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Investigating the postural balance and stability of standing passengers of public
transport in laboratory or numerical tests requires generic test pulses, which replicate
the acceleration/deceleration characteristics of common public transport vehicles
such as buses or trams. We propose a method to generate such test pulses based on
measured acceleration time series. The method consists of an automated splitting
algorithm, an expansion in Legendre polynomials and a weighted mean to obtain
average pulses which are not dominated by the events of highest magnitude. As a
demonstration, the method is applied to acceleration time series obtained on public
buses in normal operation, resulting in scalable generic pulse shapes. These can be
used as the basis of a standardised framework for physical and virtual testing
addressing the standing passenger problem.
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Introduction

Public buses and trams are not only environmentally friendly and affordable but are also a
safe means of transportation compared to other modes of urban transport such as private cars,
powered two-wheelers and bicycles (Morency et al., 2018; European Commission, 2022).
Nevertheless, using public transportation to travel is not without risk. Most injuries that
passengers sustain while using public transportation occur without the vehicle being involved in
a road collision (Kirk et al., 2003) (so-called non-collision incidents). Particularly standing
passengers can lose their balance and fall due to the acceleration and deceleration behaviour of
the vehicle; Elvik (2019) estimated the risk of falling in a moving public transport vehicle as
0.3–0.5 per million passenger kilometres and 0.7–1.7 per million passengers in relation to
boarding and exiting the vehicle. The injury risk is higher for female and elderly passengers
(Halpern et al., 2005; Kendrick et al., 2015; Li et al., 2017). In addition to these safety concerns,
passenger dissatisfaction with the comfort and smoothness of the ride is also one of the major
reasons to avoid bus service (Karekla and Tyler, 2018).

To understand the typical injury mechanisms in non-collision incidents, both the postural
balance of a person standing on a moving surface and the nature of the acceleration
perturbations typically challenging the balance of a bus or tram passenger have been
studied. While the postural balance of a person standing on a moving surface is not
directly the subject of this study, the work in this field using either laboratory experiments
with voluntary participants (e.g., (Carpenter et al., 2005; Robert et al., 2007; Tokuno et al.,
2010)) or computational models that simulate the human body (Palacio et al., 2009; Aftab et al.,
2016) is still a primary research motivation. The acceleration signal of a typical public transport
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journey is of a duration that by far exceeds the range of motion of a
laboratory sled experiment and the duration that can be replicated in a
human body model simulation within reasonable computation time.
Therefore, the characteristic features of the acceleration perturbations
must be 1) understood and 2) condensed into short pulses that can be
applied in a computer simulation or in the laboratory.

In early research on the acceleration behaviour of public
transport vehicles, the focus was mostly on defining comfort or
safety thresholds for acceleration magnitudes and jerks (Hoberock,
1977; Brooks et al., 1978), while the structure of the acceleration
pulses was not investigated in further detail. The first study that
considered the influence of acceleration pulses on the postural
balance of standing passengers was completed by Graaf and Van
Weperen (1997), who measured acceleration time series on buses
and trams and used similar perturbations in treadmill experiments
with volunteer participants. More recently, several authors studied
the acceleration time series of buses (Zaworski et al., 2007) and
subway trains (Powell and Palacín, 2015) with a focus on passenger
(dis)comfort. The shape of average emergency braking pulses was
investigated by Turkovich et al. (2011); Schubert et al. (2017)
measured acceleration pulses during a study with a bus in test
driving conditions using volunteers. However, a closer analysis of
the acceleration time series was not the main objective of their work.
To date, the most systematic study investigating the structure and
shape of acceleration pulses was completed by Kirchner et al. (2014).
These authors expanded time-normalised acceleration and
deceleration pulses in a Legendre series, enabling the
quantification of the relevant properties of the pulses and the
comparison of different acceleration events in terms of similarity
coefficients. They also suggested a method to choose a representative
example out of a given set of pulses (i.e., the one with the highest
mean mutual similarity).

Despite the research completed thus far, with a goal of providing
suitable input data for computational and laboratory studies of the
standing passenger problem, there are still significant gaps in both
knowledge and methodology. Representative sets of field data are still
rare in the current literature. In addition, there is no method to
automatically derive meaningful average acceleration and deceleration
pulses from larger data sets. Even though the method presented by
Kirchner et al. (2014) already allows for a systematic comparison of
different acceleration and deceleration events, their method is not
readily applicable to larger datasets, as it requires manual splitting of
the acceleration signals. Furthermore, an averaging method taking
into account all events of a set (instead of only choosing a
representative example) is still lacking in the literature.

In this work, we address this methodological gap by expanding the
(Kirchner et al., 2014) method to an automatically applicable
algorithm that can be used for datasets of much larger sizes.
Furthermore, we propose a weighted-mean method to compute an
average pulse from a given set of acceleration and deceleration pulses.
As a demonstration of the method, we present a set of real-life
acceleration data recorded on public buses during their normal
operation in city traffic, from which we derive generic acceleration
and deceleration pulses representing the typical behaviour of the
vehicles under consideration.

