
Integrity of virtual testing for
crash protection

Esma Galijatovic1,2, Maria Eichlseder1*, Simon Franz Heindl2 and
Corina Klug2*
1Institute of Applied Information Processing and Communications, Graz University of Technology,
Graz, Austria, 2Vehicle Safety Institute, Graz University of Technology, Graz, Austria

The interest in virtual testing is globally rapidly increasing because of several

advantages compared to physical tests in laboratories. In the area of passive car

safety, finite element simulations can be used to get further insights, use more

biofidelic human models and make the overall assessment more robust by

incorporating more variety in the virtual testing load cases. For a successful

implementation of virtual testing in regulations or consumer information, the

integrity of the procedure has to be ensured. As car simulation models used

within the virtual testing are usually not shared with the evaluation institutions

due to intellectual property (IP) issues, this is a challenging task. Stringent

validation and certification procedures are needed and it has to be ensured

that the models used in these steps are the same as the ones used for the virtual

testing. In this paper, we developed a secure procedure for model version

control. Through analysis of possible threats for both sides, car manufacturer

and evaluation institution, we defined requirements, which the new procedure

should satisfy. These requirements state that the integrity and authenticity of all

shared documents should be protected, as well as the confidentiality of the

simulation model. By considering all prerequisites, we developed an

architecture for a new procedure. This architecture uses cryptographic

algorithms such as hash functions and digital signatures to ensure integrity

and authenticity, as well as secure computation mechanisms such as Intel

Software Guard Extensions (SGX). In our proof-of-concept implementation, we

demonstrated how a secure wrapper around LS-DYNA can produce a signed

report to authenticate the input model files based on a hash tree and link them

to the simulation results. The evaluation institution can use a matching

verification tool to verify that the models were not manipulated compared

to other simulation runs or the qualification process. The developed procedure

can be used for trustworthy implementation of virtual testing into consumer

information or regulation for the assessment of car safety with strengthened

integrity. Further research is needed to develop comparable procedures for

other simulation software packages or ideally integrate it directly into the

simulation software.

KEYWORDS

car safety, consumer testing, integrity, confidentiality, hash function, digital signature,
virtual testing

OPEN ACCESS

EDITED BY

Yong Han,
Xiamen University of Technology, China

REVIEWED BY

Hua-Lei Yin,
Nanjing University, China
Andre Eggers,
Federal Highway Research Institute,
Germany

*CORRESPONDENCE

Maria Eichlseder,
maria.eichlseder@iaik.tugraz.at
Corina Klug,
corina.klug@tugraz.at

SPECIALTY SECTION

This article was submitted to Transport
Safety, a section of the journal
Frontiers in Future Transportation

RECEIVED 06 April 2022
ACCEPTED 09 November 2022
PUBLISHED 30 November 2022

CITATION

Galijatovic E, Eichlseder M, Heindl SF
and Klug C (2022), Integrity of virtual
testing for crash protection.
Front. Future Transp. 3:914489.
doi: 10.3389/ffutr.2022.914489

COPYRIGHT

© 2022 Galijatovic, Eichlseder, Heindl
and Klug. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Future Transportation frontiersin.org01

TYPE Original Research
PUBLISHED 30 November 2022
DOI 10.3389/ffutr.2022.914489

https://www.frontiersin.org/articles/10.3389/ffutr.2022.914489/full
https://www.frontiersin.org/articles/10.3389/ffutr.2022.914489/full
https://crossmark.crossref.org/dialog/?doi=10.3389/ffutr.2022.914489&domain=pdf&date_stamp=2022-11-30
mailto:maria.eichlseder@iaik.tugraz.at
mailto:corina.klug@tugraz.at
https://doi.org/10.3389/ffutr.2022.914489
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://doi.org/10.3389/ffutr.2022.914489


1 Introduction

The interest in virtual testing for vehicle safety assessments is

globally rapidly increasing because of several advantages

compared to physical tests in laboratories. Loading conditions

can be varied as well as the anthropometry of the humans to

enable a more robust assessment. Furthermore, integrated

assessments linking pre- and in-crash phase and the use of

biofidelic Human Body Models (HBMs) without hardware

limitations are enabled. Thereby, instead of crashing a real car

in a physical crashtests, a virtual replication of the car model is

used and tested virtually in a simulated crash. (Huizinga et al.,

2002; van Ratingen, 2020).

For a successful implementation of virtual testing, the integrity

of the procedure has to be ensured. All involved parties and the end-

consumers buying and driving the evaluated cars have to trust the

procedure and potential manipulation must be prevented. As IP

protected information is included in the virtual car models, this is a

challenging task. Stringent procedures are needed to ensure quality

of the model comparability in between such virtual tests

(repeatability and reproducibility). The principle of such a

procedure is shown in Figure 1.

The applied simulation models depend on the application

case and the overall setup is often a combination of vehicle and

occupant models. The models have to qualify for use in virtual

testing by fulfilling requirements on the validation and/or

comparability level. Thereby, general requirements (mass,

geometry, output specifications..) are checked and model

responses are compared with target responses from

experiments and/or reference simulations. The assessment

institution is inspecting shared results and documentation to

certify the simulation models. Eventually, the qualified

simulation models are used to run the virtual testing

loadcases. The evaluation institution is inspecting the

simulation results for plausibility (quality checks, consistency

with qualification..) and considers the results of the virtual testing

loadcases for the overall vehicle assessment. To replicate different

loadcases, parts of the simulation models need to be changed

“dynamic parts”. Other parts of the model remain unchanged

between qualification and virtual testing and also within the

virtual testing procedure (named “static” the figure). It has to be

ensured that the models used in the qualification steps are the

same as the ones used for the virtual testing and cannot be

manipulated in between. (Eggers et al., 2013; Klug et al., 2019; van

Ratingen, 2020).

