age
bins as an interaction term with the presence of young children to
further distinguish the timing effects of these attributes. We
separately estimate MNL models for the families with only

TABLE 2 | (Continued) MNL estimates (the reference level of vehicle outcome is “kept”).

Explanatory variables Families with 1 veh Families with >1 veh

Disposed Replaced Disposed Replaced

Parents 27–35 years old −0.253 −0.071 −0.065 0.052
(0.162) (0.1) (0.09) (0.051)

Parents >35 years old −0.183 0.14 −0.089 −0.07
(0.196) (0.117) (0.087) (0.051)

Presence of children 5–11 years old for
Parents <27 years old −0.116 0.207 0.205 0.131

(0.198) (0.146) (0.203) (0.143)
Parents 27–35 years old −0.089 0.247* 0.034 0.117*

(0.158) (0.097) (0.097) (0.055)
Parents >35 years old −0.273 0.025 −0.112 −0.006

−0.116 0.207 0.205 0.131
Presence of children 12–15 years old 0.022 −0.005 0.108 −0.009

(0.131) (0.08) (0.071) (0.043)
Is home owner −0.434*** −0.065 −0.265*** −0.053

(0.093) (0.051) (0.05) (0.034)
Life events and change variables

Change in head marriage (coupling up = 1, no change = 0, decoupling = −1) −0.686*** −0.117 −1.366*** −0.098
(0.188) (0.089) (0.085) (0.065)

Change in income (in thousands) for families of income levels
< $25,000 −0.012** 0.005** −0.005 0.004*

(0.004) (0.002) (0.003) (0.002)
$25,000–$50,000 −0.010** 0.002 −0.005** 0.002*

(0.004) (0.001) (0.002) (0.001)
$50,000–$75,000 −0.008 0.001 −0.004* 0.002**

(0.004) (0.001) (0.002) (0.001)
$75,000 − $150,000 −0.007 0.001 −0.003*** 0.001**

(0.004) (0.001) (0.001) (0.0003)
≥ $150,000 0.0001 0.0003 0.0001 −0.00001

(0.0005) (0.0003) (0.0002) (0.0001)
Increase level of education −0.293 0.065 −0.197* 0.006

(0.161) (0.086) (0.083) (0.049)
Birth of children for
Parents <27 years old 0.268 0.349** 0.248 0.323**

(0.175) (0.13) (0.155) (0.099)
Parents 27–35 years old 0.018 0.179 −0.155 0.085

(0.186) (0.101) (0.085) (0.046)
Parents >35 years old 0.295 −0.251 0.206 0.033

(0.22) (0.146) (0.109) (0.062)
Empty nest (grown up children move out) 0.095 0.351** 0.370*** 0.061

(0.178) (0.121) (0.069) (0.052)
Change in number of workers −0.619*** −0.047 −0.298*** 0.029

(0.066) (0.038) (0.034) (0.021)
Change in number of adults −0.203* 0.119** −0.324*** −0.004

(0.08) (0.045) (0.045) (0.028)
Recently moved 0.569*** 0.337*** 0.382*** 0.284***

(0.08) (0.043) (0.039) (0.026)
Controlled for year fixed effects Yes Yes

Observations 16,510 52,390
Log likelihood −13,631 −43,078
LR test 2,874.534*** (df = 122) 8,420.184*** (df = 124)

Note: *p < 0.05; **p < 0.01; ***p < 0.001.
The bold face indicated coefficients significant at 10% level.
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one vehicle, and for families with extra vehicles (Nveh >1) to
account for potential behavioral differences in transaction
decisions due to the availability of vehicles as revealed in the
TreeExplainer results. The estimation results are presented in
Table 2 and described below.

3.2.1 Fleet Size and Vehicle Attributes
Similar to the TreeExplainer results, fleet size is significantly
associated with the probability of vehicle transactions with
opposite effects: a larger household fleet increases the
probability of disposal but decreases the probability of
replacement. Effects of vehicle attributes differ between
one-vehicle families and families with more than one
vehicle. Despite older vehicles being more likely to be
transacted out of the family, we find that one-vehicle
families tend to hold on to vehicles a little longer before
disposing them (indicated by the non-significant coefficient
for vintage bin 2–4) compared to families with more than one
vehicle. On the other hand, one-vehicle families are more likely
to replace (rather than dispose of) their only vehicle,
presumably in order to maintain their ability to address
mobility needs.

The longer the vehicles stay with the family (yrs_inFu), the
more likely they are to be kept. Such opposite effects between
vintage and yrs_inFu was also evident in the SHAP results
shown in Figure 3. This means that vehicles serving the family
longer are less likely to be transacted out compared to ones that
are of the same age but with shorter duration of ownership.
This could be due to a sentimental attachment to the family
vehicle or the longevity of the vehicles with less frequent
switches of owners and better maintenance.