Even though a combination of theoretical work and field data
analysis, this article still follows the structure ”Materials and
methods—Results—Discussion—Conclusion” typical for a data
analysis work. The section ”Materials and methods” contains a

somewhat longer theoretical section, explaining the proposed data
analysis method, including some theoretical background on
Legendre expansions and a description of the new ”weighted
mean” approach and the splitting algorithm. The remaining
parts focus on the application of the new method to the dataset.
For the reader interested in the deeper mathematical details of the
weighted mean approach, more information is provided in the
appendix.

Materials and methods

Data analysis method

The time series analysis method presented here is based on a
Legendre expansion of a scalar function with support [0, 1], which
represents a time-normalised acceleration or deceleration event.
Therefore, the raw datasets (i.e., the time series of the longitudinal
acceleration component) first have to be filtered and split into
acceleration and deceleration events. Then, normalisation and
Legendre expansion of the data is completed. The resulting
coefficient sets can be used for similarity analysis and the
computation of representative average pulses. The implementation
of the data analysis method was achieved in Python using the SciPy
and Pandas packages (McKinney, 2010; Virtanen et al., 2020). All
scripts are available under the terms of the GPL licence on the
OpenVT platform.1

Preprocessing and automatic splitting
The one-dimensional raw acceleration data are Butterworth

filtered (second order, cutoff frequency ω0 � 0.75 rad
s ) to remove

high-frequency oscillations. The resulting acceleration signal is split
according to the following three-step algorithm:

• Constant phases are identified as intervals that are longer than a
certain duration, which by default is 100 time steps, and the
change of the signal per time step is lower than a certain
threshold, which by default is 0.005 standard deviations of
the entire signal. After cropping out these constant phases, a
set of raw pulses remains.

• On each of the remaining raw pulses, a discrete Fourier
transformation is applied and the maximum of the spectrum
is determined. If the peak occurs at a frequency > 0, i.e., there is
predominant oscillating behaviour, then the pulse is split into
multiples of the period associated with the peak frequency, and if
the spectral maximum occurs at 0, i.e., there is no predominant
oscillating behaviour, then the peak is not split.

• For each of the resulting subpulses, the cumulative sum is
calculated (as an approximate estimate of the resulting
speeds) and the absolute maximum of the result is
determined. Depending on whether the maximum occurs 1)
close to the start of the subpulse, 2) close to the end of the
subpulse, or 3) somewhere in between subpulses, the subpulse is
identified as 1) a deceleration event (DEC), 2) an acceleration

1 https://openvt.eu/Acceleration_tools/Bus_data_and_tools.
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event (ACC) or 3) a split at the occurrence of the maximum of
an ACC and a DEC event2.

As a result of the splitting algorithm, for the given time series, two
sets of functions representing the acceleration signals of the ACC and
the DEC events, respectively, are obtained. For further treatment,
these functions are time-normalised to a unity interval, resulting in the
functions

fI
i : 0, 1[ ] ↦ R, (1)

where 1 ≤ i ≤MI is the number of the event in the given set and I ∈ {A1,
A2, . . ., , D1, D2, . . .} is an identifier representing the different sets of
ACC pulses (An) and DEC pulses (Dm), respectively. That is, if only
one acceleration time series is considered, the algorithm results in one
set of ACC pulses and one of DEC pulses, so the identifier could be I ∈
{A1,D1}, while for each additional time series under consideration, one
more ACC and DEC set is added to the list.3

Legendre expansion
Expansions in Legendre polynomials are a known and useful tool,

e.g., in image processing (Paton, 1975). The mathematical properties
of these expansions and their convergence are well documented in the
scientific literature. For an overview, see Wang and Xiang (2012).
Kirchner et al. (2014) suggested a Legendre expansion of acceleration
pulses due to the convenient properties of the Legendre polynomials
on a unit interval.

As opposed to the most common representation on the interval
[−1, 1], in this work, the shifted Legendre polynomials on the support
[0, 1] are used. For any non-negative integer n, the nth polynomial is
defined as

Pn: 0, 1[ ] ↦ R, (2)
Pn x( ) � 1

n!

dn

dxn
x2 − x( )n. (3)

These polynomials obey the orthogonality relation

∫ 1

0
Pk x( )Pl x( ) dx � 1

2k + 1
δkl, (4)

on which the Legendre expansion is based.
The time-normalised functions in Eq. 1 can be approximated by a

series of Legendre polynomials,

fI
i x( ) � ∑N

k�0
cIi,k Pk x( ) + RN( )Ii x( ) ≈ ∑N

k�0
cIi,k Pk x( ), (5)

where N is the order of the approximation and (RN)Ii (x) are the
residual functions. The decay of the residuals with N depends on
the behaviour of the complex continuation of the function f on
a Bernstein ellipse. In general, this decay cannot easily be
estimated. For further details see, e.g., Wang and Xiang (2012).
However, for our purposes, it can be stated that choices on an

order of magnitude of N = 10 to N = 200 are reasonable, in a
trade-off of approximation quality and computational cost.

Using the orthogonality relation Eq. 4, the N + 1 Legendre
coefficients can be written as

cIi,k � 2k + 1( )∫ 1

0
fI
i x( )Pk x( ) dx. (6)

Please note that, for the sake of the clarity, we will in the following
often use a somewhat sloppy notation and denote the coefficient cIi,k by
ci,k provided that it is clear from which set I the corresponding pulse fI

i

is taken.
Our implementation offers two ways to compute the Legendre

coefficients: 1) a numerical evaluation of the integrals in Eq. 6 using a
Gauss-Legendre quadrature with the roots of the highest-order
polynomial as integration points (to which the data are
interpolated using a cubic spline interpolation) and 2) a least-
squares fit of the data with Eq. 5 (this method avoids evaluating
the integrals explicitly). Method (ii) tends to be faster, and method (i)
is more stable for coefficients of higher order4.