Currently, virtual testing procedures are still very rare in the

area of car safety. In the European New Car Assessment

Programme (Euro NCAP) (Euro NCAP 2022) pedestrian

assessment of cars with deployable systems (i.e., pop-up

bonnets), the first certification procedure for virtual human

models to be used in the assessment procedure was defined.

In this application case, the virtual tests—simulations where car

models are crashing pedestrian models in different statures—are

used to derive the boundary conditions for the physical tests. To

qualify the virtual human models, they are used in reference

simulations with generic car models and their response is

compared to reference curves. Those simulations are very

well-defined and as every user has access to the same generic

car models, they are comparable among different users. This is

done to qualify the simulationmodels and environments (cluster,

used solver version) for use in virtual testing. Results and

documentation of these reference simulations are shared with

Euro NCAP and there inspected for plausibility. If Euro NCAP

judges the all requirements are fulfilled and the reference

simulations are within the corridors, the virtual human

models qualify for the next step. There, the human models

are impacted with the simulation models of the series-

production cars to be evaluated. Both types of simulations are

done by the car manufacturers, basically exchanging in the

simulation setup only the generic vehicle models of the

reference simulations with the models of the series-production

cars for the assessment simulations. The consistency between the

simulation setups and the virtual human models has to be

documented and is checked based on the provided outputs.

However, the integrity check purely relies on this

documentation and the provided data and changes of the

models are not trackable by third parties. In this case, this is

accepted, as the simulations are only used as prerequisite for

phyisical tests. For all simulations, quality criteria have to be

fulfilled and plausibility of simulation results is inspected by Euro

NCAP. (Klug et al., 2019).

Further applications of virtual testing are under

development, where the simulation results should be used for

the assessment itself and not only as prerequisite (Linder et al.,

2020; van Ratingen, 2020). Therefore, the integrity of simulation

results and used simulation models will play an steadily

increasing role and further improvements might be needed.

In information security research and cryptology, data integrity is

a central, well-studied security property. Cryptographic standards

provide algorithmic solutions to protect the integrity of files,

including hash functions (NIST FIPS 180-4, 2015), message

authentication codes (MACs) (NIST FIPS PUB 198-1, 2008), and

digital signatures (NIST FIPS PUB 186-4, 2013). These algorithms

take as input a file and a suitable digital key (a symmetric key for

MACs or the private key of an asymmetric keypair for signatures)

and produce a fixed-size authentication tag, fingerprint, or signature

to certify the integrity of the file. This can later be checked with the

corresponding verification key (the same symmetric key for MACs

or the public key of an asymmetric keypair for signatures) to verify

that the file has not been modified. However, applying these generic

algorithms to protect specific assets in practice is often challenging.

The main difficulties include proper key management, secure

implementation, and suitable adaptation based on the desired

notion of integrity (e.g., if the asset includes parts that may be

changed, if the asset is distributed across several locations or changes

over time, taking metadata into account, and many other aspects).

Frontiers in Future Transportation frontiersin.org02

Galijatovic et al. 10.3389/ffutr.2022.914489

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489


The aim of our study was to explore possible solutions to

improve integrity of the procedure and the files used in virtual

testing by exploring methods from information security research

and cryptology. The ambition was to define an enhanced

procedure and investigate a proof-of-concept implementation.

2 Materials and methods

To investigate how the integrity of virtual testing could be

further improved, the following methods were applied: First, we

performed a threat analysis to structure potential problems,

second, we developed and evaluated concepts to solve them,

and third, we implemented a proof of concept in conjunction

with a selected finite element (FE) software package, namely LS-

DYNA (ANSYS - LST, 2021).

2.1 Threat analysis

The threat analysis was performed based on the current

procedure for the assessment of active bonnets, having already

future applications in mind, where the crash safety assessment

itself is based on virtual load cases directly. Threats for the

organisation performing the assessment as well as for the car

manufacturer were considered based on discussions with

different stakeholders.

2.2 Building blocks of the virtual testing
procedure and the developed solutions

2.2.1 Simulations for virtual testing
For virtual testing in the field of vehicle safety, multibody

or finite element simulations are performed. Different

software packages are therefore used in the car industry.

The main structure among the processes is very similar

among the different Finite Element (FE) software packages.

The current proof-of-concept implementation was done

exemplary in combination with the FE software package

LS-DYNA. The input files for LS-DYNA are plain text files

that consist of ASCII-characters. All input files have to follow

a certain format and structure. This includes a limited set of

specific keywords, followed by respective values. By that,

model elements and equations available in LS-DYNA are

defined. Input files can also be encrypted, which means

that keywords and related input parameters are only

readable by LS-DYNA as it has the corresponding

decryption key. When initiating the simulation, only one

main input file is inserted into LS-DYNA, but many other

files can be included by reference to achieve segregation of

different components. These additional files are added using

*INCLUDE and *INCLUDE PATH keywords. Outputs are

binary files generated by LS-DYNA, which contain the

simulation results (ANSYS LST, 2021).

An exemplary simulation setup for a simple “cube” example

is shown in Figure 2. In this example, the files in the lower box

remain unchanged (static parts of simulation model) throughout

the procedure, while the main. key and Loadcase.inc. files are

modified to change the loading conditions (dynamic parts of

simulation model). This model is also used as demonstrator in

the feasibility study.

As simulations for virtual testing are usually large models,

simulations are performed on high-performance computing

(HPC) clusters. These clusters are highly secured and

connection to outside world is very restricted.