Owned vehicles are in general less likely to be transacted out of the
household fleet compared to leased ones, especially for vehicles between
2 and 4 years old, which is consistent with the TreeExplainer results.
The transaction likelihood also differs across body types. Light trucks
such as pickups and SUVs are less likely to be disposed of or replaced
compared to cars, while vans are more likely to be replaced in families
with more than one vehicle. The reduced rate of disposal, particularly
for pickup trucks, is corroborated by the increase in average age of a
pickup truck from 10.1 years in 2011 to 13.1 years in 2017 (EIA, 2018).

3.2.2 Concurrent Family Status
As with the vehicle attributes, concurrent family socio-economic
and demographic attributes are also found to impact vehicle
transaction outcomes.

We observe that married (or cohabiting) families, families with
higher education levels, home owners, and families with older parents
tend to keep their vehicles longer.Note thatwhile the literature generally
do not include both number of eligible drivers and the number ofworks
in the model, we include them together as they are both selected by the
SHAP importance ranking. Families withmoreworkers are less likely to
dispose of their vehicles, presumably owing to thenecessity of individual
household members requiring their own vehicle to commute to work
(note that the data used for modeling was from pre-pandemic times).
Families with more driving age members are more likely to dispose of
or replace their vehicles, which could stem from variation in taste across
different drivers, or different requirements for different drivers in the

family. The result of higher number of drivers associated with higher
likelihood of disposing vehicles may seem surprising, although we note
that the inclusion of number ofworkers and income as control variables
may help explain this:

The positive coefficient of number of eligible drivers on
disposal decision should be interpreted as “the effect of more
drivers while number of workers and income remains the same”.

There is noticeable variation in transaction probabilities of
white families with more than one vehicle, who are less likely to
dispose and more likely to replace their vehicles compared to their
Asian counterparts. Note that this finding indicates a potential
culture difference among different racial communities or a
confounding effect through our omission of location factors
(such as residential density) that correlated with race (Schimek,
1996). Transaction probability also varies among income groups.
Poorer families are associated with a higher disposal probability
and lower replacement probability than more affluent families,
possibly due to lack of financial stability to maintain a vehicle.

Presence of young children (kid_4 and kid_5_11) was found to
mostly affect replacement decisions in the TreeExplainer results.
The MNL model results confirm this and further distinguish
timing differences. Interestingly, we find that parents of age 35 or
younger are more likely to replace their vehicles when young
children (≤11 years old) are present. In contrast, the replacement
decisions for parents older than 35 are not associated with the
presence of young children. This finding is consistent with
previous literature that has found that travel behaviors are
more frequently changed before age 35 years old (Jin et al., 2020).

3.2.3 Life Events and Change Variables
Life events generally change mobility needs of families, which in
turn necessitate vehicle transactions. A number of events, such as
residential relocation, grownup children moving out of the family
(i.e., empty nesting), decoupling, and childbirth are found to
increase vehicle transaction (disposal or replacement)
probabilities. On the other hand, increasing level of education,
increasing number of workers or drivers in the family, and
coupling tend to decrease the vehicle disposal probability.

The interaction effects between income change and income
groups observed in the TreeExplainer are also confirmed in the

TABLE 3 | Performance metrics for baseline multinomial logit (bMNL), improved
multinomial logit (iMNL), and the best performingmachine learning (bML). Best
performing metrics are indicated with bold faces.

Metrics In-sample Testing sample

bMNL iMNL bML bMNL iMNL bML

Overall accuracy 0.61 0.62 0.72 0.61 0.62 0.62
Average accuracy 0.74 0.74 0.81 0.74 0.75 0.75
Macro−precision 0.53 0.53 0.75 0.53 0.55 0.53
Sensitivity 0.42 0.42 0.58 0.42 0.43 0.44
Macro−f1 0.41 0.42 0.62 0.42 0.43 0.45
Micro metrics 0.61 0.62 0.72 0.61 0.62 0.62
Cohen’s kappa 0.16 0.17 0.42 0.17 0.19 0.21
Specificity 0.71 0.72 0.79 0.72 0.72 0.73
Cross entropy 1.59 1.57 1.44 1.58 1.58 1.47
1/(Log loss) 1.20 1.22 1.52 1.20 1.22 1.20
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MNL results. An increase in family income decreases the probability
of vehicle disposal, while it increases the probability of vehicle
replacement. This effect is more significant for poorer families.
The transaction decisions of the top earners, on the other hand,
are unaffected by the income changes.