The Legendre approximation reduces the number of degrees of
freedom for each pulse to a small number of coefficients; the use of
40–70 coefficients is mostly sufficient, except if jerks are to be
estimated. In addition, this approximation provides a
straightforward way to compare the shapes of different pulses (see
section “Similarity analysis”).

Analysis of time-normalised acceleration and
deceleration pulses

Once the Legendre representations (5) have been computed,
several methods can be employed to compare the different pulses.

Jerk estimation
The jerk, i.e., the time derivative of acceleration, is known to be of

fundamental importance for passenger (dis)comfort and safety (Graaf
and VanWeperen, 1997). Nevertheless, this quantity (and particularly
its peak value) is not necessarily easy to estimate from acceleration
time series, as numerical differentiation schemes tend to be unstable
for noisy data.

Once the Legendre coefficients of a given pulse are known, we
compute the Legendre representation of the time derivative according
to Phillips (1988). The corresponding Legendre expansion provides up
to a scaling factor due to the time normalisation, an approximation of
the jerk as a function of normalised time. This method avoids using a
finite differences scheme5. However, this method requires the
computation of a higher number of Legendre coefficients.

For the jerk as time derivative of acceleration, is has to be taken
into account whether or not the acceleration pulses under
consideration are time-normalised. The jerk estimation method for
time-normalised pulses described above yields a jerk with respect to
normalised time, with a dimension of acceleration. If the “true” jerk

2 By definition, for ACC events, the cumulative acceleration is >0, while for
DEC events, the cumulative acceleration is negative.

3 Of course, the sets can also be re-combined in different ways—we leave it to
the reader to come up with suitable indexing in this case. In places where
only the pulses of one set (e.g., one ACC set) are compared with each other,
we will drop the identifier I altogether to make the notation less clumsy.

4 According to Hale and Townsend (2016), it would be possible to further
speed up this computation by using a method similar to the fast Fourier
transformation. This approach could be a good way to make the method
more suitable for larger data quantities.

5 According to Lu et al. (2013), this method performs significantly better than
the finite differences scheme and even has advantages over approaches
based on polynomial interpolation.
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(dimension acceleration over time) is of interest, the jerk with respect
to normalised time has to be divided by the duration of the pulse under
consideration. In the results section, the histograms for the measured
pulses always show the jerk with respect to time, while the jerks of the
mean and maximum similarity pulses are specified with respect to
normalised time.

Similarity analysis
The similarity analysis in terms of Legendre coefficients has been

described by Kirchner et al. (2014). For two time-normalised ACC or
DEC pulses f and g, the similarity coefficient is defined as

s f, g[ ] � 〈f, g〉�����������
〈f, f〉〈g, g〉

√ , (7)

where 〈., .〉 represents the L2 scalar product. Similarity coefficients can
be applied to compare time-normalised pulses of different sets without
taking into account their magnitudes. We will, however, in the
following focus on similarities between pulses of the same set.

Let fI
1 . . . fI

M{ } be a set of M time-normalised pulses (all either
ACC or DEC pulses) with identifier I (in the following, only this one
set of pulses will be considered, so we will drop the identifier I in the
notation). Using a Legendre expansion to order N, the similarity
coefficient within the set can be expressed in terms of the Legendre
coefficients ci,k, cj,k of the pulses fi and fj as

sij ≔ s fi, fj[ ] � ∑N
k�0

ci,kcj,k
2k+1����������������∑N

l�0
ci,l( )2
2l+1 ∑N

m�0
cj,m( )2
2m+1

√ . (8)

For the M different pulses fi of the set under consideration, a
symmetric similarity matrix of dimensions M × M containing the
M(M + 1)/2 independent similarity coefficients is obtained.

Average/representative example: Maximum similarity and
mean pulses

The similarity coefficients sij within a given set are the basis for
different methods to define a representative average or to select a
representative example for the shape characteristics of a set of time-
normalised events without over-representing high-magnitude events.
Kirchner et al. (2014) suggested considering the mean similarity
coefficient of each pulse fi out of the set I, which is defined as

�si � 1
M

∑M
j�0

sij. (9)

As a representative example, the pulse out of the set with the highest
mean similarity coefficient is chosen,6

fI
maxsim � fi ∈ fI

1 . . . f
I
M{ }: �si � max

k∈ 1 ...M{ }
�sk. (10)

This pulse can now either be written as time-normalised function or as
Legendre expansion. We will refer to this method as the “maximum
similarity pulse method” and to the resulting pulse fi as the “maximum
similarity pulse”.

While the maximum similarity pulse method allows choosing a
representative example out of a set of pulses, in many applications
(particularly when creating input to experimental or numerical tests),
it is more appropriate to use an average that takes into account the
shape of all pulses of the set to some extent. Given that measured
acceleration signals are typically sets with different magnitudes but
similar shapes, simply calculating an arithmetic mean would not be
very useful, as it would be dominated by pulses with the highest
magnitude.