2.2.2 Cryptographic signature schemes and hash
functions

Cryptographic or digital signing is a procedure that

ensures the integrity and authenticity of a message (Diffie

and Hellman, 1976; Rivest et al., 1978). This procedure is used

when it is crucial to know who sent the specific message and

ensure it was not altered in transit. Additionally, once a person

signs a message with a digital signature, they can no longer

repudiate their signature. This property is called non-

repudiation. These procedures use asymmetric public-key

cryptography with a key-pair of public and private keys,

where the private key is used for signing by the sender, and

the public key is used for verification by the receiver (Diffie

and Hellman, 1976). Only a person that owns a private key can

generate a signature, so digital signatures can not be forged.

We have used two cryptographic signature schemes in this

study: RSA (Rivest–Shamir–Adleman) and ECDSA (Elliptic

Curve Digital Signature Algorithm), both standardized by US

National Institute of Standards and Technology (NIST, 2013).

The security of the RSA algorithm is based on the hardness of

the integer factorization problem (Rivest et al., 1978), while

ECDSA is analogue of the Digital Signature Algorithm (DSA)

algorithm using elliptic curves (Miller, 1985; Koblitz, 1987).

These schemes are considered secure against “classical

adversaries”, but would suffer a drastic loss of security in

case of potential future “quantum adversaries” that have

access to a large quantum computer. For this reason, NIST

is currently searching for a “post-quantum”-safe replacement

(NIST, 2020). Once such a post-quantum signature algorithm

has been standardized, it can serve as a secure drop-in

replacement for current algorithms provided that the

increased cost of these algorithms (larger signatures, larger

keys, slower computation) is compatible with the application.

These are not to be confused with quantum signature

algorithms (Gottesman and Chuang, 2001; Lu et al., 2021),

which require that the system itself uses a quantum-bit public

key and thus a dedicated quantum communication

infrastructure. For this reason, they cannot serve as

replacements in the context discussed in this paper.

Frontiers in Future Transportation frontiersin.org03

Galijatovic et al. 10.3389/ffutr.2022.914489

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489


Additionally, all these cryptographic signature schemes rely on a

cryptographic hash function to map input files of arbitrary length to

a hash value, or tag, of fixed length that serves as a secure fingerprint

(Damgård, 1989; Merkle, 1989). Secure cryptographic hash

functions offer preimage resistance (i.e., it is infeasible for an

attacker to find files that map to a given hash tag) and collision

resistance (i.e., it is infeasible for an attacker to prepare two different

files that map to the same hash tag). Hash functions and digital

signatures are widely used as building blocks in cryptographic

protocols (e.g., Transport Layer Security (TLS) for https or

blockchains), file integrity (e.g., peer-to-peer (P2P) downloads),

version control (e.g., git), and many other applications.

2.2.3 Secure enclaves
Secure enclaves (or Trusted Execution Environments) are secure

subsystems of a computer with an aim to ensure confidential

computing. Code executed in a secure enclave is protected from

inspection or manipulation by other untrusted software, including

higher privilege levels such as the operating system. This protects the

confidentiality and integrity of the data processed by this trusted

code. Thus, a program can run its most sensitive computations in a

secure enclave; for example, the secure enclave can securely store

cryptographic keys and allow their use only by the trusted

cryptographic implementation and on this machine. The switch

from unprotected, untrusted code to protected, trusted code in a

secure enclave is implemented by a special interface (i.e., Intel’s call

gate). One of themost prominent examples is Intel SGX (Intel, 2021)

that can be used for key management, enhanced application and

data protection, hardware-enhanced content protection, and more.

They are entirely isolated from other processes, including the

operating system. Intel SGX as a security mechanism is used in

the developed procedure for private key management. This

mechanism requires proper hardware support in terms of the

secure enclave component inside of the processor.

FIGURE 1
Possible implementation of virtual testing procedure where evaluation institution has access to simulation results.

FIGURE 2
Simple “cube” example to illustrate the input file structure.

Frontiers in Future Transportation frontiersin.org04

Galijatovic et al. 10.3389/ffutr.2022.914489

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489


3 Results

3.1 Threat analysis

The main threat for the evaluation institution is a mismatch

of models used within the different steps of the procedure or a

mismatch between simulation input files and outputs. These

mismatches can either happen on purpose (e.g. optimised models

for each loadcase separately) or as consequence of an error and

could cause:

• A model is used by the car manufacturer for virtual testing

that does not qualify for virtual testing as inconsistent

model versions are used within the process.

• The simulation results shared have not been derived using

the qualified models.

Leakage of confidential information is another possible threat.

For car manufacturers, it is of great importance to keep simulation

models confidential. Simulation model files contain protected

intellectual properties, which is why they have to be protected

against access from untrusted third parties. Simulation output

binary files may also include confidential information since it

may include information about the simulation model.

Furthermore, the shared results also have to be protected against

changes (by intention or accident).

Based on the threat analysis, we define the following

requirements:

1) A unique identifier for a simulation model is needed to check

consistency and protect integrity.

2) Some files are modifiable, others have to be consistent

throughout all steps.

3) Some of the files contain confidential information of the car

manufacturer or suppliers (e.g., material models), while load

case-relevant information such as acceleration curves are not

considered confidential. Confidential information has to be

protected.

4) It has to be traceable from which simulation models the

simulation results were computed.

5) The authenticity of the shared simulation results have to be

ensured. Any modification of the exported results by any

party must be detectable.

3.2 Architecture of the proposed approach

Based on these requirements, we developed a procedure and

implemented a proof-of-concept.

3.2.1 Wrapper
A wrapper script was developed to read in the simulation

files, run the simulation, extract the results, and calculate unique

identifiers for each input and output file. As first step all

simulation model files are read in, checked and hashed to

generate the unique model identifier. Then the simulation is

started using the cluster-specific shell script, which also specifies

which simulation model is run. To avoid manipulation of the

shell script, which is starting the simulation file in the time

between hashing the input files and running the simulation, the

wrapper is storing the content of the shell script internally and

exports it into a new script file which is finally executed after the

hashing was completed. As soon as the simulation terminates, the

outputs of interest are extracted from the generated binout files

into. csv files, which is then hashed too. Finally, all identifiers are

listed in a report (i.e., a Portable Document Format (PDF) file)

that needs to be signed. The process is shown in Figure 3.