While it is intuitive that a childbirth event increases the
probability for vehicle replacement [presence of children is
strongly associated with owning larger vehicles (Paleti et al.,
2011)], our analysis reveals that the effects are most significant
among younger parents (<27 years old). The birth event for these
parents is more likely to be their first child, and their existing
family fleet is likely less tailored to meet parenting needs.

3.3 Performance Comparison Between
Machine Learning and Multinomial Logit
Models
The performances of the resulting improved MNL model
(iMNL), as well as the Baseline MNL (bMNL) and the best
performing ML model are evaluated and compared using the
10 metrics presented in Table 3, for both in−sample data
(i.e., training sample) and testing data (i.e., out−sample data
from a random selection of 1,000 households).

Although ML model performance is better than the Baseline
MNL model, for both in−sample and out−of−sample, the
differences are more pronounced with in−sample and
diminish once both models are evaluated on testing data.

Similar to the Baseline MNL, the improved MNL model shows
poorer performance than theMLmodel on in−sample data.However,
when applied to the testing data, 5 out of the 10 metrics have now
indicated same or better performance of the improved MNL model
compared to the ML model, and the performance differences are
smaller between the improved MNL and ML compared to between
the Baseline MNL and ML models. Furthermore, Table 3 suggests
overall MNL models perform more consistently between in−sample
and out−of−sample data than ML models.

4 DISCUSSIONS AND CONCLUSION

4.1 Contribution to Travel Behavior
Literature
In this paper, we find the dynamic decisions to let go of a given
vehicle (through disposal or replacement) are positively
correlated with 1) the age of the vehicle coupled with the
vehicle being leased rather than owned; 2) demographic
characteristics such as families with a greater number of
drivers, and/or lower income level; and 3) key life cycle events
such as childbirth (particularly for younger parents), residential
relocation and empty nesting. On the other hand, factors
positively associated with households’ decision of holding on
to older vehicles are 1) vehicle attributes, such as that a vehicle is
owned rather than leased, and that the vehicle is a pickup truck or
an SUV (as opposed to a passenger car); 2) demographic
attributes such as having a higher level of education or being a
homeowner; and 3) life events such as marriage or reduction of
family income. While past studies have separately investigated

one or two of the above dimensions, this paper is the first to
include all three simultaneously based on revealed preferences in
the PSID panel survey, for both vehicle attributes and household
characteristics.

Furthermore, our empirical analysis methodology provides
innovation beyond previous literature by leveraging machine
learning coupled with TreeExplainer as an additional
interpretation tool to both generate behavioral insights and
improve the model specification for MNL choice modeling.
This study represents the first application of ML methods to
model vehicle transactions using a large panel dataset. We find
the two gradient−boosting−based methods, CatBoost and
LightGBM, are the best performing ML models for this
problem. We demostrate that using SHAP interpretation tools
coupled with multinomial logistic models could help them
achieve similar performance levels to the best performing ML
methods. The variable effects, in terms of the direction of
influence, are largely consistent between the two methods,
which improve the robustness of the behavior insights
generated by our study.

4.2 Policy Implications
Effects of vehicle attributes estimated from this study have
several policy implications, particularly in the context of
increased policy interest in accelerating turnover of the
vehicle fleet in the aid of transportation decarbonization.
While older vehicles are more likely to be transacted out of
the family than newer ones, the transaction probability
decreases as the vehicles serve the family longer. A similar
pattern was observed in a previous stated−preference vehicle
survey (Paleti et al., 2011). Both the temporal trend in our data
(Figure 1B) and the NHTS from 2009 to 2017 (EIA, 2018) have
revealed a national increase in average vehicle age in
United States households. In essence, the longer a family
holds on to a vehicle, the more likely the household will
continue to retain that vehicle. This is an important pattern
to identify and further understand, as it provides a positive
feedback loop to lengthen the vehicle replacement schedule and
consequently slow down the penetration of emerging, and
potentially preferred technologies from a policy perspective.
Policies such as vehicle replacement or disposal incentives (such
as bounties to retire older vehicles) could be introduced to help
break this feedback loop. In future research we will analyze the
potential effectiveness of alternative policies to accelerate
vehicle fleet turnover using our model.

Transaction probabilities also differ by vehicle body type, with
light trucks, such as pickup trucks and SUVs, less likely to be
replaced or disposed of than cars. This effect is consistent with the
stated preference survey results in (Paleti et al., 2011). Light trucks
are the most popular body types in states throughout the
United States other than California (Archsmith et al., 2021),
with their market share in light duty vehicle sales reaching 72% in
2019 and 77% in 2020 (U.S. Energy Information Administration
(EIA), 2020). Currently, electric vehicles (EVs) are mostly
available for cars rather than light trucks (Archsmith et al.,
2021). Without a more diverse supply of electric light trucks,
the increasing ownership of conventional light trucks coupled
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with their low turnover rates may slow down the overall
penetration of EVs.