As a method to calculate such a representative average of the
shapes of different pulses, we suggest considering a weighted mean
over a given set with the inverse of the L2-norm of each pulse as weight.
The Legendre coefficients of this weighted mean pulse can be
written as7

�ck � a0
1
M

∑M
i�1

ci,k��������∑N
l�0

ci,l( )2
2l+1

√ , k � 0 . . . N, (11)

whereM, again, is the overall number of pulses in the given set, a0 is an
arbitrary (but constant) scaling factor, andN is the order of the Legendre
approximation. The time-normalised acceleration pulse corresponding
to these coefficients is given by the generic expression of the Legendre
series (Eq. 5) with zero residuals, ∑N

k�0�ck Pk(x). It can be shown (see
appendix) that out of all Legendre series of orderN, the multiples of this
pulse have the highest possible mean similarity with the pulses of the
set.8 As this holds for any multiple of the pulse define d by these
coefficients, the maximisation of the mean similarity only defines the
mean pulse up to a multiplicative factor. Therefore, Eq. 11 contains an
unknown scaling factor a0. The choice of the scaling factor is up to the
user; a reasonable choice depends on the application. For example, the
peak acceleration of the mean pulse could be adapted to the needs of a
laboratory or numerical test, or it could be used to normalise either the
L2-norm of the pulse or the peak acceleration to 1, so a time- and
acceleration-normalised pulse would be obtained. In the examples given
in the Results section, we choose a0 as the arithmetic mean of the peak
accelerations of the pulses of the input set, so a0 contains some
information about their magnitude. However, it shall be stressed that
different choices of the normalisation are possible and can makes sense
according to the desired application. In the following sections, the pulse
defined by the coefficients in Eq. 11 will be referred to as the “mean
pulse” (or “unconstrained mean pulse”) and the method as the
“(unconstrained) mean pulse method.”

Due to the cutting algorithm and varying terrain gradients,
measured acceleration pulses that are cut out of an acceleration
time series tend to be offset or lopsided. Therefore, the mean
pulses defined by the coefficients in Eq. 11 do not generally equal
zero when x = 0 or x = 1. However, with a laboratory setting and
computer simulations in mind, it is interesting to derive a version of
the mean pulse that maximises the mean similarity with all pulses

6 It could potentially be that this definition is not unique—that is, that there are
two pulses with the same mean similarity coefficient. This is, however,
unlikely in measured acceleration pulses.

7 Note that, as opposed to the previous sections, where given time-normalised
acceleration pulses were approximated and analysed in Legendre series, we
take the opposite approach now and define a new pulse by defining its
Legendre coefficients.

8 The mean similarity coefficient of this pulse is by construction ≥ that of the
maximum similarity pulse, as themaximum similarity pulse is the pulsewithin
the given set which has the highest mean similarity coefficient, while the
mean pulse manifests the highest mean similarity coefficient theoretically
possible in any Legendre expanded pulse of order N.
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under consideration while starting and ending at zero. With the
definitions

�c � ∑N
k�0

�ck, (12)

~c � ∑N
k�0

�ck −1( )k, (13)

we define the Legendre coefficients

�c0k � �ck −
2k + 1( ) N + 1 − −1( )N+k( )

N N + 1( ) N + 2( ) �c + −1( )k~c[ ], k � 0, . . . , N.

(14)
As for the “mean pulse” method, the corresponding time-
normalised acceleration pulse can be computed according to Eq.
5, ∑N

k�0�c
0
k Pk(x). It can be shown (see appendix) that 1) these pulses

equal 0 at x = 0 and x = 1 and 2) that the multiples of this Legendre
series have the highest possible mean similarity coefficients with all
pulses of the given set for all Legendre series of order N starting and
ending at 0.

Again, given that the similarity coefficients are invariant with
respect to multiplication with a positive constant factor, this series is
uniquely defined only up to multiplicative scaling. The scaling factor is
contained implicitly in �ck, �c and ~c. That is, the resulting Legendre
coefficients are not normalised to an L2-norm of 1 but can be re-scaled
in any desired way by adapting this scaling factor. For the scaling, the
same holds as for the unconstrained mean pulse method. This method
will be referred to as the “constrained mean pulse method” in the
following sections.

Measurements and data
A set of measurements was carried out on several bus lines of the

Zurich public transportation network under normal operating
conditions. Data were collected on electric and diesel-powered

vehicles. The instrument used was a commercially available
mobile phone (Samsung Galaxy S5) equipped with an application
designed to read out the onboard sensors (three-axial accelerometer,
gyroscope, and GPS) every 0.02 s. The instrument was manually
aligned with the vehicle and held in place during travel. As the main
interest of this study lies on accelerations in the primary direction of
travel of the vehicle, the following analysis will be focused on the
longitudinal acceleration component. A total of 6 time series of
longitudinal acceleration data were obtained (the raw data are
displayed in Supplementary Figures S1, S2 in the supplementary
material).