3.2.2 Read in the simulation files
Since the simulation model generally consists of multiple files

cross-linked by INCLUDE keywords, we need a dedicated

FIGURE 3
Structure of the developed wrapper for use by the car
manufacturer for running simulations, extracting results and
signing simulation reports, including unique identifiers of inputs
and results.

Frontiers in Future Transportation frontiersin.org05

Galijatovic et al. 10.3389/ffutr.2022.914489

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489


strategy to compute the hash. Any change in the file contents, file

names, or file structure should produce a different hash. One

simple approach is to concatenate the contents of all files and

compute a model hash from this string. However, this design

conflicts with the requirement of permitting a selected class of

changes in some of the files as it would be not possible to

distinguish between allowed and prohibited modifications.

Therefore, we propose a different approach and represent the

simulation model files as a tree structure, where one main file

forms a root node and other files it includes form its child nodes.

These child nodes can in turn contain other files. Knowing this,

we can create a tree structure that captures all relevant

information about the model and use it to compute the hash.

Each node should contain information about file paths, file

contents (hash of the contents), and files included (child

nodes). An example of information kept in one node is:

This tree structure is convertible to a string that can be used

for the computation of a SHA-256 hash, which is included in the

final simulation report as the final model hash.With this method,

it is clearly visible which files were changed within the procedure.

Those files should not include any IP protected information and

could be therefore shared with the evaluation institutions, while

the IP protected information is clearly trackable with the unique

identifier without access to the protected files by third parties.

When this algorithm processes a single file, it first reads its

content into a variable. Next, it looks for *INCLUDE PATH or

*INCLUDE PATH RELATIVE statements, and if they exist, it

adds these paths into the list of folders. The created list of folders

contains all folders where the algorithm looks for child nodes.

After, the algorithm searches for all *INCLUDE statements and

processes the child nodes first. When all child nodes are added to

the children list field (if there were any), the algorithm computes

the SHA-256 hash of the contents and sets the corresponding

field in the structure. This function then returns and continues

the recursion until all files are visited.

Another important point is that the algorithm returns an

error if a cycle is introduced. Assume, for example, that file X. key

includes file Y. key, which includes file Z. key. If file Z. key

includes file X. key, a cycle is introduced, and this is not an

allowed situation. Therefore, the graph of files must be a tree

(cycle-free). This situation is prevented by having a list of visited

files forwarded through the recursion. This list contains hashes of

all visited files. Then, when the file contents are read, and a hash is

computed, it is first checked whether the hash of a current file

exists in a visited files list. If not, the algorithm continues, and if

this file was already visited, the algorithm raises an exception.

Furthermore, to avoid that the user is overwriting parameters in

the static files with keywords in the dynamic files, the inputs are

also checked for duplicate parameters. If available, the input

checker could in the future also look for forbidden keywords in

the dynamic files.

After this object is created, it is translated into a string, and

the final SHA-256 hash is computed from it. If any file is even

slightly changed, this hash would be different. The tree structure

here resembles tree structure showed in Figure 2. The only

difference is that nodes contain additional information, as

described previously.

3.3 Running the simulation

Setting up all needed parameters and variables for the

simulation can be done using a shell script. This allows the

person that is running the simulation to specify the cluster-

specific settings (e.g. which LS-Dyna executable to use, License

Server, Number of CPUs and the main simulation file which

should be run). After the input script is processed, the simulation

can be started. However, there is a time gap between reading the

script and processing inputs and starting the simulation. This

time gap could lead to a Time Of Check To Time Of Use

(TOCTTOU) problem. Having such a problem could allow a

malicious user to use one input script for preprocessing, then

change the contents of the input script while the preprocessing is

still under way and start the simulation with a completely

different input script. To prevent this, we write the content of

the input script to a new file with a random name and start the

simulation using this newly generated file.

3.3.1 Simulation output
Typically, LS-DYNA outputs consist of several binary files,

some of which contain confidential information about the

model and data needed for the assessment of the car. The

python libary “Dynasaur” (Klug et al., 2018; Schachner et al.,

2022) was used to extract the outputs of interest from the

binary output files and exports it into two CSV files (one

including time series and one including scalars, such as injury

criteria). These files can be shared with the evaluation

institution, as they include the requested results used for

plausibility checks and assessment (e.g. trajectories,

acceleration signals, contact forces, calculated injury and

quality criteria), but no IP protected information.

To track which model was used to produce these results and

to ensure that results were not changed afterwards, another SHA-

256 hash is calculated and included in the simulation report.

3.3.2 Simulation report
The simulation report includes the unique identifiers

(hashes) of the simulation model and the simulation results.

When all information about the model and results has been

collected, a simulation report can be generated.

The report includes a table of hashes as illustrated in Figure 4

for the “cube” example of Figure 2. The final car model hash is

presented in the first row, while relative file paths and hashes of

their contents are included in the following rows. The final three

rows contain CSV file hashes (two hashes computed from

documents containing extracted results) and the time and

Frontiers in Future Transportation frontiersin.org06

Galijatovic et al. 10.3389/ffutr.2022.914489

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489


date when the report is created. Invoking the build method over

the document variable, a PDF document is generated and ready

for signing. The report is saved to in a “Results”-folder along with

the generated CSV files to be shared with the evaluation

institution.

3.4 Signing approaches

When the model and results hashes are computed and

included in the simulation report, it is necessary to prevent

anyone from changing them, i.e., manipulating the report.