Another important but often omitted vehicle attribute in
previous studies is ownership status (i.e., whether a vehicle is
owned or leased). We find that leased vehicles are much more
likely to be replaced or disposed of relative to owned vehicles,
with the difference greatest at 3 years of age, consistent with the
typical leasing term. Leased vehicles now represent 31% of all new
car transactions, a rate that has increased more than 10% per year
since 2014 (Simons, 2020). Finite lease terms contribute to
accelerating adoption of emerging vehicles; it is therefore
important to understand trends in the lease market in order to
forecast long-term car ownership trends and penetration of new
vehicle technologies such as electric vehicles.

4.3 Contribution to Mobility Biography
Literature
Following the mobility biography approach, our study has also
examined the mediating and triggering effects of family
socio−demographic status and life events on vehicle
transactions. We find that married families, families with
higher education levels, home owners, and families with older
heads of household tend to keep their vehicles longer. Life events
such as child birth, residential relocation, and change of
household composition and income are found to increase one
or both types of transactions (disposal or replacement), with signs
largely consistent with literature findings (Yamamoto, 2008),
(Mohammadian and Miller, 2003). We further find that the
poor families are more sensitive to income changes than more
affluent families in the context of vehicle transactions.

Note that the two types of vehicle transaction we examined in this
study represent different changes in the vehicle holdings at the family
level. Vehicle disposal leads to a decrease in the level of vehicle
holdings, while a replacement outcome maintains the overall fleet
size of the household. Therefore, these two transaction types are
expected to have different sensitivity to family level attributes and life
events. Indeed, this is a patternwe confirm in our results. In particular,
presence of children and child birth events are only significantly
associated with the probability of vehicle replacement, not disposal.
Furthermore, such effects strongly depend on parental age; in general,
younger parents aremore likely to replace their vehicles upon entering
parenthood or with young children at home. One potential policy
implication of this insight, in the context of policies designed to more
rapidly turn over the vehicle fleet, is to design emerging vehicles with
desired attributes for targeting different consumer segments.

4.4 Future Directions
While this study presents a comprehensive picture of the impacts of
vehicle attributes, family demographics, and life events on vehicle
transactions, it does have limitations that need further research. First,
information about vehicle powertrain technology (such as hybrid,
battery electric, or conventional internal combustion) was collected
only for the more recent survey waves and thus was not included in
the vehicle attributes in this analysis. Powertrain information will be
available in future survey waves, which will enable this information to
be included as an independent variable to understand the differences

in disposal/replacement tendencies between vehicles powered by
emerging technologies and conventional ones. Second, we have not
yet included location factors (such as accessibility to alternative or
shared travel modes) nor neighborhood characteristics (such as
population density, job density, etc.) (Klein and Smart, 2019).
Third, as life events are determined from the two−year window
between waves, broader lead or lag effects [see (Fatmi and Habib,
2016)] may be included to understand the more enduring effects
associated with certain life events such as the duration ofmarriage (Jin
et al., 2020). Lastly, the present study only seeks to understand how
soon an existing household vehicle will be transacted out of the
household fleet. In order for emerging vehicle technologies to
penetrate further into the household fleet, the next questions to
address are what type of vehicles will be added to the household
upon the replacement event or to increase the householdfleet size, and
how the vehicle choices are associated with household characteristics,
and how they could be potentially influenced by new vehicle attributes
and policy levers. In future work we will integrate a vehicle/technology
choice model with a vehicle transaction model in order to assess the
effectiveness of alternative policies to changing over the vehicle fleet,
facilitate rapid penetration of desired technologies for transportation
decarbonization, or otherwise influence vehicle transaction and
vehicle choice behavior.

While this study demonstrates an innovative use of ML
methods to inform the choice model building process,
additional investigation and advancement of the
methodology can be made. First, methodology needs to be
developed to translate the local interpretation by SHAP values
to a more straightforward global elasticity quantification
similar to the MNL coefficients in a multinomial context.
Second, this study focuses on tree−based methods while
deep learning methodologies, such as (Wang et al., 2020),
(Yao and Bekhor, 2022), can also be used to generate behavior
interpretation. Future work could apply these deep learning
models to our dataset and compare the performance and
interpretation. Lastly, the data−driven insights derived from
ML models can be applied to improve alternative modeling
framework such as continuous time−to−the event models.
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