Results

Splitting algorithm, Legendre analysis

Each of the time series measured was split into acceleration and
deceleration events according to the splitting algorithm. As an
example, the splitting of one of the time series (after Butterworth
filtering) is shown in Figure 1. In total, the splitting of the normal
operation datasets resulted in 99 ACC events with magnitudes up to
0.215 g and 97 DEC events. In the latter, there was one event with an
exceptionally high magnitude of −0.7 g, which was caused by the
erroneous handling of the measuring device. This pulse was ignored in
the further analysis, resulting in 96 DEC events up to −0.279 g.
Histograms of the magnitudes and durations of all events are
shown in Figure 2. As a last step to prepare for the Legendre
analysis, the events were normalised in time. All time-normalised
events are displayed in Supplementary Figure S3 in the supplementary
material.

For all events under consideration, Legendre expansion up to
order N = 10 (i.e., 11 coefficients), N = 50 and N = 200 have been
computed.

FIGURE 1
Example of a Butterworth filtered acceleration signal before and after splitting for ride no. 1 of an electric vehicle.
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Mean pulse method and maximum similarity
pulses

Both the mean pulse method (constrained and unconstrained)
and the maximum similarity method were evaluated as average
over all vehicle types (i.e., electric and diesel vehicles) as well as
separately for the different types. Figure 3 shows the results of the
three methods with all vehicles taken into account, while the results
according to vehicle type can be found in the Supplementary
Material. Note that the unconstrained mean pulses have been
computed with coefficients up to N = 50, while the constrained
mean pulses were obtained with a rather rather low (N = 10)
number of coefficients. The application of the constrained method

only makes sense with such a low number of coefficients; with a
higher value of N, the pulses tend to converge to the unconstrained
ones with a discontinuity jumping to 0 in the beginning and
the end.

The maximum similarity pulses displayed in Figure 3 have been
measured on electric vehicles. They do not only represent the pulses of
maximum mean similarity overall, but also within the category
“electric vehicles.”

As pointed out in the Methods section, the mean pulse methods
are only defined up to a constant scaling factor. In the results shown,
the scaling was chosen in a way to scale the peak acceleration
according to the arithmetic mean of the peak acceleration of the
set of pulses under consideration.

FIGURE 2
Histograms of acceleration magnitudes, peak jerk values and pulse duration for all vehicle types.
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Similarity coefficients

While similarity analysis is not the primary focus of this work, sets
of similarity coefficients enable the comparison of the performance of
the mean pulse and maximum similarity pulse methods. The mean
similarity coefficients of the average pulses according to the
unconstrained mean pulse method and the maximum similarity
method with the full set of ACC and DEC pulses, respectively, are
given in Table 1. Furthermore, an evaluation of the similarity
coefficients between the mean pulse and the maximum similarity
pulse yields 0.9958 (ACC) and 0.984 (DEC). These results have been
obtained as averages over all vehicle types.

Jerk estimate

For each of the events under consideration, the Legendre
coefficients of the jerk time series have been evaluated based on a
Legendre representation with 200 coefficients. As an example, the jerk
with respect to normalised time is shown for the maximum similarity
and (unconstrained) mean pulses in Figure 4. Furthermore, the
distribution of the peak jerk values (with respect to time) is
presented in Figure 2 for all vehicle types and in Supplementary

Figure S7 in the supplementary material separately for the different
vehicle types.

Discussion

In non-collision incidents involving public transportation
vehicles, standing passengers are often subjected to balance
perturbations due to the acceleration and deceleration of the
vehicle. The balance recovery and mitigation of possible injury
depend on the perturbation pulse properties, as presented in
biomechanical studies (Karekla and Tyler, 2018; Krašna et al.,
2021). However, typical bus acceleration and deceleration pulses
are difficult to replicate in a laboratory setup. Therefore, for
research on the safety of standing passengers, it is essential that the
main features of the acceleration and deceleration pulses are properly
described. Nevertheless, the research on this topic is scarce compared
to research and literature on the safety of, e.g., seated passengers in
cars. Kirchner et al. (2014) presented a method of extraction of the
pulse characteristics based on Legendre polynomial expansion, which
can be considered the current standard and which the method
presented here has to be compared to.

Splitting and Lagrange representation

As shown in Figure 1, by using the splitting algorithm, the
larger spikes in acceleration and deceleration are consistently
detected even though at some points, the trained eye would
probably have subdivided some events into several ACC and
DEC pulses during manual splitting. This is also apparent from
the unequal number of ACC and DEC pulses. However, the more
regularly shaped events in the test drive dataset are clearly
recognised by the splitting algorithm.

FIGURE 3
Average acceleration and deceleration pulses. Left: computed according to the “unconstrained mean pulse method” (coefficients up to order N = 50)
and the “maximum similarity method.” Right: computed according to “constrained mean pulse method” (coefficients up to N = 10). All vehicle types.

TABLE 1 Mean similarity coefficients of the average pulses according to
maximum similarity (ms) and mean pulse (mp) method.

Pulse method, direction Mean similarity coefficient

mp acc 0.826

ms acc 0.821

mp dec 0.791

ms dec 0.776
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It is clear that manual splitting, as in Kirchner et al. (2014), would
improve the quality of pulse splitting in difficult cases. However, an
automatic splitting is required as soon as the datasets increase in size.
Manual splitting is also used to remove subjective estimates from the
analysis. Therefore, we consider it important to develop the splitting
algorithm further.