This can be ensured by the evaluation institutions by signing

the simulation report with a digital signature. Then, only the

owner of the private signing key can create valid reports.

However, as the report is created by the car manufacturer,

managing this private key is challenging. In the following

sections, we discuss several potential approaches.

3.4.1 Hiding the private key in a secure enclave
In this approach, the private key is created and stored in Intel

SGX, as shown in Figure 5.

When the key is generated and stored inside the secure

enclave, nobody can access it except the machine on which it

was generated. Since the key would be generated for each car

manufacturer separately, there would not be a unique key that

belongs to the evaluation institution, but all of these signatures

can be verified and used accordingly. A disadvantage of this

approach is that there has to be hardware support. Car

manufacturers must have secure enclaves in their processors

on the HPC clusters or otherwise this approach cannot be used.

The other disadvantage is that the car manufacturers could still

use the private key for signing. Thus, it is necessary to bind the

key to the process that generated it and thus limit its use, for

example using remote attestation. That way, only the report

generated by the script could be signed using that approach. The

FIGURE 4
Exemplary structure of the simulation report based on the “cube” example of Figure 2.

FIGURE 5
Communication between the Python wrapper, the trusted
app, and the secure enclave which stores the private signing key.

Frontiers in Future Transportation frontiersin.org07

Galijatovic et al. 10.3389/ffutr.2022.914489

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489


evaluation institution or a trusted third party hides the key inside

the secure enclave of the car manufacturer’s clusters and binds

the key only to the script that runs the simulation.

To generate the signing key and sign the report using secure

enclaves, in this solution, we use the Intel SGX application from

Nevis (2020). It consists of two internal applications. The first

one is the gateway application, which is an untrusted application

that prepares the enclave and invokes its functions. The second

one is the trusted application that runs in the Intel SGX enclave.

It invokes the function via the Intel SGX ECALL mechanism.

The trusted app has two functionalities, key generation and

data signing. In the key generation part, the trusted application

generates a key pair for the ECDSA signature scheme, which

consists of a private key and a public key. The private key is

needed for signing and must be kept protected, while the public

key can be exported to be used for verification of signatures.

Technically, the private key is saved inside the enclave and

encrypted using the Advanced Encryption Standard with

Galois/Counter Mode (AES-GCM) algorithm that uses the

encryption key derived from the silicon and the enclave’s

SIGNER measurement register. This way, the private key data

is sealed and can only be unsealed in the same enclave on the

same machine that created it.

The application can be used with simple commands to

generate the public-private key pair and to sign the data. The

key generation command generates a public key in Privacy-

Enhanced Mail (PEM) format and stores it in the results

directory. This file needs to be forwarded to the evaluation

institution for signature verification. The private key and its

associated information are stored in sealeddata. bin, protected by

Intel SGX. The script first checks whether this file already exists

in the root folder and generates the new key only if it does not.

This prevents an attacker from causing denial-of-service by

deleting the sealeddata. bin file. The command for signing

needs the sealeddata. bin file to know which key to use for

signing. In our proof-of-concept implementation, the resulting

signature is stored in a Report. signature file next to the PDF

report to be signed.

3.4.2 Signing by the person that runs the
simulation

If secure enclaves are not available on the used hardware,

signing could alternatively be performed by a person. This

approach assumes a contact person who takes responsibility

for model integrity. For the implementation in the proof-of-

concept demonstration code, we use the “PDFNetPython”

Python library to create a digital signature (PDFTron Systems

Inc, 2001). To sign the PDF report using the PDFNetPython

library, it is first necessary to create a signing widget in the

document. This allows the user to create a field in a PDF

document where the signature will be placed. The exact place

of a field can be set using coordinates as parameters. There is also

a possibility to add an image that will visually represent the

signature. After the signature field is added, it is used to create a

digital signature field object. This object is then saved to a

variable, on which signing method is invoked using the

private key file and the password which secures the private

key file.

The signature algorithm used by this method is RSA with a

key length of 2048 bit with SHA-256 hashing. The key file used

as a parameter is in PKCS#12 file format (PFX filename

extension) protected with a password. This file is exported

using OpenSSL (The OpenSSL Project Authors, 2022). This

approach improves the previous procedure significantly since

it limits the time for potential model manipulation. However,

model integrity could still potentially be subverted by a

technically highly skilled adversary on the car

manufacturer’s side; this approach assumes a certain

amount of trust between the responsible contact person

and the evaluation institution.

3.5 Check of integrity

To prove that the procedure was performed properly, the

evaluation institution needs to check if the received signed

“Simulation Report” is consistent with the extracted

simulation output files. Therefore, we developed a script as

proof-of-concept implementation for the evaluation institution

to perform the verification of the signature and the verification of

the hashes (model hash and result hash). To check the integrity of

the results, the testing institution computes the hash from the

content of the result CSV file and compares it with the hash given

in the report. If computed hash is the same, the integrity of CSV is

preserved, since the hash given in the report is protected with a

signature.

4 Discussion

4.1 Evaluation

4.1.1 Overview
In summary, our solution consists of several layers of

protection which address different aspects of the problem:

• The hash function construction in the wrapper protects

integrity of the simulation model: it records the details of

the simulation model so that any differences can be

detected. However: anyone could write down any hashes

they like, i.e., this is not sufficient against a malicious actor,

only against accidental errors.

• The signature protects the authenticity of the report: only

the owner of the private key can produce a valid signed

report and thus certifies the contents. This also provides

non-repudiation, i.e., the owner of the private key cannot

Frontiers in Future Transportation frontiersin.org08

Galijatovic et al. 10.3389/ffutr.2022.914489

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489


deny having signed the report. However, access to this key

must be restricted with organizational and/or technical

measures. For example, it could be assigned to a trusted,

personally responsible person.

• The trusted execution environment restricts the usage of

the private key to a particular device and a particular

trusted small program that implements the signing

procedure. This prevents various kinds of misuse and

implementation attacks. However, this signing procedure

could still be invoked with malicious input (e.g., fake

output of the simulation software by manipulating the

interaction with this software; however, with the given

setup, it would be very easy to trace who is responsible in

case such a manipulation is suspected, and to check

whether this was the case).

• A remote attestation setup (not implemented due to lack of

network on target systems) could restrict who can invoke

the trusted code and could monitor each invocation

externally for further security if desired and feasible.

Next, we discuss the properties of this solution, as well as

potential alternatives, in more detail.

4.1.2 Security
The developed procedure significantly improves the integrity

and authenticity of related files by addressing the main threats

identified. A cryptographic way to ensure the integrity of the

simulation results was established. Unique model fingerprints are

generated and documented to avoid that model files could be

manipulated within the virtual testing procedure. Digital

signatures guarantee the authenticity of a document and

prevent repudiation.

4.1.3 Performance
The procedure brings only minor additional work for users

and small computational overheads. To measure the real-time

overhead, we run two processes over the mentioned cube

example. One process is just the running the simulation, while

the other process is started by running the implemented wrapper

script (with the responsible person signing). The simulation (the

baseline procedure without the wrapper) on the cube example

lasted 13.0072 s, while the new procedure lasted 21.3379 s. When

comparing these two times, it seems like there is a considerable

time overhead (8.3307 s). However, taking into account that LS-

DYNA simulations for real-world examples may often last even

for several hours, the time overhead of 8.33 s is negligible and

indistinguishable. The time overhead will be similar for a

complex simulation since the same number of hashes, reports

and CSV files are generated. Of course, if the complex solution

has more files, the overhead will increase. However, it will still be

within 1 minute, which is again negligible compared to a several-

hour long simulation.

4.2 Limitations

While many mentioned threats are addressed, there are still

some threats that one should be aware of. Since the simulation is

not done in a protected environment, malicious users could still

harm the procedure (e.g., by manipulation of the LS-DYNA

executable), but a higher amount of criminal energy would be

needed for that. Another threat is that the execution of the

closed-source FE software itself can not be fully protected from

manipulation; in particular, the signing procedure is currently

not tied securely to the FE software (using remote attestation or

similar mechanisms) and could thus be invoked separately by

other processes on the same computer. The procedure with

signing requires secure enclaves working on the computer

hardware where simulations are run (e.g., HPC cluster at the

car manufacturer). If this is not available, manual signing could

be done, but this lowers the security level of the procedure.

The developed procedure requires that the files which can

be modified do not contain IP protected information, so that

the content can be inspected by the evaluation institution.

Otherwise, additional contents and not allowed

manipulations could be not avoided with the developed

procedure. However, as load cases mostly differ in

acceleration pulses and this is not supposed to be

confidential information, our developed procedure could be

used for such applications. If their are other use cases in the

future where it would be needed to modify confidential parts

of the model in between load cases another script checking the

keywords in the changed files. This would require a list of

allowed and forbidden keywords in the changeable files.

Another approach could be Audits by trusted third parties

underlying non-disclosure agreements. Our procedure would

be still helpful for such audits as the information which files

were changed in which loadcase is provided.

The procedure as such and the hash function also work on

encrypted files, as the hash can be also calculated for the

ciphertext to ensure its consistency between simulations.

However, encrypted files cannot be audited and therefore

parameters overwriting other parts of the models could be

hidden in there. If parameters are defined multiple times, the

developed wrapper could not identify it. Therefore, the current

procedure can be not applied if the simulation setup consists of

encrypted dynamic (load case dependent) parts. If static parts are

encrypted, the procedure still works but is a bit weaker because

duplicate parameters cannot be identified. The procedure was

applied within this paper only for an easy example to make it

more readable and easier to follow for the reader. Within the

development phase it was also applied to bigger files with dummy

models, which are closer to the final use case. It was found that

the procedure works consistently, also with more complex files

and file structures, basically changing only the result shown in

Figure 4.

Frontiers in Future Transportation frontiersin.org09

Galijatovic et al. 10.3389/ffutr.2022.914489

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489


The procedure does not replace quality and plausibility

checks of the simulations. This has to be done based on

shared simulation results by the evaluation institution. The

procedure just supports the evaluation institutions by

documenting from which simulation models results were

generated and which parts of the models were modified in

between which steps of the procedure.

4.3 Alternative signing approaches

For report signing, it is necessary to have a private key known

only by the evaluation institution or a trusted third party (e.g.,

LS-DYNA) and not by the car manufacturer. However, it is

challenging to generate and safely store such a key. Several

approaches were discussed within the development of the

procedure described in this paper. The “secure enclave”

approach was finally implemented and described within this

paper. As the secure enclave approach still has the drawback that

it might not be available on a certain hardware and the approach

with a responsible person signing the report requires trust in this

person, further alternatives should be investigated in the future,

as we discuss next.

4.3.1 Using the private key from LS-DYNA
One option is to use LS-DYNA’s private encryption key,

which is intended for internal input file encryption and

decryption in LS-DYNA. Using this key would be very

convenient since it would solve both key generation and

storage problems. Nevertheless, the level of provided security

would depend on how well this key is protected. Only limited

documentation on this embedded encryption method is publicly

available, preventing alternative uses or security evaluation of this

mechanism. Another option requring support from FE software

developers is to hide the newly generated key inside the FE

software binary.

4.3.2 Storing the private key on a server
Signing could also be done on a trusted third-party server.

The implemented wrapper would have to create the final report

and upload it to the server. Then, the server uses the stored key,

signs the received document, stores corresponding details in a log

file, and returns it to the wrapper.