The Legendre representations generally deliver excellent fits of the
time-normalised ACC and DEC pulses. With coefficients up to order
N = 50 evaluated, an excellent agreement (mean adjusted R2 = 0.9987)
is reached, while the fits with 11 coefficients reach approximately R2 =
0.95. It is dependent upon the application whether a higher accuracy of
the fits or a lower number of coefficients is desirable.

Maximum similarity vs mean pulse method

Both the maximum similarity method and the (un)constrained
mean pulse method aim at extracting a representative example or
average from a number of events with different magnitudes without
being dominated by the events with the highest magnitude. The
maximum similarity method has been suggested by Kirchner et al.
(2014) and can be considered the quasi-standard so far to derive test
pulses for laboratory and numerical tests of the postural balance of
standing passengers.

The mean pulse method yielded acceleration pulse of average
magnitude 0.11 g and deceleration magnitude 0.13 g, while the
maximum similarity method resulted in higher pulse magnitudes
(Figure 2; Figure 3). This is comparable to the results reported by
Kirchner et al. (2014) and Palacio et al. (2009) based on the measured
data obtained in a similar setup during regular operation of a city bus,
as well as the typical values presented by Kuhn (2013), 0.08–0.11 g for
average acceleration and 0.12–0.15 g for deceleration. The peak values
occurred at the beginning of the acceleration pulse and at the end of
the deceleration pulse, in accordance with experimental observations
(Schubert et al., 2017). The peak values of the jerk were 1.0 g/s for
acceleration pulse and 1.5 g/s for deceleration pulse in the mean pulse
method, while higher values and more noise was observed in the
maximum similarity method (Figure 2; Figure 4). Therefore, it can be

stated that the mean pulse method captures the key characteristics of
the acceleration/deceleration pulses that may be used for
representation of balance perturbations for the standing passengers.

Direct comparison of the unconstrained mean pulse and
maximum similarity results (Figure 3) shows that the results are
surprisingly similar; an observation, which is confirmed by the
mutual similarity coefficients > 0.993. Both methods manage to
capture typical features of acceleration and deceleration pulses,
such as a strong rise in the beginning followed by a slower
decrease and a drop in the end. Also the constrained mean pulses
show the typical features, even though in a less detailed way due to the
lower order N of the Legendre expansion. The mean similarities of the
mean pulse results with the underlying sets are slightly higher than
those of the maximums similarity pulses (see Table 1), which reflects
the fact that the mean pulse method is based on an optimisation of
mean similarity coefficients.

While the maximum similarity method selects one element of the
underlying set of pulses, the mean pulse method, when applied to a
larger set, converges to a result which 1) is not very sensitive to
addition or removal of single pulse from the underlying set and 2)
levels out random features of the pulses of the set (average property).
Hence, the resulting mean pulses are much smoother than the
maximum similarity pulses.

The goal of the mean pulse method is to define test pulses to study
the postural balance of standing passengers in presence of acceleration
perturbations based on acceleration data sets measured in public
transport vehicles. The generation of such test pulses can be done
either by applying the mean pulse results directly as test pulses, or by
scaling their magnitude to a lower and upper bound to define corridors
for the test pulse. In both cases, the convergence and average property
of the mean pulse method is an advantage, as similar sets of measured
pulses result in similar mean pulses which, furthermore, can be scaled
in a meaningful way.

It could be argued that the smoothness of the mean pulses actually
is a disadvantage when applied as test pulses for the standing
passenger problem, as it could lead to less severe test conditions
compared to the spikes and random oscillations observed in the
measured acceleration pulses (and, therefore, also in the maximum

FIGURE 4
Jerk estimates for maximum similarity pulses (left) and unconstrained mean pulses (right), with coefficients up to N = 200 for all vehicle types.
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similarity pulses). Indeed, from the distribution of jerk over time in
Figure 4, it is apparent that the maximum similarity pulses do come
with higher peak accelerations and jerks. However, the peak values
appear at roughly similar times (the peak in the absolute value of the
acceleration appears after the first rise, while positive and negative
peak jerks appear in the first rise or the last drop). Given that peak
jerks and peak accelerations together with the points in time when they
appear are the relevant quantities for the severity of an acceleration
perturbation to standing passengers (Krašna et al., 2021), the severity
of the maximum similarity pulse seems not to be due to the random
peaks and oscillations, but rather due to features which are also present
in the mean pulses. Therefore, the mean pulses, scaled in time and
magnitude to the desired severity, likely provide sufficiently realistic
and convenient input to numerical or physical tests, given the
advantages discussed above.

Conclusion

In this study, a novel method is presented to define representative
average shapes of acceleration and deceleration pulses of public
transport vehicles based on measured acceleration time series. This
method consists of a combination of automated splitting, Legendre
polynomial fits, similarity coefficients and a weighted-mean approach
to capture the average shapes without being dominated by events of
large magnitude. To test the method and present some pulse shapes as
first results, a dataset collected on buses in normal operation was
considered, allowing a comparison of the newmean pulse method and
the (established) maximum similarity method.