This option has a significant shortcoming preventing its use

given our requirements: The HPC clusters of car manufacturers

typically do not have internet access or any connection to the

outside world on purpose for security reasons, particularly due to

the confidentiality of the files processed on these machines.

Nonetheless, access to licence servers is needed also on these

clusters. When the simulation is started, FE software could for

example send the ID of the device to a licence server and receive

“YES” if the machine has a valid license or “NO” otherwise. An

idea based on this finding is to store the key on the very same

machine as the licence server. This is, however, an unsuitable

solution because of the possible responses from the server—it is

not able to return a signed document but only a “YES/NO”

answer. This would have to be changed to enable this option.

4.4 Future work

Additionally to the before discussed improvements for the

signing, there are also other ways to further improve the

procedure: Most importantly, the integration of the

procedure in the FE software itself would make the

procedure more easier to implement as the car

manufacturer’s clusters and further improve the security of

the procedure because the wrapper functionalities would be

embedded in the binary of the FE software. An input checker

could check the keywords the files to avoid forbidden changes

of the model especially when the dynamic parts of the

simulation models cannot be inspected because of IP issues.

Additional types of simulation results such as videos of

animations could be also added to the procedure in the

future, applying the same approaches, because basically

every file can be hashed and the procedure therefore

extended to everything where changes should be identified.

Overall, our procedure is just addressing the integrity of a

virtual testing procedure. Other future work has to focus on

the development of the qualification criteria for the simulation

models and the definition and assessment of the virtual testing

loadcases.

5 Conclusion

In this paper, we propose a new and secure procedure for

virtual testing of IP-protected simulation files. Security

mechanisms, such as hash functions, digital signatures and

secure enclaves are used to ensure the necessary security

requirements. The proposed procedure makes it possible to

trace which parts of the simulation model have been subject

to modification without disclosing IP-protected information.

Furthermore, the consistency between the simulation results

and the input files can be checked. This ensures that models

used in the previous qualification procedures was indeed used

throughout the virtual test and that results were generated with

the qualified models and therefore significantly improves the

integrity of the procedure. We have implemented a proof-of-

concept for the FE software package LS-DYNA and made it

publicly available. Implementation for other simulation software

packages (not necessarily restricted to FE software) is subject of

future work. Further research is also needed to address known

drawbacks of the proposed procedure (e.g. improve security of

the signing process). The developed method is an enabler for

increasing the integrity of virtual tests in consumer information

Frontiers in Future Transportation frontiersin.org10

Galijatovic et al. 10.3389/ffutr.2022.914489

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489


or vehicle safety assessment regulations and could be

implemented directly in FE software packages in the future.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: The code developed in this study is available via

https://openvt.eu/Integrity_check/proof-of-concept-scripts.

Author contributions

EG wrote the first draft of the manuscript, performed the threat

analysis and implemented the derived procedure in the sample code

presented. ME wrote the parts of the manuscript focusing on security

and supervised EG on the security aspects. CK wrote the virtual

testing sections of the manuscript and supervised EG on the

application aspects. ME and CK commented on the study. SH

had the initial idea of such an approach and critically reviewed

the manuscript. All authors contributed to the revision of the

manuscript, read and approved the submitted version.

Funding

The master’s thesis in which this study was performed has

received support from the VIRTUAL project funded by the

European Union Horizon 2020 Research and Innovation

Program under Grant Agreement No. 768960.

Acknowledgments

The authors would like to thank colleagues from Dynamore

and Scale for fruitful discussions of different possibilities for

implementation.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

References

ANSYS - LST (2021). Ls-dyna. Available at: https://www.lstc.com/products/ls-
dyna.

ANSYS-LST (2020). Keyword user’s manual. LS-DYNA. https://www.
dynasupport.com/manuals/ls-dyna-manuals/ls-dyna_manual_volume_i_r13.pdf

Damgård, I. (1989). A design principle for hash functions. Adv. Cryptol. 435,
416–427. doi:10.1007/0-387-34805-0_39

Diffie, W., and Hellman, M. E. (1976). New directions in cryptography. IEEE
Trans. Inf. Theory 22, 644–654. doi:10.1109/TIT.1976.1055638

Eggers, A., Schwedhelm, H., Zander, O., Izquierdo, R. C., Polanco, J. A. G.,
Paralikas, J., et al. (2013). “Virtual testing based type approval procedures for the
assessment of pedestrian protection developed within the eu-project imviter,” in
NHTSA, editor, The 23rd ESV Conference Proceedings (NHTSA).

Euro NCAP (2022). European new car assessment programme. Available at:
https://www.euroncap.com/en.

Gottesman, D., and Chuang, I. (2001). Quantum digital signatures. doi:10.48550/
arxiv.quant-ph/0105032

Huizinga, F., Ostaijen, R., and Slingeland, A. (2002). A practical approach to
virtual testing in automotive engineering. J. Eng. Des. 13, 33–47. doi:10.1080/
09544820110090304

Intel (2021). Intel software guard extensions. Available at: https://software.intel.
com/content/www/us/en/develop/topics/software-guard-extensions.html.

Klug, C., Luttenberger, P., Schachner, M., Micorek, J., Greimel, R., and Sinz, W.
(2018). “Postprocessing of human body model results – introduction of the open

source tool dynasaur,” in CARHS, editor, 7th International Symposium: Human
Modeling and Simulation in Automotive Engineering.

Klug, C., Feist, F., Schneider, B., Sinz, W., Ellway, J., and van Ratingen, M. (2019).
“Development of a certification procedure for numerical pedestrian models,” in
NHTSA, editor, The 26th ESV Conference Proceedings (NHTSA).