The results show that the proposed method is capable of
automatically extracting meaningful representative averages out of
the datasets, which due to the weighting are not dominated by the
events of the strongest magnitude. Due to the average properties of the
method, the mean pulses are free of the random oscillations typically
occurring when choosing a representative example out of the set. The
proposed method enables the generation of well-defined
representative acceleration/deceleration pulses while taking into
account the real-life perturbation characteristics observed in field
data. The perturbation pulses obtained with the mean pulse
method can be applied as scalable test pulses, e.g., in sled
experiments with volunteer participants assessing the safety and
reaction of standing passengers subject to acceleration/deceleration
perturbations. Furthermore, due to the automated splitting algorithm,
the method can be applied also to larger datasets and mean pulses
representative of more exhaustive data can be generated in a
straightforward way.

The newly emerging finite element human body models capable of
replicating standing passengers will likely offer a particularly interesting
application of the mean pulse method: with these models, also higher
severity perturbations with increased injury risk can be tested. The test
pulses for these can be obtained from the mean pulse method, either by
scaling the existig pulses or by applying it to field data sets containing
emergency driving manoeuvres.
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Appendix A: Derivation of pulses of
maximum mean similarity (proof of Eqs
11, 14)

Pulses not constrained to 0

Let each of the time-normalised acceleration pulses fi, i = 1 . . .M,
be approximated by N + 1 Legendre coefficients ci,k, where k = 0 . . .N.
We seek to find a pulse �f given by a Legendre expansion with
coefficients �ck, k � 0 . . .N, that maximises the mean similarity
coefficient

�s �ck( ) � 1
M

∑M
j�1

∑N
k�0

�ckcj,k
2k+1���������������∑N

l�0
�cl( )2
2l+1∑N

m�0
cj,m( )2
2m+1

√ . (A1)

To facilitate the notation, we define the normalised version of the
coefficients ci,k as

αik �
ci,k��������∑N
l�0

ci,l( )2
2l+1

√ , (A2)

and in the same way the normalised version of the mean coefficients
�ck. This allows us to rewrite Eq. A1 as9

�s �αk( ) � 1
M

∑M
j�1

∑N
k�0

�αkα
j
k

2k + 1
. (A3)

We need to optimise the N + 1 coefficients �αk to find an extreme value
of �s while obeying the normalisation condition

∑N
k�0

�αk( )2
2k + 1

� 1, (A4)

which assures that the resulting mean coefficients are still normalised
to one. This can be achieved with the use of a Lagrange multiplier
coupling the normalisation condition to Eq. A4.We thus need to find a
minimum of the function

�sλ �αk( ) � �s �αk( ) − λ∑N
l�0

�αl( )2
2l + 1

, (A5)

where the Lagrange multiplier λ ≠ 0 has to be determined after the
optimisation in a way that the constraint is fulfilled. Then, the
necessary condition for an extreme value of �s constrained by the
normalisation condition is

0 � z�sλ
z�αk

� 1
M

∑M
j�1

αjk
2k + 1

− 2λ
�αk

2k + 1
, k � 0 . . .N. (A6)

Provided that ∑M
j�1α

j
k ≠ 0 for at least one index k, Eq. A6 is solved

by the coefficients

�αλk �
1

2Mλ
∑M
j�1

αjk, k � 0 . . .N. (A7)

Inserting these coefficients into Eq. A4 yields two possible solutions for
the Lagrange multiplier λ,

λ± � ± 1
2M

������������
∑N
k�0

∑M

j�1α
j
k( )2

2k + 1

√√
. (A8)

Thus, we have obtained two solutions �α±k to Eq. A6 for the two possible
values λ±. As the smooth function �s(�αk) necessarily has aminimum and a
maximumon the compact unit sphere with respect to the normdefined in
Eq. A4, one of these solutionsmust be theminimumand the other one the
maximum. Inserting the “+” solution into Eq. A3 yields

�s �α+k( ) � 1
2M2λ+

∑M
i,j�1

∑N
k�0

αikα
j
k

2k + 1
� 1
2M2λ+

∑N
k�0

∑M
i�1α

i
k( )2

2k + 1
> 0. (A9)

In the same way, we obtain �s(�α−k )< 0 for the “-” solution, which means
that the positive solution is the maximum. The non-normalised
coefficients �ck of the mean pulse given in Eq. 11 result from the
normalised coefficients �α+k by re-scaling with a constant factor a0,
which absorbs the factor 2λ in Eq. A7. Given that the mean mutual
similarity coefficient �s(�αk) is invariant with respect to multiplication
of the coefficients with a constant factor, the coefficients �ck realise the
highest possible value of the mean mutual similarity coefficient.

In the case ∑M
j�1α

j
k � 0 ∀ k ∈ 0, 1, . . . ,N{ }, even though the

coefficients given in Eq. A7 still represent a solution of Eq. A6 for any
λ ≠ 0, they all equal 0, and thus, there is no possible choice of λ that would
satisfy constraint (18). However, it is obvious from Eq. A3 that the
function �s(�αk) equals 0 everywhere, i.e., for any choice of coefficients �αk
or �ck, normalised or non-normalised, the highest possible value 0 is
assumed. Therefore, in particular, the coefficients �ck as given in Eq. 11
(which also happen to all equal 0) realise the highest possible value of the
mean similarity coefficient �s(�ck), which completes the proof.

It is stressed that the second case occurs only if the set of pulses is
in mean completely uncorrelated, which is highly unlikely in any
context where the application of this method would be reasonable.