Koblitz, N. (1987). Elliptic curve cryptosystems. Math. Comput. 48, 203–209.
doi:10.1090/s0025-5718-1987-0866109-5

Linder,A., Davidse, R. J., Iraeus, J., John, J.D., Keller, A., Klug,C., et al. (2020).VIRTUAL-
a European approach to foster the uptake of virtual testing in vehicle safety assessment. In 8th
Transport Research Arena TRA 2020, April 27-30, 2020, Helsinki, Finland.

Lu, Y. S., Cao, X. Y., Weng, C. X., Gu, J., Xie, Y. M., Zhou, M. G., et al. (2021).
Efficient quantum digital signatures without symmetrization step. Opt. Express 29,
10162–10171. doi:10.1364/OE.420667

Merkle, R. C. (1989). A certified digital signature. Adv. Cryptol. 435, 218–238.
doi:10.1007/0-387-34805-0_21

Miller, V. S. (1985). Use of elliptic curves in cryptography. Adv. Cryptol. 218,
417–426. doi:10.1007/3-540-39799-X_31

Nevis, B. S. (2020). Gateway key provisioning and secure signing using intel®
software guard extensions. Available at: https://software.intel.com/content/www/
us/en/develop/articles/code-sample-gateway-key-provisioning-and-secure-
signing-using-intel-software-guard.html.

NIST (2008). FIPS PUB 198-1: The keyed-hash message authentication code
(HMAC). Gaithersburg, MD: National Institute of Standards and Technology:
Federal Information Processing Standards Publication.

Frontiers in Future Transportation frontiersin.org11

Galijatovic et al. 10.3389/ffutr.2022.914489

https://openvt.eu/Integrity_check/proof-of-concept-scripts
https://www.lstc.com/products/ls-dyna
https://www.lstc.com/products/ls-dyna
https://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna_manual_volume_i_r13.pdf
https://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna_manual_volume_i_r13.pdf
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1109/TIT.1976.1055638
https://www.euroncap.com/en
https://doi.org/10.48550/arxiv.quant-ph/0105032
https://doi.org/10.48550/arxiv.quant-ph/0105032
https://doi.org/10.1080/09544820110090304
https://doi.org/10.1080/09544820110090304
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://doi.org/10.1090/s0025-5718-1987-0866109-5
https://doi.org/10.1364/OE.420667
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/3-540-39799-X_31
https://software.intel.com/content/www/us/en/develop/articles/code-sample-gateway-key-provisioning-and-secure-signing-using-intel-software-guard.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-gateway-key-provisioning-and-secure-signing-using-intel-software-guard.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-gateway-key-provisioning-and-secure-signing-using-intel-software-guard.html
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489


NIST (2013). FIPS PUB 186-4: Digital signature standard (DSS). Gaithersburg,
MD: National Institute of Standards and Technology: Federal Information
Processing Standards Publication.

NIST (2015). FIPS 180-4: Secure hash standard (SHS). Gaithersburg, MD:
National Institute of Standards and Technology: Federal Information
Processing Standards Publication.

NIST (2020). Nistir 8309: Status report on the second round of the NIST post-
quantum cryptography standardization process. Gaithersburg, MD: National
Institute of Standards and Technology Interagency or Internal Report.

PDFTron Systems Inc (2001). Digitally sign pdf files in python (2001-2021).
Available at : https ://www.pdftron.com/documentation/samples/py/
DigitalSignaturesTest.

Rivest, R. L., Shamir, A., and Adleman, L. M. (1978). A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126.
doi:10.1145/359340.359342

Schachner, M., Micorek, J., Luttenberger, P., Greiml, R., Klug, C., and Rajinovic, S.
(2022). Dynasaur - dynamic simulation analysis of numerical results. Available at:
https://gitlab.com/VSI-TUGraz/Dynasaur.

The OpenSSL Project Authors (2022). The openssl project. Available at: https://
www.openssl.org/.

van Ratingen, M.Update on virtual testing in safety assessments from euro ncap
(2020). VIRTUAL OSCCAR workshop: Progress in Virtual Testing for automotive
application. Available at: http://www.ircobi.org/wordpress/downloads/2020-
virtual-osccar.pdf.

Frontiers in Future Transportation frontiersin.org12

Galijatovic et al. 10.3389/ffutr.2022.914489

https://www.pdftron.com/documentation/samples/py/DigitalSignaturesTest
https://www.pdftron.com/documentation/samples/py/DigitalSignaturesTest
https://doi.org/10.1145/359340.359342
https://gitlab.com/VSI-TUGraz/Dynasaur
https://www.openssl.org/
https://www.openssl.org/
http://www.ircobi.org/wordpress/downloads/2020-virtual-osccar.pdf
http://www.ircobi.org/wordpress/downloads/2020-virtual-osccar.pdf
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2022.914489

	Integrity of virtual testing for crash protection
	1 Introduction
	2 Materials and methods
	2.1 Threat analysis
	2.2 Building blocks of the virtual testing procedure and the developed solutions
	2.2.1 Simulations for virtual testing
	2.2.2 Cryptographic signature schemes and hash functions
	2.2.3 Secure enclaves


	3 Results
	3.1 Threat analysis
	3.2 Architecture of the proposed approach
	3.2.1 Wrapper
	3.2.2 Read in the simulation files

	3.3 Running the simulation
	3.3.1 Simulation output
	3.3.2 Simulation report

	3.4 Signing approaches
	3.4.1 Hiding the private key in a secure enclave
	3.4.2 Signing by the person that runs the simulation

	3.5 Check of integrity

	4 Discussion
	4.1 Evaluation
	4.1.1 Overview
	4.1.2 Security
	4.1.3 Performance

	4.2 Limitations
	4.3 Alternative signing approaches
	4.3.1 Using the private key from LS-DYNA
	4.3.2 Storing the private key on a server

	4.4 Future work

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