Pulses constrained to 0

Let the base set of pulses fi, i = 1, . . ., M, and the corresponding
coefficients cik, k � 0, . . . ,N, and normalised coefficients αik be like
those in the previous paragraph. We seek to derive N + 1 coefficients �c0k
and normalised versions �α0k which maximise the mean mutual similarity
coefficient �s(�c0k) while fulfilling the following constraints:

∑N
k�0

�α0k( )2
2k + 1

� 1, (A10)

∑N
k�0

�α0k � 0, (A11)

∑N
k�0

�α0k −1( )k � 0. (A12)

While the first of these constraints is the normalisation condition,
conditions (25) and (26) ensure that the corresponding pulse is zero at
the ends of the considered interval,

0 � �f
0
0( ) � ∑N

k�0
�c0kPk 0( ) � �f

0
1( ) � ∑N

k�0
�c0kPk 1( ). (A13)

9 Given that the similarity coefficient is invariant with respect to re-scaling the
coefficients, we denote the mean similarity coefficient �s with the same
symbol whether it is meant as a function of the coefficient ck or the
coefficient αk.
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These three constraints can again be taken into account by using three
Lagrange multipliers λ, μ, ]. We thus need to find a maximum of the
function

�sλμ](�α0k) � �s(�α0k) − λ∑N
l�0

�α0k( )2
2l + 1

− μ∑N
l�0

�α0l − ]∑N
l�0

�α0l (−1)l, (A14)

for which the necessary condition is

0 � z�sλμ]
z�α0k

� 1
M

∑M
j�1

αjk
2k + 1

− 2λ
�α0k

2k + 1
− μ − ](−1)k, k � 0 . . .N.

(A15)
This expression can be resolved for �α0k,

�α0k �
1
2λ

1
M

∑M
j�1

αjk − 2k + 1( ) μ + −1( )k]( )⎡⎢⎢⎣ ⎤⎥⎥⎦. (A16)

From this result, the Lagrange parameters have to be eliminated using
the constraints (24)–(26). This is facilitated by the following
definitions (assuming that λ ≠ 0):

l � 1
2λ
, m � μ

2λ
, n � ]

2λ
, α̃k � 1

M
∑M
j�1

αjk. (A17)

Now, we can rewrite Eq. A16 as

�α0k � l~αk − (2k + 1) m + (−1)kn( ). (A18)
Inserting this equation into the constraints (25) and (26) yields

0 � l~α −m∑N
k�0

2k + 1( ) − n∑N
k�0

2k + 1( ) −1( )k, (A19)

0 � l~α −m∑N
k�0

(2k + 1) − n∑N
k�0

(2k + 1)(−1)k, (A20)

0 � l~β −m∑N
k�0

(2k + 1)(−1)k − n∑N
k�0

(2k + 1), (A21)

where the symmetric and anti-symmetric sums of the normalised
coefficients

~α � ∑N
k�0

~αk, (A22)

~β � ∑N
k�0

~αk −1( )k (A23)

have been defined. By explicitly evaluating the finite sums in Eq. A19,
A20 and A21 to

∑N
k�0

2k + 1( ) � N + 1( )2, (A24)

∑N
k�0

2k + 1( ) −1( )k � N + 1( ) −1( )N, (A25)

the system of equations can be solved for m and n:

m � l~α

N N + 2( ) −
l −1( )N~β

N N + 1( ) N + 2( ), (A26)

n � −l −1( )N~α
N N + 1( ) N + 2( ) +

l~β

N N + 2( ). (A27)

Given that bothm and n are proportional to l, the latter appears in the
result for �α0k only as a scaling factor, which allows for the normalisation
of �α0k. It is thus not necessary to compute l explicitly; rather, we can
write the coefficients up to the scaling factor as

�α0k
l
� ~αk −

2k + 1( ) N + 1 − −1( )N+k( )
N N + 1( ) N + 2( ) ~α + −1( )k~β[ ]. (A28)

By replacing the expressions for ~αk, ~α and ~β with their non-normalised
counterparts �ck, �c and ~c, we obtain Eq. 14. The further argument that
this value is actually a maximum for the positive choice of l works
analogously to the previous paragraph. If �α0k ≠ 0 for at least one k, a
value for l exists that normalises the set of coefficients and it can be
argued that the correlated version (l > 0) is the maximum (while the
anti-correlated one represents the minimum). Also, the argument for
the case �α0k � 0∀k applies as in the previous paragraph, which
completes the proof.

Frontiers in Future Transportation frontiersin.org12

Keller and Krašna 10.3389/ffutr.2023.931780

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.931780

	Accelerations of public transport vehicles: A method to derive representative generic pulses for passenger safety testing
	Introduction
	Materials and methods
	Data analysis method
	Preprocessing and automatic splitting
	Legendre expansion
	Analysis of time-normalised acceleration and deceleration pulses
	Jerk estimation
	Similarity analysis
	Average/representative example: Maximum similarity and mean pulses
	Measurements and data


	Results
	Splitting algorithm, Legendre analysis
	Mean pulse method and maximum similarity pulses
	Similarity coefficients
	Jerk estimate

	Discussion
	Splitting and Lagrange representation
	Maximum similarity vs mean pulse method

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References
	Appendix A: Derivation of pulses of maximum mean similarity (proof of Eqs 11, 14)
	Pulses not constrained to 0
	Pulses constrained to 0


